

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 1 of 64

D4.1 “Implementation of OPST Metro Ring-OBST
Metro Mesh interconnection Node and Mesh
bypass Metro Node”

 Status and Version: Final, 1.1

 Date of issue: 11.9.2011

 Distribution: Project Internal

 Author(s): Name Partner

Yixuan Qin UESSEX

Yan Yan UESSEX

Bijan Rahimzadeh Rofoee UESSEX

Georgios Zervas UESSEX

Dimitra Simeonidou UESSEX

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 2 of 64

Table of Contents

0 Executive Summary 5

1 Introduction 6

1.1 Purpose and Scope 6

1.2 Reference Material 6
1.2.1 Reference Documents 6
1.2.2 Acronyms 8

1.3 Document History 9

2 Overview of TSON Metro Node Architecture 10

2.1 TSON Metro Node 11
2.1.1 Node Controller 11
2.1.2 Data plane 12
2.1.2.1 Layer 2 with High-Speed FPGA 12

2.1.2.2 Layer 1 data transport 12

2.1.3 TSON Work Flow 12

2.2 TSON Metro node with Gridless support 13
2.2.1 Node Controller 13
2.2.2 Data plane 13
2.2.2.1 Layer 2 with FPGA (TSON mode) 13

2.2.2.2 Layer 1 data transfer 14

2.2.3 TSON plus Gridless Work flow 14

2.3 Hardware Components for the node controller 14
2.3.1 Servers 14
2.3.2 10GE Myricom Ethernet interfaces 15

2.4 Interfaces 15
2.4.1 Interfacing servers with FPGA 15
2.4.2 Interfacing FPGA with PLZT switches 16

3 Layer 2 of TSON Metro Node 17

3.1 Design Requirement 17
3.1.1 Overall Requirement 17
3.1.2 Component Requirement 17
3.1.2.1 10Gbps Ethernet PCS/PMA 17

3.1.2.2 10Gbps Ethernet MAC 17

3.1.2.3 Ethernet Aggregation 17

3.1.2.4 Optical Burst Segregation 18

3.1.2.5 PLZT Switch Controller 18

3.1.2.6 10Gbps Server/GMPLS to FPGA Interface 18

3.2 Implementation Strategy 18
3.2.1 Hardware Selection 18
3.2.2 FPGA Design Strategy 18
3.2.2.1 Pipeline 19

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 3 of 64

3.2.2.2 Reuse 20

3.3 Node Implementation 21
3.3.1 Hardware Components 24
3.3.1.1 MAIN Board: HTG-V6HXT-100G 24

3.3.1.2 HTG-SFP-PLUS-MDL Extender Card: 26

3.3.1.3 SFP+ Optical Transceiver 26

3.3.2 IP Components 27
3.3.2.1 Xilinx GTH Transceivers 27

3.3.2.2 LogiCORE 10-Gigabit Ethernet MAC 28

3.3.2.3 Xilinx Mixed-Mode Clock Manager (MMCM) 29

3.3.2.4 Xilinx Chipscope Pro 30

3.3.3 User Logic Components 30
3.3.3.1 I2C Controller 30

3.3.3.2 MDIO controller 31

3.3.3.3 Look-Up-Table (LUT) Update Block: 31

3.3.3.4 PLZT Switch Control Block 32

3.3.3.5 Aggregation block 33

3.3.3.6 Segregation Block 33

3.4 Incremental Test Results (both simulation and experiment) 34
3.4.1 Simulation Result about LUT and Register File Update 34
3.4.2 Implementation Results 34
3.4.2.1 TSON Metro Node Experiment and Measurement: Bit Rate 35

3.4.2.2 TSON Metro Node Experiment and Measurement: Time-slice Overhead
 36

3.4.2.3 Experiment and Measurement: Maximum Contiguous unallocated Time-
slice 37

3.4.2.4 Experiment and Measurement: Latency 37

3.4.2.5 Experiment and Measurement: Jitter 40

4 TSON Layer 1 data transfer 44

4.1 TSON with Gridless Layer 1 data switching 45

4.2 Hardware Components 47
4.2.1 PLZT fast switches 47
4.2.2 Calient's DiamondWave FiberConnect backplane 48
4.2.3 Waveshaper 48

5 SHINE Enabled TSON Metro Node 49

5.1 SHINE Solution 49

5.2 SHINE Enabled TSON Metro Node Implementation 50
5.2.1 SANE 50
5.2.1.1 SHINE Enabled TSON Metro Node Function Blocks 50

5.2.1.2 Node Implementation Details 52

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 4 of 64

5.2.2 SIS 53
5.2.3 SHG 54
5.2.3.1 Node generation 55

5.2.3.2 Network generation 55

5.2.3.3 SIS Registration 56

5.2.4 SCN 59
5.2.5 SCMI 60

5.3 Incremental Test Results (both simulation and experiment) 60
5.3.1 Simulation Result 60
5.3.2 Simulation Results about SHINE Switch 61
5.3.3 Implementation Results 61
5.3.3.1 Experiment and Measurement: Bit Rate 62

5.3.3.2 Experiment and Measurement: Latency 63

5.3.3.3 Experiment and Measurement: Jitter 63

6 Conclusions 64

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 5 of 64

0 Executive Summary

This document reports on the implementation of MAINS TSON1 metro node2. It is based on
the design of TSON interconnection and bypass nodes (D2.3 “OBST Mesh Metro Network
Control Plane and GMPLS Interworking”) driven by the requirements set in D1.1 “Definition
of network scenarios, drivers and requirements for metro-regional architectures combining
optical transport and network resident IT resources”.

In Section ‎1 the objectives and the scope of the document are stated. The reference
documents and the relevant terminology used in the document are also listed.

In Section ‎2, the overall TSON metro node architecture with and without flexible frequency
switching (Gridless) support in terms of node controller, data plane, and TSON work flow
are given. The required hardware and interfaces between layer 1 and layer 2, layer 2 and
upper layer controller are also described.

Section ‎3 is the major part of this document; it focuses on the Layer 2 design,
implementation and measurement of TSON metro node. It presents the detailed hardware
requirement and block design requirement. Following this, it describes implementation
strategy. Then, the detailed node architecture and the implementation in terms of hardware
components, IP components, and user logic components are reported. The last part of the
section produces the simulation and implementation results.

Section ‎0 explains the Layer 1 implementation of the TSON metro node. It includes the
optical data plane switch node configuration built with PLZT fast switches for time-slice
switching and the corresponding optical components. Furthermore, Another flavour of
Layer1 TSON optical node, supports flexible frequency switching by incorporating
spectrum selective switch and optical backplane besides the TSON timeslice switching.

Section ‎5 introduces a novel software/hardware defined network (SHINE) solution for
TSON metro node to enable flexibility and programmability. This section firstly defines the
problem, which SHINE tries to solve. Then both high level design and detailed design are
given. In the meantime, SHINE methodology and working flow are described. Finally the
SHINE enabled TSON metro node architecture, implementation, and test results are given.

Finally, the document‟s conclusions are presented in Section ‎6.

1 Since D2.3, OBST had been referred as TSON, and will be used throughout this
deliverable.

2 TSON metro node is the superset node, which covers the functions of both OPST-
OBST interconnection node and OBST bypass node. Details can be found at
Subsection ‎1.1.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 6 of 64

1 Introduction

1.1 Purpose and Scope

This deliverable provides the OPST Metro Ring-TSON (OBST) Metro Mesh interconnection
Node and TSON (OBST) Mesh bypass Metro Node final design and implementation
details.

As a universal superset node implementation approach, the TSON metro node is deployed
equally for both TSON interconnection node and TSON bypass node. It consists for two
main functions; the L2 TSON functions (Ethernet to TSON frame conversion, aggregation,
scheduling, etc.) needed for the interconnection node and the L1 TSON functions (e.g.
transparent time-slice switching) required by both interconnection and bypass node. By
using this approach, the following benefits can be achieved:

 More flexible experiment setup: For the given number of nodes, arbitrary
combination of interconnection and bypass nodes can be selected for different
experiment setup.

 Shorter hardware coding time: given the fact that there are certain number of
common function, in addition that the function variance between interconnection
and bypass nodes is limited in our case, a superset implementation approach is
more efficient.

 Shorter hardware compile time: For one experiment, only compile once, and use
the same generated bit file for all the nodes, and do not need to compile separately
for interconnection and bypass nodes.

 Simpler design management: since only one implementation project is maintained,
less management overhead can be achieved.

For the given reason, a superset TSON metro node, which performs the functionalities of
both interconnection and bypass nodes is designed and implemented.

It covers three key areas relating to the delivery of TSON metro node that will fulfil the
MAINS objectives, as follows

 Layer 1 implementation of the TSON metro node

 Layer 2 implementation of the TSON metro node

 Software/hardware defined network (SHINE) solution for TSON metro node to support
intelligent adaptability

For this purpose, the TSON (OBST)-OPST testbed requirements defined in MAINS D1.1
and TSON (OBST) nodes detailed requirements and architectures defined in MAINS D2.3
are assumed as starting points.

Although this deliverable mainly focuses on Layer 2, Layer 1 implementation is also
reported since it is an integral part of the TSON node. .

1.2 Reference Material

1.2.1 Reference Documents

[1] N. Amaya "Gridless Optical Networking Field Trial: Flexible Spectrum Switching,
Defragmentation and Transport of 10G/40G/100G/555G over 620-km Field
Fiber", Post Deadline ECOC 2011

[2] “PCI Express Myricom 10G NIC with two SFP+ Ports.” Storids 2010

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 7 of 64

[3] White Paper “HiTech Global HTG-V6HXT-100 User Manual” HiTech Global

[4] White Paper “Xilinx IP 10-Gigabit Ethernet MAC User Manual v10.2” Xilinx

http://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_ma
c_ug148.pdf

[5] White Paper “Silicon Lab Si570 User Manual” Silicon Lab
http://www.silabs.com/support%20documents/technicaldocs/si570.pdf

[6] White Paper “EMAC 100G Debug Application User guide” Hitek Systems

[7] White Paper “AEL 2006 Datasheet v2.3” Netlogic

[8] White Paper “Virtex-6 FPGA GTH Transceivers User Guide” Xilinx
http://www.xilinx.com/support/documentation/user_guides/ug371.pdf

[9] White Paper “Any-Frequency Precision Sixx Clocks Family Reference Manual”
Silicon Lab
http://www.silabs.com/Support%20Documents/TechnicalDocs/Si53xxReference
Manual.pdf

[10] White Paper “LogiCore IP Virtex-6 FPGA GTH Transceiver Wizard v1.6” Xilinx
http://www.xilinx.com/support/documentation/ip_documentation/v6_gthwizard_ds
738.pdf

[11] White Paper “Virtex-6 FPGA GTX Transceivers User Guide” Xilinx
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf

[12] White Paper “Virtex-6 Libraries Guide for HDL Designs” Xilinx
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/virtex6_hdl.
pdf

[13] White Paper “LogiCore IP Ten Gigabit Ethernet PCS/PMA v2.1”
http://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_pcs
_pma_ug692.pdf

[14] White Paper “1 GB: x4, x8, x16 DDR3 SDRAM features” Micron
http://download.micron.com/pdf/datasheets/dram/ddr/1GbDDRx4x8x16.pdf

[15] White Paper “UM10204 I2C-bus specification and user manual” NXP
http://www.nxp.com/documents/er_manual/UM10204.pdf

[16] White Paper “FPGA Editor Guide” Xilinx

[17] White Paper “Vertex 6 Family Overview” Xilinx
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[18] Steve Kilts “Advanced FPGA Design” 2007

[19] “IEEE Communications” July 2010

[20] http://www.hitechglobal.com/

[21] http://www.digilentinc.com/

[22] http://www.xilinx.com/

[23] http://www.altera.com/

[24] http://www.fpga4fun.com/

[25] Transport of 10G/40G/100G/555G over 620-km Field Fiber", Post Deadline
ECOC 2011

http://www.hitechglobal.com/
http://www.digilentinc.com/
http://www.xilinx.com/
http://www.altera.com/
http://www.fpga4fun.com/

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 8 of 64

[26] “PLZT Optical Switch EPS0404 Series Nano-Second Speed 4x4 Optical Switch
(Rack mounted)” User Manual, April 2011

[27] “DiamondWave FiberConnect Software Manual, Issue 2: DRAFT”, 2007

[28] “WAVESHAPER 4000S, Finisar” 2010

[29] “Myricom Gen2 (5GT/s) PCI Express Myri 10G NIC with two SFP+ Ports”

1.2.2 Acronyms

CEI Common Electrical Interface

CAPEX Capital Expenditure

CD Chromatic Dispersion

DDR Double Data Rate

EDC Error Detection and Correction

FCI Fast Causal Inference

FIFO First In First Out

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

FPGA Field Programmable Gate Array

Gbps Giga bit per second

GE Gigabit Ethernet

GMPLS Generalized Multi-Protocol Label Switching

HDL Hardware Description Language

I2C Inter-Integrated Circuit

IP Intellectual Property

ISP Internet Service Provider

ITU-T International Telecommunication Union-Telecommunication

LUT Look Up Table

MAC Media Access Control

MDIO Management Data Input Output

MEMS Micro Electro-Mechanical Systems

MMCM Mixed-Mode Clock Manager

NE Network Element

NIC Network Interface Card

NPDR Non-Predefined Definition Repository

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 9 of 64

OBST Optical Burst Switching Technology

OEO Optical-Electrical-Optical

OPEX Operational Expenditure

OPST Optical Packet Switching Transport

OPST Optical Packet Switching Technology

PCI Peripheral Component Interface

PCS Physical Coding Sublayer

PDR Predefined Definition Repository

PLZT Polarized Lead Zirconium Titanate

PMA Physical Medium Attachment Sublayer

PMD Polarisation Mode Dispersion

QDR Quad Data Rate

QoS Qaulity of Service

SSS Spectrum Selective Switch

1.3 Document History

Version Date Authors Comment

0.1 11/09/2011 Y. Qin First ToC draft

0.2 15/09/2011 Y. Qin Final ToC version

0.3 12/11/2011 Y. Yan Contribution on Section 3

0.4 13/11/2011 Y. Qin Contribution on Section 5

0.5 26/11/2011 Y. Qin Contributions on Section 1

0.6 28/11/2011 B. Rahimzadeh Contribution on Section 2 and 4

0.7 28/11/2011 Y. Qin, Y. Yan Contributions on Section 5, update
section 4

0.8 28/11/2011 Y.Qin Review, document overview

0.9 29/11/2011 Y.Qin, Y. Yan, B.
Rahimzadeh

Executive summary added, all
sections updated

1.0 30/11/2011 Y.Qin Final

1.1 30/11/2011 G. Zervas Final Review and release

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 10 of 64

2 Overview of TSON Metro Node Architecture

TSON node located in the TSON metro mesh cloud should interconnect with the OPST
ring, access nodes, directly with end-points (clients, data centre servers), and other TSON
nodes. This interconnection is controlled by GMPLS control plane, while each

Figure ‎2-1: The TSON node complete structure consisting of controller on top, L2 and L1 elements.

