NEXOF-RA

NESSI Open Framework – Reference Architecture

IST- FP7-216446

[image: image1.jpg]NE XOF

reference architecture

[image: image45]
Deliverable D8.2
Proof-of-Concept – Report on Validation
Authors

THALES

TIE

SIEMENS

UPM

Due date of deliverable: 11/30/2009

Actual submission date: 12/08/2009
This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This work is partially funded by EU under the grant of IST-FP6-034763.

Change History

	Version
	Date
	Status
	Author (Partner)
	Description

	1.0
	12/15/2008
	Draft
	Thales
	1st version of document layout

	1.1
	04/19/2009
	Draft
	Thales
	2nd version of document layout

	1.2
	04/30/2009
	Draft
	Thales
	Final version of document layout (after the review audio conference of 30/04/2009)

	1.3
	05/05/2009
	Draft
	Thales
	Integrate comments from TIE, Engineering and UPM

	1.4
	05/18/2009
	Draft
	Thales
	Add content to Section 3

	1.5
	06/09/2009
	Pre-final
	Siemens

TIE

UPM

Thales
	Add content to Sections 2, 4 and 5 + some redrafting/enhancement of Section 3

	1.5.1
	06/26/2009
	Pre-final
	Authors
	Redrafting of all sections according to internal (WP8) review of D8.2 document

	1.5.2
	06/09/2009
	Final
	Thales
	Prepared final version

	1.6
	09/17/2009
	Redraf
	Thales
	Redraft according to the recommendations’ WP7

ATAM Methodology

	1.7
	10/27/2009
	
	Thales
	Integrate comments from partners (WP7, WP8, WP10)

	1.7
	10/7-9/2009
	
	UPM
	Fixed some typos and introduction of the ATAM methodology in HA and Scalability patterns.

	1.8
	10/18/2009
	
	UPM
	Removed the ATAM section and fix things to match D8.1

Includes sensivity points & tradeoffs in the Conclusions section of each PoC

	1.8.1
	11/04/2009
	
	
	Merges UPM’s contribution to the latest D8.2

	1.9.1
	11/10/2009
	
	Thales
	Integrates comments of Angelo, Antonio

	1.9.2
	11/11/2009
	
	Thales
	Integrates remarks of Danniel Gidoin (Thales)

Integrates Assessment results of Siements

	1.9.4
	11/16/2009
	
	Thales
	Presentation of results

Correct reference errors

	1.9.5
	11/16/2009
	
	WP8
	Focus on the validation of the patterns

	1.9.6
	11/16/2009
	
	Thales
	Integrates the TIE’s contribution

	1.9.7
	
	
	Thales
	Integrates presentation of results of Partners on the table.

	1.9.8
	11/19/2009
	
	Thales
	Integrates three points

Thales

(Evelyn) Siemens

	2.0
	11/20/2009

11/20/2009

11/22/2009

11/24/2009
	
	Thales

UPM

TIE

Siemens
	Integrate pattern of TIE

Integrate introduction of PoCs names and pattern name of UPM (PoCs’ selection section)

UPM sections updated

	2.1
	11/26/2009
	
	Simenens

UPM
	Minor corrections

Update example.

	2.21
	12/04/2009
12/08/2009
	
	Logica

Thales
	Reviewed by Logical and Thales – Finalized by Thales

Executive Summary

This deliverable reports the results of detailed assessment of each of the Architectural choices and/or patterns demonstrated through the first set of Proof-of-Concepts selected and set-up (so called PoCs Phase I/Year 1). This report is an input to NEXOF-RA Architecture Team (leaded by CA and WP7 lead) to further shape NEXOF Reference Architecture specifications.

Document Information

	IST Project Number
	FP7 – 216446
	Acronym
	NEXOF-RA

	Full title
	NESSI Open Framework – Reference Architecture

	Project URL
	http://www.nexof-ra.eu

	EU Project officer
	Arian Zwegers

	Deliverable
	Number
	D8.2
	Title
	Proof-of-Concept – Report on Validation

	Work package
	Number
	 8
	Title
	Proof-of-Concept

	Date of delivery
	Contractual
	30/11/2009
	Actual
	 08/12/09

	Status
	
	final 

	Nature
	Report (Demonstrator (Other (

	Abstract
(for dissemination)
	

	Keywords
	

	Authors (Partner)
	THALES, TIE, UPM, SIEMENS

	Responsible Authors
	Authors Phong CAO,

 Pascal BISSON

	Email
	phong.cao@thalesgroup.com
pascal.bisson@thalesgroup.com

	
	Partner
	THALES
	Phone
	+33 1 69 41 60 72

 Table of Contents

4Executive Summary

6Table of Contents

8Table of Tables

9Table of Figures

101 Introduction

101.1. Purpose and scope

101.2. Document overview

112 Assessment of Replication’s PoC 1 to PoC 4

112.1 PoC’s selection

112.2 Database Replication Interfaces for Highly Available Stateful Services (PoC 1)

122.2.1 Scope of the PoC with respect the Reference Architecture

132.2.2 Evaluation methodology

142.2.3 Evaluation results

202.2.4 Conclusion

212.3 Gray-Box Database Replication Architectural Pattern For Highly Available Stateful Services (PoC 2)

212.3.1 Scope of the PoC with respect the Reference Architecture

222.3.2 Evaluation methodology

232.3.3 Evaluation results

252.3.4 Conclusion

262.4 Vertical Replication Architectural Pattern For Scalable and Highly Available Stateful Services (PoC 3)

262.4.1 Scope of the PoC with respect the Reference Architecture

272.4.2 Evaluation methodology

282.4.3 Evaluation results

322.4.4 Conclusion

332.5 Gray-Box Database Replication Architectural Pattern in WANs (PoC 4)

332.5.1 Scope of the PoC with respect the Reference Architecture

342.5.2 Evaluation methodology

352.5.3 Evaluation results

372.5.4 Conclusion

393 Assessment of Security PoC 5

393.1 PoC’s Selection

393.2 Pattern: Trusted Timestamping Pattern

393.2.1 Scope of the PoC with respect the Reference Architecture

423.2.2 Evaluation methodology

453.2.3 Evaluation results

483.2.4 Conclusion

493.3 Pattern: Non-Repudiation Pattern

493.3.1 Scope of the PoC with respect the Reference Architecture

513.3.2 Evaluation methodology

533.3.3 Evaluation results

543.3.4 Conclusion

554 Assessment SCA Example Motion Tracker PoC 6

554.1 PoC’s selection

554.2 Pattern – OSGi-based SCA-Container

554.2.1 Scope of the PoC with respect the Reference Architecture

574.2.2 Evaluation methodology

594.2.3 Evaluation results

614.2.4 Conclusion

625 Assessment of Next generation service front-ends for SOA based business applications PoC 7

625.1 PoC’s selection

625.2 Pattern – Front-End for SOA

625.2.1 Scope of the PoC with respect the Reference Architecture

635.2.2 Evaluation methodology

655.2.3 Evaluation results

665.2.4 Conclusion

676 Presentation of results of the evaluation

747 Conclusion

75References

76Glossary

77Annexe 1

Table of Tables

68Table 1: How to read the table of results

69Table 2: Results of evaluation with ATAM approach or other approaches

71Table 3: Example of the Availability vs. Maintainability for the Gray-Box Database Replication pattern

72Table 4: Example of the integrity of Trusted Timestamping pattern

73Table 5: Example of the interoperability of OSGi-based SCA-Container pattern

Table of Figures

12Figure 1: Scope of the PoC – Data Base Replication Interfaces

15Figure 2: Microsoft SQL Server Throughput

15Figure 3: Microsoft SQL Server Response Time

16Figure 4: MySQL Throughput

16Figure 5: MySQL Response Time

17Figure 6: Postgres Throughput: WS Extraction

18Figure 7: Postgres Response Time: WS Extraction

18Figure 8: Postgres Throughput: WS Application

19Figure 9: Postgres Response Time: WS Application

21Figure 10: Scope of the PoC – Gray-Box Database Replication

24Figure 11: Scale-out

24Figure 12: Response Time

26Figure 13: Scope of the PoC – Vertical Replication

29Figure 14: Throughput of the baselines

30Figure 15: Vertical replication throughput results

31Figure 16: Response time for read only transactions

31Figure 17: Response time for update transactions

33Figure 18: Scope of the PoC – Gray-Box Database Replication applied to WANs

36Figure 19 WAN Replication Deployment

37Figure 20: Response Time

40Figure 21: Scope of the PoC – Trusted Timestamping

41Figure 22: Complete set of concrete components proposed by RAMPART

42Figure 23: Trusted Timestamping sequence diagram – use of the set of components

44Figure 24: Evaluating quality attributes of Trusted Timetamping pattern with ATAM Approach

47Figure 25: Example of sensitivity point of the confidence of TTP or of a cryptographic key

48Figure 26: Example of trade-off point of a cryptographic key

49Figure 27: Scope of the PoC – Non-Repudiation

51Figure 28: Verification of a signature sequence diagram – use of the set of components

52Figure 29: Evaluating quality attributes of Non-Repudiation pattern with ATAM Approach

55Figure 30: Scope of the PoC – OSGi-based SCA-Container

58Figure 31: Evaluating quality attributes of pattern OSGi-based SCA-Container with ATAM Approach

65Figure 32: Evaluating quality attributes of pattern Front-end for SOA with ATAM Approach

77Figure 33: Example of using the ATAM approach

1 Introduction

1.1. Purpose and scope
The purpose and scope of this deliverable is to report on the assessment of each of the architectural choices and/or patterns demonstrated for each of the Proof-of-Concepts selected and set-up for Year 1.

This deliverable directly follows D8.1a “Proof-of-concept released” where each of the PoCs Phase I/Year I have been presented and released as software. Whereas D8.1a was focusing on Phase I PoCs’ content description, D8.2 is here focusing on reporting PoCs results in a way it could be exploited by the architecture team of NEXOF-RA (leaded by CA and WP7 lead) to further shape Reference Architecture specifications through integration of results (focus on Architectural choices and/or patterns) duly validated.

As such this document report on assessment of each of the architectural patterns/choices conveyed by the PoCs phase I which were selected with respect to quality attributes those patterns claim and following in this a recommendation coming from the NEXOF-RA Reference Architecture team itself (WP7 & CA). [These quality attributes being specified in the section [NonFunctional Qualities] of the architectural pattern promoted by WP7 also shared and used by WP8 on other WPs.]

These validation results are for each architectural pattern based on three main steps: evaluation methodology, evaluation results and conclusion. First, an evaluation methodology is proposed for each pattern (here ATAM is promoted since relevant). Second, the sensitivity or the trade-off points are determined. Last, a conclusion of the validation results is reported.
1.2. Document overview

This deliverable is structured as follows: Section 1 is the document introduction, Section 2 to Section 5 reports on the findings regarding the assessment of each of the PoC set-up during PoC Phase I with a clear focus on assesing the architectural patterns they convey with respect to the claimed quality attributes (as expected by WP7). As such Section 2 reports on the findings regarding the assessment of the four replication PoCs on Scalability ACPs, Section 3 reports on the findings regarding the assessment of the Security PoC ACPs, Section 4 reports on the findings regarding the assessment of the PoC on SCA Example motion tracker ACPs. Section 5 reports on the findings regarding the assessment of the PoC on next generation service front-ends for SOA based business application ACPs. Section 6 presents all results under a table. And Section 7 concludes this deliverable.

2 Assessment of Replication’s PoC 1 to PoC 4

UPM assesses four PoCs at the same time. Here are these PoCs:

· PoC 1 - Database Replication Interfaces for Highly Available Stateful Services

· PoC 2 – Gray-Box Database Replication Architectural Pattern For Highly Available Stateful Services
· PoC 3 - Vertical Replication Architectural Pattern For Scalable and Highly Available Stateful Services
· PoC 4 - Gray-Box Database Replication Architectural Pattern in WANs
2.1 PoC’s selection

These PoCs have been selected and setup based on a proposal coming from WP4 and took over by UPM based on work performed and achieved by WP4 in close cooperation with WP7. [This was reported in D8.1.]

The patterns evaluated in each PoC are the following:

· PoC 1: Database Replication Interfaces for Highly Available Stateful Services

· Trigger Writeset Extraction Pattern

· Log Mining Writeset Extraction Pattern

· Writeset Extraction Based on Extended DB Interfaces Pattern

· PoC 2: Gray-Box Database Replication Architectural Pattern For Highly Available Stateful Services
· Gray-Box Database Replication Pattern
· PoC 3 Vertical Replication Architectural Pattern For Scalable and Highly Available Stateful Services
· Vertical Replication Pattern
· PoC 4 Gray-Box Database Replication Architectural Pattern in WANs
· Gray-Box Database Replication Pattern applied in WANs

2.2 Database Replication Interfaces for Highly Available Stateful Services (PoC 1)

In order to provide highly available stateful services, it is necessary to provide at the service infrastructure level high availability for persistent data. Data replication is the main technique for providing highly available and scalable data services. Different architectural patterns have been proposed for attaining data replication outside the DB. In order to extract the data to replicate them to the set of replicas, these database replication patterns require either the use of standard DB interfaces or the implementation of some minimal interface within the DB.

Scalability and Availability are two non-functional aspects covered by WP4.
2.2.1 Scope of the PoC with respect the Reference Architecture
[image: image2.jpg]-y SOA for systems System of patterns of the
of systems NEXOF
Reference Architecture
Standards Catalogue Top-level Patterns Guidelines and Principles
MS SaL
Server Trigger Writeset Extraction
Postgresa Dstabase Log-Minning Writeset Extraction Database
Writeset Extraction Based on
mysaL Extended DB Interiaces
Abstract Design Patterns
Concrete Component | | Abstract Component
Catalogue Catalogue Implementation Design Patterns Reference Model

Figure 1: Scope of the PoC – Data Base Replication Interfaces
In this PoC are involved patterns to extract data from databases. These patterns are:

· Trigger Writeset Extraction pattern,

· Log Minning Writeset Extraction pattern

· Writeset Extraction based on Extended Interfaces pattern
With regard to the standards catalogue used, the main standard is the Structured Query Language (SQL). SQL is a language that allows to retrieve and to manage data in relational database management systems and is standardized by ISO.

