

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 1 of 33

D4.5 “Implementation of sub-lambda assignment
element”

Status and Version:

Date of issue: 31.01.2012

Distribution: Public

Author(s): Name Partner

Rahimzadeh Rofoee Bijan UEssex

Yixuan Qin UEssex

Yan Yan UEssex

Georgios Zervas UEssex

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 2 of 33

Contents

1 Executive summary 3

2 Introduction 4

2.1 Purpose and Scope 4

2.2 Reference Material 4

2.2.1 Reference Documents 4

2.2.2 Acronyms 5

2.3 Document History 5

3 TSON resources and the allocation algorithm design 6

3.1 Resource abstraction in TSON 6

3.2 Resource representation 6

3.3 Route finding 7

3.4 Heuristics for wavelength and time assignment: 7

4 Route wavelength time assignment tool: 11

4.1 Challenges and strategies 11

4.2 RWTA Design 12

4.3 RWTA Implementation 14

4.4 Alternative to RWTA: routing and spectrum assignment (RSA) 17

4.4.1 Resource representation 17

4.4.2 Spectrum assignment 17

4.5 Release and accessibility 19

5 Algorithms, scalability and performance evaluation 20

5.1 Event based and Real Time based 20

5.1.1 Event based emulation of multitude of requests to the resource allocation tool
for performance evaluation 20

5.1.2 Time Based Tool: 22

5.2 Processing-time performance evaluation 23

6 SLAE in TSON/GMPLS control plane 24

6.1 Centralised controller 24

6.2 The path provisioning work flow 25

6.3 Host server 25

7 Conclusion 27

Appendix I 28

Appendix II 30

Appendix III 31

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 3 of 33

1 Executive summary

This deliverable reports the on the implementation of the SLAE tool which allocates
resources of wavelength and time slices to the requests on demand. The implementation of
the tool comes following our simulation studies of OBST(TSON) network conducted during
D2.3, where a number of algorithms for time slice allocation had been introduced and put in
to evaluations. This report includes sections to cover the software design and
development. Moreover the tool placement in the TSON node is discussed. The structure
of the document is as follows:

Chapter 2 gives a brief introduction on purpose and scope of this implementation. Chapter
3 starts by giving information on the resource modelling in MAINS, and explains the sub
lambda assignment algorithms.

Chapter 4 explains thoroughly the developed Route Wavelength Time Assignment (RWTA)
tool, including the design and implementation and interfacing with GMPLS. The RWTA tool
uses Multi-Wavelength First-Fit allocation scheme introduced in D2.3. An alternative to
RWTA, called Route Spectrum Assignment (RSA), which allocates frequency slices as
resources instead of wavelengths and time slices, is also presented. The purpose of the
RSA tool(which uses First-Fit Contiguous algorithm) is to propose ways to interconnect
metro and core networks by use of Flex-Grid technologies while providing fine-granular
allocation on the time domain (to support sub-wavelength flows) by use of RWTA.

Chapter 5 reports on the implementation of a java based emulation system which basically
emulates the intensive metro network requests demands for various data rates and under
different Erlangs, so to evaluate the performance of the path finding and resource
allocation engines of RWTA and RSA on TID Metro network reference topology.

Chapter 6 explains how the developed SLAE operates in the TSON node in a more general
view to the implemented engine.

Conclusion wraps up the discussions and summarise the developments. Besides, some
further information on different sections is provided as appendices.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 4 of 33

2 Introduction

2.1 Purpose and Scope
This deliverable explains the sub-lambda assignment engine (SLAE) final design and
implementation details. The SLAE will be used in correspondence with the GMPLS PCE
(path computation engine) to provide end-to-end sub-lambda paths over the TSON metro
network. In this regard, and in addition to the SLAE, the developed software program
performs routing calculation using path finding algorithms. Therefore the developed
resource allocation engine is considered as a Route, Wavelength, and Time assignment
tool. In other words, the developed SLAE is located inside the RWTA tool, which is
implemented to perform routing and SLAE and can in turn act as PCE and SLAE.

Following this approach, the implemented RWTA tool will be used as a whole or just the
SLAE part of it in integration within the control plane.

Apart from that, and to address the resource allocation in the frequency domain, the RWTA
tool has been modified to represent spectral resources instead of wavelength and time, so
to be used in a scenario which slices of spectrum are shared among several connections.

To assess the usability and performance of the developed tools, a set of evaluation
experiment and emulation of numerous requests to the tool have been carried out.

2.2 Reference Material

2.2.1 Reference Documents
[1] http://www.jgrapht.org

[2] http://www.jgrapht.org/javadoc/

[3] MAINS deliverable D2.3_public: OBST mesh metro network desing and control plane
requirements, July 2011

[4] MAINS deliverable D2.3_private: OBST mesh metro network desing and control
plane requirements, July 2011

[5] Georgios S. Zervas, Joan Triay, Norberto Amaya, Yixuan Qin, Cristina Cervelló-
Pastor, and Dimitra Simeonidou, "Time Shared Optical Network (TSON): a novel
metro architecture for flexible multi-granular services," OSA Optics Express, vol. 19,
no. 26, pp. B509-B514, 2011

[6] MAINS deliverable D3.3: Control plane extensions for GMPLS, Dec 2010

[7] MAINS deliverable D3.4: implementation of control plane extensions, Dec 2011

[8] MAINS deliverable D2.4: Design of XML#2 OBST Network Control Interface with API
definitions, Sep 2011