XML web
service

GMPLS stack

XML web
service

TSON
driver

PCE + SLAE

Control
10GE
NIC

10GE
TX/RX

1 GE
NIC

10GE
TX-?1

10GE
RX-?1

10GE
TX-?2

10GE
RX-?2

FPGA
REPROGRAM

JTAG connector

GMPLS VM TSON control VM Windows VM

10GE
TX/RX

10GE
TX/RX

10G
E

TX/
RX

10G
E

TX/
RX

Ethernet MAC

Buffer

LUT

CouplerAWG

Buffer Buffer

Aggregation/Scheduling

Ethernet MAC

Segregation

Buffer Buffer

Ethernet MAC

SERVER: Node
CONTROLLER

FPGA:
LAYER

2

Traffic
Gen

SHINE
adaptation

module

Grid-less
Back
plane

control

PLZT ?2

A
W
G

EDF
A

EDF
A

PLZT ?1

OPTICAL BACK PLANE

Coupled
traffic of

TSON and
Grid-less

EDF
A

Wave
Shape

r

C
O
U
P
L
E
R

C
O
U
P
L
E
R

Coupler

EDFA EDFA

AWG

Output Port 1

Output Port 4

Output Port 3

Output Port 2

Input Port 1

Input Port 4

Input Port 3

Input Port 2

Input Port 1

Input Port 4

Input Port 3

Input Port 2

Output Port 1

Output Port 4

Output Port 3

Output Port 2

EDFA

AWG

EDFA

Coupler

Control from
FPGA

To PLZT

PHYSICAL
LAYER 1

EDF
A

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 11 of 64

TSON node uses the control information to manage the node`s operations vertical to the
control. and as such it needs to provide a vertical node management interfaceTSON
nodes are built having Layer 1 and Layer 2 functionalities, to be capable of both operating
as edge and bypass nodes. As shown in Figure ‎2-1, the node design consists of three
distinct elements. First, the node controller that operates in a server that supports the
overall TSON control, the interface to high-speed Virtex6 FPGA and optical switches and
can also host the GMPLS stack. The second element is the high-speed Virtex6 FPGA that
has been programmed to support the L2 TSON functions. Finally, the Layer 1 element
refers to two flavours of OXCs able to support either TSON over 50GHz multiplexed
network or TSON over Gridless multiplexed network. In regards with Layer 1 elements, two
node scenarios have been implemented; one capable of supporting TSON time-shared
data transfers and switching over 50 GHz switched channels, and the other one supporting
the time-shared data transfer and switching over Gridless frequency-shared channels that
follows Gridless networking, besides the TSON networking.

The need for frequency flexible switching and transport and potential support of super high-
speed communication channels (e.g. beyond 100Gbps) but also sub 50 GHz channels, is
addressed by extending the TSON Layer 1 to support Gridless data switching. Such
support can allow for aggregated metro traffic to be transported over ultra-wide channels to
core network or carry 10Gbps channels over 25 GHz frequency-slices. This additional
implementation is carried out having the emerging Gridless switching technologies such as
spectrum selective switches in mind. The implemented L2 functions are reported on
Section ‎3 and the different L1 OXC configurations on Section ‎0. The following sections
reflect the workflow and interactions between node controller, L2 element and L1 element.

2.1 TSON Metro Node

The implemented TSON node is capable of performing edge and bypass functionalities.
For this purpose, the node structure consists of a number of hardware and software
modules to carry out the data and control functionalities.

In this regard, TSON node consists of a server as the management plane platform, needed
both in the L2 and L1 TSON node configuration and control such as resource allocation; a
FPGA, as the Layer 2 enabling Ethernet to TSON data conversion, aggregation,
scheduling and transmission, carrying out OEO operation at the edge of the TSON mesh
metro; and the physical layer (Layer 1) involving the OXC consisted of switching devices
and other optical components.

2.1.1 Node Controller

The server on top running Ubuntu32 operating system is responsible for control and
management tasks of the node. The server hosts virtual machines and other necessary
software programs to support nodes communications whether as a TSON edge or a TSON
bypass node, and also holds a resource allocation tool which assigns time slots over the
wavelengths upon connection requests. This resource allocation tool will serve all the
requests applying for the resources and connections on the TSON network. The
description of the tool will be provided on Deliverable D4.5 “Implementation of sub-lambda
assignment element”.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 12 of 64

2.1.2 Data plane

The data plane of the TSON node consists of L2 and L1 enabling devices and
components.

2.1.2.1 Layer 2 with High-Speed FPGA

Regarding the L2 functionalities, a high performance FPGA is placed in the node. This
FPGA exploiting a number of deployed function blocks takes care of the OEO operations,
sending out the data over two transceivers with different wavelengths. Packet processing,
traffic aggregation/segregation, time-slice scheduling and generation, and the fast switches
control in the physical layer are the main task blocks carried out by the FPGA.

The OEO operations however, are specific to the TSON node operating as an edge node,
since the edge nodes in the TSON mesh cloud are expected to handle the Ethernet traffic
of the other network regions to being transferred over the TSON network. The TSON
bypass nodes on the other hand, need to operate transparently to the TSON time-sliced
traffic and to switch it considering the information received from the control plane.

2.1.2.2 Layer 1 data transport

Data transport over the TSON Layer 1 is mainly conducted by exploiting two PLZT fast
switches, each assigned for one wavelength following the wavelength-modular
architecture. The generated data by the transceivers on the FPGA are directed using the
switches and some supplementary optical components (couplers, MUX/DEMUX). The
details for the implementations are discussed on Chapter ‎0.

2.1.3 TSON Work Flow

In order to orchestrate the operation of the
TSON node components for the overall
desired function of the node, the operation of
some of the active components in the node
architecture must be timely controlled.
Considering Figure ‎2-2, In case of a TSON
edge node, with a client requesting for end-to-
end bandwidth service, the sub-wavelength
path computation is performed by the
resource allocation tool on the server. Before
informing the client for data generation and
transmission, the management plane on the
server communicates with the FPGA through
a 10GE link sending resource allocation and
control commands such as sub-wavelength
LUT information (bit-tables per wavelength) to
the FPGA. Based on the LUT information, the
FPGA aggregates and schedules the data

transmission of the ingress Ethernet traffic
from the server, and sends them out as timely
organised traffic time-slice data sets.

Alongside of the timing information for the FPGAs operation, PLZT control commands are
also sent to the FPGA, so the FPGA can configure the PLZT at the correct time instances.
The information being used for controlling the PLZT is based on the time slice allocation

Figure ‎2-2: The TSON node work flow

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 13 of 64

information calculated in the server per input-output PLZT switch cross connection. The
PLZT information will be passed to the module through a pair of custom made DB25
connectors explained in the interfaces section.

2.2 TSON Metro node with Gridless support

In the second node scenario, the TSON node architecture is extended to address the
future need of supporting ultra high speed data channels that require broad spectral use
and switching (e.g. 650 GHz) ‎[1] between metro and core regions as well as frequency-
based sub-wavelengths..

In this regard, since the channel spacing being used for the gird-less connection does not
fit into the regular ITU-T 50GHz defined grid, extra components, mainly a waveshaper are
used in the data plane to enable flexible spectrum selective switching.

In order to support TSON over Grid and Gridless networking as an add-on capability to the
normal TSON operation, a dynamic data plane is built, taking advantage of an optical
backplane as a repository for various components. So basically, the enabling devices for
TSON and Gridless operation are selected from this backplane and included in the
operation.

2.2.1 Node Controller

As explained for the TSON node, the server on top, running Ubuntu32 operating system is
responsible for control and management tasks of the node. The server hosts virtual
machines and other necessary software programs to support nodes communications
whether as a TSON edge or a TSON bypass node, and also holds a resource allocation
tool which assigns time slots over the wavelengths to connection requests. This resource
allocation tool will be described in D4.5 “Implementation of sub-lambda assignment
element “.

In addition to this, the resource allocator tool is extended to support Gridless networking. In
this regard, the management plane communicates with the Gridless block and the dynamic
backplane, for incorporating the Gridless switching into the node and building up the
enabling data plane for that.

2.2.2 Data plane

In order to support both the TSON and Gridless operation, a dynamic data plane is built
and the server in the node architecture controls the backplane.

In this regard, built TSON data plane and the Gridless data plane are explained.

2.2.2.1 Layer 2 with FPGA (TSON mode)

The data plane of the TSON node consists of L2 and L1 enabling modules and
components.

The L2 functionalities are only used for TSON metro node being used as an edge node.
The reason is the bypass node whether TSON metro by pass or for the Gridless
transmission do not carry out any data grooming and processing. The TSON L2
functionalities are as explained in Section ‎2.1.2.1.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 14 of 64

2.2.2.2 Layer 1 data transfer

The dynamic data plane, using a optical backplane together with optical switches and
components will provide TSON and Girdless bypass switching. However, the backplane
incorporates other modules for bypassing the Gridless traffic. This data plane is discussed
in ‎4.1.

2.2.3 TSON plus Gridless Work flow

Having the node equipped with Gridless transmitter, the node should control the back
plane in addition to the TSON control. Following this concept, the management plane is
updated to support this extra functionality. This is while the TSON node work flow stays the
same as it is discussed in ‎2.1.2. For Gridless functionality, the controller has been
extended. in order to build up the desired data plane, OXC configuration using commands
for cross-connecting the plug-in modules (e.g. PLZT, waveshaper) are sent to the back
plane for incorporating the required components.

Therefore, upon receiving a request for Gridless transport, the optical backplane (Calient
fiber switch) is informed about the required setup and the waveshaper gets included. After
this, the Gridless transmitter starts to transmit.

The FPGA is not involved in the Gridless operations since there is no need for L2
functionalities, or time-slice generation and PLZT control.

2.3 Hardware Components for the node controller

Enabling hardware for implementing the higher layer node controller of the node are
implemented using the following hardware.

2.3.1 Servers3

In order to deploy virtual machines and higher layer control,
DellT701 servers have been purchased with the following
characteristic:

 Intel Xeon E5620 Processor (2.40GHz, 4C, 12M Cache,
5.86 GT/s QPI, 80W TDP,

 Turbo, HT), DDR3-1066MHz

 12GB Memory for 1CPU (6x2GB Single Rank UDIMMs)
1333MHz

 500GB SATA 7.2k 3.5" HD Hot Plug

 PERC H700 Integrated RAID Controller, 512MB Cache

 16X DVD+/-RW Drive with SATA Cable

 Non-Redundant Power Supply (1 PSU) 1100W

 Rack Power Distribution Unit Power Cord

 Embedded Broadcom GbE LOM with TOE and iSCSI Offload HW Key, NOT

 compatible with H200/H700 on non-56xx bases

 iDRAC6 Express

 Sliding Ready Rack Rails with Cable Management Arm for Rack Configuration

 C2 - R1 for PERC H700, Exactly 2 Drives

3 picture from http://www.glcomp.com/products/servers/dell-poweredge/tower-
servers/poweredge-t710

Figure ‎2-3: Dell server

http://www.glcomp.com/products/servers/dell-poweredge/tower-servers/poweredge-t710
http://www.glcomp.com/products/servers/dell-poweredge/tower-servers/poweredge-t710

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 15 of 64

These servers are equipped with 10GE PCI NIC Myricom cards. These interfaces will be
used for communicating with the 10GE ports on the FPGA and also transmitting and
receiving Ethernet traffic.

2.3.2 10GE Myricom Ethernet interfaces

These NICs are designed for high speed/ low
cost high performance networking
requirements. According to the data sheet, the
NICs supporting 10GE interface are designed to
meet High Performance computing (HPC),
database, video, virtualization, and storage
applications [2].

The properties of this module are presented in
table 2-1 from[29].

Data rate supported per port 10 Gb/s

Bus type „Gen2“ PCI Express 2.0 (5GT/s or 2.5 GT/s)

Bus width x8 lane PCI Express, operable in x8 or x16
slots

Bus speed 4 GBytes/s (500 Mbytes/s per lane) each
direction

Compliance PCI Express Card Electromechanical 2.0
/PCI Express Base 2.0

Operating temperature 0°C to 55°C (32°F to 131°F) with 100 LFM
min airflow

Operating humidity 15% to 80% @ 50C, non-condensing

Storage temperature -40C to 70C

Table ‎2-1: Myricom 10GE NIC propertis

2.4 Interfaces

2.4.1 Interfacing servers with FPGA

The management plane of the TSON node needs control communication link with the other
layers of the TSON, especially with the Layer 2 FPGA . This communication line will carry
the resource allocation information as well as fast switch control for orchestration of the
components forming the TSON node.

