

DIOMEDES D3.6 Page 1/62

DIstribution Of Multi-view Entertainment using content aware
DElivery Systems

DIOMEDES

Grant Agreement Number: 247996

D3.6

Public report on 3D Audio / Video rendering and content

adaptation

DIOMEDES D3.6 Page 2/62

Document description
Name of document Report on 3D Audio / Video rendering and

content adaptation

Abstract This deliverable describes the concepts and
structure of the stereo multi-view video and
spatial audio rendering components within the
DIOMEDES architecture. Besides the description
of the rendering modules and their working
principles the focus is set to the adaptation of
these components to varying working conditions
of the system (user parameters, data
transmission parameters) controlled by an
adaptation decision instance. Finally, these
rendering components are evaluated regarding
the rendering functionality and quality.

Document identifier D3.6

Document class Deliverable

Version 1.0

Author(s) Hemantha Kodikara Arachchi, Safak Dogan, Xiyu
Shi, Erhan Ekmekcioglu, Stewart Worrall (UNIS),
Andreas Franck (IDMT), Christian Hartmann
(IRT), Thomas Korn (IDMT), Peter Kovacs (HOL)

QAT team Murat Tekalp (KOC), Osman Solakoglu (ARC)

Date of creation 09/01/2011

Date of last modification 10/31/2011

Status Final

Destination European Commission

WP number WP3

DIOMEDES D3.6 Page 3/62

Table of contents

TABLE OF CONTENTS ... 3

INTRODUCTION ... 8

1.1 PURPOSE OF THE DOCUMENT .. 8
1.2 SCOPE OF THE WORK AND SCENARIOS CONSIDERED .. 8
1.3 ACHIEVEMENTS AND STRUCTURE OF THE DOCUMENT .. 8

2 AUDIO-VISUAL RENDERING TECHNIQUES .. 9

2.1 OVERVIEW .. 9
2.2 VIDEO RENDERING (INCLUDES EDITED VERSION FOR PUBLIC D3.6) ... 9
2.2.1 PURPOSE AND DEVELOPMENT PATH ... 9
2.2.2 STEREOSCOPIC RENDERER FOR EARLY INTEGRATION... 9
2.2.2.1 VIDEO-AUDIO SYNCHRONIZATION .. 10
2.2.3 COMMUNICATION WITH THE DECODER ... 10
2.2.4 CONTROLLING FREE VIEWPOINT CHANGES AND BASELINE .. 14
2.2.5 MULTIVIEW PLUS DEPTH (MVD) RENDERER ... 15
2.2.6 IMAGE WARP BASED RENDERER ... 23
2.2.7 RENDERING FOR MULTIVIEW AND LIGHT-FIELD DISPLAYS .. 24
2.2.8 ADAPTATION TO CHANGES IN INPUT ... 25
2.3 AUDIO RENDERING ... 26

2.3.1 Object based audio scene approach .. 26
2.3.2 Spatial audio production and rendering in the DIOMEDES architecture 27
2.3.3 Spatial Audio Rendering Principles .. 29
2.3.4 Real-time Audio Rendering Implementation: Modular Software Framework 32
2.3.5 Audio Reproduction Setups During Development and Experiments 37
2.3.6 Generation of Channel Based Audio Streams: Audio Scene Downmix 39
2.3.7 Rendering of channel based audio formats (Upmix) .. 42

3 AUDIO-VISUAL ADAPTATION TECHNIQUES ... 43

3.1 OVERVIEW .. 43
3.2 AUDIO-VISUAL ADAPTATION .. 43
3.2.1 ADAPTATION DECISION ... 43
3.2.1.1 ADE MODULE OPERATION AT THE USER TERMINAL INITIALISATION PHASE 43
3.2.1.2 ADE MODULE OPERATION WHEN A CHANGE IN CONTEXT IS DETECTED 44
3.2.1.3 FITNESS CRITERION FOR REAL CAMERA VIEWS TO SYNTHESISE VIRTUAL VIEWS 45
3.2.2 VIDEO ADAPTATION .. 47
3.2.3 AUDIO ADAPTATION .. 48

3.2.4 Adaptation to different reproduction systems .. 48
3.2.5 Adaptation to different reproduction configurations (listener & display setups) 49
3.2.6 Adaptation to varying video viewpoint of 3D multiview video renderer 50
3.2.7 Adaptation to transmission channel properties ... 51

4 FUNCTIONALITY AND QUALITY EVALUATION ... 53

4.1 OVERVIEW .. 53
4.2 EVALUATION OF FUNCTIONALITY ... 53

4.2.1 Video Rendering Functionality... 53
4.2.2 Audio Rendering Functionality... 54

4.3 QUALITY EVALUATION .. 55
4.3.1 Visual Quality Evaluation based on viewer tests and Quality of Experience Model 55
4.3.2 Audio Quality Evaluation .. 55

5 SUMMARY ... 59

6 REFERENCES ... 60

DIOMEDES D3.6 Page 4/62

DIOMEDES D3.6 Page 5/62

List of Figures
Figure 1: Line interleaved stereoscopic output from the stereoscopic renderer 10

Figure 2: Visible artefacts of the naive point cloud algorithm ... 16

Figure 3: Reprojection to original image ... 16

Figure 4: Crack and holes appearing when moving away from the original camera position. 17

Figure 5: Classification of image pixels into edge and non-edge areas ... 18

Figure 6: Image after filling the gaps with triangles .. 18

Figure 7: Image after filling gaps with triangles having adjusted areas .. 19

Figure 8: From an extreme angle, the individual points are clearly visible. Filling the place in-between
results in false geometry added to the scene. Filling the space with bigger points gives a more
pleasing result. ... 20

Figure 9: The effect of point splatting shown on an ordinary camera position .. 20

Figure 10: Multiple instances of the persons appearing due to imprecision in the input data 21

Figure 11: Turning on camera priority based rendering, single instances appear, with minor amount of
erroneous pixels. .. 22