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 5 of 33

2.2.2 Acronyms
CP Control Plane

ERO Explicit Route Object

FF First Fit

FFC First Fit Continuous

FFCT First Fit Continuous Tuneable

FFT First Fit Tuneable

FPGA Field Programmable Gate Array

GE Gigabit Ethernet

GMPLS Generalised Multi Protocol Label Switching

JNI Java Native Interface

KSP K Shortest Paths

MNSI-GW Mains Network Service Interface- Gate Way

MWFF Multi Wavelength First Fit

OSPF-TE Open Shortest Path First - Traffic Engineering

PCE Path Computation Element

QoS Quality of Service

RSA Route Spectrum Assignment

RSVP-TE Resource Reservation Protocol-Traffic Engineering

RWTA Route Wavelength Time Assignment

SLAE Sub-Lambda Assignment Engine

TNRC Transport Network Resource Controller

TSON Time Shared Optical Network

UML Unified Modelling Language

VM Virtual Machine

2.3 Document History
Version Date Authors Comment

0.1 15/01/2012 Bijan R.Rofoe First ToC draft

0.2 21/01/2012 Bijan R.Rofoe First document draft

0.3 23/01/2012 Yixuan Qin Review

0.4 25/01/2012 Bijan R.Rofoe ToC updated, section 6 created,
merged section 4 and 5.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 6 of 33

0.5 27/01/2012 Yan Yan Review

0.6 27/01/2012 Yixuan Qin Review

0.7 29/01/2012 Bijan R.Rofoe, Yixuan
Qin

Review and modifications

0.8 30/01/2012 Geroge Zervas Final review

1.0 31/0112012 Bijan R.Rofoe Release

3 TSON resources and the allocation algorithm desig n

This chapter will discuss the resource abstraction and representation defined for TSON
operation in MAINS. Afterwards, the algorithms used for the sub-lambda resource
assignment are explained. These algorithms carry out the core functions of resource
allocation over the TSON network. Also, the routing functionality in the RWTA tool is
implemented using a java library which is addressed here as well. The set of employed
java libraries used for developing the tool is listed in Appendix I.

3.1 Resource abstraction in TSON
TSON network offers a hierarchy of three levels of granularity of resources: 1- connections,
2- frames, and 3- time slices, as illustrated in Figure 3-1. By connection, it is referred to a
communication session between any two end points in the TSON domain. In order to
improve statistical multiplexing of data units, each connection, is split into a number of fixed
size frames. The frames are considered to be of 1 msec length in the MAINS context. Each
frame afterwards is divided to time slices as the smallest units of communications i.e. the
actual sub-lambda resources. The frame length, and the number of time slices inside a
frame, defines the minimum granularity achievable by the TSON network. TSON can
establish as fine as 100Mbps connections over 10GE links, using frames of 1 msec length,
and 100 time slices per frame.

Figure 3-1: Resource abstraction in TSON networks

3.2 Resource representation
The abstracted resources information needs to be represented in a data structure for
respective path computations. In this regard, the frame information per link is encoded in a
matrix: rows represent the wavelengths, and columns represent the time slices. The
aggregation of all the link matrices forms the TSON resource database.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 7 of 33

Figure 3-2: Resource (time slice) availability and occupancy are represented by 0 and 1.
The left part shows a link information matrix prior to a new connection, and the right part
shows how the link resource are used to accommodate new connections

Allocated time slices are filled with “1”, and the available time slices are indicated by “0”.
These matrices are used by the PCE in order to accommodate the new connections on the
free slices, so that the contention is avoided by time multiplexing the traffics for different
requests. Figure 3-2 is showing how a link already occupied with a number of connections
(colours red and orange), is used for accommodating new connections (blue) on the
available slices.

3.3 Route finding
The first step in resources allocation is to find a route between the requests end points. In
this regard we are using a K-shortest path finding algorithm which is based on Bellman
Ford's shortest path algorithm 1 . Having K-shortest path decreases the chances a
connection being denied because of lack of sufficient resource for the connection. This
means less blocking, in the expense of more calculation time.

The algorithm is available from the Java jGraphT library [2]. The number of routes is fed as
an argument to the algorithm which is used to find the shortest paths based on the number
of hops between any two nodes. However it should be noted the calculated K-paths are not
necessarily disjoint.

The use of route finding capability of the RWTA tool is optional, and it can be used in case
of lacking a PCE based route calculation engine.

3.4 Heuristics for wavelength and time assignment:
In order to serve the requests over the links, we have designed a set of heuristic algorithms
during D2.3 simulation studies of the TSON sublambda network, which operate on the
accumulated occupancy of the link matrices. The matrices, indicating wavelength and time
slice availabilities, from all the links involved on the possible communication routes are fed
into the algorithms. For the tool operations, we have used the MWFF algorithm since in the
data plane we were using a number of SFP+ modules per each node, so we were able to
simultaneously operate over multiple wavelengths, so considering MWFF proven
superiority in performance against the rest of the algorithm family it was implemented in the

1 from [2]"The algorithm is a variant of the Bellman-Ford algorithm but instead of only
storing the best path it stores the "k" best paths at each pass, yielding a complexity of
O(k*n*(m^2)) where m is the number of edges and n is the number of vertices."

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 8 of 33

RWTA tool. In the following MWFF has been explained, along with its counterpart algorithm
once introduced in D2.3.

In this regard, we introduce five different algorithms for wavelength and time assignment.

1) Multi-wavelength non-contiguous First-Fit (MWFF). In this algorithm any allocation
of time-slices over any of the wavelengths is possible. Considering the resource
abstraction and representation explained in section 3.1 and 3.2, the algorithm operates on
a matrix filled with zeros and ones. The algorithms will start from the first wavelength on
top, and explore from left to the right of the row allocate the slots.