In this regard, server hosting the management plane, is connected to the FPGA as the
Electronics layer, using Ethernet Sockets through a 10GE interface. For this purpose 10GE
Myricom NIC with two LR SFP+ transceivers are installed on the server. The FPGA is
interfaced with the server through this transceiver. To make this control communication

Figure ‎2-4: Myricom NIC, figure from [2]

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 16 of 64

happen, a java program has been developed and installed on the server, as an extension
to the RWTA engine.. This java program utilizes a library called JPCAP to support
communication through the Ethernet interface. Using this library, Raw Ethernet packets
can be generated and customised with the desired data. The mentioned library requires a
32bit OS for operations.

2.4.2 Interfacing FPGA with PLZT switches

The fast switches, as the active components of the TSON Layer 1 data plane which needs
to be configured for switching at correct times to direct the bursts of traffic, need to get the
switching information in a timely and effective manner.

For this purpose, the FPGA as the layer which carries out the time-slice generation and
transmission is made responsible for passing the switch control commands to the switch
simultaneously with the data generation.

Each of the fast PLZT switches (two switches, one per wavelength) is configurable through
48 pins on two DB25 connectors. For this purpose, the expansion connectors on a
daughter board card attached to the FPGA board are connected to the DB25 connectors
on the PLZT switch using a custom made ribbon cables.

The desired switch configuration is then sent to the PLZT switch from the FPGA at the

specific timings determined by the central controller.

Figure ‎2-5 illustrates the 48 control bits (split in two parts of A and B due to the PLZT
functional structure), and the correspondence change in the state of the switch is
displayed. So, as long as the control bits sent are constant, the switch remains at the same
state. The control bits are raw zeros and ones (3.3 Vpeak-to-peak) directly applied to the
switch driver.

Switch state

Switch control with
48 pins

1-1; 2-2; 3-3; 4-4 1-2; 2-4; 3-1; 4-2 1-4; 2-1; 3-3; 4-2

A:110….11
B:001...10

A:010….11
B:101...01 A:001...10

B:011...11

Figure ‎2-5: PLZT control bits and the correspondence switch state change

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 17 of 64

3 Layer 2 of TSON Metro Node

In this section, the electronic design and implementation of L2 TSON Metro Node is
presented. The work includes the design requirements, suitable hardware and
implementation strategy, design implementation, experiments and experiment results
analysis.

3.1 Design Requirement

The electronic design part requires implementing TSON Metro Node in a single FPGA,
which can achieve the requirements in MAINS deliverable 1.1 Table 6-1. This Subsection
analyses the node requirements, and gives a detailed FPGA overall and functional block
design requirement.

3.1.1 Overall Requirement

GMPLS control plane provisions the resources of the whole TSON network and sends the
time-slice allocation and PLZT switch commands to the node. After the sub-wavelength
lightpath establishment, Ethernet frames arrive at the ingress TSON node. The TSON node
then that parses and aggregates the frames based on the traffic destination and the
allocated time-slice(s) and finally transmits them on the specific time slice. Here, one
TSON time-slice is 10us, and one TSON frame is 1msAnd, one frame could contain 100
time-slices in theory. At the egress node in TSON network the optic time-slice data sets are
segregated and send out in the form of Ethernet frames. 10Gbps transceivers are assigned
for the Ethernet frame transmission, optical time-slice transmission and GMPLS control
interface.

Furthermore, Reusability of the developed modules is considered to improve the value and
flexibility of the design.

3.1.2 Component Requirement

3.1.2.1 10Gbps Ethernet PCS/PMA

10Gbps Ethernet PCS/PMA is required to provide high-speed transmission as well as
64B/66B encode and decode, clock correction, TX and RX state machines and BER
monitor. Meanwhile, it needs to be easily configured through management interface.
Furthermore, a standard interface, i.e. XGMII interface, would be a benefit to connect it to
the 10Gbps Ethernet MAC core.

3.1.2.2 10Gbps Ethernet MAC

10Gbps Ethernet MAC is required to satisfy IEEE 802.3-2008 standard. It is also desired to
be easily configured and have an XGMII interface.

3.1.2.3 Ethernet Aggregation

Ethernet Aggregation module is the major component of the ingress function of the node.
When the node receives the Ethernet packets, it is required to aggregate the Ethernet
packets to a time-slice data set, check the Time-slice allocation Look-Up-Table (LUT), wait
for an available Time-slice allocation, and then send out the burst in the specific time slice.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 18 of 64

3.1.2.4 Optical Burst Segregation

The requirement of optical burst segregation module is that, whenever the node receives
an optical burst, it segregates the burst to Ethernet frames, and sends the Ethernet frames
out immediately. The optical burst segregation module is required in the egress node.

3.1.2.5 PLZT Switch Controller

PLZT switch controller is required to control the PLZT switch following the instruction of
GMPLS. It is required to employ a LUT to store all the switching commands. Then based
on the LUT, PLZT switch controller sends the control signals through parallel interface
before sending out the burst.

3.1.2.6 10Gbps Server/GMPLS to FPGA Interface

The TSON Metro Node functionally operates bases on the commands from GMPLS, which
sends the instruction through a 10Gbps transmission link to update the LUTs of
aggregation and PLZT switch controller in the FPGA. Therefore, this 10Gbps transmission
link between GMPLS and FPGA is required to to process the Ethernet frames and update
the LUT.

3.2 Implementation Strategy

Considering the design requirement in the Subsection 3.1, it is important to identify a
suitable hardware platform, and then for, choose the proper design strategies to implement
this specific design from electronic digital design point of view.

3.2.1 Hardware Selection

As the node is expected to support 10Gbps Ethernet and 10Gbps TSON interfaces; thus,
to achieve this high-speed and low-latency performance, the hardware platform should be
able to support 10Gbps interface and have considerable internal memory in the FPGA.

Comparing the FPGA technology and FPGA platforms‟ performance in the market, HiTech
Global HTG-V6HXT-100G was chosen as the main platform, and HTG-SFP-PLUS was
chosen as an extender card to support 12 SFP+ optical transceiver ports. HTG-V6HXT-
100G is based on the latest Xilinx FPGA technology Virtex6 XC6VHX380T and features:

 40nm ExpressFabric architecture,

 600MHz clock management tiles,

 600MHz block RAM,

 600MHz DSP48E1 slices,

 1.4Gbps SelectIO with ChipSync technology,

 PCI Express Endpoint/Root Port blocks,

 Ethernet Media Access Controller blocks,

 27648KB Block RAM,

 48 GTX transceivers up to 6.6Gbps and

 24 GTH transceivers up to 11.18Gbps.

The detail description of the hardware platform will be described in Subsection 3.3.1.

3.2.2 FPGA Design Strategy

There are three primary physical characteristics of a digital design: speed, area and power.
As described in the Subsection 3.1, the critical requirement of the node design is 10Gbps

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 19 of 64

speed. Therefore, this subsection describes the design strategy of architectural timing
improvements; then, to make the components reusable, a universal interface of the
components in the project is presented.

3.2.2.1 Pipeline

The FPGA input and output port interface runs serially at 10Gbps, thanks to the parallel
processing feature of FPGA. To improve the throughput and reduce the speed in the
FPGA, the data bus width is set to 64 bits, and then the FPGA execution clock is
156.25MHz.

The idea with such kind of high-throughput design is the use of pipelining. A pipeline is a
method to parse the task to various stages. When the data enters, it is passed through
different stages and then exits. The benefit of pipeline is that new data can be processed
before the prior data has finished.

For the ingress function of the node, to improve the system throughput, due to the storage
function of different FIFOs in different stages, the tasks of ingress module can be pipelined
as illustrated in Figure ‎3-1.

Figure ‎3-1: Pipelined Processing Diagram

The pipelined design includes four stages:

Firstly, when receiving Ethernet frames, store good frames and discard bad frames.

Secondly, extract Ethernet frame headers and send different kinds of frames to different
buffers.

Thirdly, aggregate the Ethernet frames to a burst (time-slice)

Lastly, send out the burst according to the time-slice allocation.

Receive Frame

Frame1Extract information
Put to different FIFO

Aggregate

Send Out Burst

Aggregate: Frame1,2,3...K

Burst

Frame3Frame2Frame1

Frame2

Frame N...

...

Time

Frame
N-1

Aggregate: Frame K+1,K+2...

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 20 of 64

3.2.2.2 Reuse

Design reuse can improve the quality and value of the FPGA design, the benefits will
become apparent on later work and future projects. Formal development policies can help
to establish a design reuse methodology.

Some basic points need to be followed, such as, follow the HDL coding rule, use parameter
to create maximum flexibility, follow the signal and parameter naming conventions, create
testbench for the easy reuse, etc. Another important point is to adopt a common interface
protocol on all components. Figure ‎3-2 shows a common interface adopted in the design.
The interface includes clk, reset, input and output ports.

Figure ‎3-2: Common components Interface

The descriptions of the interface ports are listed in Table ‎3-1, all the flag signals are active
low. The transmission timing diagram of some valid data is shown in Figure ‎3-3.

Port Name Dir Description

WR_CLK In Receiver Port: Clock

RD_CLK In Transmitter Port: Clock

RESET In Reset, active high.

RX_DATA[63:0] In Receiver Port: input data

RX_REM[3:0] In Receiver Port: input data encrypted validation.

RX_SOF_N In Receiver Port: start of burst, active low

RX_EOF_N In Receiver Port: end of burst, active low

RX_SRC_RDY_N In Receiver Port: source burst ready to be read,
active low

TX_DST_RDY_N In Transmitter Port: transmit side destination
ready to receive the data, active low

TX_DATA[63:0] Out Transmitter Port: output data

TX_REM[3:0] Out Transmitter Port: output data encrypted
validation.

TX_SOF_N Out Transmitter Port: start of burst, active low

RX_DATA(63 : 0)

RX_REM(3 : 0)

WR_CLK

RD_CLK

RESET

RX_SOF_N

RX_EOF_N

RX_SRC_RDY_N

TX_DST_RDY_N

TX_DATA(63 : 0)

TX_REM(3 : 0)

TX_SOF_N

TX_EOF_N

TX_DST_RDY_N

RX_SRC_RDY_N

Component Interface

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 21 of 64

TX_EOF_N Out Transmitter Port: end of burst, active low

TX_SRC_RDY_N Out Transmitter Port: source burst ready to send
out, active low

RX_DST_RDY_N Out Receiver Port: receiver side destination ready
to send the data, active low

Table ‎3-1: Common Interface Port Description

As illustrated in Figure ‎3-3, when the user wants to transmit or receive an Ethernet
frame/burst, and the output is ready to receive (dst_rdy_n active), it starts to
transmit/receive the data with asserting source ready (src_rdy_n), start of data (sof_n), and
end of data (eof_n).

Figure ‎3-3: Common Interface Timing Diagram

3.3 Node Implementation

Based on the design requirement in Subsection 3.1 and design strategy in Subsection 3.2,
considering the features and limitations of FPGA, this subsection describes the architecture
for a single TSON Metro Node.

As described before, the architecture is designed according to the features and limitations
of the hardware platform; therefore, the FPGA design is divided into several modules. The
node block diagram is shown in Figure 3-4. The modules and module requirements are in
Table 3-2.

CLK

DATA

SOF_N

EOF_N

SRC_RDY_N

DST_RDY_N

VALID DATA

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 22 of 64

Figure 3-4: TSON Metro Node Block Diagram

In Figure 3-4, the blocks with blue colour are supplied by Xilinx as IP cores, which include
10Gb Transmitter/Receiver and 10Gb Ethernet MAC. The other modules were developed
(coloured red) in VHDL. The design details will be described in the Subsection 3.3.3.

Module Name Functions

I2C controller Set Si5368/Si570 on board to generate the clock.

MDIO controller Initialize HTG-SFP+ extender card on-board-chip AEL2006.

PLZT controller Control PLZT switches.

10Gbps
Transmitter/Receiver

Xilinx IP core GTH for 10Gbps Transmission.

10Gb Ethernet MAC Xilinx IP core 10Gb Ethernet MAC.

Aggregation Aggregate Ethernet Packets to burst and send the burst out based
on the Time-slice Allocation LUT.

Segregation Segregate burst to Ethernet Packets and transmit out when
received.

LUT Update Receive and parse the information from PLZT, Update the LUT.

Table 3-2: FPGA design functional modules and requirements

Furthermore, considering the clock domains, all 10Gbps receivers and transmitters work at
156.25MHz, but in different clock domains. The I2C controller and MDIO controller run in
the clock domain of 50MHz. For the design of the TSON Metro Node, totally, there are 8
clock domains. Therefore, an important concern of the design is handling the cross-clock
domain signals.

Following Figure 3-4 of the Node architecture, a diagram of detailed functional blocks of
TSON Metro Node is shown in Figure 3-5.

Compared with Figure 3-4, Figure 3-5 gives more details of how the node is designed. The
purple blocks construct the ingress function of the node, the orange blocks provide the

10Gb Receiver

I2C
Controller

10Gb Ethernet
MAC

AGGREGATION

MDIO
Controller

SEGREGATION

10Gb Transmitter
10Gb Transmitter

10Gb Transmitter
10Gb Ethernet

MAC
10Gb Receiver
10Gb Receiver

10Gb Receiver
10Gb Ethernet

MAC
LUT Update

FPGA

PLZT
Controller

Ethernet
Frame

Ethernet
Frame

Ethernet
FrameBurst

Burst

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 23 of 64

egress function, and the green blocks complete a interface link from the server (connected
to GMPLS) to the node. The data flow is following the arrow directions.

Figure 3-5: TSON Metro Node Layer 2 FPGA Design Functional Blocks

For the overall node controller to node interface link, time-slicethe server sends eight
Ethernet frames through 10 Gbps link; Then the frames are passed to the 10GE MAC
which drops the preambles and FCS, and tells the next block RX FIFO whether it is a good
packet or not; RX FIFO updates the LUT with the packet information; After this, LUT
updates the register file in aggregation block.