The patterns are related to the abstract database component, in particular relational databases. In this case, the patterns have been implemented for a mix of commercial and open source databases:

· PostgreSQL database server.

· Microsoft SQLServer.
· MySQL.
2.2.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.

2.2.2.1 Quality attributes provided to WP7 for this pattern

The Trigger Writeset Extraction, Log Mining Writeset Extraction and the Writeset Extraction Based on Extended DB Interfaces patterns are specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]

	Triggers Writeset Extraction

	Performance
	-

	Applicability
	+

	Maintainability
	+

	Log Mining Writeset Extraction

	Performance
	-

	Applicability
	0

	Maintainability
	+

	Writeset Extraction based on Extended DB Interfaces

	Performance
	+

	Applicability
	-

	Maintainability
	0

2.2.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

The assessment criteria are partially based on the ATAM methodology [6], which has been adapted to our specific need that is to evaluate, quantify and compare the tradeoffs between architectural choices. The ATAM methodology was originally developed to assist architectural decisions by taking into account early in the design process the quality attributes.

We use the ATAM utility tree for matching the quality attributes (performance, applicability and maintainability) with metrics to be used in the evaluation. The utility tree for each pattern is presented in [D8.1 pXX Figure 2: Utility tree to support validation in PoC1] and a detailed description may be found in the same deliverable [D8.1 pXX PoC 1: Database Replication Interfaces for Highly Available Stateful Services] of.

In order to evaluate some of the quality attributes addressed by the patterns, we have performed several experiments with the different writeset extraction patterns. The setup of every experiment consists in a node containing a client request emulator launching requests to a database node implementing a particular writeset extraction pattern.
2.2.3 Evaluation results

The evaluation of the performance quality attribute identified in the ATAM’s utility tree (See D8.1) for the three patterns has been performed using synthetic workloads to measure the performance (in terms of throughput and response times metrics) of the different interfaces.
In Figure 2 and Figure 3 are shown the throughput and the response time of Microsoft SQL Server DBMS for capturing the writesets using log mining and triggers. The baseline has been obtained measuring the standard execution of transactions.

The throughput of the baseline is around 45 requests per second and the response times for the baseline (Figure 3) are around 20 ms for low loads and 200 ms for high loads of the system.

With regard to the throughput exhibited by capturing the writesets by performing log mining, it can be seen that the throughput is significantly reduced (around a 85 %). Of course, the response times confirm also the performance degradation.

Finally, the throughput obtained when using triggers also shows a drop in the throughput obtained. It is not so noticeable as the one observed with the log mining but is around a 55-60 %. However, for the response time, the transaction latency is not affected dramatically compared to the normal execution.

So, the data showed in this figures shows that there is a significant degradation of the performance when using the current state-of-the art interfaces for extracting the writesets from the database.

[image: image3.jpg]] o
-] -]

a
-]

Throughput (req/sec)
N oW
s o

-
°

1 No WS Capture M Capturing from Log M Capturing through Triggers

1 2 3 4 5 6 7 8 8 10

Load (Number of Clients)

Figure 2: Microsoft SQL Server Throughput
[image: image4.jpg]Response Time (ms)

' No WS Capture W Capturing from Log M Capturing through Triggers

1400

1200

-
o
-1
-]

600

400

200

lllll@uuuu

Load (Number of Clients)

Figure 3: Microsoft SQL Server Response Time

The next two figures (Figure 4 and Figure 5) show the throughput and response times when the binary (black-box) writeset extraction is done in the MySQL DBMS kernel.

[image: image5.jpg]350

300

Throughput (req/sec)

BB NN
w o w o u
6 6 © o6 o

" No WS Capture W SQL Capture

|

Load (Number of Clients)

Figure 4: MySQL Throughput

[image: image6.jpg]Response Time (ms)

-
°
°

80

60

40

20

1 No WS Capture M SQL Capture

i 2 3 4 5 6 7 8 9 10

Load (Number of Clients)

Figure 5: MySQL Response Time

A loss of throughput around the 35 % can be observed in the maximum throughput obtained in the two configurations evaluated (335 req/sec in the normal execution without capturing the writesets vs. 220 req/sec when the SQL binary writeset is captured). When the throughput starts to stabilize, the MySQL execution without capturing the writeset stabilizes around 170 req/sec. On the other hand, the configuration capturing the writeset stabilizes at 120 req/sec, whichrepresents a loss of throughput around a 30%, whichis quite affordable. In saturation, the performance of the configuration drops to 65 req/sec.

With regard to the response time, for low loads until medium loads, both configurations perform very similar. For higher loads, the response time of the configuration extracting the writesets grows faster than the standard configuration.

Figure 6 and Figure 7 show the throughput and the response time for the binary writeset extraction in PostgresSQL. The throughput for both configurations is more or less the same (around 11 requests per second). With regard to the response time, it grows linearly with the number of clients in both configurations, what means that the cost of the writeset extraction is almost negligible. This is due to the fact that the writeset extraction can be done as a local task for each connection and does not require synchronization with other tasks performed by the database management system.

[image: image7.jpg]Throughput (req/sec)

No WS Capture M Binary Capture

1 2 - 4 4 5 6 7 8 a8 10

Load (Number of Clients)

Figure 6: Postgres Throughput: WS Extraction

[image: image8.jpg]Response Time (ms)

1200

1000

®
=]
S

1 No WS Capture M Binary Capture

1 2 3 4 5 6 7 4 8 9 10

Load (Number of Clients)

Figure 7: Postgres Response Time: WS Extraction
Finally, the next two figures (Figure 8 and Figure 9) show the throughput and the response time of the writeset application in PostgreSQL. Two configurations have been analyzed. The first one applies the SQL writesets obtained (textual form), and the second one applies binary writesets. Both configurations are compared against the normal execution of transactions in Postgres.

[image: image9.jpg]Throughput (req/sec)

400

350

w
°
°

N
]
°©

N
o
°

-
7]
°©

-
°
°

]
°©

°

% Normal Execution M Applying Binary WS M Applying SQL WS

“l!um

Load (Number of Clients)

Figure 8: Postgres Throughput: WS Application

[image: image10.jpg]Response Time (ms)

1200

1000

o
-]
°

% Normal Execution M Applying Binary WS M Applying SQL WS

L LLLLL

Load (Number of Clients)

10

Figure 9: Postgres Response Time: WS Application

In the two configurations applying the writesets, the throughput achieved is higher. Applying the binary writesets is around a 10-20% more performant than applying SQL writesets. For medium and high loads, the throughput achieved is between 100 and 150 requests per second. Compared to the baseline that just applies update transactions, the gain in performance of both configurations applying the writesets is quite significant. The analysis of the response time shows a similar behaviour. Whilst the normal execution of transactions in PostgreSQL grows very fast, the configurations applying the writesets are much more performant, showing response times between 10 and 100 ms.

The metrics and the evaluation for the other quality attributes identified in the ATAM’s utility tree for the patterns (See D8.1) are commented below.
With regard to applicability, neither the Trigger Writeset Extraction nor the Log Mining Writeset Extraction patterns require to access the code of the database component in order to implement writeset extraction. This means that maintainability is also avoided for these solutions. The main difference between them is the fraction of implementations providing these mechanisms. The trigger mechanism is present in almost all database management system (both commercial and open source) whilst the tools for performing log mining are not so common in database products. However, the purpose of these two mechanisms is not writeset extraction, so the performance of the solutions that implement them is affected as the previous analysis has shown. To the best of our knowledge, there are no database systems that offer the specific interfaces for writeset extraction described in the Writeset Extraction Based on Extended DB Interfaces pattern. In order to apply this pattern, it is required to access the internals of the database. The modifications that need to be done are moderate.

2.2.4 Conclusion
Database replication has as one of the main sensitivity points the cost of extracting and applying the updates (writesets) performed by transactions.

The applicability and maintainability of database replication has also as main sensitivity point, how the writesets are extracted and applied since they affect the assumptions on the target database system.

The trade-off that has been identified is that having high applicability and maintainability when using standard database mechanism to extract the writesets (triggers and log mining), results in a high overhead, what hampers the scalability for update workloads that is directly dependant on the cost of writeset extraction and application.

Reducing the cost of writeset extraction is possible by using an extended database interface, what increases the scalability. However, this is attained at the cost of applicability and maintainability that are decreased due to the requirement of having access to the database code in order to extend its interface.
Therefore, the trade-off is between applicability and maintainability, and performance (that includes indirectly scalability, attainable when these interfaces are applied to database replication).
2.3 Gray-Box Database Replication Architectural Pattern For Highly Available Stateful Services (PoC 2)
In order to provide highly available stateful services in SOI, it is necessary to provide high availability for persistent data. Databases are the components in charge of storing data of services and applications. The lack of availability of databases derives on the lack of availability of the services and applications that persist their data in them. This PoCs aims to demonstrate how high availability and scalability are provided to databases.
2.3.1 Scope of the PoC with respect the Reference Architecture
[image: image11.jpg]SOA for systems System of patterns of the
saL of systems NEXOF
Reference Architecture
Standards Catalogue Top-level Patterns Guidelines and Principles

Middle-R

Postgres

Concrete Component
Catalogue

Database
Repiication
Middieware

Database

Abstract Component
Catalogue

Gray-Box DB Repiication

Abstract Design Patterns

Implementation Design Patterns

Database
Repiication
Middieware

Database

Reference Model

Figure 10: Scope of the PoC – Gray-Box Database Replication
This PoC is based on the Gray-Box Database Replication pattern.

With regard to the standards catalogue used, the main standard is the Structured Query Language (SQL). SQL is a language that allows to retrieve and to manage data in relational database management systems and is standardized by ISO.

The pattern is related to the abstract database component of the NEXOF-RA, in particular relational databases. In this case, the gray-box approach has been implemented on top of the PostgreSQL database server.
The gray-box database replication approach also uses the Database Replication Middleware abstract component of the NEXFOF-RA in order to encapsulate the replication logic. In this PoC, the Middle-R replication software has been used.

2.3.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
2.3.2.1 Quality attributes provided to WP7 for this pattern

The Gray-Box Database Replication pattern is specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]
	Gray-Box Database Replication

	Scalability
	+

	Availability
	+

	Applicability
	0

	Maintainability
	0

2.3.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

As for the previous PoC, the assessment criteria are partially based on the ATAM methodology adapted to our specific needs (mainly the adoption of utility trees). However, in this case the business requirements have been derived from a particular scenario related to an online bookstore application included in a benchmark.
The utility tree for the Gray-Box DB Replication pattern applied in this PoC is depicted in D8.1 [D8.1 pXX Figure 4: Utility tree to support validation in PoC2]. A detailed description may be found in the same deliverable [D8.2 pxx PoC 2: Gray-Box Database Replication Architectural Pattern For Highly Available Stateful Services].
In order to evaluate some of the quality attributes of the pattern, we have performed several experiments. The validation has been done using the industrial benchmark TPC-W for web-based applications. The setup for the experiment consists in a node containing a client request emulator launching requests to an increasing set of database replicas each one deployed in a different node. The particular choice of software components for the replicas is the following:

· Tomcat web server/sevlet container/application server. Contains the TPC-W application services.

· PostgreSQL database server enhanced with binary writeset extraction/injection. Contains the data of the TPC-W application.

· Middle-R replication middleware for replicating PostgreSQL data.

· Ensemble group communication system in order to communicate the Middle-R replicas.

2.3.3 Evaluation results

The evaluation of the scalability and performance quality attributes identified in the ATAM’s utility tree for the Gray-Box DB Replication pattern has been performed using an industrial benchmark for web applications called TPC-W, which provides an e-commerce site for selling books through the Internet. The emulated clients of the TPC-W benchmark inject a workload mix that consists of 75% read transactions and 25% update transactions. The environment is based on a typical SOA multi-tier stack consisting of a web server (omitted from the figure for the sake of clarity), a servlet container/application server and a database server. The data of the TPC-W application’s database is replicated completely (full replication) into a set of replicas that conform a cluster. A DB replication middleware performs this task. This guarantees high availability for the data of the TPC-W application.

The metrics to show the scalability of the approach is the scale-out of the solution. This means, how many times a particular number of replicas multiply the peak throughput of a non-replicated setup. Also as part the scalability the response time has been measured.

The scale-out is shown in Figure 11. The results are shown for an increasing number of nodes (replicas) in the cluster. We can see that when new nodes are added the scale-out of the cluster of replicas increases. We can observe that when using two nodes in the system, the scale-out is almost 2, meaning that the system can almost double the performance of a non-replicated system. Of course, the scale-out does not increase linearly with the number of replicas due to the overhead introduced by the replication of all the modified data to all the replicas.

[image: image12.jpg]Scale-Out
»
N

=
n

0,5

 Full Replication

2 4 6 8 10 12 14

Number of Nodes

Figure 11: Scale-out

In Figure 12 are shown the response times for increasing loads measured in transactions per second (tps). With regard to the response times obtained, they increase until the system reaches saturation, and it is stabilizes around 1300 ms. As the TPC-W clients are synchronous, the response time does not grows exponentially when the system reaches saturation.

[image: image13.jpg]1600

1400

-
N
°
°

1000

800

600

400

Response Time (ms)

200

1 Full Replication

Load (tps)

800

1000

1200

Figure 12: Response Time

The metrics and evaluation for the other quality attributes identified in the ATAM’s utility tree for the Gray-Box DB Replication pattern application (See D8.1) are commented in the following text. In order to apply the pattern and maintain the implemented solution (applicability and maintainability attributes) it is necessary to modify the database code in order to implement the writeset extraction interfaces (See Writeset Extraction Based on Extended DB Interfaces pattern). The modification on the database source code is moderate, and mainly involves the transaction management process. It is also necessary to provide a middleware replication component on top of the database in order to implement the replication protocol. Finally, with regard to the availability of the solution proposed, it is possible to support N-1 replica failures. If any of the components of a replica fails (application server, database replication middleware or database), the replica is considered as failed.
2.3.4 Conclusion
We have identified multiple sensitivity points for the architecture of the database component: availability, scalability, performance, applicability and maintainability.