As shown in Figure 3-3, the MWFF is the least restrictive time-slice assignment policy
developed. In MWFF, the slices pertaining to a sub-wavelength lightpath can be scheduled
all over the link resources matrix on different wavelengths and not necessarily within a
continuous slice set, including different wavelengths (multi-wavelength) on the same slice
index.

Figure 3-3 : MWFF (allocation in blue and orange)

2) First-Fit (FF) solution for single wavelength non-contiguous slice/time assignment.
Considering the resource abstraction and representation explained in 3.1 and 3.2, the
algorithm operates on a matrix filled with zeros and ones. The algorithms will start from the
first wavelength on top, and explore from left to the right of the row to accommodate the
slices. However, in this algorithm, the connection can only use a single wavelength, but
assigned slices do not need to be contiguous. The allocation strategy is visualised in Figure
3-4.
Unlike MWFF, this algorithm is a single wavelength time slice allocation solution, where the
new LSP time slices are allocated across an identical wavelength.

Figure 3-4: FF (allocation in blue and orange)

3) First Fit Contiguous (FFC) for single wavelength contiguous slice/time assignment.
Similar as FF, but time-slices should be assigned in a contiguous manner. Considering the
resource abstraction and representation explained in Section 3.1 and 3.2, the algorithm
operates on a matrix filled with zeros and ones. The algorithms will start from the first

λ1

λ2

.

.

.

.

λn

Frame length T

Wavelengths

t0 t1 tn

Time Slice

belonging

to LSP 1

Time Slice

belonging

to LSP 2

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 9 of 33

wavelength on top, and explore from left to the right of the row to accommodate the slots.
The allocation strategy is visualised in Figure 3-5,

For the FFC policy, a new requirement is given: the slice allocation for a connection needs
to be contiguous; hence the sub-wavelength (requested bandwidth) cannot be split along
the matrix/frame horizon.

This algorithm differs from MWFF in that the allocated slices should be contiguous. This
constraint greatly reduces the efficiency levels of the algorithm since it should find the
number of slices needed altogether.

Figure 3-5: FFC (allocation in blue and orange)

4) First Fit Tuneable (FFT) for non-contiguous slice/time assignment with tuneable
wavelength. It works as MWFF, but the same slice index cannot be used on different
wavelengths. Considering the resource modelling and representation explained in Section
3.1 and 3.2, the algorithm operates on a matrix filled with zeros and ones. The algorithms
will start from the first wavelength on top, and explore from left to the right of the row to
accommodate the slots. The allocation strategy is visualised in Figure 3-6.

The FFT policy introduces a new constraint. In this policy, connections are restricted to
different slices, over a single or multiple wavelengths, i.e., two simultaneous slices on
different wavelengths are not allowed. The FF policy is similar to FFT but with the added
constraint to schedule the slices for a sub-wavelength connection on the same wavelength.
To this end, a new variable and a couple of constraints are added to the formulation.

FFT is different from MWFF since although it can operate over multiple wavelengths,
however overlapping of time slices over multiple wavelength would not be possible. A use
case scenario for this algorithm is when one tunable transmission system is used.

Figure 3-6: FFT (allocation in blue and orange)

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 10 of 33

5) First-Fit Contiguous Tuneable (FFCT), for assigning contiguous time slices with
tuneable wavelength selection. It applies the FFT but assigned slices have to be
contiguous in time. Considering the resource abstraction and representation explained in
Section 3.1 and 3.2, the algorithm operates on a matrix filled with zeros and ones. The
algorithms will start from the first wavelength on top, and explore from left to the right of the
row to accommodate the slices. The allocation strategy is visualised in Figure 3-7.

The latest policy restricts the assignment along a contiguous set of time-slices, but allows
switching to another wavelength from slice to slice.

This algorithm shows more constraints in comparison to MWFF, since first of all the
allocated slices over each wavelength should be continuous, and also, the transmission
over multiple wavelength but identical time slices is not possible.

Figure 3-7: FFCT (allocation in blue and orange)

Each of these algorithms represents a specific way of allocating the resource, following
different constraints. The works in [3], [4] and [5] give the detailed explanations and
mathematical modelling of the introduced algorithms.

λ1

λ2

.

.

.

.

λn

Frame length T

Wavelengths

t0 t1 tn

Time Slice

belonging

to LSP 1

Time Slice

belonging

to LSP 2

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 11 of 33

4 Route wavelength time assignment tool:

As of now, a RWTA engine is developed comprising of routing and sub-lambda assignment
algorithms to perform functionalities of the PCE and SLAE. This tool executes route and
sub-lambda assignment in sequence. Therefore the routes found in the first stage are used
for feeding the algorithms in the second stage. It takes advantage of KSP route finding
algorithm for setting up paths, and it uses MWFF for wavelength and time assignment
engine to allocate time slices. The use of MWFF is justified by using multiple tuneable or
fixed transmitters in the data plane.

4.1 Challenges and strategies
The central sub-lambda assignment engine is in correspondence with GMPLS PCE.
Whether using the RWTA routing mechanism, or exploiting an external PCE, different
combinations of SLAE and PCE are possible as it has been specified between NXW and
UEssex (different combinations in Appendix II). In any case, the route finding and the sub-
lambda assignment engine will be either in the same virtual machine, or on the separate
ones. Regarding the first solution, NXW explains the communication between the PCE and
SLAE being in the same virtual machine:

• Requirements:

– A user defined computation code wrapper

– To let the TSON SLAE tool be considered as a “common” user defined
computation code

– To offer the dynamic loading functions towards the PCE core

– To implement the two computation phases (Load+Request) of a user
defined computation code

– To translate and bind the Load+Request procedure in the native TSON
SLAE computation procedure

– A Java Native Interface (JNI)

– To translate the internal PCE core topology data structures in the
correspondent TSON SLAE tool topology data structures (i.e. nodes, links,
wavelengths, etc.) and vice versa

– To translate the TSON SLAE tool explicit route object (ERO) format in the
correspondent internal PCE ERO format (i.e. sequence of links,
wavelengths, time-slices) and vice versa

Alternatively and as the second architecture, the GMPLS PCE and SLAE may be deployed
on two separate virtual machines. The communication between the PCE and the SLAE
takes place through the use of one Transport Network Resource Controller (TNRC)
Specific Part (i.e. TNRC SP) for GMPLS CP interactions with the TSON controller through
the XML#2. In this trend, two way communications are to be deployed using clients and
servers on the two virtual machines.