Figure 12: GPU framework for the rendering algorithm .. 23

Figure 13: Image generated by the image warping algorithm .. 24

Figure 14: Object based audio scene production, downmix, packaging, transmission and rendering in
the DIOMEDES architecture .. 28

Figure 15: Screenshot of an object based audio production software ... 30

Figure 16: Object based audio scene production software for 3D positioning of audio objects 32

Figure 17: Example arrangement of different module types within the software framework 33

Figure 18: Example clock recovery structure (from [2]) .. 36

Figure 19: Audio cluster: timing and clock recovery in audio scene decoder module 37

Figure 20: 3D audio lab at Fraunhofer IDMT: Horizontal 2D audio systems .. 38

Figure 21: 3D audio lab at Fraunhofer IDMT: 3D low resolution setup (dome) .. 39

Figure 22 Functional schematic and attenuation coefficients used with the IRT downmix system by
default .. 41

Figure 23 DIOMEDES hardware demonstrator used for the processing of the 5.1 to 2.0 downmix 42

Figure 24. Real camera viewpoints required to render the user requested stereoscopic view pair 44

Figure 25. The concept of quality projection from real camera location to the user requested virtual
viewpoint .. 46

Figure 26. The average MOS results vs. the distance between the real and rendered (i.e., user
requested) virtual view locations .. 46

DIOMEDES D3.6 Page 6/62

Figure 27. The MOS vs. distance plot for the Band and Music sequences showing the approximated
function .. 47

Figure 28: Example listener and display configurations: audio scene adaptation 49

Figure 29 Measurement setup in the anechoic chamber ... 56

 Figure 30 Measurement of coherent pink noise in the anechoic chamber .. 57

 Figure 31 Measurement of natural music in the broadcast studio ... 57

DIOMEDES D3.6 Page 7/62

List of Tables
Table 1: Audio cluster and encoder modules: state of progress .. 35

Table 2. The priority order of the PIDs ... 43

Table 3. The revised priority order of the PIDs excluding DVB streams... 44

Table 4. An example priority order of the PIDs assuming V1, V2 and V3 are the core camera views 45

Table 5: Overview of the transmission channels and usable audio stream types (includes estimates of
the expected bitrate ranges) .. 51

DIOMEDES D3.6 Page 8/62

1 Introduction

1.1 Purpose of the document

This deliverable completes the documentation of the work on stereo multi view video rendering
and object based spatial audio rendering done within DIOMEDES workpackage 3. While D3.1
focused on the generation of content for later processing and evaluation, and D3.2 and D3.3
provided a detailed look at the applied principles and planned structures of video and audio
processing, D3.5 and D3.6 present the structure of the rendering architecture as implemented
in the DIOMEDES user terminal. The document also describes the implemented concepts of
system adaptation on the video and audio side and the adaptation control by the adaptation
decision engine (ADE). These sections of the document are strongly interconnected with the
overall system architecture that will be finally described in D2.3. Finally, an evaluation of the
functional and qualitative aspects of the rendering implementations is described.

1.2 Scope of the work and scenarios considered

The summary of the WP3 work given with this document reflects the implementation and
integration of the DIOMEDES demonstrator system. The crucial core components of the
rendering architecture are described. Their interconnections related to the adaptation decision
process are highlighted.

1.3 Achievements and Structure of the document

This deliverable presents the results of module design for rendering modules and adaptation
components. Evaluations of the components are substantiated by results of experiments and
application tests of the implementations. The experimental results of quality evaluation refer to
the deliverable D3.4 on quality of experience (QoE) modelling.

Chapter 2 presents the final and implemented concepts of audio and video rendering.

Chapter 3 presents the implemented mechanisms of rendering adaptation to varying system
conditions.

Chapter 4 contains results of the evaluation of the DIOMEDES audio visual rendering
implementations and their different aspects in quality and functionality.

DIOMEDES D3.6 Page 9/62

2 AUDIO-VISUAL RENDERING TECHNIQUES

2.1 Overview

The DIOMEDES terminal in its proof-of-concept implementation consists of a terminal PC that
coordinates media reception, processing and dispatching, user control and media rendering.
The rendering of video and audio content is conducted in dedicated audio and video
processing clusters that are physically separated from the terminal PC. All control and media
data transfer between terminal PC and both rendering clusters will rely on socked-based
communication.

The main processing operations of audio and video rendering clusters are basically
independent from each other. Nevertheless, both clusters are interconnected in different ways
regarding crucial system aspects:

- implementing similar temporal synchronisation approaches, to provide temporal
congruency of audio-visual reproduction

- sharing common configuration data (e.g. on display dimensions, viewpoint), to provide
spatial congruency of audio-visual reproduction

This chapter will describe the crucial processing aspects of video and audio rendering
subsystems.

2.2 Video Rendering (Includes edited version for public D3.6)

2.2.1 Purpose and development path

The task of the video renderer is to display the incoming images and depth maps
synchronized with audio rendering from the viewpoint selected by the user. The development
of the renderer was done within two development branches: an MVD renderer partially
described in the previous, interim version of this deliverable, and a simple stereoscopic /
multiview renderer framework initially having no view generation functionality, but containing
all the messaging and interfaces necessary to integrate into the prototype system. Before final
integration, these two have been merged in one final renderer. This development path has
been chosen to accommodate the renderer to the early stages of the integration, which did not
provide depth maps yet, which are necessary for view synthesis.

2.2.2 Stereoscopic renderer for early integration

During early integration setups, only a stereoscopic pair without depth maps was transmitted
on the whole chain. To enable seeing results quickly during integration on the stereoscopic
display used in the consortium (JVC GD-463D10 Xpol-based display), a simple stereoscopic
renderer was implemented to ease integration, into which the view generation methods were
introduced later, when depth maps had become available through the chain.