A centralized database provides excellent applicability and maintainability since databases are off-the-self components available for multiple vendors. Regarding performance, it can provide good performance for low loads manageable by a single database instance. However, a centralized database provides low availability since it does not tolerate neither crash failures of the underlying node, nor the software infrastructure. Furthermore, a centralized database can at most scale-up by buying more expensive hardware but does not scale-out since it does not have any mechanism to share the load across nodes.

The architectural alternative to a centralized database is a replicated database. As it has been proven in the PoC evaluation it provides a medium scalability, attaining scale-outs of 3.5x with 14 node replicas. Additionally, it tolerates as many failures as replicas minus one, providing high availability. The performance is also kept for very high loads.

However, these improvements in availability, scalability and performance with respect to the centralized approach, imply trading-off applicability and maintainability, since the gray-box database replication pattern requires an extended database interface that typically requires access to the database code.

Therefore, there is a trade-off between applicability and maintainability, and scalability, availability and performance.
2.4 Vertical Replication Architectural Pattern For Scalable and Highly Available Stateful Services (PoC 3)
In order to provide highly available and scalable stateful services in SOI, it is necessary to take into account also the multi-tier architectures supporting those services. Vertical replication allows providing scalability and high availability for stateful services deployed in multi-tier architectures. This approach consists in replicating pairs of application and database servers, encapsulating the replication logic in the application server.

Scalability and Availability are two non-functional aspects covered by WP4.
2.4.1 Scope of the PoC with respect the Reference Architecture
[image: image14.jpg]JREE

SO b s Systemof pattms of e
saL of systoms Reference Architecture
Standards Catalogue Top-level Patterns Guidelines and Principles
‘Applcation ‘Applcation
Jonas pplcat Vertcal Repication pplcat
Posigresal Database ‘Session Replicaton Database
Abstract Design Patterns
Concrete Component | | Abstract Component
Catalogue Catalogue Implementation Design Patterns Reference Model

Figure 13: Scope of the PoC – Vertical Replication
This PoC is based on the Vertical Replication pattern. Additionally the Session Replication pattern has been used in the evaluation of the PoC.
With regard to the standards catalogue used, the Structured Query Language (SQL) is required for the underlying relational databases required by the pattern. SQL is a language that allows retrieving and managing data in relational database management systems. It is standardized by ISO. J(2)EE is a specification lead by Sun Microsystems that specifies how to build compatible application servers using Java technology.
The pattern is related to the application server and database abstract components of the NEXOF-RA. The application server includes the replication logic for the solution proposed. In this case, the Vertical Replication pattern has been implemented in this PoC using an open-source J(2)EE compatible application server (JOnAS), and an open-source relational database (Postgresql).
2.4.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
2.4.2.1 Quality attributes provided to WP7 for this pattern

The Vertical Replication pattern is specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]
	Vertical Replication

	Scalability
	+

	Availability
	+

	Applicability
	+

	Maintainability
	0

2.4.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree
The method is the same as the one used for the previous pattern(s). A utility tree is generated for the quality attributes of the PoC and benchmark is used to measure the most important features. In this PoC the business requirements have been derived from a scenario related to a supply-chain management application included in the benchmark. The utility tree for the Vertical Replication pattern applied in this PoC is depicted in the [Figure 6 - Utility Tree to support validation in PoC3] of D8.1. The description of details can be found in [PoC 3: Vertical Replication Architectural Pattern for Scalable and Highly Available Stateful Services] of this same deliverable.

In order to evaluate some of the quality attributes of the pattern, we have performed several experiments. The validation has been done using the industrial benchmark SPECjAppServer for web-based applications. The setup for the experiment consists in a node containing a client request emulator launching requests to an increasing set of vertical replicas each one deployed in a different node. The particular choice of software components for the vertical replicas is the following:
· Tomcat application server. Runs the presentation part of the application.

· JOnAS J(2)EE application server. Contains the business logic of the application.

· Spread group communication system to communicate the application server replicas.

· PostgreSQL database server. Contains the data of the SPECjAppServer application.
The Apache web server has been used to distribute the load to the different replicas.

2.4.3 Evaluation results

One of the main goals of this PoC is to show an evaluation of the scalability and performance quality attributes identified in the ATAM’s utility tree for the Vertical Replication pattern implemented in this PoC (See D8.1). To achieve this objective, we have evaluated it using the SPECjAppServer industrial benchmark.

The baseline to compare the scale-out of the Vertical Replication pattern was the non-replicated system. We also evaluated the current state-of-the-art solution that is Session Replication pattern applied with an update-everywhere approach. The configuration of this solution uses two application servers accessing a single database. In both configurations there was another node that emulated the clients injecting the load to the corresponding system configuration.

We have implemented the Vertical Replication pattern combined with an updated everywhere approach. For this pattern we used up to ten replicas. The implementation includes a replicated cache that is kept consistent in all the replicas of the cluster by means of a certification protocol. The assessment criteria has been the scalability of the approach measured as scale-out, that is, how many times a particular number of replicas multiply the peak throughput of a non-replicated setup. Additionally, the throughput and the response time have been measured for an increasing number of replicas. In all configurations, the clients in are executed in a separated machine and each application server and its corresponding database are collocated in the same server.

Figure 14 shows the overall throughput of the baselines in Tx/sec for increasing loads measured in injection rates (IR).

[image: image15.jpg]B e e
NWwaG

Thr (Tx/sec)
BoR
-

ORNWAUON®O

" No-Rep (1 Node)
W SR (2 Nodes + DB)

IR

Figure 14: Throughput of the baselines
The first one evaluates the non-replicated configuration (the yellow bar). The second one has been obtained with the session replication pattern (the green bars). This configuration is the one commonly found in commercial implementations and represents the state of the art. Finally, the red line shows the expected throughput by the SPECjAppServer benchmark.

The first noticeable fact is that the non-replicated configuration and session replication can only handle a load up to an IR of 3.

Finally, the throughput of the vertical replication pattern has been evaluated using up to 10 replicas. The throughput results are shown in Figure 15.

[image: image16.png]Thr
(Tx/sec)

14-15
13-14
1213
1112
10-11
10

P ST

Figure 15: Vertical replication throughput results
In contrast, the vertical replication results outperform the two baseline implementations by a factor of 2, even if there is only one replica. The reason is that the multi-version cache is able to avoid many database reads compared to regular caching. Session replication did not help because the shared database was already saturated with two application server replicas.

The vertical replication approach is able to handle a load up to 14 achieving the required throughput with 9 and 10 replicas. That is, by adding new replicas to the cluster a higher number of clients requests can be served.

Even when the vertical replication configurations saturate (that is, when the throughput is lower than the injected load), configurations with a higher number of replicas exhibit a more graceful degradation. For instance, for IR = 13, both the 5-replica an 8-replica configuration are saturated. However, the throughput achieved with 8 replicas is higher than with 5 replicas, providing a better service to the clients. This is very important, since it will help the system to cope with short-lived high peak loads without collapsing.

So, to summarize, we have achieved scalability for stateful applications, increasing the throughput when new replicas are added to a cluster. Moreover, high availability is guaranteed because if one of the replicas fails, the other replicas can still serve the client requests.
Figure 16 shows the response times for read-only transactions. It can be observed that the curves of our protocol are almost flat independently of the number of replicas even at high loads when the system reaches saturation. This contrast with the behaviour of the two baselines, that grows exponentially. The reason is that for read-only queries our application server caching used in the vertical replication pattern is very effective avoiding expensive database access in many cases. Moreover, read-only transactions don’t require communication among the replicas.

[image: image17.jpg]VR T4 Nodes.
VR 3 Nodes

VR T2 Nodes.
VRT1 Node]

SR [2 Nodes + DB] 7
No-Rep [1 Node] 345 6 IR

Figure 16: Response time for read only transactions
Update transactions are quite different. They are shown in Figure 17.

[image: image18.jpg]Avg.
Resp.
Time
(Sec)

26-28
24-26
- 22-24
20-22
18-20
wi6-18
=14-16
m12-14
©10-12

VR T4 Nodes.

VR 3 Nodes

VR T2 Nodes.

VRT1 Node]

SR [2 Nodes + DB] 67
No-Rep [1 Node] 234 5

Figure 17: Response time for update transactions
The response times for the non-replicated configuration and session replication are worse than the ones for the multi-version approach even for low loads. This means that our caching strategy saves expensive accesses to the database. Moreover, the more replicas the system has, the more graceful is the degradation of the response time at the saturation point. As we have mentioned before, this is important since acceptable response times can be provided in case of short-lived peak loads.

The metrics and the evaluation for the other quality attributes identified in the ATAM’s utility tree for the Vertical Replication pattern application (See D8.1) are commented in the following text. With regard to the availability of the solution proposed, it is possible to support N-1 replica failures. As a replica is considered the set of application server and database, if any of them fails, the replica is considered as failed. In order to apply the pattern and maintain the implemented solution (applicability and maintainability attributes) it is only necessary to modify the application server code in order to implement the replication protocol. The modification on the source code is moderate, and mainly involves the transaction management process and persistence at the application server. The database code does not need to be modified because it is accessed by means of standard interfaces, in this case JDBC.
2.4.4 Conclusion
The main sensitivity points in multi-tier service runtimes lie in the attained availability, performance, scalability, applicability and maintainability.

The architecture of the runtime highly affects these quality attributes. A traditional approach, with a centralized application server and database, has a good applicability and maintainability due to the availability of application servers and databases as off-the-self components. The performance is reasonable for low loads that do not saturate the application server nor the database.

However, the availability is quite poor since a failure in either the node holding the application server instance and database or a failure in either of the software infrastructures, results in the lack of service availability. That is, all components are single points of failure, resulting in the unavailability of any service deployed in the multi-tier service runtime. Additionally, they do not provide scalability and the performance is absolutely degraded for medium and high loads.

The approach based on the Session Replication pattern enables to improve modestly the scalability for loads that are data intensive and increases slightly the availability of the application server component by tolerating failures of its replicas.

The Vertical Replication pattern attains a good scalability till around ten replicas and high availability tolerating as many failures as replicas minus one of any of the components.

Both, the Session Replication pattern and the Vertical Replication pattern, trade-off applicability and maintainability due to they require the modification of the application server in order to introduce the replication logic. Therefore, the trade-off lies between applicability and maintainability, and scalability, performance and availability.

2.5 Gray-Box Database Replication Architectural Pattern in WANs (PoC 4)

Nowadays, many services are provided by the companies through the web. The users of these services are many times scattered around large geographical areas and even around the globe. Centralized servers result in large latencies for distant clients. Edge computing allows diminishing the latency of static contents, but access to dynamic contents is still centralized. The Gray-Box DB Replication pattern applied to WANs described in this PoC enables to provide low latency to both static and dynamic contents to all clients. Therefore, this pattern allows providing scalable and high-available systems.

Scalability and Availability are two non-functional aspects covered by WP4.

2.5.1 Scope of the PoC with respect the Reference Architecture
[image: image19.jpg]SOA for systems System of patterns of the
saL of systems NEXOF
Reference Architecture
Standards Catalogue Top-level Patterns Guidelines and Principles

Middle-R

Postgres

Concrete Component
Catalogue

Database
Repiication
Middieware

Database

Abstract Component
Catalogue

Gray-Box DB Repiication

Abstract Design Patterns

Implementation Design Patterns

Database
Repiication
Middieware

Database

Reference Model

Figure 18: Scope of the PoC – Gray-Box Database Replication applied to WANs
This PoC is based on the Gray-Box Database Replication pattern applied in WANs.

With regard to the standards catalogue used, the main standard is the Structured Query Language (SQL). SQL is a language that allows to retrieve and to manage data in relational database management systems and is standardized by ISO.

The pattern is related to the abstract database component of the NEXOF-RA, in particular relational databases. In this case, the gray-box approach has been implemented on top of the PostgreSQL database server.
The gray-box database replication approach uses the Database Replication Middleware abstract component of the NEXFOF-RA in order to encapsulate the replication logic. In this PoC, the Middle-R replication software has been used.
2.5.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
2.5.2.1 Quality attributes provided to WP7 for this pattern

This PoC is related to the Gray-Box Database Replication pattern in the context of WANs. The Gray-Box Database Replication pattern is specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]
	Gray-Box Database Replication

	Scalability
	+

	Availability
	+

	Applicability
	0

	Maintainability
	0

	Latency in WANs
	+

2.5.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

As in the previous PoCs, a utility tree is generated for the quality attributes of the PoC and a benchmark is used to measure the most important features. The utility tree for the Gray-Box DB Replication pattern applied in WANs is depicted in D8.1 [D8.1 p XX Figure 8: Utility tree to support validation in PoC4]. The detailed description can be found also in D8.1 [D8.1 pXX PoC 4: Gray-Box Database Replication Architectural Pattern in WANs].
In order to evaluate some of the quality attributes of the pattern, we have performed several experiments. The validation has been done using the industrial benchmark TPC-W for web-based applications. The setup for the experiment consists in a node containing a client request emulator launching requests to an increasing set of database replicas each one deployed in a different node. The particular choice of software components for the replicas is the following:

· Tomcat web server/sevlet container/application server. Contains the TPC-W application services.

· PostgreSQL database server enhanced with binary writeset extraction/injection. Contains the data of the TPC-W application.

· Middle-R replication middleware for replicating PostgreSQL data.
· Ensemble group communication system in order to communicate the Middle-R replicas.

2.5.3 Evaluation results
This PoC aims at evaluating the real benefits of the architectural pattern and its impact in the latency perceived in WANs as has been identified in the performance attribute of the ATAM’s utility tree for the PoC. The metric used has been the quantification of the reduction of the latency perceived by the clients using an implementation of the pattern compared to the one of a centralized web server.