The implementation needs and the possible issues are explained in the following:

� Requirements:

– A user defined computation code wrapper

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 12 of 33

• To let the TSON SLAE tool be considered as a “common” user defined
computation code

• To offer the dynamic loading functions towards the PCE core

• To implement the two computation phases (Load+Request) of a user
defined computation code

• To translate and bind the Load+Request procedure in the native TSON
SLAE computation procedure

– A dedicated interface to let MAINS PCE and TSON SLAE interact and
cooperate

• E.g. Socket based interface implemented by the wrapper

• Serialization/De-serialization of data structures

• Translation of the internal PCE topology and ERO data structures

Following the interfacing requirements between the SLAE tool, and the GMPLS stack,
UEssex and NXW have parameterised the communication, which is provided in Appendix
III.

The developed tool uses the heuristics explain in Section 3.4 to provide connectivity over
the links in the TSON architecture. However, two constraints of wavelength continuity and
time-slice continuity in resource allocation over the paths should be taken in to account to
address the SLAE and routing in practice.

Wavelength continuity: since in the TSON data plane there are no wavelength converters
envisaged on the intermediate nodes, the light paths established between any source and
destination should stay on the provisioned wavelengths.

Time-slice continuity: in regards to maintain minimum implementation complexity and
avoid optical buffering, nodes need to transparently switch the traffic on a very timely basis.
Nodes should get synchronised by compensating the propagation and process delays
between them. Assuming the nodes are synchronised the allocated time-slices will be the
same on all the links for one connection.

4.2 RWTA Design
The work flow of the tool is demonstrated in the Figure 4-1. The RWTA tool has to interact
with the GMPLS/PCE stack. This interaction is explained in the following.

• Request from GMPLS: RWTA tool is being invoked by GMPLS through the XML
interface. A number of arguments are needed for the operation of the tool, which
are:

o Network topology matrix
o Number of wavelengths per link
o Number of time slices per each wavelength
o Source node
o Destination node
o Bit-rate request(in form of number of time slots)
o The number of path for KSP

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 13 of 33

Figure 4-1: SLAE+PCE tool in interaction with GMPLS stack

• Routing : The route finding engine, exploiting the KSP algorithm, will provide the
requested number of routes between the source and destination nodes using the
imported topology. Routes are calculated and sorted based on their number of
hops.

• Pruning: These routes however, might use links which have already run out of the
availabilities due to the prior allocations. To address this issue and to avoid a
congestion, a mechanism has been deployed which checks the route's links
aggregated availabilities, and if the route meets the minimum required number of
time slices, then it will be used in the algorithm, otherwise the path calculator will
prune the topology, and recalculate the paths. This mechanism however, depends
highly on the network offered load and topology, and because of so, the time for
recalculations can cause unacceptable delays. To oversee this issue, a watchdog
timer has been also deployed to stop the recalculation mechanism, and to invoke
the algorithms in case there were any routes available.

• Sub-lambda assignment: In the next stage, the obtained routes will then be fed
into the algorithms for allocating the time slices. In this stage, based on which
algorithm is chosen to be used in the tool, wavelengths and time slices will be
allocated.

• MWFF allocation algorithm has the most flexibility to accommodate the request
over the wavelengths. In this regard, this algorithm will search through the
intermediate links on the path, and assign the resources.

• Updating the Database: The allocation of the resources needs to reflect on the
data base. In this regard if the allocation was successful, prior to communicating
the results back with the GMPLS, each links table involved will be updated

GMPLS stack

 In
itia

liza
tio

n
 in

fo

Data base of resources

1.Network

topology

2.Source

3-Destination

1.Assignment matrix

(wavelength time-

slices)

2. Array of the

assigned path

No route

->

Blocked

4. BW

5. LSP id

6. K for

KSP

No

resources

-> Blocked
Routing

BW check Pruning

Wavelength
allocation and SLAE

Resource
update

Response to
GMPLS

I
n
i
t
i
a
l

i
s
e

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 14 of 33

• Response to GMPLS: The information of routing and the allocated resources are
sent back to the GMPLS stack so it can setup the path.

4.3 RWTA Implementation
In order to achieve the logical performance explained in the previous section, several Java
classes and methods have been developed. The Figure 4-2 displays a UML diagram made
of some of the essential classes defined inside the tool.

Basically, the tool is programmed in following the categories listed below:

• Main class
• Utilities classes
• Network classes

o Link class
o Node class

• Routing classes
• Resource classes
• Algorithms and sub-lambda assignment classes

Figure 4-2: RWTA tool UML diagram. The main class called MainRWTA, with the supplementary
classes for the RTWA functioning and their interconnections is shown.

The Main class which is named MainRWTA.java contains the main method of the RWTA
for start and ending of the program. It also manages the inputs and outputs to the program.
The inputs are arguments passed to the program before the run time, as explained in
Section 4.2. The main class retrieves the information from the arguments, and then invokes
the essential classes to generate the required software objects for setting up the scenario.
In order to carry out some of the required methods for communication of the program with
the external database, and also to define some necessary functions, a set of classes are
defined as the utilities to facilitate the work on different stages of the program run time.(
Figure 4-3).

