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Chapter 1

Introduction

1.1 Overview

This report was produced in partial fulfillment of contract ICT-2007-216676 (ECRYPT II),
sponsored by the European Commission through the ICT Programme. The information in
this paper is provided as is, and no warranty is given or implied that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

We present a short overview of the recent results on the five finalists for NIST’s SHA-3
competition. The next five chapters treat each one of the finalists. The chapters have the
following structure.

1. Public analysis: lists all publications that appeared since D.SYM.4 (June 2010) [36],
describes briefly what is in each publication without commenting on the relevance of
the findings in the publication.

2. Third round tweak: provides information on the tweak applied to the hash function
upon entering the 3rd round, explains the (claimed) impact on the published results.

3. Summary & conclusion discusses the status of the hash function, possibly with some
subjective elements.

Except where mentioned explicitly differently, the published results are all on the versions of
the finalists before application of the third round tweaks.

For further updates on the status of the SHA-3 finalists, we refer to the SHA-3 Zoo
maintained by Symlab partners [3].

Acknowledgments.

The authors would like to thank the designers of the five finalists for answering all our ques-
tions. Additionally, we would like to thank Dan Bernstein, Anne Canteaut and Pawel Moraw-
iecki.

1.2 Zero-sum distinguishers

Zero-sum distinguishers are a rather novel technique, that can be used to analyze hash func-
tions. The technique has recently been applied to several of the SHA-3 finalists. In the
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2 ECRYPT II — European NoE in Cryptology II

remainder of this chapter, we survey some recent results and mention elements that are not
specific to one of the 5 finalists.

1.2.1 Zero-sum partitions for iterated permutations

Recall from [7, 36] that for a function F : Fn
2 → Fm

2 , a zero-sum of size K is a subset
{x1, x2, . . . , xK} ⊂ Fn

2 of elements that sum to zero and for which the corresponding set of
images {F (x1), F (x2), . . . , F (xK)} also sum to zero.

Boura and Canteaut present a stronger form of zero-sum distinguishers called zero-sum
partitions.

Definition 1 (Zero-sum partition [16]) Let P : Fn
2 → Fn

2 be a permutation. A K = 2k

size zero-sum partition for P is a collection of 2n−k disjoint zero-sums Xi = {xi,1, . . . , xi,2k} ⊂
F2
n. That is,

(
2n−k⋃
i=1

Xi = Fn
2 ) ∧ (

2k∑
j=1

xi,j =
2k∑
j=1

P (xi,j) = 0), ∀1 ≤ i ≤ 2n−k.

When the function F is a permutation P defined over Fn
2 , a zero-sum partition for P of size

K = 2k consists of 2n−k zero-sums. In other words, finding a zero-sum partition for P is
equivalent to finding (2n−k − 1) zero-sums.

Boura and Canteaut present a general idea to construct zero-sum partitions for an iterated
permutation of form P = Rr ◦ . . .◦R1 where all Ri are round transforms over Fn

2 and when the
non-linear part of the round transform, denoted χ, consists of nr = n/n0 parallel applications
of a smaller SBox χ0 defined over Fn0

2 . Their idea combines the following two techniques:

1. Exploit the non-linear part of the round transform to derive an improved bound on the
degree of the iterated permutation.

2. Exploit the fact that a few iterations of the round transform are not enough for providing
full diffusion which leads to some multiset properties of the linear part of the round
transform for a small number of rounds.

1.2.2 Generalization of Aumasson and Meiers’ results.

For the iterated permutation P = Rr ◦ . . . ◦ R1, let t be an integer such that t ∈ [1, r]. Let
Fr−t = Rr ◦ . . . ◦Rt+1 and Gt = R−11 ◦ . . . ◦R

−1
t be the decomposed transforms of P . Boura

and Canteaut [16] generalize the zero-sum partition of P based on the algebraic degree of its
iterations in the form of following proposition.

Proposition 1 Let d1 and d2 be such that the degree of Fr−t denoted deg(Fr−t) ≤ d1 and
that of Gt denoted deg(Gt) ≤ d2. Let V be any subspace of Fn

2 of dimension d + 1 where
d = max(d1, d2), and let W denote the complement of V , i.e, V ⊕W = Fn

2 . Then the sets
Xa = {Gt(a+ z), z ∈ V }, a ∈W form a zero sum partition of Fn

2 of size 2d+1 for the r-round
permutation of P .
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Improvement of trivial bounds by using spectral properties.

Boura and Canteaut [15, 16] improve this result by a few more rounds of the permutation
exploring the spectral properties of the non-linear part χ0 of the round transform in the
permutation P . In particular, they use the following theorem to improve the trivial bound
of [7] when the values occurring in the Walsh spectrum of F are divisible by a high power of
2.

Theorem 1 ([18]) Let F : Fn
2 → Fn

2 be a function such that all values in its Walsh spectrum
are divisible by 2`, for some integer `. Then for any G : Fn

2 → Fn
2 , we have deg(G ◦ F ) ≤

n− `+ deg(G).

Extensions using multiset properties.

In addition to exploiting the degrees of the round transformation, Boura and Canteaut [16]
also exploit the fact often a few iterations of the round transform are insufficient to achieve
complete diffusion, thus leading to some multiset properties for a small number of round
transforms. Here, extensions using one round multset are briefed.