The validation has been performed also using the industrial benchmark for web applications called TPC-W. It provides an e-commerce site for selling books through the Internet. The emulated clients of the TPC-W benchmark inject a workload mix that consists of 75% read transactions and 25% update transactions. The system has 4 edge servers and looks similar to the architecture described in Figure 19. Each edge server consists on a typical SOA multi-tier stack that includes 2 nodes. In the first node, the web server/servlet container/application server executes the business logic of the TPC-W application. The second node holds the middleware-based replicated database. The JDBC driver makes transparent to the application server the different database replicas. The two nodes that configure an edge are connected through a LAN. The WAN that connects the edge sites has been emulated and includes a latency of 40 ms.

[image: image20.jpg]S

]

52

)

Web Server
&
Application Server

Web Server
+
Application Server

Web Server
A
Application Server

Edge1

JDBC JbBC JDBC
Replication Replication Replication
Middieware Middieware Middleware

Edge3

Figure 19 WAN Replication Deployment
Figure 20 shows the response time for the evaluated configurations. In all configurations, the data of the TPC-W application’s database is replicated completely (full replication) into the set of edge servers. First of all, we have analyzed two baselines. The baselines follow a primary-backup scheme for the transactions that have updates. Whilst read-only transactions can be executed in any edge server, update transactions are executed in one of the edge servers (the primary) and the changes are lazily replicated to the other replicas (the backups). Lazily means that the updates are replicated to the backups after the transaction has been committed in the primary. In the first of the baselines (labelled as LPN), the web/servlet container that receives the client requests, executes the update transactions and the replication middleware sends one message per database access. That is, if a database transaction includes several operations, one message per operation will be sent through the WAN. In the other baseline (labelled as LP1) the replication middleware only sends one message at the end of the transaction including all the possible operations performed in the transactional context. These two baselines have two main drawbacks. The first one is that clients may not perceive their own updates when executing two serial transactions, the first one updating A and the second reading it again in other edge. This is because maybe the server where the read operation is done has not received yet the previous update. The other disadvantage may occur when the primary edge server crashes and has not propagated the changes to the backups. This scenario may lead loss data.

Finally, in the configuration labelled as SEQ, both types of operations -read and write- can be performed on every edge server (called update everywhere). Therefore, the web/servlet container does not need to be aware of the replicated infrastructure because the transactions are executed locally. Before committing the transactions, a certification protocol based on snapshot isolation is executed in order to guarantee the consistency in the whole set of edge servers. This requires to send through the WAN only one message round (per transaction) containing the changes produced in the transaction (eager replication).
[image: image21.png]Time (ms)

-—-—-/'/

0 200 400 600 800 1000 1200
Load (#clients)

Figure 20: Response Time

As we can see in the figure, all the curves offer an acceptable response times (around 600 ms) until 500 clients. From that point on, the primary-backup replication approaches (LP1 and LPN) start to grow exponentially. This can be explained because only one server is in charge of processing all the transactions that include updates. Moreover, the response time of the LPN curve grows faster than the LP1 because it requires to send more messages through the WAN (one per update operation in LPN). However, the response time of the update everywhere approach exhibits very good behaviour. It is able to serve 1200 clients with an average response time of 350 ms and also offers much more performant response times than the baselines when the system is less overloaded (e.g. from 100 till 700 clients). This means a better customer experience.

The metrics and evaluation for the other quality attributes identified in the ATAM’s utility tree for the Gray-Box DB Replication pattern applied to WANs (See D8.1) are the same as in the PoC 3.7 Database Replication Architectural Pattern For Highly Available Stateful Services.

2.5.4 Conclusion
The main sensitivity point for edge computing is the observed performance, especially response time, by end clients. Response time is highly impacted by the architecture of the edge computing system.

In this PoC, we have compared a traditional edge computing architecture based on a centralized database for dynamic contents with a WAN replicated database architectural choice.

The trade-off is between observed performance by end clients (response time) and the applicability and maintainability of the architectural choice. The traditional centralized database approach results in poor performance for dynamic contents, since it has high latencies to access the geographically distant centralized database in a per-interaction with dynamic contents basis. On the other hand, it has good applicability and maintainability due to it is based on off-the-shelf component.

Performance (in terms of response time) can be dramatically improved by adopting the Gray-Box Database Replication pattern for storing the dynamic contents. This enables to perform local reads and writes plus a single WAN interaction per transaction. However, this improvement is attained by trading-off applicability and maintainability due to the requirement of extended database interfaces for writeset extraction.
3 Assessment of Security PoC 5

3.1 PoC’s Selection

This PoC has been selected and setup based on a proposal coming from WP4 and took over by Thales based on work performed and achieved by WP4 in close cooperation with WP7. The Trusted Timestamping and Non-Repudiation patterns are part of the Security In ESOA pattern contributed to Enterprise SOA pattern. [This was reported in D8.1.]
3.2 Pattern: Trusted Timestamping Pattern

Trusted timestamping is the process to track a document in the time, since its creation, and follow its changes. It is the means guaranteeing that nobody, even the owner, is capable of modifying it, once it has been timestamped, provided that the timestamper's integrity is never compromised. Consequently, this pattern strengthens the trust in the timestamp of a document.

The administrative aspect involves setting up a publicly available, trusted timestamp management infrastructure to collect process and renew timestamps.

3.2.1 Scope of the PoC with respect the Reference Architecture

The objectives of the Security PoC are to support the pattern which is specified in the WP7 and to validate the research results of WP4. Starting to populate the NEXOF-RA according to the structure of the reference architecture proposed. As such the figure hereafter gives a global view of Security PoC components to each element/constituent of the NEXOF RA structure.

[image: image22.emf]Standards Catalogue

Concrete Component

Catalogue

abstract Component

Catalogue

Top-Level Patterns

Abstract Design Patterns

Implementation Design Patterns

Guidelines and Principles

Reference Model

WS-Security

RFC 3161

Rampart

1. Hash of document

2. TSA added the Timestamp

3. TSA signed the document with

the secrete key.

Istamping

(Described in WP4)

Security In

ESOA

Trusted

Timestaming

XML Signature

Digital

Signature

ESOA

TSA

Timestamp

Authority

analysis

services

Standard IDE functions

(edit,compile)

Legacy wrapping

tools

Service interface

specification

Service Testing Deploy/Undeploy

Execute service

Component instance

Communication

Support

Code analysis (style,

Metrics, performance)

Legacy Migration

Tools

QoS specificationService Packaging Publishing

Management and

Monitoring

Specification to

Code generation

Code to specification

generation

MDA tools

Policy specification

Management

specification

Service versioning

support

Stateful service

Support

Management

Information

Transactional

support

Manage computational

resources

Message pattern

support

Service policy

support

security

Collect data

ISecurity Monitoring

Notification

ISecurity Monitoring

Monitor Security

IProcess Security

ISignature

IStamping

INon-Repudiation

Manage Security

Security

Implementation

Security Policy

configuration

IPrivacy

IMessage Security

IAuthentication

IService Security

IEncryption

presentation

Query Contextual

Information

Obtain Contextual

Property

Obtain DCCI Tree

Render & Service Front

End Resource

Render Workspace

Binding between Source

And Contextual framework

Identification of Delivery

Context Evidence

Subscribe to

Contextual props

Identification of User

Parameters

Data

Validation

Manage

Persistence

Send Data

To Channel

Subscribe to

Channel

Create

Channel

Transform a

Resource

Interaction

Management

Publish a

Resource

Select the Best

Resource

Describe a

Resource

Search a

Resource

Workspace

Design

Server Data

Manager

Server Validation

Manager

Contextual

Adaptation

List Resources

Server Data

Binding

Knowledge

Extractor

Form

Fulfilment

Data

Binding

Data model

Management

Recommend a

Resource

Get Resource

Description

composition

Process Design

Process

Orchestration

Process Test

Process Execution

Transaction

Message

Transformation

Data Mapping

Monitoring

messaging

Service Invocation

Message exchange

Route Message

Configure Service

Mapping

Enhance Message

Transform Message

Manage Message

Metadata

Select Endpoint

Validate

discovery

Provides a service

Discovery UI

Provides a service

Discovery Engine

At Runtime

Search based on

Requirements

Search based on

Behavioral Constraints

Search based on

Structural Constraints

Provides a service

Discovery Engine

Manages the creation

Of search queries

Provides searching

Ranking and selection

algorithms

Assists for the

Specification of search

criteria

return ranked results

to consumers

Organizes service

Descriptions

Manage User

Subscriptions

Manage Publication

events

Browse catalogue

content

Manage Service

descriptions

Manage Content

Access policies

Manage Catalogue

Federations

Manage

Content replication schemas

between catalogues

Manage User Accounts

Roles Groups

resources

Remove resource

From resource set

Suspend Resource

Set

Delete Resource

Set

Monitor Pay per Use

Add resource to

Resource set

Resume resource

Set

Provision Virtual

Resource Set

Reserve

Capacity

Release reserved

Capacity

management

Setup Mgmt. Rules

Setup Monitoring Rules

Perform Monitoring

Evaluate Monitoring

Results

Perform Adaptation

Modify, delete, move,

retrieve, etc service

descriptions

manage versions,

authoring

provides API interfaces for

service querying, storage

and retrieval

select best candidates

Hash

Timestamp

XML Encryption

Keys Manager

WS-Security

SOA

Framework

Key

Management

TSA

Timestamp

server

AXIS 2

Figure 21: Scope of the PoC – Trusted Timestamping
Before describing all elements, here is the relationship between abstract components and concrete components.
	Abstract component
	Concrete component

	Hash
	XML encryption

	TSA
	TSA

	Timestamp
	Timestamp server

	Digital Signature
	XML Signature

	Key Management
	Key Managers

	SOA Framework
	N/A

	N/A
	AXIS 2

The achievement of the PoC has used other components which are necessary in the context but not necessary for the pattern.

The Framework SOA helps the development of this pattern on the environment SOA.
AXIS 2 is used to simulate the consumer.

For the convenience of deployment, the TSA is simulated by a script which is written specifically for the demonstration, and the timestamp server is used through a call of a Java function.
Description of each element
WS-Security (Web Services Security) is a communication protocol providing a means for applying security to Web services. On April 19 2004 the WS-Security 1.0 standard was released by Oasis-Open. On February 17 2006 they released version 1.1. In addition with WS-Security, the WS-Security Policy which defines the security policy on the server side is also suggested to be used.
Rampart (see Figure 22 in the simplified architecture) proposes a complete set of concrete components, but some of them are identified in order to achieve the implementation. Axis 2 is a concrete component which plays the role of consumer.

[image: image23.png]Rampart

‘OMXML Security

Handlers

Rampart
Module

XML
signature

BxIsZ2

ws
Security

XML
Encryption

ws
Security
Policy

Keys
Manager

Figure 22: Complete set of concrete components proposed by RAMPART

In a very simple view, Rampart consists of a core module and packages related to WS-Security and WS-Security Policy. For XML-Encryption and Signature, Rampart/C uses OMXMLSecurity. Both Rampart and OMXMLSecurity use Apache AXIOM
 and Axis2-Util libraries. OpenSSL is used as the crypto library in OMXMLSecurity.
The interface between Rampart and the Apache Axis2 engine is the Rampart module called mod_rampart. The module has two handlers, one for the inflow and the other for the outflow of the Axis2 engine. Rampart directs messages to its other components for further security related processing using these handlers.

Handlers are a way of extending capabilities of the core engine. Once the Axis2 engine calls the invoke() method of the handler, the module can do the necessary processing over the SOAP message. Rampart use this mechanism to build/process security related SOAP headers.

The abstract components are materialized together with the concrete components which participate to their implementation.

The abstract design patterns are represented firstly by the high level of security pattern and followed directly by the pattern. This level to which is attached the two security architectural patterns is secure SOA.

The implementation design patterns are represented with these three main activities (to build a complete chain, we need more details of flow exchange. And then we must integrate more actors on the chain):

· Hash of the document (from the document, a dedicated software calculates a hash)

· The TSA added the timestamp to the hashed document

· TSA signed the document with the secrete key.

The following sequence diagram which is already specified in the WP7 [Trusted Timestamping Pattern] explains how a trusted timestamp is implemented. This diagram show the use of the set of abstract components which are described the previous paragraph.
[image: image24.emf] : External Consumer Agent

 : Hash : Timestamping Authority : Timestamping : Key Management : Digital Signature

1 : hash(Message, HashAlgorthm): MessageDigest

2

3 : createTimestamp(MessageDigest, DigestAlgorithm): TS Message

4 : timestamp(MessageDigest, Time): Timestamped Message

5

6 : hash(Message, HashAlgorthm): MessageDigest

7

8 : sign(MessageDigest, PrivateKey, Algorithm): Signed Message

9 : getKey(): Key

10

11

12

Figure 23: Trusted Timestamping sequence diagram – use of the set of components
3.2.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
3.2.2.1 Quality attributes provided to WP7 for this pattern

The trusted timestamping pattern is specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]

	Integrity
	+

	Accountability
	+

	Maintainability
	+

	Performance
	-

3.2.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

After identifying the quality attributes, evaluating these quality attributes with the ATAM
 methodology is depicted in the following picture.

[image: image25.emf]Quality Attibutes Pattern

Trusted

Timestamping

Integrity

Accountability

Protocol

Digital Signature

Modification

Creation

(H,L)

Timestamping Authority (TSA) Server

Trusted third party

(H,M)

Timestamping Authority (TSA) Server

Trusted third party

(H,M)

Maintainability

Performance

Protocol

The Hash uses computing resource,

increases volume of the origin data

The Signature uses computing

resource, increases volume one time

that the data signed

(H,L)

(H,M)

Components

Services

Pattern is used as a component

service in the SOA environment

(H,M)

Figure 24: Evaluating quality attributes of Trusted Timetamping pattern with ATAM Approach

Description of each element

Please report to the Annexe 1 for the details of using ATAM approach. The following description is just a report of results of the analysis.