For the ingress part of the node, when the 10Gbps receiver receives the Ethernet frames,
through XGMII interface, it passes them to the 10GE MAC; Then the MAC discards the
preambles and FCS, transmits the data to the RX FIFO and indicates whether the packet is
good or not; The RX FIFO receives the data, waits for the good/bad indication from MAC,
sends it to the DEMUX block if they are valid data. The DEMUX analyses the Ethernet
frame information (i.e. Destination MAC address, Source MAC address and so on) and
puts them in different FIFO. After that, the FIFO doesn‟t send any data until the
AGGREGATION gives a command; the register file of AGGREGATION, containing the
Time-slice Allocation information, is updated by the LUT. AGGREGATION waits for the
burst-length Ethernet frames ready in the FIFO and the time-slice allocation available, then
transmits the bursts into the different wavelength TX FIFO. The TX FIFO adjusts the time
with PLZT controller, and then sends the burst out.

For the egress part, when the 10Gbps receiver receives the burst (time-slice), it drops it in
the RX FIFO Lamda1/Lamda2; after the burst is completely received, the SEGREGATION
block segregates the burst to Ethernet frames and transmit them to a TX FIFO; every time
TX FIFO receives a complete Ethernet frame, it sends it to the 10GE MAC; Finally, the
MAC passes the data to the 10Gbps transmitter and transmit them out.

As described above, the cross-clock-domain signals should be taken care of. Several
FIFOs were employed to overcome the cross-clock-domain problems. As shown in
Figure 3-5, for the ingress part, the read out side of TX FIFO and 10Gbps GTH transmitters
work in TX_CLK1_ingress/ TX_CLK2_ ingress domain; and the other modules work in
RX_CLK_ ingress domain. For the egress part, the right side of RX FIFO and 10G GTH
receivers work in RX_CLK1_egress/RX_CLK2_egress domain; and the other modules
work in TX_CLK_egress domain. For the LUT update module, they work in the same clock
domain CLK_LUT.

In the rest parts of this section, IP cores and the user logic blocks are described.

AGGREGATION

10G
Transciever
GTH1_0 RX

LOCAL LINK

RX FIFO

10G
Transciever
GTH1_0 TX

10-Gigabit
Ethernet

MAC1

10G
Transciever
GTH0_0 TX

TX FIFO_LAMDA1

TX FIFO_LAMDA2

10G
Transciever
GTH0_1 TX

TX FIFO SEGREGATION

RX FIFO_LAMDA1

RX FIFO_LAMDA2

10G
Transciever
GTH0_0 RX

10G
Transciever
GTH0_1 RX

10G
Transciever

GTH1_3

LUT
10-Gigabit
Ethernet

MAC3
RX FIFO

FIFO1.
.
.

FIFO4

.

.

.

.

.

.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 24 of 64

3.3.1 Hardware Components

The overall hardware platform is shown in Figure 3-6, there is a HTG-V6HXT-100G board
used as the main board of the platform; on the left side, there is a HTG-SFP-PLUS-MDL
extender card, optical SFP+ transceivers and fibre patchcords; on the right side, there is a
HTG-AMAX-LOOPBACK card for 10Gbps transceivers debugging; the green boards are
the Xilinx daughter cards to interface the HTG-V6HXT-100G board with PLZT switch.

Figure 3-6: Hardware Platform

3.3.1.1 MAIN Board: HTG-V6HXT-100G

HTG-V6HXT-100G platform is based on the latest FPGA technology from Xilinx, it is
featured with Virtex-6 HX380T device, 32 GTX serial transceivers (maximum speed
6.5Gbps), and 24 GTH lanes (maximum speed 11.3Gbps). It provides a simple user
interface for connecting to higher layer data processing via interface as well as optical
interfaces to connect to emerging 100G and 40G modules. The board block diagram is
shown in Figure 3-7.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 25 of 64

Figure 3-7: HTG-V6HXT-100G board block diagram [3]

Except the Xilinx Virtex6 HX380T FPGA, the other hardware components on the HTG-
V6HXT-100G platform include:

DDRIII SDRAM Memory: The HTG platform is populated with Ten Micron DDR-III
components, each of which is 8Meg x 16 x 8 banks. The clock frequency ranges from
300MHz to 800MHz. It also supports self-refresh mode and automatic self-refresh.

QDRII SDRAM Memory: Quad Data Rate (QDR) SRAM is a type of static RAM that can
transfer up to four words of data in each clock cycle. QDR SRAM transfers data on both
rising and falling edges of the clock signal. The QDRII SRAMs are similar to QDR SRAMs
in their operation but with some performance improvements. The HTG platform is
populated with four Cypress 72-Mbit QDR-II+SRAM 4-Word Burst components. This QDR-
II memory can work at up to 550MHz clock. There are two input clocks for precise DDR
timing and echo clocks for simplifying data capture in high speed systems. It is also
featured with separate independent read and write data ports.

FPGA Mezzanine Card (FMC) Connectors: Developed by a consortium of companies
ranging from FPGA vendors to end users, the FPGA Mezzanine Card is an ANSI standard
that provides a standard mezzanine card form factor, connectors, and modular interface to
an FPGA located on a base board [3]. The HTG platform is populated with Four 400-pin
Samtec connector for implementation of Vita 57 FMC Connectors, which provides access
to LVDS IOS, Serial Multi-Gigabit IOs, JTAG signals, I2C signals, and multiple differential
clocks. Each FMC connects 8 GTX serial transceivers.

FCI AirMax Connector: On side of the HTG-V6HXT-100G board, there are four High-
Performance FCI AirMax connectors for interoperability with existing line cards, each
AirMax connector supports 6 transmit and receive lanes(@11.3Gbps). All 12 GTH lanes
are connected to these AirMax connectors.

Programmable Clock Generators & Synthesizers: On the HTG-V6HXT-100G board, there
are two low jitter Silicon Labs crystal Si570 and two synthesizers Silicon Labs Si5368
which supply 6 pairs of clock for both sides of GTH. Therefore, each GTH Quad has a
dedicated clock source. The Si570 and Si5368 are adjustable through I2C bus.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 26 of 64

3.3.1.2 HTG-SFP-PLUS-MDL Extender Card:

The HTG-SFP-PLUS-MDL extender card is designed for hosting 12 SFP+ optical
transceiver ports. The card is designed matching with HTG-V6HXT-100G platform. It is
supported by re-timers with Electrical Dispersion Compensation Puma AEL2006.
Figure 3-8 shows the block diagram of one AEL2006 and 2 SFP+ on the HTG-SFP-PLUS-
MDL. AEL2006 is a bidirectional dual-channel 10Gbps Ethernet transceiver with EDC; it
contains integrated EDC circuits targeted for 10Gbps SFP+ applications. AEL2006 also
contains a MDIO interface for device control and configuration.

Figure 3-8: HTG-SFP-PLUS-MDL partial block diagram

Totally, there are six AEL2006 that support 12 SFP+ on the extender card.

3.3.1.3 SFP+ Optical Transceiver

The small form-factor pluggable (SFP) is a compact, hot-pluggable transceiver used for
both telecommunication and data communications applications. The SFP+ is an enhanced
version of the SFP. It supports data rates up to 10Gbps.

Figure ‎3-9 shows the SFP+ modules which are used in the project. For the communication
link between the central controller and the node, Avago‟s 10Gbps 1310nm 10GBASE-LR
SFP+ optical transceiver for SMF 10km links is used. The optical interface specifications
are compliant with IEEE 802.3ae, and the Electrical interface specifications are compliant
with SFF 8431 Specifications.

For the node transmission of bursts, two Gigalight‟s 10Gbps 10GBASE-ER/EW SFP+
optical transceivers for SMF 80km reach are used. The transceivers are compliant with
SFF-8413 and IEEE802.3ae.The wavelengths of the 10GBASE-ER SFP+ optical
transceivers are: λ1=1544.53nm and λ2=1546.12nm.

AEL2006 X2 SFP+

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 27 of 64

Figure ‎3-9 SFP+ Optical Transceivers

3.3.2 IP Components

As described in Table 3-2, Xilinx IP cores LogiCORE 10-Gigabit Ethernet MAC and Xilinx
GTH Transceivers are instantiated in the projects. Other Xilinx IP cores, such as Xilinx
Mixed-Mode Clock Manager (MMCM) and Xilinx Chipscope Pro are also used.

3.3.2.1 Xilinx GTH Transceivers

XC6VHX380T-2FF1923 FPGA offers 24 GTH transceivers that run up to 11.4 Gbps. The
total 24 GTH Lanes are split to 6 Quads, each quad shares one dedicated REFCLK, but
each lane can be configured with different line rates that are integer multiples of each
other. Xilinx Core Generator tool supplies a wizard to automatically configure GTH
transceivers. Figure 3-10 shows a block diagram of one GTH Lane, which contains PMA,
PCS and PCS to Fabric interface. A GTH quad contains four GTH lanes, a PLL, and
resources for controller and initializing the Quad.

Figure 3-10: GTH Lane block diagram

PMA PCS PCS To Fabric

Fabric
Data

CLK

RX

TX

GTH Lane

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 28 of 64

In the project, 1 GTH Quads (4 GTH Lanes) are instantiated, 3 GTH lanes for the node‟s
ingress/egress functions, and 1 GTH lane for updating LUT. Each lane works on its own
clock domain. The RX clock data recovery circuit in each GTH transceiver extracts the
recovered clock and data from an incoming data stream. To avoid losing any data, the
design needs to include generating enough K-Characters before data streams. Figure 3-11
shows the test method of measuring the K Characters needs before the burst and between
adjacent Ethernet frames. After the test on board, totally 136x8 Bytes K-Characters need to
be put before a burst, something that limits number of time-slices to 91 Time-sliceinstead of
100 Time-slice within a TSON frame.

Figure 3-11: GTH K-Characters Insertion Test and Result

Furthermore, for the clock-recovery of GTH, when there is no burst/data to transfer, the
node continuously sends K-Characters for transmission as shown in Figure 3-12.
Proposing and implementing this transport scheme, there is no need for high-speed
transient suppression EDFA and burst mode receivers (commercially available SFP+
transceivers are used), something that considerably minimizes implementation complexity
and cost as well as allows for easier bit-rate scalability.

Figure 3-12: ContinuousTime-slice Data Transmission

3.3.2.2 LogiCORE 10-Gigabit Ethernet MAC

The Xilinx IP 10-Gigabit Ethernet MAC core is a single-speed, full-duplex 10 Gbps Ethernet
Media Access Controller. It is designed to meet 10-Gigabit Ethernet specification IEEE
802.3-2008 and supports Normal Frame Transmission, Transmission with In-Band FCS
Pass, Back-to-Back Transfers, Transmission of Custom Preamble and VLAN Tagged
Frames.

The implementation of the Core with User Logic on PHY interface is shown in Figure 3-13.
The Transmit/Receive Engine interface is for transmitting/Receiving data; the
Reconciliation Sublayer interface is for processing XGMII local fault and remote fault
messages; the flow control interface is used to set the flow control frames from the core;

GTH_1 GTH_2
CLK1 CLK2SMA

CONNECTION

STIMULUS_1 STIMULUS_2

8

8

FPGAFPGA

TX

TX

RX

RX

STIMULUS STREAM

136 191 5 191 5
64

K Character K CharacterFrame Data

191 5

K Character
Frame Data

…...

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 29 of 64

the management interface is for configuring the core and accessing to the statistics block; if
the management interface is not chosen when initializing the core, the configuration and
status vectors are exposed by the core; the MDIO interface is for controlling the outside
devices.

Figure 3-13: Implementation of MAC core [4]

In the project, the MAC core is generated with internal FPGA interface to PHY layer. In
total, there are two MAC cores used. One is for ingress function processing input Ethernet
packets and egress function reforming output Ethernet packets. And the other one is for
GMPLS-to-FPGA interface link. The latter one is generated with MDIO interface which is
used for controlling and configuring HTG-SFP-PLUS-MDL extender card.

3.3.2.3 Xilinx Mixed-Mode Clock Manager (MMCM)

The MMCM primitive in Virtex-6 parts is used to generate multiple clocks with defined
phase and frequency relationships to a given input clock. It is featured with configurable
BUFG insertion and supporting MMCM_BASE and MMCM_ADV features.

The user defined MAC_CLK block, which supplies the transmit clock to the 10Gbps
Ethernet MAC core is shown in Figure 3-14.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 30 of 64

Figure 3-14: MAC_CLK Top Level View

The MAC_CLK block contains one MMCM and three BUFG XILINX primitives. The input
clock is derived from GTH quad clock. TX_CLK0 and TX_CLK90 are output clocks.
TX_DCM_LOCKED goes high when the output clocks are stable. Figure 3-14 shows the
top level view of MAC_CLK block.

3.3.2.4 Xilinx Chipscope Pro

Xilinx ChipScope Pro is a powerful on-chip debug tool. When starting the on board
debugging stage, it enables inserting logic analyser and virtual I/O low-profile software
cores directly into the design. Xilinx ChipScope Pro allows viewing any internal signals in
the ChipScope Analyzer tool.

The Signals can be captured in the system at the speed desired. The virtual I/O
canvirtualize the input/output through ChipScope Analyser tool. Therefore, it frees up pins
for the hardware pin usage. All the captured signals can be easily analysed.

3.3.3 User Logic Components

3.3.3.1 I2C Controller

I2C is a multi-master serial single-ended computer bus; it is used to attach low-speed
peripherals to an electronic device. In the project, I2C controller is needed to program I2C
programmable XO/VCXO SI570 and synthesizer SI5368. The I2C bus consists of a

bidirectional serial data line (SDA) and a serial clock input (SCL).

GTH_CLK

RESET

TX_CLK0

TX_DCM_LOCKED

MAC_CLK

TX_CLK90

Figure ‎3-15: I2C command format for both read and write access [5]

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 31 of 64

Figure ‎3-15 shows I2C command format for both read and write access. To configure
SI570 and SI5368, Silicon Lab supplies the tool called Clock Builder to generate the
register configuration tables.