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 15 of 33

Apart from running resource allocation algorithms for accommodating different connectivity
requests, the main class has been extended with options for ending a connection,
restarting the database (which is basically is setting all the allocation in the database to
zero, and removing all the records) or providing network utilisation. These functionalities
are invoked by command arguments from GMPLS control plane. The RWTA tool holds a
local record of all the allocations made, per each link. All the recorded allocation events are
labled with distinct IDs, which come from GMPLS. So upon GMPLS request on removing a
connection with a corresponding ID, the RWTA clears the allocations for that specific
record. Deliverable of D3.5 discusses this from GMPLS point of view.

Figure 4-3: Utilities classes and methods

Network class is one of the first classes, which is called by the main class to create a
network instance based on the topological information passed to the node. The network
class will generate links and nodes using the abstract classes defined for this purpose. The
links and nodes classes will then be identified and will contain the required information for
handling the traffic. Network class is illustrated in Figure 4-4.

In order to keep track of the resource availabilities on the links and to consume this
information each time the allocation engine is being invoked a set of text files are
considered for keeping the information externally to the program. Besides the advantage of
sustaining the information between each call to the RWTA program, other engines such as
the PCE can have access to the utilisation information to perform resource-aware path
computation. The resource representation on the data base is based on the availability
matrices per each link. As explained in Section 4.2 the resources matrices of the database
are being updated each time an allocation or deletion of the request happens. To handle
the corresponding tasks a class called ResourcesTable has been implemented. This class
upon instantiation refers to the database to create an updated resource table.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 16 of 33

Figure 4-4: The figure shows the network class in the middle, which creates objects of nodes and
links after the initialisation, using the topological information. ResourcesTable is another object class
which is built using the resource availability information of the database.

After the network instance is initialised and network elements are generated, the main
class invokes the routing class to access the routing algorithms. A set of routing algorithms
such as shortest path methods of Dijkstra and Bellman Ford have been implemented in this
class. However, for the purpose of the MAINS project and to address the need of having
multiple paths selected, a K-Shortest Path algorithm is used to find a number of paths
between the end nodes. Having multiple paths help to reduce the blocking in the network
since the alternative route may exist. This however will come in a cost of longer calculation
time. The routing mechanism requires a set of classes such as routing tables, which is
implemented as well Figure 4-5.

Figure 4-5: Routing related classes and methods

After the routing between the source and the destination is completed and the information
is stored, the main class will start the sub-lambda assignment procedure. The routing
information in addition to the resources utilisation, are passed to the SLAE. This engine is

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 17 of 33

consisted of a number of classes for incorporating the set of defined algorithms (explained
in 3.4), to execute wavelength and time slice assignments. (Figure 4-6)

Figure 4-6: Heuristic algorithm class and the corresponding classes which enable the
RWTA to run the desired algorithm.

4.4 Alternative to RWTA: routing and spectrum assig nment
(RSA)

In order to address the emerging sub-lambda/super-lambda switching approaches in the
spectrum domain, we have developed an alternative to RWTA, and that's a route, spectrum
assignment (RSA) tool.

This tool follows the same architecture as the RWTA: routing based on K-shortest path
algorithm to find multiple routes for routing the traffic, and the calling one of the heuristics
to allocate the spectrum resources.

4.4.1 Resource representation
Regarding the resources however, RSA uses the spectrum slices and not time slices over
the wavelengths. Therefore the database of the RSA uses vectors per each links which
represents spectrum availabilities. Based on the spectrum range and the resolution for
dividing that range to the spectrum slices, different granularities of band width for
communications are obtained. For example, if we consider the C band of the spectrum
between 1530nm and 1570 nm, with 5THz available spectrum, 200 slices of 25 GHz, or
400 slices of 12.5 GHz are achievable.

4.4.2 Spectrum assignment

Figure 4-7: RSA workflow

 The work flow of the tool is demonstrated in the. It follows almost the same work flow as
RWTA as shown in Figure 4-1, but replacing SLAE module with spectrum slice assignment
module. For spectrum assignment, the FFCT algorithm is considered. FFCT as explained
in Section 3.4 allocates contiguous slices over the available spectrum as shown in Figure
4-8. It should be noted that since there is only one row, FFC and FFCT will have the same

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 18 of 33

functionality. Any of the other algorithms can also be applied in the tool, with respect to the
technology in hand.

Figure 4-7: RSA workflow

Figure 4-8: instead of having table of resources, will have a vector per each link, representing the
spectrum slices on each.

Spectrum Slice allocation

Route finder

Link availability

check

Topology

Pruning

Update the

resource

Assignment info

to user

In
itia

liza
tio

n
 in

fo

Data base of resources

User

Request result

Spectrum division to slices

No

resources

-> Blocked

No route

->

Blocked

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 19 of 33

4.5 Release and accessibility
The tool is written in Java JDK 1.6, and is released as a jar file. The jar file can be
incorporated into other java based programs, by exploiting the runtime classes available in
JDK1.0 onwards. This class includes a variety of methods supporting the execution of Java
jar files with different option.