Recall that the zero-sum partition due to Theorem 1 can be obtained for any choice of
the subspace V . It is possible to extend the number of zero-sum partitions obtained for t
rounds to t + 1 rounds by considering the subspaces that correspond to a collection of any
d(d + 1)/n0e rows such that V = ⊕i∈IBi, for some set I ⊂ {0, . . . , nr} of size d(d + 1)/n0e
where Bi for 0 ≤ i < nr is the n0-dimensional subspace corresponding to the rows. As
variables of different rows are not mixed after the application of χ, χ(a+V ) = b+V for some
b. Using this property, Boura and Canteaut prove the following proposition which finds some
zero-sum partitions of size 2d+1 for the r-round permutation P .

Proposition 2 ([16]) Let d1 and d2 be such that deg(Fr−t−1) ≤ d1 and deg(Gt) ≤ d2. Let
us decompose the round transformation after t rounds into Rt+1 = A2 ◦ χ ◦A1 where both A1

and A2 have degree 1. Let I be any subset of {0, . . . , nr−1} of size d(d+1)/n0e, V = ⊕i∈IBi

and W be its complement. Then the sets

Xa = {(Gt ◦A−11 )(a+ z), z ∈ V }, a ∈W

form a zero-sum partition of Fn
2 of size 2k, with k = n0dd+1/n0e, for the r-round permutation

P .

Similarly, Boura and Canteaut [16] explore multiset properties over two more rounds by
exploiting the structure of the round transforms as well as their linear part to produce zero-
sum partitions.

Finally, Boura, Canteaut and De Cannière [17] prove the following theorem:

Theorem 2 ([17]) Let F : Fn
2 → Fn

2 be a function corresponding to the concatenation of m
smaller SBoxes S1, . . . , Sm, defined over Fn0

2 . Let δk be the maximal degree of the product of
any k coordinates of anyone of these smaller SBoxes. Then for any function G : Fn

2 → F`
2,

we have

deg(G ◦ F ) ≤ n− n− deg(G)

γ

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi
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Most notably, if all SBoxes are balanced, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 1

Moreover, if n0 ≥ 3 and all Sboxes are balanced functions of degree at most n0 − 2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 2



Chapter 2

BLAKE

2.1 Public analysis

The security of BLAKE has been the subject of several studies since June 2010. We de-
scribe them here chronologically. All of these analyses follow the techniques of differential
cryptanalysis.

2.1.1 Near collisions for reduced-round compression functions (lineariza-
tion)

In [42] Su et al. propose improved near-collision attacks on reduced-round variants of the
compression function of BLAKE. The attacks use linearization by replacing modular addi-
tions by XORs, as in [4]. For improving previously known results as well as making them
applicable to BLAKE-64, the authors loosen the restrictions on the differential pattern. They
use differences of Hamming weight smaller than or equal to 2 in the intermediate states and
use the path with the highest probability.

The results obtained are near-collisions for the compression function on 152 bits (for
BLAKE-32), 396, and 306 bits (for BLAKE-64) on 4, 4 and 5 middle rounds respectively.
The middle rounds are 7 to 10 in the case of 4 rounds and 6 to 10 in the case of 5. The time
complexities of these attacks are 221, 216 and 2216 respectively.

2.1.2 Collisions for weakened variants

The authors of BLAKE proposed several weakened variants as toy examples for cryptanalytic
purposes. In [44] Vidali et al. cryptanalyse two of these variants: BLOKE and BRAKE.
The variant BLOKE does not permute the message words and constants in each round of the
compression function and the variant BRAKE additionally removes the feed-forward and the
round constants.

The authors are able to build collisions on BLOKE for an arbitrary number of rounds
exploiting the fact that all the round functions are identical. It is easy to find a message
block that will produce the same output as the input for one round, and therefore in this
case, for an arbitrary number of rounds r it can produce a fixed point of the rounds sequence.
Using this kind of fixed-point block messages and the feed-forward, the new chaining value
will not depend on the old one, but only on the salt and the counter. This can directly lead

5
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to a collision of two messages of the same length to which we append one fixed-point message
blocks with a negligible cost.

In the case of BRAKE, there is no feed-forward. Consequently, the output of the round
functions is not canceled by the input, so the attack becomes a bit more complex. They also
exploit the fixed points and are able to produce internal collisions, that will not lead to a
collision because of the last padded block, as the used messages have different lengths.

Both analyses work for the 256- and the 512-bit variants.

2.1.3 Near collisions for reduced-round compression functions (hill-climbing)

Hill-climbing techniques are algorithms that start with an arbitrary possible solution to a
problem and iteratively make small changes for improving it. In [41], Sönmez Turan and
Uyan use this technique to find practical near-collisions on reduced versions of several SHA-3
candidates. One of these analyzed candidates is BLAKE-32. They use message blocks with
1 bit of difference as input and the counter and salt fixed to zero. The result is practical
near-collision attacks on 209 and 184 bits for the compression function of BLAKE-32 reduced
to 1.5 and 2 rounds respectively, with a time complexity of 226. For more rounds this method
doesn’t provide significant results.

2.1.4 Security analysis of BLAKE-32 based on differential properties

In [30], Ming et al. point out a property based on the order of using the message words
in the internal function of BLAKE-32: if we have a difference in one of the threads of the
internal state that is erased by a message word, it is easy to find a configuration where this
non-difference is maintained over 1.5 rounds.