The aim of integrity is to guarantee that a data is not modified either accidentally or maliciously. To guarantee the integrity, a protocol as Digital Signature is used. The X509 with keys of 1024 bits are possible technical solutions.

In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI). X.509 specifies, amongst other things, standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm. Today, the recommended length for keys used by the format X509 certificates is 1024 bits. This key length meets the needs of applications of e-commerce. Its robustness guarantees the integrity of the Trusted Timestamping.

The Accountability enforces imputability, guarantying the transparency of the operations. Time stamping contributes to accountability since it can be used to add information about the time of digital signature. Time stamping relies on the same technology as digital signature. The Time Stamping infrastructure is based on a TSA Trusted third party Timestamp Authority and its X.509 certificates. The timestamp signed by the TSA guarantee the traceability of the time of an action and can be use as a legal proof.

The overall security architecture is based on the SOA. All security components are seen as a service. By this way, they inherit of the SOA benefits: interoperability, loose-coupling. It affects directly positively the maintainability.

In the general security context and particularly for the Digital Signature, the performance is affected negatively. Intrinsically, the Digital Signature uses hash and encryption mechanisms, which are consumers of resources. The encryption will increase the volume of the data which will be transmitted to the network. Furthermore, the data transmission on the network will be large all the more as the volume of data to be transmitted will be sizable.
3.2.3 Evaluation results

The Evaluation results are subjective. Quantitative indicators are not applicablein this context/field. We must ask ourselves: how to measure the trust, which itself is subjective and is often in touch to personal experience or that of a third party to whom we trust.
We can see it with the Digital Signature which guarantees the integrity. Digital Signature uses the certificate which is delivered by the Certification Authority. This signature proves who the author of the data is. This proof is based on the best practices recommended by the RFC 3161 for the trusted timestamping.

This process of Trusted Timestamping is supported by two main security activities:

· Cryptography

· Trusted Third Party

The cryptography uses the private key to encrypt the data. This encryption using this key is considered as trust as the key has not been broken.
The quality of a key is its ability to resist to an attack or any practice of codebreaking or cracking the code. While a key is not broken, it may be considered of sufficient quality.

To verify that a message has been signed by a user with his/her secret key and has not been modified by the receiver, we must only know the corresponding public key. The proof of the non-modification of a message guarantees the message Integrity.

In cryptography, a Trusted Third Party (TTP) is an entity which facilitates interactions between two parties who have trust in the third party. In TTP models’, the relying parties use this trust to secure their own interactions. In the Trusted Timestamping process, a certificate authority (CA) generates a digital identity certificate used by the TSA (Timestamping Authority). The CA then becomes the Trusted-Third-Party in this certificates issuance. To this end, the TSA is also a TTP.

We can have more or less confidence. This perception is subjective, proven or not proven by facts, but there is no unit of measurement to evaluate it. We can just position it on a scale of values that we ourselves graduated according to the idea that we do trust.
The proof of this identity permits to guarantee the traceability that supports the Accountability quality attribute.

Computational cost and best practices (Performance)

The asymmetric algorithms known thus far are relatively big resources consumers compared with most symmetric key algorithms. Therefore they are mainly used to protect secret keys or encryption of small amounts of data, such as a hash.

Although symmetric encryption is faster than asymmetric encryption, the last is more secure. The programmer chooses what to use and must consider both speed and security. Large amounts of data are difficult to encrypt by using asymmetric key encryption due to the performance overhead. One other major problem with this type of encryption is key management. In many organizations, a public key infrastructure is implemented and used for revoking, distributing, and managing certificates.
This study can be done with the real need of performance.

In this case, the balance with different parameters must be trade-offed:

· number of bits to use to encrypt the data,

· cryptographic algorithm,

· type of processor (math support),

· asymmetric, symmetric, key session?

In the security PoC, this study is not done because the costs of it are important according to the objectives.

Concerning the Maintainability, all parties are communicated within the SOA environment. In fact, the standard interfaces defined for this purpose permits to be interoperable with other services. It means that we can change a service if it doesn’t correspond to our needs without changing the interface with other services.

Determination of Sensitivity Points

After evaluating subjectively the results, we ought to determine the sensitivity point of TTP (Trusted Third Party) or of Cryptographic Key.

[image: image26.emf]Sensitivity Point

Decision

Q

u

a

l

i

t

y

A

t

t

r

i

b

u

t

e

Lost of confidence of

the TTP or the

cryptographic key

Figure 25: Example of sensitivity point of the confidence of TTP or of a cryptographic key

The above picture shows that the level of confidence on the TTP or on the cryptographic key. Once, we lost the trust on the TTP or on the cryptographic key for many reasons.

For example, a cryptographic key could be breakable according to the means deployed and time spent to break it. To this moment, we can trust a cryptographic key for a given time-to-live period after which the key must be replaced. The moment of lost of the confidence should determine the moment of the stop of use. The above picture is valuable for the both quality attribute: integrity and accountability [Figure 24].

Determination of trade-off points of TTP or Cryptographic key
The trade-off point of TTP is very difficult to express with a measurable rule. The decision to take a TTP or another TTP depends of many criteria such as security policy of the enterprise, the law, the trust, the number of customers of the TTP…

The trade-off point a cryptographic key depends of the following parameters (we choose a cryptographic key indeed of another):

· Asymmetric

· Symmetric

· Computation time

· Strength

· Confidence

· Etc…

We can take an example of comparison between two different algorithms. One time, we are confident on these keys. This example shows only how we can balance between these algorithms (asymmetric and symmetric). According to the security expertise, the Asymmetric algorithm is slower with the big volume. This example is simplified and reduced to two algorithms. In certain cases, it’s more complex to find the trade-off. Ease of key distribution should be taken into account. All the time, the choice of a security algorithm is defined according to the security needs.

[image: image27.emf]Computation time

D

a

t

a

s

i

z

e

Trade-off point

Asymmetric key

Symmetric key

Figure 26: Example of trade-off point of a cryptographic key

This example is a concrete determination of the trade-off of the encryption algorithm.

3.2.4 Conclusion
The ATAM approach by using the quality attributes pattern tree highlights clearly how the quality attributes have reached their target. It means that this approach supports the specification of the quality attributes inside the Trusted Timestamping pattern.

The subjective approach permits at least to determine the sensitivity and trade-off points. As consequence of the evaluation based on the subjectivity, these points are only the approximate data.
The achievement of this pattern brings a high added value for the trust and confidence requirement [R33] of D10.1. There isn’t any major risk of the implementation to state here.

3.3 Pattern: Non-Repudiation Pattern

Non-repudiation is the concept of ensuring that a party in a dispute cannot repudiate, or refute the validity of an information, statement or contract. Although this concept can be applied to any transmission, including television and radio, by far the most common application is in the verification and trust of signatures.

According to traditional legal practice, a signature on a paper contract or memorandum is sometimes challenged by the signatory. Such contesting may take one of two forms: The signatory may claim fraud or forgery, such as "I did not sign that." Alternately, he/she may accept the signature as authentic but dispute its validity due to coercion, as in the scenario of blackmail or confessions given under torture. In the latter case the digital signature does nothing more.

The legal burden of proof differs depending upon the repudiation reason. In the former scenario the burden of proof typically rests on the party claiming validity, while in the latter it shifts to the signatory claiming lack thereof.

3.3.1 Scope of the PoC with respect the Reference Architecture

The main objective of the PoC is to achieve quality attributes which are specified in WP7. By achieving our quality attributes of the trusted timestamping pattern, we can map this pattern to Reference Architecture Structure.

[image: image28.emf]Standards Catalogue

Concrete Component

Catalogue

abstract Component

Catalogue

Top-Level Patterns

Abstract Design Patterns

Implementation Design Patterns

Guidelines and Principles

Reference Model

XML Signature

XML Signature

Best Practices

suggested by W3C

Rampart

1. Document is signed with

secrete key

2. With the public key found in

the certificate, the receiver read

the document

3. He can verify the signature

INon-Repudiation

(described in WP4)

Security In

SOA

Non

Repudiation

XML Signature

ESOA

analysis

services

Standard IDE functions

(edit,compile)

Legacy wrapping

tools

Service interface

specification

Service Testing Deploy/Undeploy

Execute service

Component instance

Communication

Support

Code analysis (style,

Metrics, performance)

Legacy Migration

Tools

QoS specificationService Packaging Publishing

Management and

Monitoring

Specification to

Code generation

Code to specification

generation

MDA tools

Policy specification

Management

specification

Service versioning

support

Stateful service

Support

Management

Information

Transactional

support

Manage computational

resources

Message pattern

support

Service policy

support

security

Collect data

ISecurity Monitoring

Notification

ISecurity Monitoring

Monitor Security

IProcess Security

ISignature

IStamping

INon-Repudiation

Manage Security

Security

Implementation

Security Policy

configuration

IPrivacy

IMessage Security

IAuthentication

IService Security

IEncryption

presentation

Query Contextual

Information

Obtain Contextual

Property

Obtain DCCI Tree

Render & Service Front

End Resource

Render Workspace

Binding between Source

And Contextual framework

Identification of Delivery

Context Evidence

Subscribe to

Contextual props

Identification of User

Parameters

Data

Validation

Manage

Persistence

Send Data

To Channel

Subscribe to

Channel

Create

Channel

Transform a

Resource

Interaction

Management

Publish a

Resource

Select the Best

Resource

Describe a

Resource

Search a

Resource

Workspace

Design

Server Data

Manager

Server Validation

Manager

Contextual

Adaptation

List Resources

Server Data

Binding

Knowledge

Extractor

Form

Fulfilment

Data

Binding

Data model

Management

Recommend a

Resource

Get Resource

Description

composition

Process Design

Process

Orchestration

Process Test

Process Execution

Transaction

Message

Transformation

Data Mapping

Monitoring

messaging

Service Invocation

Message exchange

Route Message

Configure Service

Mapping

Enhance Message

Transform Message

Manage Message

Metadata

Select Endpoint

Validate

discovery

Provides a service

Discovery UI

Provides a service

Discovery Engine

At Runtime

Search based on

Requirements

Search based on

Behavioral Constraints

Search based on

Structural Constraints

Provides a service

Discovery Engine

Manages the creation

Of search queries

Provides searching

Ranking and selection

algorithms

Assists for the

Specification of search

criteria

return ranked results

to consumers

Organizes service

Descriptions

Manage User

Subscriptions

Manage Publication

events

Browse catalogue

content

Manage Service

descriptions

Manage Content

Access policies

Manage Catalogue

Federations

Manage

Content replication schemas

between catalogues

Manage User Accounts

Roles Groups

resources

Remove resource

From resource set

Suspend Resource

Set

Delete Resource

Set

Monitor Pay per Use

Add resource to

Resource set

Resume resource

Set

Provision Virtual

Resource Set

Reserve

Capacity

Release reserved

Capacity

management

Setup Mgmt. Rules

Setup Monitoring Rules

Perform Monitoring

Evaluate Monitoring

Results

Perform Adaptation

Modify, delete, move,

retrieve, etc service

descriptions

manage versions,

authoring

provides API interfaces for

service querying, storage

and retrieval

select best candidates

Keys Manager

SOA

Framework

Key

Mangement

XML Encryption

AXIS 2

Hash

CRL

Certificate

Store

OCSP

Digital

Signature

Web Browser

CRL

OCSP

Figure 27: Scope of the PoC – Non-Repudiation
Before describing all elements, here is the relationship between abstract components and concrete components.
	Abstract component
	Concrete component

	Hash
	XML encryption

	Digital Signature
	XML Signature

	Key Management
	Key Managers

	SOA Framework
	N/A

	N/A
	AXIS 2

	Certificate Store
	Contains in the Web Browser (IE, Firefox…)

	CRL

	CRL

	OCSP

	OCSP

The achievement of the PoC has used other components which are necessary in the context but not necessary for the pattern.

The Framework SOA helps the development of this pattern on the environment SOA.

AXIS 2 is used to simulate the consumer.

For the convenient of deployment and the context of the demonstration, the CRL or OSCP are simulated by a script.
Description of each element
XML Signature (also called XMLDsig, XML-DSig, XML-Sig) is a W3C recommendation that defines an XML syntax for digital signatures. Functionally, it has much in common with PKCS#7
 but is more extensible and geared towards signing XML documents. It is used by various Web technologies such as SOAP, SAML, and others.
XML signatures can be used to sign data–a resource–of any type, typically XML documents, but anything that is accessible via a URL can be signed. An XML signature used to sign a resource outside its containing XML document is called a detached signature; if it is used to sign some part of its containing document, it is called an enveloped signature; if it contains the signed data within itself it is called an enveloping signature
This pattern is primarily aimed to be applied to SoS using SOA.

Rampart proposed other concrete components, but these components are identified in order to achieve the implementation. Axis 2 plays a role of consumer in the use case.

The abstract components are identified in accordance with the concrete components.. The abstract components participate to build abstract design patterns.

The abstract design patterns are represented firstly by the high level of the security pattern and followed directly by the pattern. This level indicates that we want to secure the SOA environment. To build this objective, this pattern furnishes a service to secure this environment. We will describe more details in the next session.

The implementation design patterns are represented with these three main activities (to build a complete chain, we need more details of flow exchange. And then the integration of the main actors on the chain is presented below:

· The document signed with the secrete key

· With the public key found in the certificate, the receiver can read the document

He can also verify the signature.

The following sequence diagram which is already specified in the WP7 [Non-Repudation Pattern] explains how a Digital Signature is implemented. This diagram shows the use of the set of abstract components which are described the previous paragraph.