I2C controller can also be used for UART control and communication with the computer.

3.3.3.2 MDIO controller

Management Data Input/Output (MDIO) is a serial bus defined for the Ethernet family of
IEEE 802.3 standards for Media Independent Interface. The MDIO bus provides access to
the configuration and status registers of PHY.

In the project, MDIO controller is used to initialize AEL2006 on SFP+ board. Figure 3-16
shows an MDIO transaction. Each transaction is 64 MDC clock cycles long and contains 32
cycles preamble, 2 cycles start of frame, 2 cycles op code, 5 cycles port address, 5 cycles
device address, 2 cycles turnaround and 16 cycles of address/data.

Figure 3-16: MDIO transaction format

3.3.3.3 Look-Up-Table (LUT) Update Block:

The LUT UPDATE block is employed in GMPLS-to-node communication module shown in
Figure ‎3-17. The LUT Update block contains a LUT block for Time-slice Allocation and
PLZT switching, and an Update block for updating the register files in the AGGREGATION
block.

Figure ‎3-17: GMPLS-to-node Link Layer 2 Function Block Diagram

As shown in Figure ‎3-17, the GMPLS and FPGA communicate through 10Gbps link.
|Central controller calculates the time-slice allocation and PLZT switch information, sends
eight Ethernet packets through SFP+, and then updates the LUT in the FPGA design.
Other components, such as PLZT controller and aggregation modules, work under the
instruction of the LUT Update block. Table 3-3 shows the LUT address map.

LUT Address Map (Bytes)

Address 11 10 9 8 7 6 5 4 3 2 1 0

0 Wavelength 1 Time Slice Allocation(91 bits)

1 Wavelength2 Time Slice Allocation (91 bits)

10G
Transciever

GTH1_3

LUT UPDATE
10-Gigabit
Ethernet

MAC3
RX FIFO

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 32 of 64

2 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 1-12

3 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 13-24

4 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 25-36

5 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 37-48

6 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 49-60

7 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 61-72

8 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 73-85

9 Wavelength 1 PLZT Switch Information, based on Time-slice Allocation 86-91

10 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 1-12

11 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 13-24

12 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 25-36

13 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 37-48

14 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 49-60

15 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 61-72

16 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 73-85

17 Wavelength 2 PLZT Switch Information, based on Time-slice Allocation 86-91

Table 3-3: Design Look-Up-Table Address Map

3.3.3.4 PLZT Switch Control Block

PLZT Switch is described in the previous section. The PLZT switch control block is
designed to control the PLZT switches. Currently, the design supports the control of two
4x4 PLZT switches. As shown in Figure 3-18, the traffic is continuous with K-Characters
between burst. The timing diagram is shown in Figure 3-18. It is important to switch the
PLZT on-time to avoid chopping any data or K-Characters.

Figure 3-18: Burst Transport through PLZT Switch

Figure 3-19: PLZT Switch Control Block Timing Diagram

As illustrated in Figure 3-19, to allow PLZT taking time to switch and to avoid losing K-
Characters, the design leaves 2 clock cycles‟ gap between PLZT switch enable and send

K-Charactors DATA

PLZT_SWITCH_en

DATA_OUT

2 Clock Cycles 12.8ns

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 33 of 64

out the data. Also because PLZT switch takes time to switch, PLZT_SWITCH_en goes
down immediately after finishing sending the data in case of PLZT configuration change.

3.3.3.5 Aggregation block

Aggregation block is a functional block in the node for the ingress function, as shown in
Figure 3-20. Apart from Transceivers and Ethernet MAC, the flow when TSON Metro Node
receives the Ethernet packets in the RX FIFO is as below:

When RX FIFO receives good Ethernet frames, it sends them to the DEMUX.

The DEMUX parses the information (i.e. destination MAC address, source MAC address
and etc.) from the packets and put them into different FIFOs. Currently, the design
implementation is based on different destination MAC address.

According to the Register File (LUT information) of the Time-slice Allocation, the
aggregation block calculates the frames needed to construct the burst, aggregates the
frames, waits for the valid Time-slice, adds necessary K-Characters, and then reads the
Ethernet frames from the FIFOs and finally sends the burst into different wavelength FIFO.

TX_FIFO_LAMDA1 and 2 adjust the clock with PLZT switch controller and send out the
burst.

Figure 3-20: Layer 2 Ingress Function block diagram

One purpose of TX FIFO LAMDA1&2 is for cross-clock-domain data.

3.3.3.6 Segregation Block

Segregation block is a functional block of TSON Metro Node as an Egress function. As
shown in Figure 3-21, the flow from RX FIFO Lamda 1 and Lambda 2, receiving burst until
TX FIFO transmits out the Ethernet frames is as follows:

When receiving the burst in RX FIFO Lamda 1 or Lamda 2, the burst order is recorded.
Whenever receive 2 bursts from different wavelength at the same time, the one from
lamda1 is set as the first one.

The SEGREGATION block reads the burst from RX FIFO according to the recorded burst
order, segregate the burst to Ethernet frames and put them to the TX FIFO.

TX FIFO notifies 10 Gbps Ethernet MAC that the Ethernet packets are ready; the Ethernet
packets will be sent out through 10 GE MAC and GTH Lane.

Figure 3-21: Layer 2 Egress Function block diagram

FIFO1

AGGREGATION

10G
Transciever
GTH1_0 RX

RX FIFO10-Gigabit
Ethernet

MAC1

10G
Transciever
GTH0_0 TX

TX FIFO_LAMDA1

TX FIFO_LAMDA2

10G
Transciever
GTH0_1 TX

.

.

.
FIFO4

.

.

.

.

.

.

Ethernet
Frame

Burst

Burst

10G
Transciever
GTH1_0 TX

TX FIFOSEGREGATION

RX FIFO_LAMDA1

RX FIFO_LAMDA2

10G
Transciever
GTH0_0 RX

10G
Transciever
GTH0_1 RX

10-Gigabit
Ethernet

MAC1

Burst

Burst

Ethernet
Frames

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 34 of 64

In the design, TX FIFO is mainly used for cross-clock-domain signals.

3.4 Incremental Test Results (both simulation and experiment)

3.4.1 Simulation Result about LUT and Register File Update

The simulation result is collected using Mentor Graphics Modelsim. Modelsim is a unified
debug environment for Verilog, VHDL and SystemC. It is a very popular hardware
simulation and debug tool. Apart from the node design described in Subsection 3.3.3, a
testbench, which includes a stimulus block to generate Ethernet frames and a check block
to check the output data, was written in VHDL. All the signals can also be checked through
Modelsim waveform windows. The testbench clock frequency is 156.25MHz, the clock
cycle is 6.4ns.

When central controller updates the Switch and Time-slice Allocation table in the FPGA, as
described in Section 3.3.3.3, the LUT Update block updates the Register File in the
Aggregation block, and then with this information, the Aggregation block would be able to
transmit the burst in the allocated Time-slice.

The simulation result in Figure 3-22 illustrates the clock cycles it takes for updating the LUT
and Register File in an idle occasion when the burst has been received and time-slice is
allocated. The simulation results which start from central controller finishes updating LUT,
includes Aggregation Module starts to update the Register File, Register File updates
finished, until the aggregation module begins to send out the burst. The specifications of
this timing in different periods, (from LUT receiving, until the update of the register file, and
from register file until the transmission) are cited in the following:

Figure 3-22: Simulation Result 1: LUT Update

From “GMPLS update finished” to “Register file updated”: 6 clock cycle delay+ LUT length
clock cycles.

From “Register file update finished” to “Aggregation start to send burst”: 12 clock cycles
delay

Total delay: (18 + LUT LENGTH)*6.4ns.

3.4.2 Implementation Results

All the modules in the project were developed in VHDL which were synthesized,
implemented by Xilinx ISE software. Xilinx ISE generated the bit files, and the bit files were

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 35 of 64

downloaded to the FPGA on board through JTAG. The Xilinx XC6VHX380T-2FF1923
Device utilization information for one TSON Metro Node is summarised in Table ‎3-4.

Device Utilization Summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 27632 478080 5%

Number of Slice LUTs 17,365 239040 7%

Number of fully used LUT-FF pairs 11,369 48764 23%

Number of bonded IOBs 89 720 12%

Number of Block RAM/FIFO 258 768 33%

Number of BUFG/BUFGCTRLs 28 32 87%

Table ‎3-4: Device Utilization Summary

Figure 3-23 shows the hardware connection for measuring the implementation results.
Anritsu MD1230B is an Ethernet/IP network data analyser. It is used as the Ethernet
frames traffic generator and it is also used to analyse the latency and jitter of the received
Ethernet packets. When the FPGA node receives the Ethernet packets, it aggregates them
and sends them out as optical time-sliced data sets (bursts). The bursts travel back to the
FPGA through a fibre patchcord. When egress part receives the optical traffic bursts, it
segregates the burst, extracts the Ethernet frames, and sends out in 10GE links , which
can then be analysed by MD1230B. In the following, several performed tests for measuring
and analysing the implementation results are discussed.

Figure 3-23: Hardware Measurement Connection Diagram

For all the experiment, the test results were taken based on min and max Ethernet packets
lengths: 64 bytes and 1500 bytes.

3.4.2.1 TSON Metro Node Experiment and Measurement: Bit Rate

The first experiment is to test the maximum Ethernet frame bit rate TSON Metro node is
capable to handle without losing any frames. It is supposed and set that all the time-slice
allocation is available.

For Ethernet stream with packet length 64 bytes:

 The maximum Ethernet speed is 7.619Gbps;

 The maximum TSON speed is 7.191Gbps.

 The utilization is 94.38%.

For Ethernet stream with packet length 1500 bytes:

 The maximum Ethernet speed is 9.868Gbps;

 The TSON node maximum theoretical speed/throughput is 9.1 Gbps (91

slots/frame due to overheads)

 The maximum experimentally measured speed for TSON is 8.68Gbps.

 The utilization is 95.38%.

FPGA Ingress Node

Aggregati
on

Buffers

10G
E M

A
C

Tran
scievers

FPGA Egress Node

Buffers

10G
E M

A
C

Tran
scieversSegregati

on

Lamda 1

Lamda 2

TSON NETWORK

Lamda 1

Lamda 2

MD1230B MD1230B

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 36 of 64

3.4.2.2 TSON Metro Node Experiment and Measurement: Time-
slice Overhead

This experiment is to measure time-slice overhead, because some pre-amble K-Characters
are used for clock recovery purpose before sending out each burst and between every
adjacent Ethernet packets. time-slicetime-sliceThe number of the needed time-slices
mainly depends on the Ethernet Frame Length. For example, if 16 K-Characters exist
between every two Ethernet Packets, then for Ethernet frame with 64 bytes, the overhead
is 16/64= 25%, but for Ethernet frame with 1500 bytes, the overhead is 16/1500=1%. The
implementation results are show in Figure 3-23 and Figure 3-24.

Figure 3-24: FPGA Measured Results: Minimum Time-slices Needed without Ethernet
Frame Loss

Figure 3-25: FPGA Measured Results: Time-slice Overhead

The Figure 3-24 shows the minimum number of Time-slice needed without any Ethernet
Packet lost. The Figure 3-25 shows the same result as Figure 3-24 but calculated as Time-
slice overhead. From both of the figures, another factor, which affects the Time-slice
overhead, is the input Ethernet frame bit rate. When the bit rate is lower than 3Gbps, the
Time-slice overhead is high, but when the bit rate is above 3G, the Time-slice stays
comparably stable.

0

20

40

60

80

1G 2G 3G 4G 5G 6G 7G 8G

Ti
m

e
-S

lic
e

s

Ethernet bit rate

Minimum Time-Slices Needed
without Ethernet Frame Loss

Packet:64B

Packet:1500B

Theoretical

0%

10%

20%

30%

40%

50%

1G 2G 3G 4G 5G 6G 7G 8G

Ex
p

e
ri

e
m

e
n

ta
l/

Th
e

o
re

ti
ca

l T
im

e
-

Sl
ic

e

Ethernet bit rate

Time-Slice Overhead

Packet:64B

Packet:1500B

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 37 of 64

3.4.2.3 Experiment and Measurement: Maximum Contiguous
unallocated Time-slice

This aim of this experiment is to measure the maximum contiguous unallocated Time-slice
the TSON node can handle without any Ethernet Packets lost. Because of the limited
capacity of FPGA on-chip RAM, current TSON FPGA design uses 131K RAM as rx_fifo
buffer and 524K RAM as aggregation buffer. It is able to hold maximum 6.5 Time-slice
data. When Ethernet traffic comes in continuously, if the Time-slice is contiguous
unallocated, the buffer in FPGA will overflow and it will cause the Ethernet frame loss.
Therefore, to prevent the Ethernet frame loss, the maximum number of contiguous
unallocated time-slices is measured.

Figure 3-26: FPGA Measured Results: Contiguous „0‟

Figure 3-26 shows the maximum contiguous unallocated Time-slices without any Ethernet
frame losses. When the bit rate is 1Gbps, the maximum number of contiguous unallocated
Time-slices is 38, and then decreases with bit-rate increase. When the bit rate goes up to
the maximum bit rate measured in Section 3.4.2.3, all the Time-slices need to be allocated.

3.4.2.4 Experiment and Measurement: Latency

The purpose of this experiment is to measure the Latency of the node and to analyse the
factors that affect the latency. The latency is measured by MD1230B. The path is from
MD1230B generates the Ethernet packets, the TSON node aggregates the packets and
sends out the burst, the burst loops back to the TSON node for the segregation, to the
TSON node send the Ethernet packets to MD1230B. To analyse the factors that affect the
latency, the latency was measured in different cases with different bit rates, Time-slice
allocation and Ethernet Packet Size.