The authors also present some differential properties of the G function that are used in
the internal function as well as of G−1. They try to exploit the property of the message words
distribution for building collisions or near-collisions on 6 rounds of the compression function
with a meet-in-the-middle technique. The authors use the differential properties on G and
G−1 to conclude that this is not possible.

2.1.5 Boomerang distinguishers

The boomerang attack is a method based on differential cryptanalysis introduced by Wagner
in [45]. It was first introduced for analysing block ciphers. Its main principle is to consider
the block cipher E as composed by two consecutive steps E0 and E1. The attacker can exploit
then a good differential path that holds with probability p for the first step E0, 4→ 4∗; and
a good differential trail that holds with probability q for the second step E1, 5∗ → 5, the
following way:

1. Choose a pair of input messages (P1, P2) of difference 4, and compute C1 = E(P1) and
C2 = E(P2).

2. With C3 = C1 ⊕5 and C4 = C2 ⊕5 compute P3 = E−1(C3) and P4 = E−1(C4).

3. If the differential trails are verified, P3 ⊕ P4 = 4. This will occur with probability at
least p2q2.
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In [13], Biryukov et al. apply the boomerang attack on BLAKE-32 in a quite straightfor-
ward way. They use some high probability differential trails and the main results obtained
are a distinguisher on the compression function reduced to seven rounds with complexity of
2232 and a distinguisher on eight rounds of the keyed permutation with a complexity of 2242.

The authors point out that this results also apply to BLAKE-64, reaching about the same
number of rounds.

2.1.6 Distinguishers based on iterative differentials

In [24] Khovratovich and Dunkelman propose an original approach for building distinguishers
on BLAKE-32. These distinguishers use a good iterative differential path that uses two
different characteristics of the G function. The probability that the path through one round
holds, is 2−132. The authors find solutions for three rounds with a complexity in time of
262 using trail backtracking and message modification techniques. The remaining rounds are
verified probabilistically.

The result is distinguishers for 4, 5 and 6 rounds of the internal permutation with com-
plexity 2192, 2324 and 2456 respectively and memory needs of 2354. Also, a trade-off is proposed
for reducing these memory needs, that results on an increment of 232 in the time complexity.

2.1.7 Tuple cryptanalysis and permutation distinguishers

Tuple cryptanalysis has been introduced in [6] by Aumasson et al. It is a variant of structural
cryptanalysis that considers ordered rather than unordered multisets: the core element used
is a tuple, i.e. a list with possibly repeated elements. The authors apply this method to ARX
constructions.

The best result obtained on BLAKE with the tuple cryptanalysis is a known-key distin-
guisher on the core permutation that works for 2.5 rounds. This distinguisher has a time
complexity of 232 for BLAKE-256 and of 264 for BLAKE-512. The authors also suggest a
possible 4-round distinguisher in the chosen-key model for rounds 3.5 to 7.5, while pointing
out that this attack needs further study to be verified.

2.2 Third round tweak

The authors of BLAKE propose as a tweak for entering the third round of the SHA-3 com-
petition to increase the number of rounds performed of the internal function for hashing each
message block. In the case of BLAKE-32 and BLAKE-28 this number is increased from 10
to 14. For BLAKE-64 and BLAKE-48 the number of rounds becomes 16 (instead of 14 pre-
viously). This increases the security margin, as the result on the biggest number of rounds
is 8 for both versions. Besides increasing the number of rounds, the hash function remains
unchanged. Due to this, the authors can legitimately claim that previous cryptanalytic results
on BLAKE remain valid. They also propose a renaming of the variants: BLAKE-h, where h
is the hash size, for distinguishing the finalist version.

2.3 Summary & conclusion

BLAKE remains a secure hash funtion and no flaws on it have been showed up to now. The
security margin of BLAKE seems solid.
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The cryptanalysis that we have presented can be roughly classified in three categories:
near-collisions, cryptanalysis of weakened variants and distinguishers. The near-collision at-
tacks work on the compression function up to a very reduced number of rounds and it does
not seem as if this could be extended much further, with the techniques used until now.
The cryptanalysis of the weakened toy examples BLOKE and BRAKE are not applicable to
BLAKE, mainly because of the permutation of the order of message words in each round,
making it difficult to find the fixed-blocks that make the attack work. Distinguishers on the
compression function are not a direct threat to the security of a hash function, but they
help to understand it better. In some occasions, they are the starting point for some more
dangerous attacks.

In the case of BLAKE, this kind of distinguishers does not exist on the full compression
function, and the ones that have been mounted on the biggest number of rounds, are still far
from the total, specially after the final round tweak. The distinguishers that reach the largest
number of rounds, based on boomerangs, work up to 8 rounds.

We point out here that to our knowledge no analysis has been done on the security
against (second) preimage attacks. It also seems that BLAKE-256 has been more studied
than BLAKE-512. These two points may be interesting to investigate further.