DIOMEDES D3.6 Page 10/62

Figure 1: Line interleaved stereoscopic output from the stereoscopic renderer

This renderer is able to display the incoming streams on the selected output device (2D, line
interleaved or side-by-side). The renderer is also able to show raw multiview data on an
attached multiview display using a specified pixel pattern. It is able to handle all of the
communication channels with other modules, and respond to every message in the specified
format. To ease integration, messages that have not yet been implemented are responded
with a warning JSON message to the other party. The first version of the interface supported
communication with the decoder (which is feeding the renderer with uncompressed image
data) and answered every other input as not-implemented. Testing communication with the
decoder early was very important because we suspected that the large amount of data to be
transferred between these entities could cause bandwidth issues. Once basic data transfer via
shared memory had been working correctly, synchronisation of audio with video followed.

2.2.2.1 Video-audio synchronization

As the renderer is responsible for the video output of the whole system, even a slight error in
the synchronization with other modules in the system is quite noticeable, thus a robust
mechanism has been implemented. At the heart there is an internal clock, which can display
the actual frame based on the received presentation timestamp (PTS). The clock is
occasionally synchronised with the incoming PCR from the ES-Demux module, while it
maintains its own PCR based on the computer’s clock between these synchronizations. Thus,
the renderer is robust for random amount and timing of sync signals. If only a few sync signals
are arriving (for example, one every 10 seconds) the renderer is still able to maintain sync as
long as the clock of the CPU is working correctly (which we can safely assume). If the
renderer receives a lot of these signals (for example, more than one for each frame rendered)
it can still check and correct the status of the internal clock, without causing any problems in
the displaying and buffering tasks.

2.2.3 Communication with the decoder

According to initial planning, the video cluster (decoder and renderer) should run on a single
computer in the stereo and multiview cases. If so, the decoder and the renderer are always
running on the same PC (in one or several processes) and communication between them can
be done locally. The selected method was to send image data over a shared memory channel,
combined with JSON RPC over TCP/IP for signalling. This has been successfully

DIOMEDES D3.6 Page 11/62

implemented and tested with a single decoder instance. Later, results of speed test with more
views and full resolution revealed that multiple decoder instances were necessary, and to
achieve the specified decoding speed, multiple decoder computers were needed, which put
us in quite a different situation, and thus shared memory could be used (or just partially, if
parts of the decoding are done on the rendering computer).

Quick calculations showed that the common Gigabit Ethernet interface was far from being
sufficient to transmit several uncompressed HD views between computers. Thus, using a
faster interconnect was necessary, and we have chosen InfiniBand, because one of the
partners had already had some equipment for testing, specifically InfiniHost single-channel
Single Data Rate mem-free 10Gb adapters. Performance tests shown that using native
InfiniBand protocols, it was fast enough to transmit the data in real-time, the cards (called Host
Channel Adapters in InfiniBand terminology) required only a free PCI-Express slot in the
computers and the installation of the software stack. If more bandwidth is required, replacing
the existing HCAs to Double Data Rate (20Gb) or Quad Data Rate (40Gb) HCAs, or dual-port
units is straightforward.

The software stack provides multiple protocols, three of which have been considered as
suitable for our needs. The Reliable Connection (RC) protocol is basically the equivalent of a
TCP channel, providing a bidirectional, reliable channel between two processes, but unlike in
the Ethernet case, all the protocol processing is done in hardware, thus reaching the peak
performance of the hardware (approx. 7Gb on case of 10Gb HCAs, the difference comes from
the overhead of the signalling on the wire and protocol overheads). The other possibility is
Remote Direct Memory Access (RDMA), where one process is able to directly send the
contents of a memory buffer to the memory of the other process (basically DMA between
computers), which is the most similar to the shared memory approach used before. Both of
these protocols require using the InfiniBand SDK, and the specific APIs in the applications,
which APIs are quite complex and different from the WinSock / BSD sockets API. The third
option is IP over InfiniBand (IPoIB), where the Open Fabrics Enterprise Distribution (OFED)
software stack adds an extra layer over the IB channel, basically providing a virtual Ethernet /
IP adapter that applications can use in the traditional way, with IP and sockets. The downside
is that performance in this case is significantly lower (approximately 2Gb), which is still almost
3x increase in bandwidth compared to the practical upper limit of TCP over a GigE channel
(~0.7Gb).

As the Windows API based shared memory protocol is not working over InfiniBand, a new
protocol over TCP/IP (which was in turn running over IPoIB) has been implemented to handle
image data transfer. This configuration temporarily solved the problem of distributing the
decoding task to multiple computers. A more efficient mechanism based on one of the native
IB protocols (eg. RDMA) will also be implemented to make more efficient use of the hardware
and to avoid using multiple parallel channels.

Shared memory connection

Initialization is initiated by the decoder. The decoder creates named shared memory channels
for each view, with size according to the image data to be transmitted (one full frame), and
sends JSON RPC messages to the renderer with the parameters of the shared memory
channels for each decoded view to set up the connection on the other end. The same memory
buffer is reused for all successive frames for the same camera / view.

The format of the shared memory initialization message accepted by the renderer is explained
through the following example:

{
 "id": 0,
 "jsonrpc":"2.0",
 "method": "init",
 "params":
 {
 "ConnNumber": 40,
 "ConnType":"SHR",
 "ShrMemName":"helloworldchanel",

DIOMEDES D3.6 Page 12/62

 "ShrMemSize":3110400,
 "vID":0,
 "width":1920,
 "height":1080,
 "FPS":25
 }
}

The header contains a unique message id, the method name „init”, while the connection
number 40 specifies the message type to handle it correctly. The parameter “ConnType”
selects between shared memory and TCP. The name of the shared memory channel (as used
in the Windows API) is defined in “ShrMemName”, followed by its size. The identifier of the
memory connection is stored in “vID”. The additional time invariant parameters are the
resolution and “FPS” (the latter used only for asynchronous playback, synchronised playback
does not use it).

When a new frame arrives over a shared memory channel, the notification message contains
only “vID” and Presentation Timestamp (PTS).