Considering the MAINS context, the developed Java SLAE tool will interface with the
developed GMPLS PCE stack. Different options for integrating the RWTA jar file with the
GMPLS software stack have been considered; and importing the jar file in the GMPLS
stack seems to be the most practicable one. The GMPLS stack is written in C++ and
hence, to be able to access java libraries and executables from C++ Java Native Interface
seems to be the solution. This solution and the other possible ones are under study by
NXW and UEssex.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 20 of 33

5 Algorithms, scalability and performance evaluatio n

In order to evaluate the performance of the path finding and resource allocation engines of
RWTA and RSA, a request-maker emulator has been developed using Java language, so
to test the performance and integrity of the tool for extensive number of requests, under
different Erlangs. The request-maker emulator contains a platform for running the tools for
slice allocation, deleting an allocated request, providing utilisation info, and son on. It
receives the information to it as arguments. The basic arguments are the one defined for
the tools operations. In addition to that, the time of the emulation, and the duration of the
communication are passed as well to have their operation synchronised.

5.1 Event based and Real Time based
The request-maker emulator has been implemented with two different approaches.

5.1.1 Event based emulation of multitude of request s to the
resource allocation tool for performance evaluatio n

In this type of request-maker emulator, a counter based clock is considered in the request-
maker emulator, to be used for coordination of the events. Based on the clock, events are
scheduled and executed. The use of the event based approach helps to understand how
the network performs for allocating a considerable
numbers of the bandwidth request, using the tools.

Using some distribution functions like Poisson we are
able to emulate the arrival of the requests distributed
in time, their duration, and termination.

Using the event based request-maker emulator, we
have evaluated the performance of the tool in handling
3000 requests over the Madrid metro network topology
in Figure 5-1. This topology is composed of 15 nodes,
23 bidirectional links, with a nodal degree connectivity
of deg(G) = 3:07, an average link length L = 56:87 km
and length standard deviation L = 41:70 (i.e. some
links are much longer than others).

The requests were applied to the network using
Poisson model for inter-arrival of the requests of mean 2, and using variable holding time.
The results of emulating multitude of requests for RWTA and RSA are shown below:

RWTA tool was tested by applying the requests for 1Gbps, 10 Gbps and 20 Gbps, over the
10G links, with 21 wavelengths per each link. Each wavelength is divided into 100 time
slices, each time slice representing 100Mbps. 1Gbps requests were served with 10 time
slices over each wavelength, and the 10G and 20G requests were responded by 1 and 2
whole wavelengths if available. Besides, of the all the request, about 89 % were targeting
1Gbps, 8 % were for 10 Gbps, and 2-3 % for 20 Gbps.

Figure 5-1: Madrid metro network topology

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 21 of 33

Figure 5-2: Blocking performance of the RWTA tool against different Erlangs of traffic for
RWTA tool

The Figure 5-2 displays how the blocking of the request increases by the increase in the
offered load. This increase for the 20 Gbps is the steepest since the chances of resource
availability drops very fast after each allocation and considering that most of the resources
are allocated on 1 Gbps (89%) and 10 Gbps (8%).

Figure 5-3: Network utilisation of the RWTA tool against different Erlangs

Figure 5-3 shows the occupancy of the network resources by each of the request types.
1Gbps request with the lowest granularity occupy the most as they comprise almost 90% of
the request which were made to the network.

For RSA, the same type of results has been collected. The emulation considers 44 slices of
spectrum, and the available bandwidth per each spectrum slice is considered 6.25 GHz.
The characteristics were considered for the spectrum slices are summarised in Table 5-1.

Bandwidth requested 25 GHz 37.5 GHz

Allocated Spectrum slices 4 slices 6 slices

Requests percentage over
all

80% 20%

Table 5-1: Spectrum characteristics

0,0001

0,001

0,01

0,1

0 50 100 150 200 250 300

B
lo

ck
in

g
 p

ro
b

a
b

il
it

y

Offered Load (Erlang)

RWTA: Blocking probability vs Network Load

1Gbps

10Gbps

20Gbps

0

0,2

0,4

0,6

0,8

144 180 216 252 288 324 360 396 432 468 504 540 576N
e

tw
o

rk
 u

ti
li

sa
ti

o
n

 (
%

)

Offered Load (Erlang)

RWTA: Network utilisation vs Offerned load

20 Gbps

10 Gbps

1 Gbps

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 22 of 33

Figure 5-4: Blocking performance of the RSA tool against different Erlangs of traffic for
RWTA tool

As it can be observed in Figure 5-4 the allocation of the 37.5 GHz request which requires 6
slices experiences higher blocking probability.

Figure 5-5: Network utilisation of the RSA tool against different Erlangs

Figure 5-5 shows the network utilisation of the applied traffics. The figure reflects applying
80% for 25GHZ requests and 20 % for 37.5 GHz requests.

5.1.2 Time Based Tool:
Since the tool is supposed to work in a real time environment, the request-maker emulator
clock has been changed to work with the PCs clock, using the System API. This will enable
to test the tool using the system time, which will also take into account the host server
performance as well.

Java System clock gives the current time based on the UTC time reference in the mili- and
nano- second scales.

0,0001

0,001

0,01

0,1

0 50 100 150 200

B
lo

ck
in

g
 p

ro
b

a
b

il
it

y

Offered Load (Erlang)

RSA: Blocking probability vs Network Load

25GHz

37.5GHz

0

0,1

0,2

0,3

0,4

0,5

0,6

80 100 120 140 160 180 200 220 240 260 280 300 320

N
e

tw
o

rk
 u

ti
li

sa
ti

o
n

 (
%

)

Offered Load (Erlang)

RSA: Network utilisation vs Offerned load

37.5GHz

25GHz

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 23 of 33

5.2 Processing-time performance evaluation
In order to evaluate the RWTA performance in completing a route and sub-lambda
assignment task in time, some measurements on the tool have been taken using the
System clock API in java.

These measurements targeted the tool timing in whole and the algorithms separately. Also
the effect of enabling pruning was also considered besides the non pruned tests.