Chapter 3

Grøstl

3.1 Public analysis

3.1.1 Improved Differential Attacks for ECHO and Grøstl

In [34] Peyrin introduces a new technique: the internal differential attack. An updated and
corrected version can be found in [35]. The attack exploits the fact that the two parallel
pipes, denoted by P and Q, in the compression function of Grøstl are very similar to one
another. Simplifying, one could state that for certain differences (a, b) the equality

P (x) +Q(x+ a) = b (3.1)

holds for a comparably large number of inputs x. Recall that the Grøstl compression function
operates as follows:

ht+1 = ht + P (ht +mt) +Q(mt) (3.2)

It follows that if ht = a, then ht+1 = a+b for a comparable large number of message blocks mt.
In the real attack on Grøstl, Peyrin doesn’t work with a single internal differential (a, b), but
with a set of internal differentials (a truncated internal differential). The rebound technique
is used to reduce the complexity of the search for a right pair.

This results in a distinguisher for the compression function of Grøstl-256, with time com-
plexity 2192 and memory complexity 264, as well as a distinguisher for the compression function
of Grøstl-512 reduced to 11 rounds, with time complexity 2640 and memory complexity 264.
Peyrin describes also a collision attack for Grøstl-256 reduced to 5 rounds, with time com-
plexity 279 and memory complexity 264, as well as a collision attack for Grøstl-512 reduced
to 6 rounds with time complexity 2177 and memory complexity 264.

3.1.2 Improved Collision Attacks on the Reduced-Round Grøstl Hash Func-
tion

In [22] Ideguchi et al. extend and improve upon the results of [34, 35] by changing the rebound
part of the attack. The authors present a collision attack for Grøstl-256 reduced to 6 rounds,
with time complexity 2112 and memory complexity 232, and a semi-free-start collision attack
for Grøstl-256 reduced to 7 rounds. Also a semi-free-start collision attack on the compression
function of Grøstl-256 reduced to 8 rounds is presented.

9
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3.1.3 How to improve rebound attacks

In [33] Naya-Plasencia improves the complexities of the attacks that use rebound attack
techniques given in [34, 35]. The author improves the merging of large lists by using some
additional observations and by using a better list merging algorithm. The main idea is to do
a sieving so that one does not have to try all the elements in one list with all the elements in
the other(s) at the merging and filtering steps.

This results in a distinguisher for the compression function of Grøstl-256, with time com-
plexity 2182 and memory complexity 264, as well as a distinguisher for the compression function
of Grøstl-512 reduced to 11 rounds, with time complexity 2630 and memory complexity 264.

3.1.4 New non-ideal properties of AES-based permutations: applications
to ECHO and Grøstl

In [38], Sasaki et al. introduce non-full-active Super-Sbox analysis which can detect non-ideal
properties of a class of AES-based permutations with a complexity lower than previously
known. By considering differential paths with a lower number of active S-boxes in some of
the Super-Sboxes (no state with all bytes active), the memory complexity of a differential
attack can be reduced.

This results in a distinguisher for the permutation used in the compression function of
Grøstl-256 reduced to 8 rounds, with time complexity 248 and memory complexity 28, as well
as a semi-free-start collision attack on the compression function of Grøstl-512 reduced to 7
rounds, with time complexity 2152 and memory complexity 256.

3.1.5 Updated Differential Analysis of Grøstl

In [39, 40], Schläffer updates the security analysis available on Grøstl, taking into account
the tweaks described in [21]. Most importantly, he investigates the impact of the tweak on
the rebound attacks. The paper includes a semi-free-start collision attack on the compression
function of Grøstl-256 reduced to 6 rounds, with a time complexity of 2112 and a memory
complexity of 264, as well as a semi-free-start collision attack on the compression function of
Grøstl-512 reduced to 6 rounds, with a time complexity of 2180 and a memory complexity of
264. Collision attacks on the hash function are given for versions reduced to 3 rounds.

3.2 Third round tweak

The tweaks are described in [21]. The results published on Grøstl convinced the designers
to make the internal permutations P and Q more different from one another. The tweak
achieves this by two modifications:

1. The shift values for the Q transformations are changed.

2. The round constants in both the P and the Q transformations are changed.

3.2.1 New shift values for Q

For Grøstl-256:
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row 0 1 2 3 4 5 6 7

offset 1 3 5 7 0 2 4 6

For Grøstl-512:

row 0 1 2 3 4 5 6 7

offset 1 3 5 11 0 2 4 6

3.2.2 New round constants

The new round constants are shown in Figure 3.1.
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Figure 3.1: The new round constants in Grøstl [40].

3.3 Summary & conclusion

Among the five finalists, Grøstl is probably the design that has been analysed the most often
for its resistance against rebound attacks. Although its security margin against this attack
appears to be the smallest among the five finalists, we can be relatively confident that the
security margin against rebound attacks, or any other attack based on truncated differentials,
will not change soon.

Grøstl is also the design that follows the most the design strategy of AES. This may give
an additional good feeling about its security margin, although the majority of the results of
security analysis on AES can of course not be translated directly to the hash function setting.
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Chapter 4

JH

4.1 Public analysis

This section includes recent analysis results on JH that has been done after June 2010.

4.1.1 Rebound attacks

In [33] Naya-Plasencia improves the complexities of the attacks that use rebound attack
techniques given in [37]. The author improves the merging of large lists by using some
additional observations and by using a better list merging algorithm. The main idea is to do
a sieving so that one does not have to try all the elements in one list with all the elements in
the other(s) at the merging and filtering steps.

The result is 297 in time and memory for the 16 round semi-free-start collision on hash
function JH and 296 in time and memory for 1008-bit semi-free start near-collision for 19
rounds and 896-bit semi-free-start near-collision for the 22 rounds of the compression function
of JH.