Figure 3-27 and Figure 3-28 show the measured latency results of Ethernet packet size
64B and 1500B when using one wavelength. In both 64B and 1500B Latency results,
Time-slice Allocation1 makes all the time-slices available; Time-slice Allocation2 spreads
the time-slices equally into the frame; Time-slice Allocation3 gathers the most possible
numbers of time-slices together. However, as described in the previous experiments, the
minimum Time-slice allocation and the maximum contiguous unallocated Time-slice
allocation are different based on different Ethernet packet size and bit rates. So the Time-
slice Allocation2 and Time-slice Allocation3 are set at different patterns.

0

5

10

15

20

25

30

35

40

1G 2G 3G 4G 5G 6G 7G 8G

C
o

n
ti

gu
o

u
s

sl
ic

e
s

n
o

t
in

 u
se

Ethernet bit rate

Maximum Contiguous unallocated Time-slice Without
Ethernet Frame Loss

Packet:64B

Packet:1500B

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 38 of 64

 Here, it presents an example of three Time-slice allocations that are used for the
measurement at 1Gbps for both 64B and 15000B. The allocation is based on the
measurement results 2 and 3.

In case for Packet Size 64B, Ethernet Bit rate 1Gbps, Time-slice Allocations are like below
(91 Time slices, „1‟ indicates valid Time-slice, „0‟ indicates invalid Time Slice):

Time-slice Allocation 1:
11
1111111111111111111

Time-slice Allocation 2:
000001000001000001000001000001000001000001000001000001000001000000010000
0010000001000001000

Time-slice Allocation 3:
000000000000000000000000000000000001111111000000000000000000000000000000
0000000001111111000

Figure 3-27: FPGA Measured Results: Latency (Packet Size 64B)

In Figure 3-27, it shows that, in any case, Time-slice Allocation 1 and 2 have low latency,
when the bit rate is low, allocate as many Time-slice as possible together, the latency of
Time-slice Allocation 3 is more than double of Time-slice Allocation 1/2. However, for the
high bit rate like 8Gbps, the latency of Time-slice Allocation 2 and 3 are similar.

In case for Packet Size 1500B, Ethernet Bit Rate1Gbps, Time-slice Allocations are like
below (91 Time slices, „1‟ indicates valid Time-slice, „0‟ indicates invalid Time Slice):

Time-slice Allocation 1:

11
1111111111111111111

Time-slice Allocation 2:

000000100000010000001000000100000010000001000000100000010000000010000000
1000000100000001000

0
50

100
150
200
250
300
350
400
450
500

La
te

n
cy

(u
s)

Ethernet speed

Packet Size 64B Latency results

Time-Slice Allocation1

Time-Slice Allocation2

Time-Slice Allocation3

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 39 of 64

Time-slice Allocation 3:

000000000000000000000000011110000000000000000000000000111100000000000000
0000000000011110000

Figure 3-28: FPGA Measured Results: Latency (Packet Size 1500B)

The latency shown in Figure 3-28 is similar to the Figure 3-27. For the low bit rate, Time-
slice Allocation 3 is much higher than Time-slice Allocation 1 and 2, but for high bit rate, the
difference is little.

It is also interesting to measure the latency when allocate the Time-slice in different
wavelength. The Figure 3-29 shows the latency results when allocate Time-slice on
different wavelength. For example, for Ethernet packet size of 1500B, at bit rate 1Gbps, the
utilization of Wavelength1 is 25% and wavelength2 is 75%. The detailed Time-slice
allocation is as below, (91 Time-slice, „1‟ indicates valid Time-slice, „0‟ indicates invalid
Time Slice):

0
50

100
150
200
250
300
350
400

La
te

n
cy

(u
s)

Ethernet Speed

Packet Size 1500B Latency results

Time-Slice Allocation1

Time-Slice Allocation2

Time-Slice Allocation3

0
20
40
60
80

100
120
140
160
180
200

1G 2G

La
te

n
cy

(u
s)

Ethernet Bitrate

Packet Size 1500B On Different Wavelength Latency results

Wavelength1 100%,
Wavelength2 0

Wavelength1 25%,
Wavelength2 75%

Wavelength1 50%,
Wavelength2 50%

Wavelength1 75%,
Wavelength2 25%

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 40 of 64

Figure 3-29: FPGA Measured Results: Latency when use Different Wavelengths

Wavelength 1:
000000100000000000001000000100000010000000000000100000010000000010000000
100000000000000100

Wavelength 2:
000000000000010000000000000000000000000001000000000000000000000000000000
000000010000000000

The measured latency result in Figure 3-29 shows the latency results are similar when
allocate time-slice in different wavelengths. It indicates that there is little impact on
switching between different wavelengths.

3.4.2.5 Experiment and Measurement: Jitter

The purpose of this experiment is to measure the Jitter of the node and to analyse the
factors that affect the Jitter. The Jitter is measured by MD1230B. The path is the same as
last experiment when measuring latency.

The Figure 3-30, Figure 3-31, Figure 3-32 show, with the input Ethernet Packet Size 64, for
different Time-slice Allocation, the percentage of packets that are not received in 1us. The
time-slice Allocation1, 2, 3 are the same as last experiment mentioned in Section 3.4.2.4.

Figure 3-30: FPGA Measured Results: Jitter for Frame Size 64B, Time-slice
Allocation1

In Figure 3-30, for Time-slice Allocation1, when the bit rate is low, the packets that not
received in 1us have high latency. As the figure shows, with the increase ni the bit rates,
the jitter of arrived packets reduces. It should be noted that this chart does not show jitters
below 1us.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

1G 2G 3G 4G 5G 6G 7G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 1

u
s

Ethernet Bit rate

Packet Size 64B Time-Slice
Allocation1 Jitter

11us-12us

22us-23us

30us-100us

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 41 of 64

Figure 3-31: FPGA Measured Results: Jitter for Frame Size 64B, Time-slice
Allocation2

As shown in Figure 3-31, similar to Figure 3-30, the jitter of Time-slice Allocation2 is also
impacted by the bit rate.

Figure 3-32: FPGA Measured Results: Jitter for Frame Size 64B, Time-slice
Allocation3

Figure 3-32 shows the Jitter result of Time-slice Allocation3. Compared with Figure 3-30
and Figure 3-31, the frames t with less than 1 μs jitter.

Calculating the jitter results of Figure 3-30, Figure 3-31, Figure 3-32, 99.35% of packets are
received within 1μs jitter.

The experiment results of Figure 3-33, Figure 3-34, Figure 3-35, are measured with the
input Ethernet Frame Size 1500B, for different Time-slice Allocation. The results are based
on the percentage of frames that are not received within 2μs jitter. The time-slice
Allocation1, 2, 3 are the same as last experiment of 1500B mentioned in Section 3.4.2.4.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

1G 2G 3G 4G 5G 6G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 1

u
s

Ethernet Bit rate

Packet Size 64B Time-Slice
Allocation2 Jitter

11us-12us

22us-23us

30us-100us

0.00%
0.01%
0.02%
0.03%
0.04%
0.05%
0.06%
0.07%
0.08%
0.09%
0.10%

1G 2G 3G 4G 5G 6G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 1

u
s

Ethernet Bit rate

Packet Size 64B Time-Slice
Allocation3 Jitter

11us-12us

22us-23us

30us-100us

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 42 of 64

Figure 3-33: FPGA Measured Results: Jitter for Frame Size 1500B, Time-slice
Allocation1

Figure 3-34: FPGA Measured Results: Jitter for Ethernet Frame Size 1500B, Time-
slice Allocation2

As shown in Figure 3-33 and Figure 3-34, the jitter results are similar for Time-slice
Allocation 1 and 2. They also have similar jitter results of the frames not received within 2
μs,

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%

1G 2G 3G 4G 5G 6G 7G 8G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 2

u
s

Ethernet Bit rate

Packet Size 1500B Time-Slice
Allocation1 Jitter

2us-3us

13us-14us

24us-25us

above 30us

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%

1G 2G 3G 4G 5G 6G 7G 8G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 2

u
s

Ethernet Bit rate

Packet Size 1500B Time-Slice
Allocation2 Jitter

2us-3us

13us-14us

24us-25us

above 30us

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 43 of 64

Figure 3-35: FPGA Measured Results: Jitter for Packet Size 1500B, Time-slice
Allocation3

Figure 3-35 shows the Jitter result of Time-slice Allocation3. Compared with Figure 3-33
and Figure 3-34, the packets that not received in 1 μs have the highest jitter.

For all the cases measured in Figure 3-33, Figure 3-34 and Figure 3-35, 87.5% of the
packets are received with less than 2 μs jitter.

Layer 1 of TSON Metro Node with time and frequency switching

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%

1G 2G 3G 4G 5G 6G 7G 8G

P
e

rc
e

n
ta

ge
 a

b
o

ve
 2

u
s

Ethernet Bit rate

Packet Size 1500B Time-Slice
Allocation3 Jitter

2us-3us

13us-14us

24us-25us

above 30us

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 44 of 64

4 TSON Layer 1 data transfer

The ingress traffic to a TSON edge node is switched through intermediate TSON bypass
nodes and transported to egress TSON edge node of the TSON metro mesh cloud.

As for this scenario, the traffic at the ingress edge node, transported on two wavelengths,
is first coupled together and then sent over the fibre link. The traffic is then switched

Figure ‎4-1: The TSON metro node data plane with the corresponding snap shots on
the ingress and egress ports

using PLZT fast switches, as the main enabling elements of time-slice switching in the
transparent TSON data plane. The coupled signals need to be amplified to compensate for
the insertion loss introduced by the switches. After that, the wavelengths on the signal are
decoupled, and then passed to the dedicated fast switch (wavelength modular
architecture). No matter being a TSON edge or a TSON bypass node, the traffic will be
switched through PLZT fast switches to be directed on the requested fibre link. The PLZT
fast switches can change state in 10 ns, which is a speed/overhead requirement for the
high speed time-slice switching. They need to be controlled in highly precise manner for
the high speed operation of the network. The control of the switches takes place with the
functionality deployed inside the FPGA, through a parallel interface.

The switched traffic, on both wavelengths, will be multiplexed, amplified, and sent on the
fibre links to be transported to the next node.

C
O
U
P
L
E
R

PLZT λ2
A
W
G

EDFA

EDFA

EDFA

EDFA

C
O
U
P
L
E
R

A
W
G

PLZT λ1Add port

Add port

ADM

ADM

Drop port

Drop port

TSON internal node

C
O
U
P
L
E
R

PLZT λ2
A
W
G

EDFA

EDFA

EDFA

EDFA

C
O
U
P
L
E
R

A
W
G

PLZT λ1

TSON internal
node

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 45 of 64

The lower part of Figure ‎4-1 illustrates three snapshots taken from the input and output
ports of the TSON L1 OXC. The TSON traffic on the input is being directed on two different
paths as the optical spectrum analyzer displays.

4.1 TSON with Gridless Layer 1 data switching

The physical layer structure of the TSON metro node is changed to be dynamic and
responsive to requests both for TSON mode, and Gridless mode, by using a 3D MEMS
switch as an optical backplane for optical components. So, based on the requests, the
desired OXC whether for TSON or Gridless is built using the plug-in components on the
backplane switch with the respective commands sent from the controller to the backplane
manager. This dynamic data plane OXC configuration supports time-sliced data transfer
alongside of the Gridless data transport.

Figure ‎4-2: Data plane for the metro-core, TSON extended with Gridless node, with
the corresponding snap shots on the ingress and egress ports.

This dynamic data plane is made using a 3D MEMS switch, hosting the required optical
components. All the components are connected to the backplane ports, and they can be
put in to circuit by configuring the 3D MEMS. By this approach data plane can have those
components involved as needed.

Using this backplane, for TSON operation, the same data plane nodes as shown in
Figure ‎4-1 and described earlier will be built up.

C
O
U
P
L
E
R

PLZT λ2

Wave
Shaper

A
W
G

EDFA

EDFA

EDFA

EDFA

C
O
U
P
L
E
R

PLZT λ1

TSON/Core edge node

Add port

Grid-less
enabled

transmitter

Grid-less
enabled receiver

Drop port

`

C
O
U
P
L
E
R

PLZT λ2

Wav
e

Shap
er

A
W
G

EDFA

EDFA

EDFA

EDFA

C
O
U
P
L
E
R

PLZT λ1

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 46 of 64

However, in order to support Gridless switching besides the TSON, a spectrum selective
switch (SSS) is incorporated in the node. The generated Gridless traffic, won't pass
through TSON data plane, but instead, it will directly be sent to the SSS (waveshaper),
and then directed on to the next hop on the core network, as shown in Figure ‎4-2.

The traffic might still need amplification to compensate for the losses of the wave shaper or
the transmission links, so amplifiers can be added to the Gridless data plane.

The lower part of Figure ‎4-2 illustrates the spectrum of the input and output traffic. The
results show, in the input, three signals (two 10 Gbps TSON and one Gridless), where in
the outputs, TSON signals can be seen on both ends since the signals where time-shared
to both destinations, while the super channel at 555 Gbps with spectrum requirement of
650 GHz can be observed on upper path only.

Figure ‎4-3: Extended results from the TSON and Gridless scenario, in which, the
PLZT switches direct the traffic from the source node to either of the receiving ends.

Besides, more results demonstrate the PLZTs that switch the TSON traffic only to one of
the destination (wavelength switching) output ports as per Figure ‎4-3. In the Figure ‎4-4 it
can be seen how the elements are connected to the back plane. Shown in the figure, PLZT
switches with some accompanying optical components are assumed to be the elements for
building up TSON data plane, and the waveshaper for supporting Gridless data switching.
The Gridless data (indicated by red line in the figure), just passes through the ports of
waveshaper unlike the TSON traffic which is being MUXed and DeMUXed.