TCP/IP connection

If data transfer with a remote decoder is done via TCP/IP (either over InfiniBand, GigE or
locally), signalling is similar to the shared memory case. An example of the initialization JSON
RPC message that arrives over the TCP/IPoIB connection is shown below.

{
 "id": 1234,
 "jsonrpc":"2.0",
 "method": "init",
 "params":
 {
 "ConnNumber": 40,
 "ConnType":"TCP",
 "PortNumber": 8087,
 "PacketSize":3110400,
 "vID":0,
 "width":1920,
 "height":1080,
 "FPS":25
 }
}

The difference is in the “ConnType” field, which is “TCP” in this case, and “PortNumber” which
is a new parameter for the TCP connection. Before responding the message the renderer
creates a TCP/IP server listening on the IP of the JSON server and the specified Port.

The signalling of a new frame is the same as in case of Shared memory.

{
 "id": 1234,
 "jsonrpc":"2.0",
 "method": "render",
 "params":
 {
 "ConnNumber": 40,
 "vID": 1,
 "PTS": ["9876", "1234"]
 }
}

DIOMEDES D3.6 Page 13/62

The “vID” parameter pairs TCP channels with the views / cameras, while PTS points to the
time instant when the frame should be displayed, until they are stored in the buffers of the
renderer.

Metadata used by the renderer

The processing done on the incoming images can be anything from interleaving and
displaying to the generation of new views. As the renderer can handle an arbitrary number of
incoming and outgoing views, as well can do arbitrary compositing of the views for a specific
multiview display, information about the cameras, views and the display is necessary. When
rendering for HoloVizio displays, the type and serial number of the display also needs to be
known (due to unique calibration information).

Input stream description

The information describing the cameras is provided by the Decoder Control Module, and sent
via JSON RPC. The format of the message is as follows:

{
 "id": 1234,
 "jsonrpc":"2.0",
 "method":"inputsetup",
 "params":
 {
 "ConnNumber": 50
 "PTS": [0,0],
 "ChannelCount": 5
 "ChannelConfig":
 [
 {
 "ID":0
 "Type": "colour"
 "Camera":
 {
 "Intrinsic": [906.529,0,624.000, 0,906.529,344.000, 0,0,1,]
 "Extrinsic": [1,0,0, 0.2,0,1,0,-0.0157962, 0,0,1,-0.0334732]
 "Near": 3857.570
 "Far": 10072.544
 }
 "IDofC":2
 }... {"ID"...}
]
 }
}

For each channel, the renderer needs a view ID which is unique and is different for depth and
colour images too. For such a view, we need the precise camera calibration information
(described as intrinsic and extrinsic matrices as well as near and far clip planes), and the
relation to the other channels (which image belongs to which depth map).

The parameters in this message define one or more input channels. The renderer can handle
updates to this message, according to changing camera configuration over time. Configuration
/ reconfiguration either takes place immediately after the reception of the message, or at a
specified PTS. The PTS parameter can thus be used to signal camera changes / movements
to be done very precisely, regardless of the actual streaming / buffering status of the whole
system.

Output configuration

The output of the renderer can be anything from a 2D window to a full screen composite
image for a stereo / multiview display, or light field content to be shown on a HoloVizio display.
The desired outgoing views of the system can be configured separately by defining virtual

DIOMEDES D3.6 Page 14/62

cameras, or defined as a simple bypass of the incoming views. This definition is sent via
JSON RCP as the example below shows:

{
 "id": 1234,
 "jsonrpc":"2.0",
 "method": "outputsetup",
 "params":
 {
 "ConnNumber": 51,
 "PTS": [0,0],
 "RenderMode":
 {
 "Mode":"stereo",
 "WindowPos": [1024,0,1024,768],
 "StereoMode": "sbs"
 "DisplayModel":"HV80C-20050001"
 "CameraSystem":
 [
 {
 "Intrinsic": [906.529,0,624.000, 0,906.529,344.000, 0,0,1,]
 "Extrinsic": [1,0,0,0.2, 0,1,0, -0.0157962,0,0,1,-0.0334732]
 "Near": 3857.570
 "Far": 10072.544
 },
 {"ID":0 },
 ...
]
 }
 }
}

Render mode defines the type of the output device which can be 2D, stereo, multiview and
light-field. The position and size of the rendering window have to be specified, depending on
the number of attached monitors, the resolution of each, and their layout. In case of light field
display there is no window, the layout is determined by the Display Model.

Stereoscopic displays accepting side-by-side or line interleaved input are supported, the
desired output type is specified with the StereoMode field.

If the requested view is the same as one of the input streams (pass-through), the ID specifies
the input channel to be used. If new views are to be synthesized, the virtual camera
representing this new view is defined in the same way as the input cameras (intrinsic and
extrinsic matrices). Specification of outgoing views as a floating point number with respect to
the incoming cameras is also possible (for example, view 1.5 is halfway between incoming
view 1 and 2), provided that the number of cameras does not change, and all the cameras are
perfectly rectified and equidistant. Applying this simplification in the message format will be
considered later.

2.2.4 Controlling free viewpoint changes and baseline

As described above, the renderer is able to synthesize new views based on colour, depth and
camera information. This can be used to allow free navigation in the 3D space, synthesizing
arbitrary views (at least in theory). This navigation feature will be exposed to the user by
means of moving left and right in the scene, inside the baseline captured by the cameras. This
functionality is provided irrespective of the display mode, that is, navigation is possible in 2D
mode as well as 3D modes requiring multiple output views. These movements are translated
into specific virtual camera positions, and sent as intrinsic / extrinsic matrices to the renderer
as output specification updates, using the JSON message described above. Although a
simpler message that describes the outgoing views as a floating point number (and to relate

DIOMEDES D3.6 Page 15/62

all other views to this central view) is possible, this description gives more flexibility, as it also
allows arbitrary baseline modifications. That is, in case of stereo, the user can choose the
distance between the two views, and increase / decrease the amount of depth in the scene by
modifying the distance (similarly in the multiview case).