4.1.2 Practical Near-Collisions

In [28] Turan et al. present near-collisions for up to 10 rounds of the compression function of
JH, Fd, by using a simple hill climbing method. In the attack they use two 512-bit random
messages (M1,M2) with 1-byte difference, without considering the padding block. They try
to minimize the function

fM1,M2(CV ) = hw(Fd(M1, CV )⊕ Fd(M2, CV ))

where CV ∈ {0, 1}n is the chaining value that is to be optimized and hw is the Hamming
weight. The best result presented in the paper is for 10 rounds: they obtain a 820-bit near-
collision with a complexity of 223.24.

4.2 Third round tweak

JH has been tweaked for the final round of the SHA-3 competition. The number of rounds of
the compression function is increased from 35.5 to 42. The reasoning for the tweak is given
as follows: The last half round is removed for better hardware efficiency and the number of

13
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rounds is changed to 42 to increase the security margin. This new version may be referred to
as JH42 to distinguish it from the original design.

4.3 Summary & conclusion

The cryptanalytic results found so far on reduced-round versions of JH don’t represent a
threat on the security hash function: The results given in [28] are practical, but it is possible
to attack only a relatively small number of rounds. Rebound attacks also seem quite powerful
in the compression function setting due to the simplicity of the round function. Therefore,
it is possible and easier to analyse more number of rounds but the complexities is much
higher. Moreover, current attacks on the compression function of JH cannot be extended to a
collision attack on the hash function, since JH process an additional block during the padding
algorithm.

JH didn’t get much attention so far, therefore there is not many analysis results published.
Hence whether the existing attacks can be improved or other cryptanalysis methods can be
applied to JH is an open question for the moment.



Chapter 5

Keccak

Recall that Keccak-[r, c] refers to Keccak with r-bit bitrate and c-bit capacity, Keccak-f refers
to the underlying permutations of Keccak and Keccak-f [b] refers to the permutation with a
width of size b bits (e.g., b = 1600).

5.1 Public analysis

5.1.1 Preimage attacks on the weaker versions of Keccak by using SAT
solvers

Morawiecki and Srebrny [31] analyse the security of versions of Keccak with a very small
number of rounds by using satisfiability problem (SAT) solver algorithms. SAT solvers are
typically used to solve decision problems described in Conjunctive Normal Form (CNF).
Cryptographic algorithms that need to be analysed using SAT solvers are first represented in
CNF form and then this CNF is passed as an input to an efficient SAT solver for a solution.

Let H be the reduced-round hash function derived from Keccak. Morawiecki and Srebrny
consider the preimage attack onH to find short input length message p where |p| ∈ {24, 32, 40}
bits for a target hash value h. This means that H has only one application of the permutation
Keccak-f as the input p can be properly padded with the padding bits, denoted by pad, such
that the message m = p‖pad fits in a single block of H. Morawiecki and Srebrny use the tools
CryptLogVer [32] and PrecoSAT [2] to find a preimage for H as follows:

1. Generate CNF equivalent of the algorithm.

(a) Develop a Hardware Description Language (HDL) code of H.

(b) Use the first application of CryptLogVer called Quartus II, a software tool produced
by Altera, to analyse and synthesize HDL.

(c) Use a built-in functionality of Quartus II to obtain Boolean expressions of H
compiled in HDL.

(d) Use the second application of CryptLogVer to convert Boolean expressions to CNF.

2. Set pad bits and the target hash value h of H.

3. Pass the CNF form to PrecoSAT solver for a solution which is p such that H(p‖pad) = h.

15
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The authors carry out the above attack on the reduced versions of Keccak with varying
number of rounds, state sizes and message lengths. They performed experiments on a 4-
core Intel Xeon 2.5 GHz which was a part of Grid’5000 system [1] where only one core was
used. (The PrecoSAT tool desn’t lend itself to parallel processing.) For the version Keccak-
[1024, 576] which outputs a 1024-bit hash value, preimages were found for upto 3 rounds
in time (evaluated in seconds) better than the exhaustive search time which checks all the
combinations of unknown message bits. It was observed that the times of the attack on the
version Keccak-[80, 120] tested for 3 rounds and the version Keccak-[24, 26] tested for 3,4
and 5 rounds are not any better than the exhaustive search time. In addition, the attack
fails for the versions Keccak-[1024, 576] and Keccak-[80, 120] for beyond 3 rounds because the
PrecoSAT solver was not able to find a solution.

5.1.2 Second preimage attacks for up to 8 rounds of Keccak

Bernstein [8] describes a second preimage attack for Keccak instantiated with 6, 7 and 8
rounds of the permutation Keccak-f by exploiting the low algebraic degree 2 of the round
function of Keccak-f . However, Bernstein himself claims that “. . . , for people who have even
the slightest understanding of the physical reality of attack cost, this attack makes no sense:
it’s inherently memory-intensive and communication-intensive, and for the same machine size
it’s clearly much slower than parallel exhaustive search, even though it has somewhat fewer
bit operations.” Therefore, we omit here a description of this attack.