Figure 5-6 shows the algorithms performance solely. In this figure, the MWFF and FFC
algorithms are compared for different number of paths of 1 and 3. Figure 5-7 shows how
the running of the tool with all the inputs and put puts and functions inside affects the time
effectiveness of the tool. In this set of experiments, the same algorithms of MWFF and FFC
are used for resource allocation. Different number of paths and incorporating a pruning
functionality in the tool show different impacts on the tool overall performance.

Figure 5-6: This figure shows the performance of the MWFF algorithm against FFCT algorithm.

Different number of K-paths of 1 and 3 has been considered. MWFF will take much higher time in
allocating resources especially for the later requests since it will search through the entire available
wavelength list on the links over all the paths to finally accommodate the request.

Figure 5-7: This figure shows the performance of the RWTA tool in whole using two different
assignment algorithms of MWFF and FFCT, for pruning and non pruning scenarios. It can be seen
how the pruning of the routes can increase the latency of the tool in doing the path finding for
resources allocation.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
u

b
La

m
b

d
a

 t
im

e
 m

se
c/

d
e

m
a

n
d

demand x100

RWTA performance

Load 1G/10G

K3_MWFF

K3_FFCT

K1_MWFF

K1_FFCT

0

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500R
W

T
A

 T
o

o
l

ti
m

e
 p

e
r

d
e

m
a

n
d

 m
se

c(
)

Demand number

Tool timings for algorithm MWFF & FFCT,

K3_MWFF_NP

K3_MWFF_P

K3_FFCT_NP

K3_FFCT_P

K1_MWFF_NP

K1_MWFF_P

K1_FFCT_NP

K1_FFCT_P

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 24 of 33

6 SLAE in TSON/GMPLS control plane

The SLAE tool has been designed and implemented as the sub-wavelength resource
allocation module. This module helps to orchestrate simultaneous bandwidth requests to
the networks to gain a contention-less manner. This tool in collaboration with PCE will
provide the route, wavelength, and time slices to be used for switching over the data plane.

As it can be seen Figure 6-1 on top of the TSON node, a server is located, hosting a
number of virtual machine. GMPLS virtual machine hosts the extended GMPLS stack
supporting sub-wavelength switching. The GMPLS required extensions and
implementation have been reported in [6] and [7] respectively. A virtual machine with
Windows platform has been installed as well to be used for reprogramming the FPGA
connected to the server.

GMPLS is responsible to disseminate resource information and availabilities in the network
among the TSON nodes. In this regard, GMPLS stack exchanges information with TSON
VM. Network resources are defined in the format of XML schemas, and the communication
between GMPLS and TSON VM will take place through XML based REST web-service to
provide a simple and extensible structure for interoperation of the nodes. The details of the
TSON xml schema definitions are provided in [8]. On the other side TSON VM using a
TSON driver is in interaction with the FPGA in the lower layer which is employed for the
implementing Layer 2 functionalities of TSON. TSON VM therefore bridges between the
data plane and control plane.

6.1 Centralised controller
TSON network is designed to operate using a centralised controller and resource allocator,
considering the limited size of the network and the expected contention less behaviour.

In the TSON node architecture chosen to be the central controller, the SLAE is located in
the server on top. The SLAE should interact with the PCE (the Path Computation Element
which will be placed in a virtual machine on the server) to serve the requests for
connections over the TSON network.

As it can be observed in the Figure 6-1 the resource allocator tool supporting PCE + SLAE,
can be located on the TSON control server as an implementation option. However, there
are other viable configuration for installing an external PCE beside the SLAE are

Figure 6-1: Server in the TSON node, and it contents provide the controller entity for the TSON node.
Server hosts a number of Virtual Machines for different purposes.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 25 of 33

understudy by UEssex and NXW. These possible combinations are displayed in Appendix
I.

6.2 The path provisioning work flow
For the control and management plane of the network, a centralised approach has been
chosen. The process of receiving a connection request until starting the data transmission
is displayed in Figure 6-2 and explained in the following:

1. A new request for path set up for across the TSON cloud is received by the MAINS
Network Service Interface Gateway (MNSI-GW).

2. Upon receiving the request MNSI-GW will make an enquiry to the central PCE.
3. PCE after computing a path using its database (updated by GMPLS OSPF-TE

messages), calls the SLAE for sub lambda resource allocation over the specified
routes to a destination node. The SLAE will use heuristics to assign time slices to
the request, fulfilling the requested bandwidth. This information is then sent back to
the GMPLS stack on the edge node.

4. GMPLS uses the information to initiate the route and reserve the resources on the
network ahead of the data transport using the RSVP-TE protocol.

5. The intermediate nodes will use the information circulated by GMPLS to update
their databases, and to reserve and schedule their resources for the expected
communications.

6. Afterwards, the requesting node or entity is informed about the path setup and the
data transport starts.

Figure 6-2: Layered TSON network architecture. The numbers in the yellow circles show the step
wise flow of the TSON function.

6.3 Host server 2
In order to deploy virtual machines and higher layer control, DellT701 servers have been
purchased with the following characteristic:

• Intel Xeon E5620 Processor (2.40GHz, 4C, 12M Cache, 5.86 GT/s QPI, 80W TDP,
• Turbo, HT), DDR3-1066MHz

2 picture from http://www.glcomp.com/products/servers/dell-poweredge/tower-servers/poweredge-
t710

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 26 of 33

• 12GB Memory for 1CPU (6x2GB Single Rank UDIMMs)
1333MHz

• 500GB SATA 7.2k 3.5" HD Hot Plug
• PERC H700 Integrated RAID Controller, 512MB Cache
• 16X DVD+/-RW Drive with SATA Cable
• Non-Redundant Power Supply (1 PSU) 1100W
• Rack Power Distribution Unit Power Cord
• Embedded Broadcom GbE LOM with TOE and iSCSI

Offload HW Key, NOT
• compatible with H200/H700 on non-56xx bases
• iDRAC6 Express
• Sliding Ready Rack Rails with Cable Management Arm

for Rack Configuration C2 - R1 for PERC H700, Exactly 2
Drives

Figure 6-3: Dell T710
server

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 27 of 33

7 Conclusion

This document reports on the implementation of SLAE, which is also capable of performing
routing. The tool capable of operating as a PCE+ and SLAE will be incorporated in the
TSON controller and will be accessed by/interfaced with GMPLS for sub-lambda resource
allocation over the TSON network.