During viewpoint changes, the audio rendering system will also receive the same information,
and update the location of sound sources accordingly, to provide a consistent audiovisual
experience to viewers.

2.2.5 MultiView plus Depth (MVD) renderer

View synthesis / rendering with depth maps using DIBR

We have initially chosen a point-based MVD renderer, the approach of which is quite different
from the commonly employed image warping approach. The reasons for doing so are twofold.
First, it is much more suitable for GPU based implementation (most image warp renderers are
still CPU based), and we were sure that the performance targets set can only be met with a
GPU-based implementation. Secondly, such a renderer can take into account arbitrary
nonlinear transformations during the view generation process, which is very useful for direct
light-field generation. Generating the light-field geometry in one step avoids the need to make
the light-field conversion step afterwards, which involves combining pixels from all of the
different views based on a huge lookup table. The operation is itself simple, but requires that
all views are available in all rendering nodes of the light-field display, the consequence of
which is either huge redundancy and performance drop (generate all the images everywhere),
or a huge communication effort between nodes (N to N with large amounts of data).

The basic concept is that the depth and frame buffers are treated as a special representation
of 3D points. The renderer projects back all pixels of the camera images based on the camera
parameters to world space and creates a point cloud or mesh based on the disparity image.
After the inverse camera projection, the points or the mesh are projected back from world
space to camera space with the new projection matrix. Visibility is resolved by writing the
depth calculated from the disparity images to the z-buffer.

There are several advantages of this approach. It is very fast and can handle non-linear
camera arrangements. We are also able to do a fast reprojection of the geometry on light field
displays. However this approach requires a fairly precise depth representation as errors in the
depth map immediately show up.

Unfortunately disparity map values generated from colour image pairs are based on matching
similarities on the two images, e.g. colour differences, texture patterns or colour gradients. As
these result in the closest match of pixels rather than the closest match of real depth,
significant errors can occur on the depth map generated from the disparity map. Typical errors
and their consequences are:

 Due to the different rasterization of the two views, black pixels appear on the
target where no points of the source images are projected

 Due to the noise of the depth map flying pixels appear

 Due to the sampling and quantization of the depth map the foreground colours
appear as background (and vice versa) at the edges of the objects (ghosting
effect)

DIOMEDES D3.6 Page 16/62

Figure 2: Visible artefacts of the naive point cloud algorithm

Even reprojection to the original camera position can yield minor errors due to the inverse
projection projecting pixels to the wrong position in world space.

Figure 3: Reprojection to original image

These errors manifest on the reconstructed image either as small cracks or larger holes, the
more the camera position is different from the originals, the bigger they become.

DIOMEDES D3.6 Page 17/62

Figure 4: Crack and holes appearing when moving away from the original camera position.

Switching to a mesh based representation covers all in-image holes, but adding quads from
another colour and depth pair results in overlapping geometry. This results either in z-fighting,
or on extrapolated areas large areas intersecting with different interpolated colours.

This algorithm can be improved in several ways, as described below.

Removing the outliers and ghosting effects

Using simple image filtering techniques based on the generated depth map the outliers can be
removed

1
. A small kernel is placed over each pixel and per-pixel classification is generated. It

is defined for each pixel if they are background or foreground depending on the jumps in the
resulting depth values.

Multiple classifications exist, such as edge detections using the Sobel or Canny methods; or
using some voting technique depending on the depth values in the kernel. At the moment the
most suitable solution is the latter one, where an average of the valid depth values are
calculated first, then the depth relation is considered within the kernel. If the number of depth
values larger than the average is bigger than its counterpart background is detected.

1
 Christoph Fehn, Depth-Image-Based Rendering (DIBR), Compression and Transmission for

a New Approach on 3D-TV; Fraunhofer-Institut fÄur Nachrichtentechnik, Heinrich-Hertz-Institut
(HHI), Einsteinufer 37, 10587 Berlin, Germany

2
 A Comparative Analysis of Image Inpainting Techniques, Michael E. Tächler, 2006.

DIOMEDES D3.6 Page 18/62

Figure 5: Classification of image pixels into edge and non-edge areas

After the classification is generated, the layers are merged to compose a single image for the
current process camera view.

Filling the gaps with geometry

Filling gaps in a way that fits well for the architecture of the GPU is to use the incoming images
as patches instead of standalone points. Rendering the triangle fills missing background from
the target image. Using only brute force patch rendering the depth values from the other
images might be treated inconsistently resulting in strange blending of background and
foreground.

Figure 6: Image after filling the gaps with triangles

These effects can be almost completely removed if the sizes of these triangles are also
considered. As for highly sampled parts of the image the triangles are small and the size

DIOMEDES D3.6 Page 19/62

increases as we have less information, the area of the projected triangles (with respect to the
whole image) is used as a blending (filtering) factor.

Figure 7: Image after filling gaps with triangles having adjusted areas

Filling the gaps with point splatting

Looking at the synthesized images when the virtual camera position is between the capture
camera baseline, we can realize that the holes to be filled are quite small, thus, if the points of
the point cloud would be slightly bigger, we could easily fill them. On the GPU, outputting
bigger pixels is a simple operation, thus we can – depending on the position and orientation of
the source and destination cameras – determine the desired size of the point to be drawn.
According to our experiments, this results in better overall image quality compared to the
geometry filling approach, which introduces false geometry between large depth
discontinuities.

The effect of this improvement is demonstrated on two examples, one from an extreme
camera position (far away from the capture cameras, from an angle that the viewer will not be
allowed to see), and one “ordinary” camera position.

DIOMEDES D3.6 Page 20/62

Figure 8: From an extreme angle, the individual points are clearly visible. Filling the place in-
between results in false geometry added to the scene. Filling the space with bigger points
gives a more pleasing result.

Figure 9: The effect of point splatting shown on an ordinary camera position

Priority-based rendering

In case camera calibration information is not precise, then feeding all the incoming images into
the process described above leads to doubled / tripled objects in the scene. This happens if
the pixels coming from the other cameras have a depth value telling that the pixels are in front
of the ones already rendered, which often happens.