5.1.3 Zero-sum distinguishers for Keccak-f [1600] permutation

The text in this section and the following relies heavily on the material present in Section 1.2
In the previous report [36], zero-sum distinguishers for 16 and 18 rounds of the Keccak-f [1600]
permutation were briefed based on the analyses of Aumasson and Meier [7] and Boura and
Canteaut [15] respectively. It should also be recalled that the result of [15] prompted the
designers of Keccak to increase the number of rounds of the Keccak-f [1600] permutations
from 18 to 24 in order to preserve the hermetic sponge property of Keccak [9].

Zero-sum partitions for reduced round Keccak-f [1600].

Boura and Canteaut present zero-sum distinguishers on 20 out of 24 rounds of the Keccak-
f [1600] permutation [16]. In fact, they show zero-sum partitions on 20 rounds of Keccak-
f [1600]. The previous techniques that produced zero-sum distinguishers for 16 and 18 rounds
of Keccak-f [1600] also produce zero-sum partitions [16].

Generalization of Aumasson and Meiers’ results. The zero-sum partitions for 16
rounds of Keccak-f [1600] derived by Aumasson and Meier follow from Proposition 1 by
choosing for V a subspace which is generated by (d + 1) elements of the canonical basis,
where d = max(deg(Fr−t),deg(Gt)). The degree of Keccak-f [1600] after 10 rounds is at most
210 = 1024 and its inverse after 6 rounds is at most 36 = 729. Therefore, by choosing t = 6
many zero sum partitions of size 21025 can be found.

Improvement of trivial bounds by using spectral properties. Boura and Canteaut [15,
16] improve this result by a few more rounds of the permutation exploring the spectral prop-
erties of the non-linear part χ0 of the round transform in the permutation P . They note
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that all elements in the Walsh spectrum of the non-linear permutation χ0 are divisible by 23.
Since the Walsh spectrum of χ0 and its inverse χ−10 are the same, the Walsh spectrum of χ−10

is also divisible by 23. As there are nr = 320 applications of χ0, Walsh spectra of R and R−1

applied on the 1600-bit state of Keccak-f [1600] are divisible by 23×320 = 960. Since 6 rounds
of inverse R has a degree of at most 729, application of Theorem 1 on 7 inverse rounds of R a
maximum degree of 1600− 960 + 729 = 1369. This bound allows to find zero sum partitions
of size 21370 for 17 rounds of Keccak-f [1600] by choosing t = 7.

Extensions using multiset properties. Proposition 2 can be applied to Keccak-f [1600]
by choosing V = ⊕i∈IBi where I is any collection of 274 rows to produce zero-sum partitions
of size 21370 for 18 rounds of Keccak-f [1600]. Using multiset properties over two more rounds
of Keccak-f [1600] leads to 64 zero-sum partitions of size 21461 for 19 rounds and 64 zero-sum
partitions of size 21586 for 20 rounds.

5.1.4 Zero-sum partitions for full Keccak-f [1600]

In the round transform of Keccak-f [1600], R = ι ◦ χ ◦ π ◦ ρ ◦ θ. Let A1 = π ◦ ρ ◦ θ which
is linear and let A2 = ι which is an addition of a constant value. Therefore, the composed
linear layer A1 ◦A2 can be defined as L = π ◦ ρ ◦ θ. The non-linear function χ is equivalent to
320 parallel applications of the SBox χ0 and χ−1 has a degree 3. Application of Theorem 2
to the round transform R of Keccak-f [1600] leads to the following bounds for any function
F :

deg(F ◦R) = F ◦ χ ≤ n− n− deg(F )

3

deg(F ◦R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n− n− deg(F )

3

For instance, the bound on the degree for 11 forward rounds of R is 1600− 1600−1024
3 = 1408

and for 12 forwards rounds of R is 1600 − 1600−1408
3 = 1536. Similarly, the bound on the

degree for 7 inverse rounds of R is 1600 − 1600−729
3 = 1309 and for 8 inverse rounds of R is

1600− 1600−1309
3 = 1503. Using these bounds, by choosing any subspace in F1600

2 corresponding
to a collection of 318 rows after the layer L in the 11th round of Keccak-f [1600] produces the
sets that form a zero-sum partition of size 21590.

Improved Zero-sum partitions for full Keccak-f [1600]. Duan and Lai [19] show an
improved zero-sum partition for the full Keccak-f [1600] permutation by observing that the
product of any two components of χ−1 has degree at most 3 instead of 4 as noted by Boura
and Canteaut [16] (and used by Boura et al. [17]). This observation implies that in Theorem 2,
δ2 = 3 and hence, γ = 2. Duan and Lai use this property of χ−1 to present an improved
upper bound for the degree of F ◦R−1 for any F as given below:

deg(F ◦R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n− n− deg(F )

2
.

Using this result, improved bounds for the degrees of the inverse of 7 to 15 rounds can be
derived for Keccak-f [1600]. For instance, the inverse of 7, respectively 8 rounds has a degree of
1164, respectively 1382 instead of 1309, respectively 1503, due to Boura et al. [17]. Similarly,
the inverse of 11 rounds has a degree of at most 1572 instead of 1596. Hence, by choosing the
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intermediate states after the L layer on the 12th round of Keccak-f [1600] in any subspace V
corresponding to a collection of 315 rows, zero-sum partition of size 21575 can be constructed
for full 24-round Keccak-f [1600].