[image: image29.emf]Verification with CRL seq

Verification with OCSP seq

 : External Consumer Agent

 : Hash : Digital Signature : Key Management : Certificate Store : Certificate Revocation List : Online Certificate Status Protocol

1 : hash(Message, HashAlgorthm): MessageDigest

2

3 : isNonRepudiation(Signed Message, MessageDigest, PublicKey, Algorithm): boolean

4 : getKey(): Key

5

6 : verifyCertificate(Certificate): Status

7 : getStatus(Certificate): Status

8

9

10 : verifyCertificate(Certificate): Status

11 : getStatus(Certificate): Status

12

13

14

The status can be returned to the External Consumer Agent for information

Figure 28: Verification of a signature sequence diagram – use of the set of components

3.3.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
3.3.2.1 Quality attributes provided to WP7 for this pattern

The non-repudiation pattern is specified with the work done on WP4. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]
	Integrity
	+

	Authenticity
	+

	Maintainability
	+

	Performance
	-

3.3.2.2 Evaluating quality attributes by using Quality Attributes Pattern Tree

After identifying the quality attributes, evaluating these quality attributes with the ATAM methodology is depicted inthe following picture.

[image: image30.emf]Quality Attibutes Pattern

Non-Repudiation

Integrity

Authenticity

Protocol

Digital Signature,

X509, 1024 bits

Data or

Service

Privacy

Data or

Service

Authenticity

(H,L)

Certificate with secrete key,

X509, 1024 bits

(H,M)

Guarantee of proof of timestamp,

thanks to use of the Digital Signature

(H,M)

Maintainability

Performance Protocol

The Hash uses computing resource,

increases volume of the origin data

The Signature uses computing

resource, increases volume one time

that the data signed

(H,L)

(H,M)

Components

Services

Pattern is used as a component

service in the SOA environment

(H,M)

Figure 29: Evaluating quality attributes of Non-Repudiation pattern with ATAM Approach

Description of each element

Please report to the Annexe 1 for the details of using ATAM approach. The following description is just a report of results of the analysis.

The aim of integrity is to guarantee that a data is not modified either accidentally or maliciously. To guarantee the integrity, a protocol as Digital Signature is used. The X509 and 1024 bits are possible technical solutions.

In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI).. X.509 specifies, amongst other things, standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm. Today, the recommended length for keys used by the format X509 certificates is 1024 bits. This key length meets the needs of applications of e-commerce. Its robustness guarantees the integrity of the Non-repudiation pattern.

A data is considered as authentic when it can be used as a legal proof. To guarantee the authenticity, the X.509 certificate is signed and revocable by the Authority Certificate (the trusted third party). The quality of authenticity leans directly on the Authority Certificate.

The use of Digital Signature can bring a proof of the timestamp. The Digital Signature is used for the authenticity. It assures that nobody can modify the data or the service.

The overall security architecture is based on the SOA. All security components are seen as a service. By this way, they inherit the benefits of SOA: interoperability, loose-coupling. It affects directly positively the maintainability.

Although symmetric encryption is faster than asymmetric encryption, the last is more secure. The programmer chooses what to use and must consider both speed and security. Large amounts of data are difficult to encrypt by using asymmetric key encryption due to the performance overhead. Another major problem with this type of encryption is key management. In many organizations, a public key infrastructure is implemented and used for revoking, distributing, and managing certificates.
3.3.3 Evaluation results

The same assessment for the Integrity, Performance and Maintainability of the trusted timestamping pattern [3.3.3 Evaluation results]

Authenticity. A subject is considered as authentic when it can be used as a legal proof. This might involve confirming the identity of a person, tracing the origins of an artefact, ensuring that a product is what its packaging and labelling claims to be, or assuring that a computer program is a trusted one. In the case of the PoC, the certificate is used to guarantee the identity of the message sender. Of course, the trust of this identity depends on the trust that we have on the TTP.

In fact, the trust on the identity doesn’t depend only of the trade-off but also of the context (use case). Actually, in authentication context, fingerprint spoof detection using blood-flow analysis is one of the best to prove the identity. In other words, the context of the TSA should enable us to use the recommendation of the best practices which are described in the RFC 3161.

3.3.4 Conclusion
Same conclusion at the previous section [3.2.4]

4 Assessment SCA Example Motion Tracker PoC 6

4.1 PoC’s selection

This PoC has been selected and setup based on a proposal coming from WP2 and took over by Siemens based on work performed and achieved by WP2 in close cooperation with WP7. [This was reported in D8.1.]
From the PoC SCA Example Motion Tracker the pattern OSGi-based SCA-Container is derived. It is an abstract design pattern. The mentioned Tuscany Interoperability pattern, an implementation design pattern) is a refinement of this pattern. The following section focuses on the pattern OSGi-based SCA-Container.
4.2 Pattern – OSGi-based SCA-Container

4.2.1 Scope of the PoC with respect the Reference Architecture
This pattern is actually part of D7.4. It is an Abstract Design Pattern and refines the Top-Level Pattern “Enterprise SOA”. In turn it is refined by the Implementation Design Pattern “Tuscany Interoperability”.

[image: image31.emf]Standards Catalogue

Concrete Component

Catalogue

abstract Component

Catalogue

Top-Level Patterns

Abstract Design Patterns

Implementation Design Patterns Reference Model

Tuscany Interoperability

OSGi-based SCA Container

Enterprise E-SoA

Designer and Runtime Tool

Web services

Deploy/Undeploy

Apache

Tuscany

Message Queue

Modular SCA

Container

JMS

BPEL

Legacy

Component

BEPL engine

Apache ODE

(Orchestration

Director Engine)

Axis 2

Axis CPP

Eclipse Equinox

OSGi

OSGi

SCA

Guidelines and Principles

coherent and consistent programming model

separation of infrastructure and business logic

declarative service

composition

Inversion of control

Dependency injection

Figure 30: Scope of the PoC – OSGi-based SCA-Container
Pattern Relationship:

This pattern is an Abstract Design Pattern and provides an architectural description of the component Runtime of the Top-Level Pattern “Enterprise SOA”. It is refined by the implementation design pattern Tuscany Interoperability.

Standards Catalogue:

The pattern is based on the standards OSGi and SCA. Additionally, the OSGi-based SCA container is related to several other standards, because it can be extended with new functionality during runtime by adding new implementation types and bindings. Examples of such standards are: JMS and BPEL

Abstract Component Catalogue:
For the Pattern OSGi-based SCA-Container the following abstract components can be referenced:

· Modular SCA Container

OSGi is used as a means to modularize the underlying SOA Framework, that is an SCA-container, and thus make it dynamically extendible by both bindings and implementation types.

The PoC of the pattern uses Apache Tuscany and Eclipse Equinox as implementation.

· Message Queue

Message queues are components used for communication and provide an asynchronous communications protocol. The sender and receiver of the message do not need to interact with the message queue at the same time.

In the PoC the message queue is implemented as Apache Active MQ.

· Web Services

from http://www.w3.org/TR/ws-gloss/:

A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

In the PoC the Axis 2 Axis CPP is used.

· Legacy Component

Legacy components are components that have been inherited from languages, platforms, and techniques earlier than the current SoA technologies. The only intended purpose of this abstract component is to demonstrate the easy integration of such a component.

In the PoC for example two standalone components (Java/C++) were used.

Concrete Component Catalogue:
In general there are often alternatives for the concrete components for implementing abstract patterns. But during the evaluation phase no other open source implementation provides an OSGi-based implementation of the SCA standard. Therefore the following concrete components have been used for the PoC and are here referenced with the relationship to the abstract components:

· Axis 2 Axis CPP

Apache Axis is an open source, XML based Web service framework. Axis 2 Axis CPP consists of a C++ implementation of the SOAP server, and various utilities and APIs for generating and deploying Web service applications. Axis is developed under the auspices of the Apache Software Foundation. (http://ws.apache.org/axis/cpp/index.html)

· Apache Active MQ

This is an open source implementation of the JMS standard. (http://activemq.apache.org/) and has been used for the abstract component Message Queue.
· Eclipse Equinox OSGi

Eclipse Equinox OSGi provides a certified implementation of the OSGi R4 core framework specification. It is open source. (http://www.eclipse.org/equinox/).

· Apache Tuscany and the BPEL engine Apache ODE (Orchestration Director Engine)

Apache Tuscany is open source and provides a Service-oriented architecture (SOA) infrastructure. It implements Service component architecture (SCA) (see http://tuscany.apache.org/).

Apache ODE (Orchestration Director Engine) executes business processes written following the WS-BPEL standard (see http://ode.apache.org/). Currently it offers bindings for Java .NET and JMS regarding the implementation type it offers support for Java, .NET and BPEL.

The Eclipse Equinox OSGi together with the Apache Tuscany, has been used for the abstract component Modular SCA Container.

· Java/C++ standalone application

In the scenarios of the SCA EXAMPLE MOTION TRACKER POC two standalone applications have been used to show technology-independent interoperability between services e.g. Java, JMS, BPEL, OSGi, .NET and C++ services and easy integration of (legacy) applications. They play the role of legacy components. In the PoC Motion Sensor Control Component is a Java stand alone application and the Video Monitoring Component is a C++ stand alone application.
4.2.2 Evaluation methodology
The pattern is evaluated according to quality attributes it claims. These quality attributes are stated in the filled-in template description of the architectural pattern (according to a shared and agreed template provided by WP7). The stated quality attributes in this architectural pattern description are evaluated using the ATAM approach. Especially the quality attributes utility tree is used to show and analyze the results of the implementation of each quality attribute.
4.2.2.1 Quality attributes provided to WP7 for this pattern

The pattern OSGi-based SCA-Container is specified with the work done on WP2. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]
	Adaptation to new operating environments (Portability)
	+

	Extension of capability
	+

	Interoperability
	+

4.2.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

After identifying the quality attributes, evaluating these quality attributes with the ATAM [5] methodology.

[image: image32.emf]Quality Attibutes Pattern

OSGi-based

SCA-Container

Interoperability

Portability

Communication

Standards

messaging standards

JMS, WS-*

Component

Models

(H,M)

SCA

(H,M)

Extension of

capability

Component

Models

OSGi

(H,M)

Figure 31: Evaluating quality attributes of pattern OSGi-based SCA-Container with ATAM Approach

Description of each element

Please report to the Annexe 1 for the details of using ATAM methodology. The following description is just a report of results of the analysis.

To guarantee the interoperability, a communication standard as messaging standards is used.

The Java Message Service (JMS) is a widely used standard for reliable Enterprise Messaging. It allows application components based on Java to create, send, receive, and read messages. It enables distributed communication that is loosely coupled, reliable, and asynchronous.
WS-* refers collectively to the Web service specifications and standards. They enable interoperable integration between heterogeneous IT processes and systems.

JMS and WS-* are used for technical solutions.
To facilitate portability of software components, an SCA-compliant service component model is used. Service Component Architecture (SCA) is a set of specifications which describe an abstract component model and specifies how those components can be assembled. These assemblies are called composites. SCA components can be implemented in any (supported) language; they are combined to form services which can interact with other SCA components or with Non-SCA applications (services). The SCA runtime mechanism supports the use of a variety of bindings, that is, access mechanisms to SCA components. SCA builds on open standards such as Web services.

Apache Tuscany is used as technical solution.
To provide a means to dynamically extend the service runtime a modular framework is used as the architectural base ground for the SCA-compliant service runtime. The Open Services Gateway Initiative (OSGi) is a component framework for Java and defines an architecture for developing and deploying modular applications and libraries.

OSGi is used to modularize the underlying SOA Framework (here: Apache Tuscany) itself and make it dynamically extendible. Apache Tuscany already provides an OSGI-based implementation.

4.2.3 Evaluation results

The three quality attributes of the pattern OSGi-based SCA container (interoperability, portability, extension of capability, identified in the ATAM’s utility tree, see Figure 31) have been evaluated by the PoC “SCA Example Motion Tracker” and documented in the related pattern. The method was prototyping with parallel expert estimations of the given statements. Interoperability and portability were validated by building and executing the according integration scenarios. The assessment metric is qualitative by nature, i.e. whether the selected features are fully available and provided in a feasible way by SCA implementation. (The PoC used the TUSCANY SCA container.)

The assessment results are:

· Adaptation to new operating environments (Portability):

OSGi-based SCA container enables the separation of infrastructure logic and business logic and declarative service composition using one coherent and consistent programming model. Since this programming model is standardized, high level of portability between different SCA runtime environments is guaranteed. Further aspect fostering portability is that this model is based on plain objects e.g. POJOs (Plain Old Java Objects). This means that programming artefacts itself may be free from any SCA specifics which easies tremendously their porting to new operating environments. Although this is not valid for C++ support, which due to limitation in the programming language is not based on “plain objects”.
· Extension of capability:

A SCA container can be extended with new functionality during runtime by adding new implementation types and bindings. A binding is used as a means of communication between services and handles the protocols. It defines with what communication method a service can be accessed with or with what communication method it can / will access other services.

· Interoperability:

The scope of the PoC “SCA Example Motion Tracker” is to assess by which extent interoperability (as restricted in the “Objective of the PoC” section in D8.1) and portability can be realized with specifications such as SCA and OSGi. The improvement of interoperability goes along with the extension of capability by the interoperability mechanisms and concepts of the SCA and OSGi specification themselves (e.g. possibility to provide policies which define in very detail how non-functional qualities like encryption should be mapped to messages so that the communication partner is able to understand it). To guarantee the interoperability, standard communication protocols like JMS, WS-* are supported and can be used.

Assessment criteria and results:

It is important to note that the objectives of the PoC are all qualitative by nature (in contrast to quantitative objectives such as data throughput, response times, etc.). This important fact is thus reflected in the assessment criteria. For this reason, the selected method is feasibility prototyping. In particular, the PoC realizes several integration scenarios which are implemented by means of feasibility prototypes.

In detail the results are:

Installable and working prototype is available [Yes]

Dynamic extensibility by implementation types and bindings [Yes]

Clear Separation of business- and infrastructure logic [Yes]

Legacy application integration based on SCA programming model [Yes]

JMS support for BPEL [No]

Optimized binding for Java and C++ within the same domain [No]

BPEL implementation type [Yes]

C++ implementation type [Yes]

Java implementation type [Yes]

Assessment criteria and metrics [1...7], where 1 is very easy, and 7 is very hard. It should be noted that these estimations are of subjective nature. However, they are based on former experiences with different service runtimes such as JBoss for example.