C
O
U
P
L
E
R

PLZT λ2

Wave
Shaper

A
W
G

 EDFA
EDFAPLZT λ1

OPTICAL BACK PLANE

EDFA

Coupled traffic
of TSON and

Grid-less

C
O
U
P
L
E
R

EDFA

Figure ‎4-4: The optical back plane used for supporting intra-metro and metro-core
data plane

C
O
U
P
L
E
R

PLZT λ2

Wav
e

Shap
er

A
W
G

EDFA

EDFA

EDFA

EDFA

C
O
U
P
L
E
R

PLZT λ1

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 47 of 64

Figure ‎4-4 clearly shows the PLZT switches as the TSON enabling devices and the
waveshaper for Gridless operation are selected from the back plane.

4.2 Hardware Components

These hardware components are used in the Layer 1 node implementation of the TSON
node.

4.2.1 PLZT fast switches4

The PLZT 4x4 switches are nano-second speed optical switches designed for advanced
optical communications and interconnections systems. The series feature switching time
below 10 nanoseconds. [26]

The switch has been tested for a sample combination of 1-1, 2-2, 3-3, and 4-4, and the
results are displayed in the table below:

Input - output
ports 1 - 1 2 - 2 3 - 3 4 - 4

Insertion
Loss

10.6 36.3 48.7 65.5

28.4 11.7 52.4 60.6

59.6 46.9 11.3 40.1

57.8 57.5 34.3 11.2

Cross Talk 0 24.6 37.4 54.3

17.8 0 41.1 49.4

49 35.2 0 28.9

47.2 45.8 23 0

Table ‎4-1: PLZT switch characteristics

4 figure from http://epiphotonics.com/products.html

Figure ‎4-5: PLZT switches

http://epiphotonics.com/products.html

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 48 of 64

4.2.2 Calient's DiamondWave
FiberConnect backplane

The Calient 3D MEMS connect single-mode optical
fibres of any bandwidth, protocol or wavelength. It
connects any input fibre to any available output fibre all
optically through a web browser based GUI interface.
port changes commands will drive a driver circuitry to
establish and change connections [27].
The input fibres are connected to the 3D-MEMS optical
switch, which serves as the traditional patch cord
connecting to the output fibres.
The Calient switch features 96x96 patch cord on a
320x320 port chassis with extendible modularity.

4.2.3 Waveshaper5

A Finisar waveshaper 4000s is being used in the back
plane to allow spectrum switching enabling transport of
Gridless traffic. According to user manuals5, the Wave
Shaper is a fully programmable, flat-top optical filter or DWDM channel selector. The filter
or channel bandwidth is programmable in 1 GHz increments from 10 GHz up to the whole
C-band, with the centre frequency programmable in 1 GHz increments over the whole
band. Band-stop and optical comb filters are also supported, as is attenuation control on a
per-channel basis up to 35dB.

This waveshaper supports arbitrary user-generated
channel and filter shapes In addition to the classical 'flat-
top' channel shape. The required filter profile (both
amplitude and phase) can be generated by the user and
then loaded into the WaveShaper software which
translates the user specification into the required filter
shape. Any arbitrary filter can then be used as the
switching transfer function for the Wavelength Switching
capability of the 4000S [28].

5 Figure from http://www.finisarcables.com/optical_instrumentation

Figure ‎4-6: Calient Switch [27]

Figure ‎4-7: Wave shaper as

spectrum selective switch

http://www.finisarcables.com/optical_instrumentation

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 49 of 64

5 SHINE Enabled TSON Metro Node

Following D2.3, a flexible and programmable TSON metro node is highly desired. Given
the implemented TSON metro node presented in previous sections ‎3 and ‎0, this section
will report the SHINE solution which fulfils the desired features as an additional module to
the TSON metro node. This solution includes hardware modules and software tool.

5.1 SHINE Solution

SHINE is an intelligent solution that enables on-demand re-programmability of components
(e.g. FIFOs), sub-systems (e.g. aggregation, MAC, PHY), interfaces (e.g. 10G Ethernet,
10G TSON), nodes (e.g. Ethernet switch, TSON switch) and complete network to deliver
diverse set of functions over the same hardware infrastructure. As such it enables
adaptation, construction of network capability, functionality and services on demand. It
allows dynamic manipulation and modification of the network elements and their
functionalities in both software and hardware dimensions, also fast provisioning of new
technologies and new services in the process of approaching future network. It allows for
innovative optical layer electronic and optical components dynamic composition either
based on passively upper layers service requests or actively self-monitoring and self-
optimisation according to network status.

Figure ‎5-1: SHINE Solution

According to the SHINE solution definition, it consists of the following five major elements
as shown in Figure ‎5-1:

 SHINE Adaptive Netwok Element (SANE)

 SHINE Hardware Generator (SHG)

 SHINE Content Network (SCN)

 SHINE Instruction Set (SIS)

 SHINE Control and Management Interface (SCMI)

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 50 of 64

5.2 SHINE Enabled TSON Metro Node Implementation

5.2.1 SANE

SANE plays a significant role in the SHINE solution. It consists of the SHINE adaptation
agent (SAA), SHINE adaptive hardware (SAH) and the SIS. This combination provides a
flexible portal to the underneath adaptive and programmable hardware for upper layer
services and users. For the sake of full intelligence, SAA is 2D control logic. To elaborate,
the SAA can not only support passive control over the SAH based on the demands from
upper layer services and users to support node on demand and network on demand
respectively, but also support active self-adaptation of the node itself based on the
changing network environment (e.g. traffic profile, load, network failure, and many others).

Figure ‎5-2: Anatomy of SANE

Apart from presenting SANE from the logical point of view in Figure ‎5-1, the anatomy of
SANE is depicted in Figure ‎5-2. The SAH can contain two types of elements, i.e.
embedded processor and/or reconfigurable logic (FPGA), to deliver the comprehensive
control and user logic.

5.2.1.1 SHINE Enabled TSON Metro Node Function Blocks

Figure 5-3 shows the SHINE enabled TSON metro node architecture. The node is fully
adaptable by deploying the intelligent SAA for each of the user function blocks, which need
to deploy service/application requirements.

Based on the design requirement in Subsection 3.1 and design strategy in Subsection 3.2,
considering the features and limitations of FPGA, this subsection describes the architecture
for a single TSON Metro Node.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 51 of 64

Figure 5-3: TSON Metro Node with SHINE Support Function Blocks

As shown in Figure 5-3, blocks with blue colour are supplied by Xilinx as IP cores, which
include 10Gbps Transmitter/Receiver and 10Gbps Ethernet MAC. The other modules were
implemented (coloured red) in VHDL. Compare to Figure 3-4, the major difference is that
on each user function modules (coloured red), an adaptation agent (SAA) module is
deployed to control, configure, program, and monitor the module underneath.

So that the modules and module requirements shown in Table 3-2 is updated to new
Table 5-1. The design details will be described in the Subsection 5.2.1.2.

Module Name Functions

I2C controller Set Si5368/Si570 on board to generate the clock.

MDIO controller Initialize HTG-SFP+ extender card on-board-chip AEL2006.

PLZT controller Control PLZT switches.

10Gbps
Transmitter/Receiver

Xilinx IP core GTH for 10Gbps Transmission.

10Gb Ethernet MAC Xilinx IP core 10Gb Ethernet MAC.

Aggregation Aggregate Ethernet Packets to burst and send the burst out based
on the Time-slice Allocation LUT.

Segregation Segregate burst to Ethernet Packets and transmit out when
received.

LUT Update Receive and parse the information from PLZT, Update the LUT.

SHINE Adaptation
Agent (SAA)

Configure, program, and monitor the module underneath, i.e. the
modules listed above

Table 5-1: FPGA design functional modules and requirements with SAA

10Gb Receiver

I2C
Controller

10Gb Ethernet
MAC AGGREGATION

MDIO
Controller

SEGREGATION

10Gb Transmitter
10Gb Transmitter

10Gb Transmitter
10Gb Ethernet

MAC
10Gb Receiver
10Gb Receiver

10Gb Receiver
10Gb Ethernet

MAC
LUT Update

FPGA

PLZT
Controller

Ethernet
Frame

Ethernet
Frame

Ethernet
FrameBurst

Burst

Adaptation Agent

Adaptation Agent

Adaptation Agent

Adaptation AgentAdaptation Agent
Adaptation Agent

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 52 of 64

Furthermore, considering the work clock domains, all 10Gbps receivers and transmitters
work at 156.25MHz, but in different clock domains. The I2C controller and MDIO controller
run in the clock domain of 50MHz. For the design of the TSON metro node, totally, there
are 8 clock domains. Therefore, an important concern of the design is handling the cross-
clock domain signals.

Following Figure 5-3 of the Node architecture, a diagram of detailed functional blocks of
TSON Metro Node is shown in Figure 5-4.

Compared with Figure 5-3, Figure 5-4 gives more details of how the node is designed. The
purple blocks construct the ingress function of the node, the pink blocks can achieve the
egress function, and the green blocks complete a link from GMPLS to the node. The data
flow is following the arrow directions.

5.2.1.2 Node Implementation Details

SHINE is a flexible method of changing hardware in real-time with the aid of software. In
the SHINE software, the FPGA sub-modules, such as aggregation, segregation, switch and
etc., can be dragged and connected by the users to generate the whole system. A
demonstration of SHINE theory is implemented by controlling the FPGA to switch between
TSON metro node and Ethernet node that forwards Ethernet frames to the appropriate
output port. Figure 5-4 shows the SHINE block diagram.

Figure 5-4: Layer 2 SHINE Block Diagram

In the Figure 5-4, the purple blocks are the original ingress function blocks, and the pink
ones are the original egress function blocks. The light green blocks are added to implement
a bypass function to transmit all the Ethernet packets directly. One more 10Gbps Ethernet
MAC is employed for receiving and transmitting the Ethernet packets.

The idea is to allow a hitless switch over from TSON mode to Ethernet mode and vice
versa. To implement this, A SHINE SWITCH block was designed to control the data and
signal transferring. When it receives a switch command, it should be able to tell all input
ports to temporarily pause after sending current packet/burst; when the entire input ports
pause, based on the command, the SHINE SWITCH block reconnects the inputs to the
output, then notify all the input ports to retransmit data.

For the SHINE Switch Block used in Figure 5-4, the number of the ports can be configured
by the user. An example of 4x4 top level view of SHINE Switch Block is shown Figure 5-5.
When the users want to change the FPGA operational mode, they can easily change the

FIFO1

AGGREGATION

10G
Transciever
GTH1_0 RX

RX FIFO10-Gigabit
Ethernet

MAC1

10G
Transciever
GTH0_0 TXTX FIFO_LAMDA1

TX FIFO_LAMDA2

10G
Transciever
GTH0_1 TX

.

.

.
FIFO4

.

.

.

.

.

.

SHINE
SWITCH

TX_FIFO

10-Gigabit
Ethernet

MAC1

10G
Transciever
GTH1_0 TX

TX FIFO

SEGREGATION

RX FIFO_LAMDA1

RX FIFO_LAMDA2

10G
Transciever
GTH0_0 RX

10G
Transciever
GTH0_1 RX

10-Gigabit
Ethernet

MAC1

RX FIFO
10-Gigabit
Ethernet

MAC1
SHINE

SWITCH

Burst

Burst

Burst

Burst

Ethernet
Frame

Ethernet
Frame

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 53 of 64

switch LUT in the FPGA by UART/Serial Port. The Switch LUT illustrated in Figure 5-5 is
an example of input port A, B, C, and D connecting directly to output port 1,2,3,4.

Figure 5-5: Switch Block and Switch LUT

5.2.2 SIS

Figure ‎5-6: Anatomy of SIS

SIS is used for users (e.g. network operators) to define and control their own SANE to
accommodate specific service requirement and traffic demands for networking. The
anatomy of SIS is depicted in Figure ‎5-6. It shows that SIS has two granularities of library,
the fine granular instruction set and coarse one. The former includes the following modules
to routing, switching, forwarding, buffer, FEC, and is extendable to others. The latter
consists of the following sub-systems/systems such as fast switch, slow switch, Ethernet,
SHINE controller, SHINE node, etc. The fine granular instruction set is mainly used for
node level, but the coarse one is used for network level. Both libraries can be local or
remotely stored in SCN repositories. The screenshot of SHINE IDE instruction set is shown
in Figure ‎5-7.

A
SHINE SWITCH

B

C

D

1

2

3

4

SWITCH LUT

 1 2 3 4

A X

B X

C X

D X

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 54 of 64

Figure ‎5-7: SHINE IDE Instruction Set Screenshot (Coarse and Fine Granular)

5.2.3 SHG

The SHG is another very important element of SHINE solution. It is a set of software tools
developed to either automatically or manually generate SANE. Consequently it can be
invoked by external control plane or utilised by network architect or NE designer.

Figure ‎5-8: Anatomy of SHG

Apart from presenting SHG from the logical point of view in Figure ‎5-1, anatomy of SHG is
depicted in Figure ‎5-8. The SHG contains SIS and SHINE IDE to design or generate
node/network.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 55 of 64

5.2.3.1 Node generation

Figure ‎5-9: SHINE IDE Node Generation Mode

The fourth type (node generation) is different from the above three categories of which the
SHINE function happens inside the SANE, instead, the network generation actually is
realised in software, in this case the SHINE IDE as show in Figure ‎5-9.

It supports manually reconstruction of SANE using the unified fine granular SIS APIs if the
requested service is currently not supported yet. For example, a network architect or
network element designer can use the APIs to build SHINE enabled TSON from scratch
without detailed hardware knowledge. As more software/hardware APIs pour into the
instruction set, more area and applications can be supported without redesign the wheels
which is happening in the industry. This is the benefit of unified SIS.

5.2.3.2 Network generation

Figure ‎5-10: SHINE IDE Network Generation Mode

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 56 of 64

The fifth type (network generation) is also different from the first three categories of which
the SHINE function happens inside the SANE, instead, the network generation actually is
realised in software, in this case the SHINE IDE as show in Figure ‎5-10.

It supports manually reconstruction of network using the unified coarse granular SIS APIs if
the requested service is currently not supported yet. The coarse granular SIS APIs can be
generated in node generation mode, and registered in the SHINE solution. This leverages
the possibility of completely re-purpose the existing SANE.