DIOMEDES D3.6 Page 21/62

Figure 10: Multiple instances of the persons appearing due to imprecision in the input data

Using information from the closest (most reliable) camera first, and using other information
from all other cameras stepping further from this camera ensures that (supposedly) valid
pixels are not overwritten with other pixels coming from distant cameras. Instead, information
from distant cameras is taken into account only in holes (where no information is available).
Due to this change, which can be implemented using alpha / stencil testing on the GPU
combined with multiple rendering passes using the different input images, the worst that can
appear is some faulty pixels inside the holes, instead of complete replicas of objects adjacent
with the originals. However, if the incoming data’s camera calibration information is not
consistent (vertically), then small jumps can occur when changing between cameras.

DIOMEDES D3.6 Page 22/62

Figure 11: Turning on camera priority based rendering, single instances appear, with minor
amount of erroneous pixels.

Real time video rendering with depth maps

These methods are combined into a single framework. Each incoming frame goes through a
pipeline to enhance the target image. In each step the result from the previous camera image
is updated by the new source image according to the following steps:

 The incoming camera frame is rendered to both depth and frame buffer. During this
step the special projection characteristics of the display can be considered. The input
camera calibration data is also used in this step.

 The depth buffer is blurred to find the average values for each pixel.

 The depth is classified and the blurred foreground and background images are
generated. This step is carried out in a single pass using multiple render targets to
reduce the CPU load.

 The multiple passes and pipeline elements communicate through OpenGL textures
and off-screen rendering buffers.

DIOMEDES D3.6 Page 23/62

Rendering of

patch

Classify to

background/

foreground

Blurred

background

Depth+color image

Depth

averaging

Blurred foreground

Compose

P
re

v
io

u
s
 f
ra

m
e

Result Image

Figure 12: GPU framework for the rendering algorithm

The framework is implemented with OpenGL using GLSL programs. The result is calculated in
multiple steps and to reduce the number of passes multiple render targets are used. During
the patch rendering and triangle size calculation the use of geometry shader improves
performance.

2.2.6 Image warp based renderer

The DIBR approach described above is quite sensitive to depth map errors and the precision
of camera calibration information, it can even happen that when the virtual camera placed to
the same position where one of the capture cameras is located, errors from projections done
with erroneous depth values result in an image that’s not the same as the original.

For this reason, we have implemented a different algorithm too. The image warp approach
utilizes the disparity map for interpolation and extrapolation. It shifts the pixels from the original
image with the normalized distance between the camera position on the baseline and the
reconstructed image's camera position multiplied by the disparity value of the image. This
approach has the advantage that it always results in the correct image when the original and
reconstructed cameras coincide.

On the other hand, image warping only works when the cameras images are rectified, parallel,
and there are no vertical shifts between the camera images, which is not always the case with
live content. For this reason, we currently prefer using the point-based renderer.

We have implemented the image warping based renderer on GPU to achieve better
performance than what is possible using CPU based code. Although this method is not really
suitable for such massively parallel implementation, most of the steps can still be expressed
this way.

DIOMEDES D3.6 Page 24/62

Figure 13: Image generated by the image warping algorithm

Once we generated the images with image warping, those can be used directly with stereo /
multiview displays (after mixing the pixels in the way determined by the display). However, in
the HoloVizio case, image generation needs to be follow by the light-field conversion step.

Disparity map error filtering

Disparity values typically have some errors when there are large differences between disparity
values (edges). Therefore it is a typical image enhancement method to generate images by
removing the boundary pixels of the disparity image, which is done in a similar way than in the
other algorithm. As a first step an edge detector is being run on the disparity image. This
generates a mask that describes the boundary. Then a low pass and a high pass filter are run
to get the foreground and the background of the image. Rendering the three layers separately
enables us to run different post processing steps on different layers. While it is possible to try
handling boundary pixels separately, we have found that the best course of action is to
remove them and their neighbourhood from the image altogether.

Post processing

Background post processing is usually done by either diffusing or inpainting the missing parts.
There are several existing inpainting methods from simple temporal background replacement
for stationary cameras to various PDE diffusion approaches, edge-based algorithms and
texture search and replace methods.

2

Foreground post processing usually consists of a low pass filter along the edges for a
smoother, more natural look of foreground edges.

3

The combined image can be filtered for point noises in the depth map. If the depth differences
around a pixel exceed a threshold, it is replaced by the pixel with the median depth value.

2.2.7 Rendering for multiview and light-field displays

Rendering for multiview displays is similar to rendering for stereo displays, with some
differences. First, instead of two views, we need multiple views (typically 5-9), depending on
the specific display. If we assume that view synthesis is used for generating the stereo pair,

2
 A Comparative Analysis of Image Inpainting Techniques, Michael E. Tächler, 2006.

3
 Intermediate view interpolation based on multiview video plus depth for advanced 3D video

systems, Smolic et Al, 2008.

DIOMEDES D3.6 Page 25/62

then generating multiple views is just a matter of number of images generated, which of
course has a performance impact. On the other hand, multiview displays show reduced
resolution images to the different directions. Due to the way they are constructed, they
distribute a fixed amount of pixels available in the underlying HD panel to some viewing
directions, that is, if a multiview display provides 5 views, then the number of pixels shown in
one direction is be approximately full resolution / 5 pixels. The resolution loss is usually evenly
distributed between the horizontal and vertical resolution (using slanted lens arrays), but
knowing the pixel structure, the effective resolution can be approximated.

This takes us to the other difference, pixel structures. In stereo displays, the possible pixel
arrangements are side-by-side, over-under (not commonly used), line interleaved and
checkerboard (not commonly used either). Most display accept more of these formats
(although some filtering / upsampling may occur if the non-native format of the display is
used), and all of these are well known and easy to assemble in software. This is not the case
with multiview displays, where the pixel / subpixel structure of the views is usually kept secret
by the display manufacturer, and users can only use their proprietary tools to create content
for the display. One exception is Alioscopy, who solve this problem by providing a GPU shader
that does the magic inside, that application developers can build in their software. Other than
this, developers / researchers are commonly forced to reverse engineer the subpixel structure
4
.