Although the zero-sum partition distinguishers on the Keccak-f [1600] permutation by
Boura et al. [17] and Duan and Lai [19] do not produce any distinguishers for Keccak itself,
these results contradict the hermetic sponge design strategy of Keccak. Hence, Keccak-f is
not free from structural distinguishers as initially put forward by the Keccak designers in the
hermetic sponge strategy

5.2 Third round tweak

The following tweaks were applied to Keccak after it was selected for the final round of the
SHA-3 hash function competition. The designers of Keccak revised their documents for the
third round of the competition [11, 12] and also submitted a new document on cryptographic
sponge functions [10].

1. The padding technique for Keccak has been shortened and simplified. The new padding
rule appends a 1 bit, a sufficient number of 0 bits and finally a 1 bit such that the
length of the message is a multiple of the block length. This padded technique is called
multi-rate padding [11] as it is suitable for a family of sponge functions sharing the same
permutation with different rate-capacity pairs. Designers note that the new padding
rule is more efficient than the previous one as it appends down to 2 bits instead of the
at least 25 bits in the previous padding rule. For long messages, the efficiency gain is
negligible, but short messages can be 3 bytes longer for the same number of calls to
Keccak-f [1600] This rule appends at most the number of bits in a block plus one.

2. The diversification parameter d present in the previous version of Keccak is removed for
the final round. Recall that this parameter was originally proposed because a protocol
based on a hash function might require different instances of the hash function for
different output lengths instead of the same hash function and this parameter was
intended to diversify between different instances of a hash function.

Instead of having a separate parameter for this purpose, designers note that diversifi-
cation between different hash function instances from the same underlying permutation
(independent of whether they produce the same or different output length) can be es-
tablished by using a domain separation technique. Considering that the underlying
construction is secure, the derived functions can be treated as independent functions.
For example, domain separation can be implemented by appending or prepending differ-
ent constants to the input of each instance of hash function [12]. Different instances of
hash functions, denoted Hi, based on the Keccak-f [1600] permutation and that process
a message M can be proposed as Hi =Keccak(M‖Ci) or Hi =Keccak(Ci‖M) where Ci

are constants for each instance of the hash function.

3. The restriction that bitrate r can only take values that are multiple of 8 bits, is removed
for the final round version of Keccak. The new version supports values between 1 and
the size of the permutation b.
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There are no changes to the permutation function of Keccak. The published results on the
analysis of Keccak still apply to the tweaked version of Keccak as these results do not depend
on the design features of Keccak that are changed for the final round.

5.3 Summary & conclusion

So far, Bernstein’s (second) preimage attacks on reduced Keccak [8] and zero-sum partitions
for the full Keccak-f [1600] permutation first by Boura et al. [16] and later by Duan and Lai [19]
can be considered as the best known analytical results on Keccak. While these results are
interesting, they are far from posing any reasonable attack on Keccak. Firstly, Bernstein’s
(second) preimage attack on 8 rounds of Keccak has a complexity much closer to the brute
force attack complexity and moreover, it is far from attacking even half the rounds of the
algorithm. Secondly, zero-sum partitions on Keccak-f [1600] do not contradict the flat sponge
claim of Keccak as they require a work factor which is significantly higher than 2800 queries to
the permutation or its inverse [11]. In addition, in the zero-sum partition distinguishers the
attacker has complete control over the choice of the input bits to the permutation which is not
possible when it has to attack Keccak. Hence, it can be concluded that there are no serious
attacks on Keccak and current analytical techniques do not seem to really help in achieving
some good attacks even on the reduced versions of Keccak or its underlying permutation
Keccak-f .

A possible avenue for further research on Keccak may be the construction of distinguishers
for the Keccak-f permutations such that flat sponge claim can be contradicted. Such analysis
on the reduced round versions of Keccak-f permutations is an encouraging sign towards the
analysis of Keccak.



20 ECRYPT II — European NoE in Cryptology II



Chapter 6

Skein

6.1 Public analysis

This section lists public analysis appeared for the hash function since D.SYM.4. We briefly de-
scribe what is in each publication and summarize the main results. For a detailed description
we refer to the original publications.

6.1.1 Pseudo-Linear Approximations for Threefish

McKay and Vora present an attack on round-reduced Threefish in [27], using pseudo-linear
functions to analyze the block cipher. The attack is inspired by linear cryptanalysis. The
main idea is to consider larger groupings of contiguous bits (referred to as windows) instead
of single bits. The authors consider two operations on the windows (of size w): bitwise
exclusive-or and addition modulo 2w. While no approximation is needed for bitwise exclusive-
or, addition modulo 2n on the window is approximated by addition modulo 2w. This gives
a perfect approximation if the carry into the window is estimated correctly. Using these
simple non-linear approximations (that are pseudo-linear as they are composed of exclusive-
or and addition modulo 2w) the authors show attacks on round-reduced Threefish. In detail,
they show a key recovery attack on 11 rounds of Threefish-256 (without whitening) using
an 8 round approximation and a key recovery attack on 15 rounds of Threefish-512 (without
whitening) using a 12-round approximation.

6.1.2 Tuple Cryptanalysis of Threefish

Aumasson et al. introduced tuple cryptanalysis in [6]. It is a variant of integral cryptanalysis
with applications to ARX primitives - composed of only three operations: additions, rotations,
and exclusive-ors. The work has been inspired by the attack of Biryukov and Shamir in [14] on
the SASAS structure. First the impact of modular addition, rotation, and exclusive-or on the
properties of the tuple is analyzed. Then the order of the elements in the tuple is considered to
improve the results. Applying tuple cryptanalysis to Threefish using an inside-out approach
results in distinguishing attacks on Threefish-512 for 9 rounds and Threefish-1024 for 12
rounds in the known-key setting. Furthermore, by using the chosen-key setting the attack
can be extended to 20 rounds of Threefish-512.