The tool logics and implementations have been explained, and some results regarding its
evaluation for networking and timing are also reported. A stable version of the tool is been
developed, and it conducts route and sub lambda assignment together.

The combination/interfacing of the PCE and SLAE with other external tools, and their
placement in the server are in progress and in this regards different options and
possibilities are being evaluated.

Besides the RWTA, a RSA tool has been developed which will allocate spectrum slices in
the frequency domain instead of time slices over the wavelengths.

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 28 of 33

Appendix I

Different possible combination for SLAE with PCE:

1
0

G
 N

IC

1
G

 N
IC

For

GMPLS

CP

For
Source/

Dest.

Data

GMPLS & TSON Server Option 2

Windows VM

Linux VM

GMPLS Stack

PCE

Linux VM

XML

TSON Driver

FPGA Control

1
G

 N
IC

For XML

Interface

1
G

 N
IC

XML

SLAE

F
P

G
A

1
0

G
 N

IC

1
G

 N
IC

For

GMPLS

CP

For
Source/

Dest.

Data

GMPLS & TSON Server Option 1

Windows VM

Linux VM

XML

TSON Driver
FPGA Control

1
G

 N
IC

For XML

Interface

1
G

 N
IC

Linux VM

GMPLS Stack

PCE + SLAE

XML

F
P

G
A

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 29 of 33

1
0

G
 N

IC

1
G

 N
IC

For

GMPLS

CP

For
Source/

Dest.

Data

GMPLS & TSON Server Option 3

Windows VM

Linux VM

XML

TSON Driver
FPGA Control

1
G

 N
IC

For XML

Interface

1
G

 N
IC

Linux VM

GMPLS Stack

PCE

XML
SLAE

F
P

G
A

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 30 of 33

Appendix II

Name and address of the employed java library files:

Jar file Web access address

Colt-1.2.0 http://acs.lbl.gov/software/colt/

Commons
-math-2.2

http://commons.apache.org/math/

Jgrapht-
0.8.2

http://www.jgrapht.org/

DistLib_sr
c-0.9.1

http://en.sourceforge.jp/projects/sfnet_statdistlib/downloads/DistLib/Testy/Dist
Lib_src-0.9.1.jar/

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 31 of 33

Appendix III
In order incorporate tools different functionalities in to the GMSPL stack, the following
categories and parameters can be considered.

Network Graph Interface

Node param IN [node id]

param OUT [boolean]

Link param IN [local links id]

[local node id]

[remote node id]

[gmpls link cost] e.g. dependent by the free bw or
node load (to be used if needed)

param OUT [boolean]

Graph param IN (text) Matrix of
connectivity

nodes as in row, links in columns
numbers

paramOUT [boolean]

Computation Interface

ComputeRoute

param IN [ingress end
point]

node id + link id + MAC

[egress end
point]

node id + link id + MAC

[lsp id]

[lsp recovery
params]

unprotected vs. protected lsp (i.e.
protection type) +level of
disjointness (link, node, wavelength
?, time-slice ?)

[bw]

[QoS] e.g. expressed with a value in a
finite range [0,1,2..N], or with the
set of delay/jitter/PLR params as
for D3.3

[algorithm] to choose among a set of possible
routing algorithms (djikstra,
bhandari, etc.)

[Start time info]

[Duration time
info]

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 32 of 33

[flags] e.g. to choose the format of the
returned explicit route (i.e. node-
link out vs. link in-node)

param OUT [lsp id] needed if the interface is async

[explicit route] sequence of hops (node id, link id,
time-slices) in the format specified
in the request. The time-slice
assignment can be expressed as
described in D2.4 (i.e. list of
wavelengths+time-slices) for each
hop.

Time-Slice Assignment interface

AssignTimeSlices param IN [lsp id]

[set of routes] list of K routes computed by
MAINS PCE. Each route is
composed by a sequence of (node
id, link id, [wavelength(s) id(s)].
Wavelength(s) are selected if
MAINS PCE performs RWA. To be
further investigated how to perform
RWA at MAINS GMPLS when
multiple wavelengths could be
used in the same link (i.e. tetris).

[lsp recovery
params]

unprotected vs. protected lsp (i.e
protection type) +level of
disjointness (link, node,
wavelength ?, time-slice ?)

[bw]

[QoS] e.g. expressed with a value in a
finite range [0,1,2..N], or with the
set of delay/jitter/PLR params as
for D3.3

[Start time info]

[Duration time
info]

[flags] if needed, e.g. to select some
specific SLAE behaviours

param OUT [lsp id] needed if the interface is async

[route selected] route selected by the SLAE
(among the K provided as input).

IST STREP MAINS
(Metro Architectures enablINg

Subwavelengths)

MAINS-WP4-D4.5 final

Page 33 of 33

The route is filled with time-slice
for each link.

The output is then a sequence of
hops (node id, link id, time-slices)
in the format specified in the
request. The time-slice assignment
can be expressed as described in
D2.4 (i.e. list of wavelengths+time-
slices) for each hop