In this project, we have received the pixel pattern of two multiview displays. One is a display
developed by Arcelik, the other one is the NewSight 42” 8-view display.

The most straightforward way of representing such subpixel patterns is in a texture, having
equal size with the underlying panel and the view numbers represented by RGB values in the
texture. Such a texture can be generated programmatically, still it provides enough flexibility to
take any kind of structure or irregularity into account. Then, this texture in the renderer is used
as a look-up table during the assembly of the final multi-view image.

2.2.8 Adaptation to changes in input

As the basic layer arriving via DVB is a stereoscopic image pair, and all others views and all
the depth maps arrive via P2P, the minimum scenario is that the renderer has stereoscopic
input without depth maps. The most optimistic case is that the renderer is fed with 4 views and
4 depth maps (or even 8 views and 8 depth maps). In between, according to the bandwidth
available to P2P, any combination is possible, and the situation may change during the
transmission.

In theory, the possible degradations possible are:

 missing views

 missing depth maps

 partial views or depth maps

 different spatial or temporal resolution of views and / or depth maps (all changing at
the same time or change independently from each other)

 different quantization of views and/or depth maps (lower bit depth)

 different compression levels of views / depth maps

Loss of views or depth maps can be handled by the renderer, as the number and layout of the
cameras can be changed on the fly, even with every frame. However, due to the way the
images are used during the rendering process, losing an image that is close to the virtual
viewing position may result in an abrupt change (jump) in the rendered image, if the data
coming from the adjacent views (which will be the closest ones after losing the current one)

4
 A. Boev, R. Bregovic, A. Gotchev, “Measuring and modeling per-element angular visibility in

multiview displays”, Special issue on 3D displays, Journal of Society for Information Display,
Sept. 2010 Vol. 26, No. 09, pp. 686–697

DIOMEDES D3.6 Page 26/62

contain slightly different image / depth information about the scene. Fortunately, the renderer
contains a buffer of frames ahead, thus if the loss of a frame is signalled in time, the renderer
can gracefully change from using the will-be-lost camera to an adjacent one. That is, the
contribution of the image coming from the camera can be reduced to zero by the time it will be
lost, and then this change can be done through multiple frames (if the size of the buffer
allows), thus the transition from dominantly using one camera to dominantly using another
adjacent camera can be smooth.

Similarly, when a view and the corresponding depth map is re-introduced (and the new
camera is closer to the virtual view than the others), such a transition can be done in the
opposite way, smoothly transitioning to rely on the new view.

Due to the way it operates, if the renderer faces views without corresponding depth maps, or
depth maps without corresponding views, it cannot use this partial information for view
synthesis, so the partial information will be dropped (unless the view is used in pass-through
mode, when a depth map is not needed).

Different spatial resolution could be handled by the renderer (by using the respective textures
upsampled), but this also needs updating the signalling between the decoder and the
renderer, so that the decoder can indicate the reduced resolution of the image which is placed
in the (partially used) shared memory / network buffer.

Different temporal resolution is the kind of degradation with which the renderer cannot do
much, as interpolating the lost frame based on motion vector prediction is far out of scope.
Thus, two options are using the previous available frame until the next one arrives, or, if this
produces disturbing effects (parts of the scene are not updated with the same frequency as
the others), we can avoid using that image.

Different quantization and / or compression levels of video and depth streams results in lower
precision of colour and depth values, the latter of which can cause hard edges and discrete
depth levels in the scene. Well-known compression artefacts in the images are also have an
effect on the depth maps, which is manifested as false depth values on the sides of
macroblocks, and incorrect depth values around sharp edges. Edges in the depth map are
already treated separately, however we are not aware of any way avoiding the effect of
blocking artefacts in the depth map.

An alternative way of handling drastic losses in image streams is forced animation of the
user’s viewpoint. For example, in the worst case of falling back from MVD to a pure stereo
pair, if the renderer can foresee such a loss, it can smoothly animate the viewpoint back to the
central position if the stereo pair (if it was not there already), and when it’s there, switch to
using pass-through of the two images onto the stereoscopic display instead of view synthesis.
Such an automatic camera movement may not even be noticeable by the viewer in case the
3D content uses camera movements itself. When depth maps become available, the user is
allowed to change viewpoints again.

According to the current state of the overall system, only losses of full images and / or depth
maps are possible, and the renderer cannot face any of the other degradations described.

2.3 Audio Rendering

The following section gives the final description of the implemented audio render techniques in
the DIOMEDES system architecture. The section refines and updates the interim descriptions
of D3.2.

2.3.1 Object based audio scene approach

Compared to other established broadcast architectures, the DIOMEDES architecture extends
audio transmission by the use of so called object based audio scene transmission in addition
to conventional channel based transmission approaches.

DIOMEDES D3.6 Page 27/62

Conventional channel based transmission modes are based on a mix-down of the audio
production to a set of audio channels that is assigned so a set of loudspeakers of the audio
reproduction setup.

The object based audio scene transmission and rendering approach applies an abstract audio
scene description based on pairs of individual audio object signals that are not assigned to
dedicated loudspeaker positions but to a set of object description data (e.g. audio object
position). The assignment of these signals to the reproduction loudspeakers is done using the
spatial audio renderer. Signal processing adapts the incoming audio object descriptions to the
individual loudspeaker channels connected to the audio renderer. By using this approach,
advantages for audio scene reproduction can be achieved that are described in the following
sections.

2.3.2 Spatial audio production and rendering in the DIOMEDES architecture

The following block diagram shows the object based audio scene production and application
of spatial audio rendering in the DIOMEDES system architecture on both broadcast and
terminal sides in a schematic way. The shown blocks represent processing steps in the
DIOMEDES architecture, that partly work simultaneously in realtime (production side: monitor
rendering, 5.1 downmix, object based scene encoding; terminal side: all modules) or that are
used as offline tools for the DIOMEDES demonstrator production (2.0 downmix, channel
based encoders and MPEG-2 TS packagers, multiplexer).