5.2.3.3 SIS Registration

In the SHINE IDE, the SIS is registered in XML format, an example of the fine and coarse
granular instruction sets are shown in Figure ‎5-11 and Figure ‎5-12 respectively.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 57 of 64

<?xml version="1.0" encoding="UTF-8"?>

<DeviceRepository version="1.0">

 <category term="Electronic Component">

 <icon_normal>:/icons/Electronic.normal.svg</icon_normal>

 <devicetype>-1</devicetype>

 <device>

 <devicetype>0</devicetype>

 <devicename>10G_Ethernet_MAC</devicename>

 <icon_normal>:/icons/10G_Ethernet_MAC.normal.svg</icon_normal

>

 <icon_selected>:/icons/10G_Ethernet_MAC.selected.svg</icon_se

lected>

 <version>0.1</version>

 <license>free</license>

 </device>

 <device>

 <devicetype>1</devicetype>

 <devicename>TSON_MAC</devicename>

 <icon_normal>:/icons/TSON_MAC.normal.svg</icon_normal>

 <icon_selected>:/icons/TSON_MAC.selected.svg</icon_selected>

 <version>0.2</version>

 <license>commercial</license>

 </device>

 <device>

 <devicetype>2</devicetype>

 <devicename>TX_GTH</devicename>

 <icon_normal>:/icons/TX_GTH.normal.svg</icon_normal>

 <icon_selected>:/icons/TX_GTH.selected.svg</icon_selected>

 <version>0.1</version>

 <license>commercial</license>

 </device>

 <device>

 <devicetype>3</devicetype>

 <devicename>RX_GTH</devicename>

 <icon_normal>:/icons/RX_GTH.normal.svg</icon_normal>

 <icon_selected>:/icons/RX_GTH.selected.svg</icon_selected>

 <version>0.1</version>

 <license>free</license>

 </device>

 <device>

 <devicetype>4</devicetype>

 <devicename>Programmable_Backbone</devicename>

 <icon_normal>:/icons/Programmable_Backbone.normal.svg</icon_n

ormal>

 <icon_selected>:/icons/Programmable_Backbone.selected.svg</ic

on_selected>

 <version>0.1</version>

 <license>free</license>

 </device>

 </category>

 <category term="Optical Component">

 <icon_normal>:/icons/Optical.normal.svg</icon_normal>

 <devicetype>-2</devicetype>

 </category>

</DeviceRepository>

Figure ‎5-11: Example of Fine Granular Instruction Set XML

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 58 of 64

<?xml version="1.0" encoding="UTF-8"?>

<DeviceRepository version="1.0">

 <category term="Switch">

 <icon_normal>:/icons/Switch.normal.svg</icon_normal>

 <devicetype>-1</devicetype>

 <device>

 <devicetype>3</devicetype>

 <devicename>Elastic_Switch</devicename>

 <icon_normal>:/icons/Elastic_Switch.normal.svg</icon_normal>

 <icon_selected>:/icons/Elastic_Switch.selected.svg</icon_selected>

 <version>0.1</version>

 <license>free</license>

 </device>

 </category>

 <category term="Router">

 <icon_normal>:/icons/Router.normal.svg</icon_normal>

 <devicetype>-2</devicetype>

 <device>

 <devicetype>4</devicetype>

 <devicename>Open_Flow_Router</devicename>

 <icon_normal>:/icons/Open_Flow_Router.normal.svg</icon_normal>

 <icon_selected>:/icons/Open_Flow_Router.selected.svg</icon_selected>

 <version>0.2</version>

 <license>free</license>

 </device>

 </category>

 <category term="SHINE Node">

 <icon_normal>:/icons/SHINE.normal.svg</icon_normal>

 <devicetype>-3</devicetype>

 <device>

 <devicetype>5</devicetype>

 <devicename>SHINE_Controller</devicename>

 <icon_normal>:/icons/SHINE_Controller.normal.svg</icon_normal>

 <icon_selected>:/icons/SHINE_Controller.selected.svg</icon_selected>

 <version>0.2</version>

 <license>free</license>

 </device>

 <device>

 <devicetype>6</devicetype>

 <devicename>SHINE_Node</devicename>

 <icon_normal>:/icons/SHINE_Node.normal.svg</icon_normal>

 <icon_selected>:/icons/SHINE_Node.selected.svg</icon_selected>

 <version>0.2</version>

 <license>free</license>

 </device>

 </category>

</DeviceRepository>

Figure ‎5-12: Example of Coarse Granular Instruction Set XML

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 59 of 64

5.2.4 SCN

The SCN is a network responsible for storage and dissemination of SHINE software and
hardware definition images for electronic and optical parts. The definition can be as small
as a module, or as big as a subsystem/system. These definitions are stored in either
networked repositories, i.e. databases, or even in the SANE locally. The dissemination of
the definitions is provided by the SDN, which can be either in-band network or out-of-band
network, say, traditional IP network. The SDN is not only responsible for repositories
synchronisation, but also for the definition delivery from repositories to local SANE.

Figure ‎5-13: Anatomy of SCN

Apart from presenting SCN from the logical point of view in Figure ‎5-1, the anatomy of
SANE is depicted in Figure ‎5-13. The SHINE repository is categorised into the following
two types:

 predefined repository (PDR)

 non-predefined repository (NPDR)

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 60 of 64

5.2.5 SCMI

Figure ‎5-14: Anatomy of SCMI

The SCMI is an interface between the SHINE solution and the external control plane, such
as GMPLS protocols. Through this interface, application/services demands can be
conveyed to SHINE solution, particularly, the SCN, SAA and SHG. On the other direction,
the current network status and the acknowledgement of the previous demands can be fed
back to the external control plane.

When the SAA receives the demand, it will coordinate with the SANE to realise the system
adaptation, e.g. reconfiguration, reprogram, switchover, and many others. This process is
automatic and passive for SANE.

When the SHG receives the demand, it can analyse then automatically compose and
synthesise SANE. The generated SANE will then be applied to the network. If the
requested software/hardware definition exists, then it will be directly applied to the network
without regeneration. Apart from using the SHG as an automatic operation tool, it can also
be used as a design tool for the users to build their own SANE, and applied the network
without the interaction with external control plane.

Via the SCMI, new hardware definition images can be pushed into SCN by external control
plane, and get disseminated across SCN.

5.3 Incremental Test Results (both simulation and experiment)

5.3.1 Simulation Result

The simulation result is collected in Mentor Graphics Modelsim. Modelsim is a unified
debug environment for Verilog, VHDL and SystemC. It is a very popular hardware
simulation and debug tool. Apart from the node design described in Subsection 3.3.3, a
testbench, which includes a stimulus block to generate Ethernet frames and a check block
to check the output data, was written in VHDL. All the signals can also be checked through
Modelsim waveform windows. The testbench clock frequency is 156.25MHz, the clock
cycle is 6.4ns.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 61 of 64

5.3.2 Simulation Results about SHINE Switch

For SHINE implementation described in Section 5.2.1.2, when SHINE switch command is
set, the SHINE Switch notifies the input data to stop after sending out current packet/burst,
and then the SHINE Switch will switch the input to a new output.

Figure 5-15 shows the SHINE simulation result of switching between TSON Metro Node
and Ethernet Node.

Figure 5-15: Simulation Result 2: SHINE Switch

When switching command is set to switch from TSON output to Ethernet packets output,
the aggregation block sends out the burst already in the FIFO and notifies the switch it has
finished, then the switch change the mode to Ethernet frames output.

When switching command is set to switch from Ethernet frames output to TSON output, the
Ethernet module finishes sending current Ethernet frames, sends the flag to notify the
SHINE switch to switch the output as TSON.

The clock cycles it takes for both situations depend on the data of Burst/Packet already in
the FIFO considering that the goal is to have hitless switch over.

5.3.3 Implementation Results

All the modules in the project were written in VHDL which were synthesized, implemented
by Xilinx ISE software. Xilinx ISE generated the bit files, and the bit files were downloaded
to the FPGA on board through JTAG. The Xilinx XC6VHX380T-2FF1923 Device utilization
summaries of one TSON Metro Node without and with SHINE are listed in Table ‎5-2.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 62 of 64

Device Utilization Summary

Slice Logic
Utilization

Available
Used Utilization

with SHINE
w/o
SHINE

with
SHINE

w/o
SHINE

Number of Slice
Registers

478080 37105 27632 7% 5%

Number of Slice
LUTs

239040 24392 17,365 10% 7%

Number of fully
used LUT-FF pairs

48764 12733 11,369 26% 23%

Number of
bonded IOBs

720 89 89 12% 12%

Number of Block
RAM/FIFO

768 318 258 41% 33%

Number of
BUFG/BUFGCTRLs

32 31 28 96% 87%

Table ‎5-2: Device Utilization Summary

Figure 5-16 shows the hardware connection for measuring the implementation results.
Anritsu MD1230B is an Ethernet/IP network data analyser. It is used as the Ethernet
frames traffic generator and it is also used to analyse the latency and jitter of the received
Ethernet packets. When the FPGA node receives the Ethernet packets, it aggregates them
and sends them out as optical bursts. The bursts travel back to FPGA through a loop back
fibre. When egress part receives the optical traffic bursts, it segregates the burst and sends
out the Ethernet packets, which can be analysed by MD1230B. This section set several
tests measuring and analysing the implementation results.

Figure 5-16: Hardware Measurement Connection Diagram

For all the experiment finished, the test results were taken based on 2 Ethernet packets
length: 64 bytes and 1500 bytes.

5.3.3.1 Experiment and Measurement: Bit Rate

As described in Sub subsection 5.2.1.2, when switch from TSON Node to Ethernet Node,
the output transmits Ethernet packets directly without aggregation and segregation. This
experiment is to test the maximum Ethernet Packet bit rate the Ethernet Node is capable to
handle without losing any packets.

For Ethernet stream with packet length 64 bytes:

 The maximum Ethernet speed is 7.619Gbps;

 The maximum experimentally measured speed for Ethernet Node is 7.5294Gbps.

 The utilization is 98.82%.

For Ethernet stream with packet length 1500 bytes:

FPGA Ingress Node

Aggregati
on

Buffers

10G
E M

A
C

Tran
scievers

FPGA Egress Node

Buffers

10G
E M

A
C

Tran
scieversSegregati

on

Lamda 1

Lamda 2

TSON NETWORK

Lamda 1

Lamda 2

MD1230B MD1230B

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 63 of 64

 The maximum Ethernet speed is 9.868Gb;

 The maximum experimentally measured speed for Ethernet Node is 9.772Gbps.

 The utilization is 99.27%.

5.3.3.2 Experiment and Measurement: Latency

The aim of this experiment is to measure the latency results of Ethernet Node with input
stream of Ethernet Packet size 64B and 1500B, and then compared them with TSON
Node. Figure 5-17 shows the latency results of Ethernet Node, and TSON Node Time-slice
Allocation 2 latency results which were described in subsection ‎3.4.2.4. As shown in
Figure 5-17, for all the Ethernet speed, the latency results for one packet size stay stable.
The latency of Packet Size 1500B is much higher than Packet Size of 64B, which is
because the FIFO that was implemented in the project waits for one complete packet size,
makes sure the Ethernet packet is good, and then sends it out.

Figure 5-17: FPGA Measured Results: Ethernet Node Latency Results

Compare Ethernet Node latency and TSON Node latency, TSON has much higher latency
due to aggregation and buffering for the time-slice allocation. Something required to deliver
high network utilization. However, certain users/applications require ultra-low latency, and
as such Ethernet Node is a better choice. But TSON has efficient bandwidth and spectrum
management and utilization as shown in Sub section ‎3.4. Consequently the capability to
dynamically offer switchover between Ethernet and TSON services gives broader options.

5.3.3.3 Experiment and Measurement: Jitter

This experiment measure Jitter of Ethernet Node for Ethernet Frame 64B and Ethernet
Frame 1500B in the capable speed.

For the input stream of Ethernet Frame Size 64B, 100% of the Ethernet packets are
received within 1 μs.

For the input stream of Ethernet Packet Size 1500B, 100% of the Ethernet packets are
received in 2 μs.

0

20

40

60

80

100

120

140

1G 3G 5G 7G 9G

La
te

n
cy

(u
s)

Ethernet speed

Ethernet Node vs TSON Node Latency results

Ethernet Node: Pacekt Size 64B

Ethernet Node: Packet Size 1500B

TSON Node: Packet Size 64B

TSON Node: Packet Size 1500B

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS D4_1_Final.docx

Page 64 of 64

6 Conclusions

In this deliverable, the completed low-level design and implementation of superset TSON
metro node for mesh topologies, which supports both OPST Ring-Mesh interconnection
node and TSON (OBST) Mesh bypass node is reported. Particularly, as a layered design
approach, the Layer 2 and Layer 1 functions are implemented, evaluated, analysed, and
reported respectively. In addition, a novel SHINE solution to bring extreme flexibility and
programmability towards the nodes is proposed, demonstrated, and evaluated.

To conclude, the following expectation is met:

 Deliver time-slice aggregation and scheduling strategies for synchronous burst
trains and/or variable-size burst transmission.


o L2 functions of TSON node are implemented and able to deliver a maximum

throughput of 8.68 Gbps per 10Gbps port.

o A 95.38% utilization considering the 9.1 Gbps (91 time-slices) TSON

theoretical maximum throughput.

o Latency and jitter results have been experimentally measured for transport

of min/max Ethernet frames.

o Both Layer 2 and Layer 1 of TSON node support 2 wavelengths.

 Hardware-accelerated control and configuration of optical switches to support

TSON traffic on a time-slice transport format.

 Implement northbound interface to TSON controller that can interconnect with XML

interface.

 Implement gateway to interact with control plane and provide application-

awareness to transport devices.

 Deliver the design of flexible and dynamic software-controlled electronic elements

to adjust node parameters and deliver hitless switch over from TSON to Ethernet.