Ease of applicability and deployment of Apache Tuscany runtime [2]
4.2.4 Conclusion
The ATAM methodology highlightsclearly the quality attributes interoperability, portability and extension of capability and how they are achieved in the pattern OSGi-based SCA-Container.

To summarize the evaluation results, we come to three central findings:

First, technical interoperability can be dynamically supported by the introduction of the concept binding as it allows to dynamically enrich a system and according services by the support of additional protocols.

Second, the concept of implementation types in the context of a modular service runtime allows to dynamically add support for different technologies and programming languages, respectively.

Third, the architectural choice of SCA and OSGi allows to integrate legacy applications based on the SCA programming model which greatly reduces the overhead of wiring and plumbing services together and ensure technical interoperability within the bounds of SCA.

With respect to Apache Tuscany, which provides an OSGi-based SCA Implementation we learned the following lessons:

· Currently, there is a 1:1 relationship between a reference and a service, i.e., no more than one service can be wired to the same reference

· wiredByImpl attribute is not supported (SCA Spec V1.0), i.e., a reference’s target must be set statically and cannot be set dynamically at runtime

· No optimized binding between Java and C++ SCA Node in the same domain

· BPEL implementation type does not support JMS and OSGi bindings for references and services
The pattern OSGi-based SCA-Container documents:

SCA and OSGi are converging to create an environment that facilitates the design and the lifecycle management of software components. They are exposed as reusable services. The combination of SCA and OSGi has an impact on service-oriented design and application development, in that it makes the service runtime modular by itself allowing it to be dynamically extended by new communication protocols (bindings) and support of different technologies and programming language (implementation types).

SCA can complement OSGi to make it an even more attractive platform (and vice versa). In particular and with respect to the last paragraph, it is advised to use SCA assembly ON OSGi following an Extender Model approach (instead of wrapping OSGi in SCA). Such an OSGi framework is extended with SCA's notions of assembly, policy, and its ability to go cross technology during befitting from the strong deployment and management model of OSGi.
5 Assessment of Next generation service front-ends for SOA based business applications PoC 7

5.1 PoC’s selection
This PoC has been selected and setup based on a proposal coming from WP1 (Telefonica+ID) and took over by TIE based on work performed and achieved by WP1 in close cooperation with WP7. [This was reported in D8.1.]
5.2 Pattern – Front-End for SOA

WP1 proposes a layered architecture within NEXOF-RA presentation concern in order to increase modularity of User Interfaces (UI) for services front-ends. It distinguishes between the following layers:

· Abstract UI (device independent)

· Concrete UI (device dependent)

· Physical realization for specific devices
This PoC is used as a demonstrator of the innovative architectural concepts in the area of user-service interaction as proposed by NEXOF-RA.

The main focus in this document put on the high level pattern elicited from the ezWeb architecture. Its major components such as “”SFE Access Platform”, “SFE Mashup Platform”, ”SFE Authoring Tool” and “ContextOfUse Manager” are introduced since forming a core of the overall approach and provide the context for the lower level patterns.
5.2.1 Scope of the PoC with respect the Reference Architecture
This pattern can be used in design of a front-end concern of an overall NEXOF-RA.

[image: image33.emf]
Figure 4: Scope of the PoC – Front-end for SOA
Proposed architectural choices are applicable and welcome to every type of the SOA which has to expose services to the end-users, i.e. might not be of high importance only to certain embedded and industrial service oriented systems that does not directly communicate to the end users.

Proposed approach makes use of a new XML-based format for describing web-services front-ends that support better user experience with user-service interaction, e.g. service composition and wiring. In the future it gives an opportunity to base user adaptation, e.g. taking into account user preferences whilst discovering services. Thus, it is recommended to involve a bigger community into the work on “Gadget Description Template” and make steps towards its standardisation.

5.2.2 Evaluation methodology
Since the main advantages that Front-end pattern brings to the SOA are related to different aspects of access and usage of SOA-oriented systems by the end users the study was primarily focused on usability and availability for different groups of people.

There are a number of usability evaluation methods (UEMs) to assess and improve usability of systems, which defines assessment criteria and metrics for them. All of them imply evaluation of an actual system or prototype because architecture and reference architecture could not provide answers to those questions that are subjective to human persons. Thus, it was decided to use prototyping with following interviews of a team members involved in a development of prototype (programmers, system administrator, architect) and potential users (company employees from marketing and human resource departments). The interviewees had to give their opinion about different aspect of usability demonstrated by prototype.

This widely accepted approach to usability testing involves testing a relatively small group of users in order to obtain reliable results, reduce testing costs, and reduce the amount of time spent conducting and analyzing test results. The following activities were conducted for each test subject:

1. Pre-test activities consisted of a face-to-face meeting where a goal of a study and working scenario were explained to a subject and then interviewer answered questions came from an interviewee.

2. Test. A test subject was granted with an access to the system and asked a) to follow a scenario and perform all tasks necessary to achieve a goal of this scenario and then b) to explore a system in a free mode. Interviewer was observing activities of an interviewee.

3. Post -test activities consisted of short questionnaire and interview administered after the free exploration phase.

After test a summary session was conducted allowed the evaluator to quickly examine test results and assess availability and usability of a proposed system.

Before a test users were presented to the following usability criteria:

· Concept: Does an interaction model is intuitive?

· Consistency: Does system behaves expectedly and coherently in different parts?

· Quality assurance: Is system robust? Does it hinder/help users in achieving their goals?

· Overall satisfaction: What is the user overall feeling about a system?

During an interview users with technical background who were involved in setting up a prototype were asked to evaluate a pattern against following criterion:

· Does prototype developed in accordance with “Front-end for SOA” architectural pattern satisfy user requirements coming from WP10
It is necessary to emphasize that evaluator interpreted tests results in a way that gave more insight on the architectural pattern that stood behind a system than to the instantiated system itself. This was achieved using abstraction and generalisation approaches.

5.2.2.1 Quality attributes provided to WP7 for this pattern

The pattern Front-End For SOA is specified with the work done on WP1. In the context of specification, this pattern has been identified to support certain defined quality attributes. These quality attributes affect the quality of the architecture where each pattern is integrated. Evaluating these quality attributes permits to know if the resulting architecture where the pattern has been applied meets the expected requirements.

[The significations of plus (+), minus (-) or neutral (0) are given in the specification of this pattern for D7.5]

	Availability
	+

	Integrability
	+

	Modifiability (Adaptation to new operating environments)
	+

	Modifiability (Extension of capability)
	+

	Reusability
	+

	Usability
	+

	Security (Isolation)
	-

	Resource Efficiency
	-

5.2.2.2 Evaluating quality attributes by using Pattern Quality Attributes Tree

[image: image34.emf]Pattern Quality Attributes

Availability

Front-end

for SOA

Integrability

+

Modifiability

Reusability

Usability

Security

Resource

efficiency

+

+

+

+

–

–

Separation of concerns and layering based on

functional grouping and decoupling of them makes it

possible to use functionalities separately.

(H,M)

XML-based format for describing front-ends for

services is proposed.

(M,H)

(M,H)

Rich Client Functionality facilitates different groups of

users and improve the way users interact with services.

Client’s machine runs more logic for rendering rich

interface and for handling communications between

services.

(M,H)

Users can share their workspaces and composite

services.

(M,M)

Rich clients and advanced interaction patterns can

support availability of computer (SOA) systems for

challenged people.

(H,M)

Figure 32: Evaluating quality attributes of pattern Front-end for SOA with ATAM Approach

5.2.3 Evaluation results

It has been proved that architectural pattern Front-end for SOA can help with fulfilling relevant user requirements collected by NEXOF-RA WP10.
The fact that users who were unfamiliar with the system learned to use it fairly easily suggests that it is a sound approach. Even users unfamiliar with services and their compositions were able to fins services and compose them successfully. Most test subjects provided positive comments about work with the system.

The after assessment results are:

The summary of interviews is presented in the following table.
	Metric
	% of positive answers

	Concept
	100%

	Consistency
	80%

	Quality assurance
	80%

	Overall satisfaction
	80%

	Satisfaction of user requirements
	Yes

Evaluators understand that these results are not statistically sound but they give an insight to the underlying architectural choices.

Findings considering technical details and deign decisions are reported in D8.1.

5.2.4 Conclusion
A user study and expert evaluation that were conducted on this PoC confirmed that proposed architectural solution for SOA front-ends support better availability and usability of services by the end-users.

The proposed methodology implies that the results of evaluation would be subjective. This is explained by the nature of front-end and its usability studies. The higher degree of objectiveness could be achieved by conducting holistic user experiments based on physiological and sociological principles involving expensive techniques, which were out of the scope of NEXOF-RA proof-of-concept.
6 Presentation of results of the evaluation

The presentation of the overall results after the assessment based on the ATAM approach shows a global view with important features. The way to reach these features is detailed in the sections: “Evaluation methodology, Evaluation results and conclusion”. The objective of the following table goes to the essential.

The following table [Table 1] permits to understand the table of results [Table 2] and contains three boxes (addressed four main points: evaluation point, sensitivity trade-off points, risk, and added value):

· 1st box concerns the evaluation type,

· 2nd box dedicated to the results obtained with the sensitivity and trade-off points,

· 3rd box is divided in two boxes which are dedicated to the risk and to the added value.
	Evaluation type: Test, Benchmark, Subjectivity, Analytical.
	There are many types of the evaluation. The evaluation can be objective or subjective.

The evaluation objectivity (EO) is used to measure the quality attributes. This measure is only possible to apply on the countable things. The measure can be:
· Test,

· Benchmark from the manufacturer,
· Analytical.

The evaluation subjectivity (ES) is used to give a point of view on something that we cannot measure with a rule.
· Subjectivity on the uncountable things (such as the confidence on the trusted third party). The reason of why these things cannot be measurable is given in details in the corresponding assessment sections.

	Sensitivity and trade-off points

(Y,Y)
	· Sensitivity Points: Key architectural decision that is critical for achieving a particular QA requirement. Serve as yellow flags: “Use caution when changing this property of the architecture”),
[image: image35.emf]
· Trade-off Points: are the key architectural decision that affects more than one QA and is a sensitivity point for more than one quality attribute, are the most critical decisions that one can make in architecture.
[image: image36.emf]
The answer can be “Yes” or “No”. The 1st Y concerns the Sensitivity point, the 2nd Y for the Trade-off point.
The “Y” means that the sensitivity or trade-off point is found for the quality attribute. This judgement is based on the previous evaluation (objectivity or subjectivity).

The “N” means that it cannot be determined.

	Risk (H, M, L)
	Added value (H, M, L)
	Risk:

This element concerns the implementation of the quality attribute.

Risks (High) and Non-Risks (Low)
Risks : Potentially problematic architectural decisions

Non-risks : Good architectural decisions
Medium: Difficult to state if there is a risk or not.
Added value :

The importance of the quality attribute is judged High when the implementation of it gives a high added value tothe architecture.

Table 1: How to read the table of results

The following table sums all results obtained for the patterns. Refer to [Table 1] for the aid of reading this table.
	
	Quality Attribute

	
	Applicability
	Availability
	Scalability
	Maintainability
	Integrity
	Accountability
	Authenticity
	Performance
	Interoperability
	Usability

	Trigger Writeset

Extraction
	Subj.
	
	
	Subj.
	
	
	
	Subj.
	
	

	
	(Y,Y)
	
	
	(Y,Y)
	
	
	
	(Y,Y)
	
	

	
	L
	H
	
	
	L
	H
	
	
	
	L
	H
	
	

	Log Mining Writeset Extraction

	Subj.
	
	
	Subj.
	
	
	
	Subj.
	
	

	
	(Y,Y)
	
	
	(Y,Y)
	
	
	
	(Y,Y)
	
	

	
	L
	H
	
	
	L
	H
	
	
	
	L
	H
	
	

	Writeset Extraction Based on Extended Interfaces
	Test
	
	
	
	
	
	
	Test
	
	

	
	(Y,Y)
	
	
	
	
	
	
	(Y,Y)
	
	

	
	H
	H
	
	
	
	
	
	
	L
	H
	
	

	Database Replication

	Subj.
	Analyt.
	Bench.
	Subj.
	
	
	
	Test
	
	

	
	(Y,Y)
	(Y,Y)
	(Y,Y)
	(Y,Y)
	
	
	
	(Y,Y)
	
	

	
	L
	H
	L
	H
	L
	H
	L
	H
	
	
	
	L
	H
	
	

	Gray Vertical Replication

	Subj.
	Analyt.
	Bench.
	Subj.
	
	
	
	Test
	
	

	
	(Y,Y)
	(Y,Y)
	(Y,Y)
	(Y,Y)
	
	
	
	(Y,Y)
	
	

	
	L
	H
	L
	H
	L
	H
	L
	H
	
	
	
	L
	H
	
	

	Non Repudiation

	
	
	
	
	Subj.
	
	Subj.
	Subj.
	
	

	
	
	
	
	
	(Y,Y)
	
	(Y,Y)
	(Y,Y)
	
	

	
	
	
	
	
	L
	H
	
	M
	H
	L
	H
	
	

	Trusted timestamping

	
	
	
	
	Subj.
	Subj.
	
	Subj.
	
	

	
	
	
	
	
	(Y,Y)
	(Y,Y)
	
	(Y,Y)
	
	

	
	
	
	
	
	L
	H
	M
	H
	
	L
	H
	
	

	OSGi-based SCA Container

	
	
	
	
	
	
	
	
	Subj.
	

	
	
	
	
	
	
	
	
	
	(Y,Y)
	

	
	
	
	
	
	
	
	
	
	M
	H
	

	Front end in E-SOA

	
	Subj.
	
	
	Subj.
	
	
	
	
	Subj.

	
	
	
	
	
	
	
	
	
	
	

	
	
	H
	M
	
	
	M
	M
	
	
	
	
	M
	H

Table 2: Results of evaluation with ATAM approach or other approaches

The following section gives us a concrete translation of this table.