21
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6.1.3 Statistical Analysis of Skein (Cube Tester)

Kaminsky analyzes the statistical properties of the Skein-512 hash function in [23]. Cube
tests, invented by Aumasson et al. in [5], are used to evaluate/probe the internal polynomial
structure of Skein-512 for a large number of choices of the input variables. The cube test
data were calculated on a cluster with 40 cores. In total 3,603,992,046,760 Skein-512 com-
putations were performed. The data are then subjected to three statistical tests (balance,
independence, and off-by-one test) to disprove the null hypothesis that the hash function is
a random polynomial. While the balance and off-by-one tests don’t find nonrandom behav-
ior, the independence test do find nonrandom behavior in Skein-512 which disproves the null
hypothesis that the hash function is a random polynomial.

6.1.4 Near-Collisions for the Compression Function

Su et al. present free-start near-collisions for 24 rounds of the Skein compression function in
[43] and [42], respectively. In order to find good differential trails, the authors use a linear
approximation of the compression function of Skein. Therefore, all the modular addition
are replaced by bitwise exclusive-or. Using the linear approximation the authors search for
differential trails with low Hamming weight, since these trails are expected to result in a lower
attack complexity. The results are free-start near-collisions for 24 rounds of Skein-256, Skein-
512 and Skein-1024. It is important to note that all these trails use differences in the tweak
input to the compression function to get 8 rounds in the middle of the differential trail with
no differences. Using message modification techniques in the first rounds results in attacks
for the Skein-256, Skein-512, and Skein-1024 compression functions with complexities of 260,
2230, and 2395.

6.1.5 Near-Collision for the Compression Functions

In [47, 46] Yu et al. present a free-start near-collision for Skein-256 reduced to 32 rounds. The
main idea of the attack is to combine two short differential trails into a long differential trail
exploiting the non-linear properties of the modular addition and to place the expansive/dense
part of the differential trail in the middle (rounds 16-24). The result is a free-start near-
collision for 32 rounds of Skein-256. Using message modification techniques in rounds 16-24
results in an attack complexity of 2105. Similar as in the attack on 24 rounds by Su et al.
differences in the tweak are used to get a differential trail that has 8 consecutive rounds with
no differences.

6.1.6 Rotational Rebound Attacks on Reduced Skein

Rotational rebound attacks are proposed by Khovratovich et al. in [26]. They combine the
rebound attack[29] with rotational cryptanalysis of Threefish [25]. In the previous work on
Threefish in [25] Khovratovich and Nikolic used the fact that Threefish is an ARX primitive
- it is composed of only three operations: additions, rotations, and exclusive-ors - and each of
these operations preserve the rotational property with a high probability. Furthermore, the
constant C5 used in Threefish is rotational, i.e. C5 = C5 ≪ 2 , while the round counters
have low Hamming weight. All these facts allow the authors to launch a rotational attack
on Threefish. To cancel the effect of the additions of the round counters they introduce
corrections in the last 4 bits of each word of the key. The results are rotational distinguishers
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for 39 and 42 rounds of Threefish-256 and Threefish-512. By combining this idea with the
rebound attack the authors show how to construct a rotational collision for 53 and 57 rounds
of the Skein-256 and Skein-512 compression functions leading to a distinguisher (rotational
q-collision) with complexity of 2251 and 2503, respectively.

6.2 Third Round Tweak

Like all the other finalists also Skein has been tweaked for the third round. The only change
is in the key schedule constant of Threefish. The old constant

C5 = 0x5555555555555555

is replaced by
C240 = 0x1BD11BDAA9FC1A22 .

This change does significantly decrease the efficiency of the rotational distinguisher attack.
By replacing C5 by C240, which is not rotational, the attacker has to provide corrections for
64-bit values instead of for only 4-bit values resulting from the round counters. This reduces
the number of attacked rounds significantly and increases the security margin of Skein.

6.3 Summary & Conclusion

Most cryptanalysis of Skein mainly focus on the block cipher Threefish, only a few results
are known for the compression or hash function. The best known analysis of the Round 1
and Round 2 version of Skein and Threefish uses rotational cryptanalysis, but due to the
change of the constant in the key schedule of Threefish in round 3 the efficiency of this
attack is significantly reduced. However, most of the other analysis of round 2 of Skein and
Threefish also applies for round 3. This includes the free-start near-collision attack of Su et
al., the pseudo-linear approximations for Threefish by McKay and Vora, and probably also
the statistical analysis of Skein (using cube tester) by Kaminsky. There is only one known
analysis targeting round 3 of Skein done by Yu et al. They show a free-start near-collision
for 32 rounds of the Skein-256 compression function which improves the previous attack by
Su et al. by 8 rounds. So far no attacks have been published for the Skein hash function.

Considering that Skein has 72 rounds and that the best attack is for only 32 rounds of
the compression function, one can conclude that Skein offers a large security margin against
known attacks. However, it still remains an open and interesting research problem to prove
bounds for Skein against differential and linear attacks.
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