Example of the Availability vs. Maintainability for the Gray-Box Database Replication pattern (UPM)

	Evaluation type
	Analytically, when certain failures occur in a system with and without database replication (e.g. the crash failure of the database node).

	Sensitivity and trade-off points

(Y,Y)
	Here is the picture which shows the sensitivity point:

[image: image37.jpg]Quality Attribute:

Crash failure of
the single database node
inanon-replicated system

Crash failure of
a database node
in a replicated system

Quality Atribute

Sensitivity Point Decision

Sensitivity Point Decision

And the trade-off point:

[image: image38.jpg]Data Avalabilty

Critical Data

‘System Maintainabiliy

System Reliability

	Risk: L
	Added value H
	Risk is considered low. It means that the implementation of this quality attribute is easy.

Added value is qualified high. In feat, it’s worth to implement this quality attribute. The high availability for data is a target to be obtained by this pattern.

Table 3: Example of the Availability vs. Maintainability for the Gray-Box Database Replication pattern
Example of the integrity of Trusted Timestamping pattern (Thales)

	Evaluation type
	Subjectivity on the uncountable things (such as the confidence on the cryptographic key). The reason of why these things cannot be measurable is given in details in the corresponding assessment sections.

	Sensitivity and trade-off points

(Y,Y)
	Here is the picture [Figure 25] which shows the sensitivity point:

[image: image39.emf]Sensitivity Point

Decision

Q

u

a

l

i

t

y

A

t

t

r

i

b

u

t

e

Lost of confidence of

the TTP or the

cryptographic key

And the trade-off point [Figure 26]:

[image: image40.emf]Computation time

D

a

t

a

s

i

z

e

Trade-off point

Asymmetric key

Symmetric key

	Risk: L
	Added value H
	Risk is considered low. It means that the implementation of this quality attribute is easy.

Added value is qualified high. In fact, it’s worth to implement this quality attribute. The integrity is a target to be obtained by this pattern.

Table 4: Example of the integrity of Trusted Timestamping pattern

Example of the interoperability of OSGi-based SCA-Container pattern (Siemens)

	Evaluation type
	Subjectivity

The method was prototyping with parallel expert estimations of the given statements. Interoperability and portability were validated by building and executing the integration scenarios. The assessment metric is qualitative by nature, i.e. whether the selected features are fully available and provided in a feasible way by SCA implementation. (The PoC, from which the pattern is derived, used the TUSCANY SCA container.)

	Sensitivity and trade-off points

(Y,Y)
	Depending on which technical solution (or even version e.g. version of TUSCANY SCA container implementation) is taken for implementation of the pattern, the selected features are available and provided in different ways. This influences the QAs (Adaptation to new operating environments (Portability), Extension of capability, and improvement of interoperability which goes along with the extension of capability by the interoperability mechanisms and concepts of the SCA and OSGi specification themselves).

	Risk: M
	Added value H
	Risk:
Apache Tuscany is used as technical solution. Of course, any other SoA Framework which provides an OSGI-based implementation can be chosen to implement the pattern. The risk lies in this selection: availability of such a technical solution and its feature completeness (which features really work) and if the features are provided in a feasible way.
Added value:
To provide a means to dynamically extend the service runtime a modular framework is used as the architectural baseground for the SCA-compliant service runtime. The Open Services Gateway Initiative (OSGi) is a component framework for Java and defines architecture for developing and deploying modular applications and libraries.

Table 5: Example of the interoperability of OSGi-based SCA-Container pattern
7 Conclusion
Although limited to a small set of PoCs issued from research WPs, the work performed on assessing and reporting on PoCs Phase I/Year I helped us to develop a shared understanding on WHAT and HOW to report. This was mainly achieved through close cooperation between WP8 and WP7 in order to get agreement on the exact nature of the PoC validation expected by WP7 and to be performed by WP8 according to the Reference Architecture structure defined. This evaluation of PoC and reporting of assessment results from the specific viewpoint of quality attributes of the architectural patterns they convey would be pursued and further improved in the context of PoC Phase II based on lessons learnt and advancement of WP7. Furthermore the use of a well-known and industrially proven approach such as the ATAM methodolgy make us confident in the fact that architectural patterns/choices attached to the PoC have been assessed in a way results could be directly exploited by WP7 with respect to the work engaged on producing reference architecture specifications for NEXOF.
References

[1] [Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, & M. Stal. Pattern-Oriented Software Architecture: A Pattern System. Addison-Wesley, Boston, 1996.

[2] [Fowler 1997] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Boston, 1997.

[3] [SCDL] Service Component Definition Language, www.osoa.org
[4] [Chorus]: Decision of the Group Operations committee to set up a common Group Reference System
[5] [Clements – Kazman - Clein 2002] The ATAM methodology has written in a book “Evaluating Software Architecture with authors: Paul Clements – Rick Kazman – Mark Clein”. These authors has already implemented this methodology in many projects.

[6] Architecture Tradeoff Analysis Method, http://www.sei.cmu.edu/architecture/ata_method.html and Evaluating Software Architectures, Methods and Case Studies [Clements, Kazman, Klein, Addison-Wesley ISBN 0-201-70482-X]

Glossary

Non-repudiation is the concept of ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract. Although this concept can be applied to any transmission, including television and radio, by far the most common application is in the verification and trust of signatures

PKCS refers to a group of Public Key Cryptography Standards devised and published by RSA Security.

RSA Data Security Inc was assigned the licensing rights for the patent (which expired in 2000) on the RSA asymmetric key algorithm and acquired the licensing rights to several other key patents as well (e.g., the Schnorr patent). As such, RSA Security, and its research division, RSA Labs, were interested in promoting and facilitating the use of public-key techniques. To that end, they developed the PKCS standards. They retained control over them, announcing that they would make changes/improvements as they deemed necessary, and so the PKCS standards were not, in a significant sense, actual industry standards, despite the name. Some, but not all, have in recent years begun to move into 'standards track' processes with one or more of the standards organizations (notably, the IETF PKIX working group).
Public Key Infrastructure (PKI) : is a set of hardware, software, people, policies, and procedures needed to create, manage, store, distribute, and revoke digital certificates.

Timestamping Authority (TSA) can resemble to Certificate Authority (CA). TSA certifies the timestamp on a document. TSA plays a role of third confident party. The timestamp put on the document can be revoked if you want to verify the exactitude of this timestamp

Trusted timestamping: is the process of securely keeping track of the creation and modification time of a document. Security here means that no one, not even the owner of the document, should be able to change it once it has been recorded provided that the timestamper's integrity is never compromised.

TTP: Trusted Third Party.
Annexe 1

[image: image41.emf]Quality Attibutes Pattern

Trusted

Timestamping

Integrity

Accountability

Protocol

Digital Signature

Modification

Creation

(H,L)

Timestamping Authority (TSA) Server

Trusted third party

(H,M)

Timestamping Authority (TSA) Server

Trusted third party

(H,M)

Maintainability

Performance

Protocol

The Hash uses computing resource,

increases volume of the origin data

The Signature uses computing

resource, increases volume one time

that the data signed

(H,L)

(H,M)

Components

Services

Pattern is used as a component

service in the SOA environment

(H,M)

Figure 33: Example of using the ATAM approach

Description of the methodology

The Trusted Timestamping is the pattern which has already specified in the WP7.

This pattern is influenced positively or negatively by certain quality attributes that it should support.

The “[image: image42.png]

” means that the pattern is sufficiently supports the quality attributes (so that the architectural choices in the pattern are valid with respect to this attribute.)

The “[image: image43.png]

”that the pattern is insufficiently supports the quality attributes (so that the architectural choices in the pattern are invalid with respect to this attribute.)

The next boxes are the quality attributes.

[image: image44.png]Protocol

Digital Signature,
X509, 1024 bits

In the next step, the asking to the following questions “what or when”: what is used to achieve the quality attribute? For example, to guarantee the integrity, a protocol is used.

(H,L): H means that the achievement of this quality attribute brings a high added value to the architecture of the pattern. In another term, the importance of the attribute contributes to the success of the system.

The second letter “L” means that the setup or configuration is more easy (low). It also means the risk to achieve this attribute (level of complexity). These qualifiers can take L (low), M (medium), H(high).

The achievement of this quality attribute by using a protocol, the Digital Signature is the mechanism which can guarantee the integrity implementation. The X509 and 1024 bits are the technical solutions of the Digital Signature.

� http://ws.apache.org/axis2/c/docs/om_tutorial.html

� More information on ATAM methodology can be found in � REF _Ref244621272 \r \h ��[5]�.

� CRL: Certificate Revocation List

� OCSP: Online Certificate Status Protocol

� Public Key Cryptographic Standards (#7, it means version 1.5),

NEXOF-RA • FP7-216446 • D8.2 • Version 1.3, dated 05/05/2009 • Page 1 of 1

[image: image45] [image: image46.emf]

[image: image46.emf][image: image47.jpg]NE XOF

reference architecture

[image: image48.png]

[image: image49][image: image50.emf][image: image51.jpg]NE XOF

reference architecture

[image: image52.png]

[image: image53][image: image54.emf]_1320349575.vsd
�

_1320605699.vsd
�

Service Front-End Publication

Web 2.0 type of user system interaction

Separation of concerns and layered architecture of a front-end engine

Designer and Runtime Tools for E-SOA

Front-end

Standards Catalogue

Concrete Component
Catalogue

abstract Component
Catalogue

Top-Level Patterns

Abstract Design Patterns

Implementation Design Patterns

Guidelines and Principles

Reference Model

Proposition for a new XML-based “Gadget Descriptor Template”

User system interaction and GUI design best-practices

1. Service front ends described with XML-based format
2. Platform allows publication, rendering, and invocation of such front-ends
3. End-users get friendly tools for composition (wiring) such services

Any SOA family with GUI

End-User access to Services

E-SOA

jQuery + Flash plugin

Web2.0/AJAX framework for user service interaction

Web services

TIE’s web services

ezWeb

Server or client side proxy for cross domain calls

_1320605762.vsd
�

Deploy/Undeploy

declarative service composition

separation of infrastructure and business logic

Standards Catalogue

Concrete Component
Catalogue

abstract Component
Catalogue

Top-Level Patterns

Abstract Design Patterns

Implementation Design Patterns

Reference Model

SCA

Inversion of control
Dependency injection

coherent and consistent programming model

Tuscany Interoperability

Enterprise E-SoA
Designer and Runtime Tool

OSGi-based SCA Container

Web services

Apache Tuscany

Message Queue

Modular SCA Container

JMS

BPEL

Legacy Component

BEPL engine
Apache ODE (Orchestration Director Engine)

Axis 2
Axis CPP

Eclipse Equinox OSGi

OSGi

Guidelines and Principles

_1320349636.vsd
�

_1318102532.vsd
�

�

�

Trusted Timestamping

Maintainability

Integrity

Accountability

Pattern

Quality Attibutes

Performance

Protocol

Digital Signature

Modification

Creation

(H,L)

Protocol

Timestamping Authority (TSA) Server
Trusted third party

(H,M)

Timestamping Authority (TSA) Server
Trusted third party

(H,M)

The Hash uses computing resource, increases volume of the origin data

The Signature uses computing resource, increases volume one time that the data signed

(H,L)

(H,M)

Components Services

Pattern is used as a component service in the SOA environment

(H,M)

_1319990038.vsd
Pattern

Quality Attributes

Availability

Front-end for SOA

Integrability

+

Modifiability

Reusability

Usability

Security

Resource efficiency

+

+

+

+

–

–

Separation of concerns and layering based on functional grouping and decoupling of them makes it possible to use functionalities separately.

(H,M)

XML-based format for describing front-ends for services is proposed.

(M,H)

(M,H)

Rich Client Functionality facilitates different groups of users and improve the way users interact with services.

Client’s machine runs more logic for rendering rich interface and for handling communications between services.

(M,H)

Rich clients and advanced interaction patterns can support availability of computer (SOA) systems for challenged people.

(H,M)

Users can share their workspaces and composite services.

(M,M)

_1320048729.vsd
Axe X�

Axe Y�

�

La hauteur de la zone de texte et de son trait augmente ou diminue à mesure que le texte est ajouté. Pour modifier la largeur du commentaire, faire glisser la poignée latérale.�

_1320052491.vsd
Axe X�

Axe Y�

�

La hauteur de la zone de texte et de son trait augmente ou diminue à mesure que le texte est ajouté. Pour modifier la largeur du commentaire, faire glisser la poignée latérale.�

_1318148585.vsd
�

�

�

Non-Repudiation

Maintainability

Integrity

Authenticity

Pattern

Quality Attibutes

Performance

Protocol

Digital Signature,
X509, 1024 bits

Data or Service
Privacy

Data or Service
Authenticity

(H,L)

Protocol

Certificate with secrete key,
X509, 1024 bits

(H,M)

Guarantee of proof of timestamp, thanks to use of the Digital Signature

(H,M)

The Hash uses computing resource, increases volume of the origin data

The Signature uses computing resource, increases volume one time that the data signed

(H,L)

(H,M)

Components Services

Pattern is used as a component service in the SOA environment

(H,M)

_1315225238.vsd
�

�

�

OSGi-based SCA-Container

Interoperability

Portability

Pattern

Quality Attibutes

Extension of capability

Communication Standards

messaging standards
JMS, WS-*

Component Models

(H,M)

Component Models

SCA

(H,M)

OSGi

(H,M)

_1318100534.vsd
�

�

�

Trusted Timestamping

Maintainability

Integrity

Accountability

Pattern

Quality Attibutes

Performance

Protocol

Digital Signature

Modification

Creation

(H,L)

Protocol

Timestamping Authority (TSA) Server
Trusted third party

(H,M)

Timestamping Authority (TSA) Server
Trusted third party

(H,M)

The Hash uses computing resource, increases volume of the origin data

The Signature uses computing resource, increases volume one time that the data signed

(H,L)

(H,M)

Components Services

Pattern is used as a component service in the SOA environment

(H,M)