DIOMEDES D3.6 Page 28/62

Figure 14: Object based audio scene production, downmix, packaging, transmission and
rendering in the DIOMEDES architecture

Object based spatial audio rendering is used on the production side of the DIOEMDES
architecture for production monitoring and on terminal side of the DIOMEDES architecture for
audio reproduction.

For production, an object based audio production software, the so called spatial audio
workstation, assigns audio object description data to a set of object audio channels. This step
leads to the so called object based audio scene.

The audio scene is reproduced during production by a realtime spatial audio renderer that
controls the production loudspeaker setup. The same audio scene is processed by the
DIOMEDES spatial audio scene encoder that conducts a compression of the object audio
signals and a multiplexing with the accompanying object description data. The third
component of this architecture that processes the object based audio scene is an object based
audio scene downmixer. It creates a set of 5.1 audio channels from the object descriptions. A
2.0 audio downmix is derived from the 5.1 downmix by a dedicated downmix module. At this
stage, the object based audio scenes is complemented by two channel based scene
representations that are used within the DIOMEDES structure for DVB transmission.

DIOMEDES D3.6 Page 29/62

All 3 scene representations are coded and encapsulated into MPEG-2 Transport Streams (TS)
for transmission. A multiplexer creates a TS containing all 3 audio streams. For transmission
via DVB or P2P within the DIOMEDES architecture, the stream is demultiplexed and
combined with synchronised video streams before broadcast or network transmission.

On the terminal side of the DIOMEDES architecture the received DVB and / or P2P streams
are synchronized and remuxed to be fed to the audio and video clusters. The audio scene
decoder module of the audio cluster receives the incoming audio TS and decodes the streams
into object based audio scenes. The availability of the 3 scene representations in the incoming
TS determines which representation will be rendered as an audio scene. Before the decoded
audio scene is processed by the spatial audio renderer for reproduction, a dedicated module
for object scene scaling adapts the audio scene for different video viewpoints geometrically.
The object based audio renderer finally generates the audio signals for the reproduction
loudspeaker setup, adapting the audio scene to the given loudspeaker number and
placement, and the configured display and listener positioning.

2.3.3 Spatial Audio Rendering Principles

Two approaches of audio rendering were chosen for application in DIOMEDES terminal:

Wave-Field-Synthesis (WFS)

The audio reproduction principle of wave field synthesis can be implemented by individually
controlling a high number of closely placed loudspeakers to achieve an approximation of real
sound wave fronts. This principle is derived from the Huygens-Fresnel principle of
decomposing a wave front into elementary waves [3] [5].

Reconstruction of a wave front approximation is realised by superimposing the individual wave
fields of all loudspeakers. The individual speaker signals are derived from a signal of a so
called virtual sound source by applying speaker-specific signal filtering, delaying, and level
modification. From theoretical point of view, the reproduction of realistic 3D wave fronts is
possible, if a listener area is completely enclosed by transducers (full 3D enclosure). Due to
the high number of loudspeakers, that are necessary to conduct wave field synthesis, a
reduction to horizontal loudspeaker arrangements is usually accepted and applied.

Several unique features of Wave Field Synthesis can be used to create and reproduce audio
scenes of a new perceptual quality:

- The human localisation of virtual sound sources approximates the localisation of real
sound sources. A virtual sound source object can be placed apart from positions of
existing loudspeakers (that means even “behind” the loudspeaker setup, as it is seen
from a listener position) and the listener will have a nearly correct directional
perception of the source objects’s position. This perception will not be determined by
the position of one loudspeaker but from the overall wave field characteristics. The
directional perception will be nearly correct not only for one ideal listening position but
for an extended area of listener positions compared to conventional surround
reproduction systems (sweet area instead of sweet spot).

- The WFS approach offers the reproduction of so called focused sound sources. If a
virtual sound object is placed within the enclosing loudspeaker ring and within the
listener area, the resulting wave field has characteristics of level distribution and
localisation that create the impression of sound source positions close to the listener.
A continuous change of the source’s position within the listener area leads to aural
perceptions that are not possible with conventional audio reproduction systems.

Current WFS implementations are based on a model based rendering: the generation of
loudspeaker signals from virtual source signals is done by applying a set of loudspeaker
driving coefficients (e.g. conducting a convolution of FIR coefficients or applying matrices of
amplitude factors and signal delays) that are derived from a set of virtual source parameters

DIOMEDES D3.6 Page 30/62

[4] [6]. Virtual source’s position and type are example parameters of this set. The virtual
source object description structure can vary in different WFS implementations. The object
description of one virtual source directly affects the driving coefficient set.

Since a usual WFS implementation supports the simultaneous rendering of numerous virtual
sound sources, a WFS audio production leads to virtual source object data sets that each
consists of the source’s audio signal and synchronised object description data.

Dedicated tools are used to generate this combination of audio signals and description data
during a production process. Depending on the implementation of the WFS system, these
tools are more or less comfortable. Basic functions of these production tools are

- positioning of sound objects,

- animation of sound objects,

- setting and automation of object properties,

- handling of multiple audio objects simultaneously.

Advanced functions of dedicated object based production tools are

- manipulations of object motions,

- hierarchical management and manipulation of multiple objects,

- cooperative editing approaches (simultaneous editing by multiple users).

These tools can be implemented e.g. as stand-alone applications or add-ons for established
audio workstation software. In current implementations they control the separate audio
rendering processors via socket-based communication. In using the above-mentioned tools,
complex audio scenes can be created. Following figure shows an example of a graphical
production tool for object based audio scenes.

Figure 15: Screenshot of an object based audio production software

DIOMEDES D3.6 Page 31/62

Reproduction on low-resolution and 3D loudspeaker setups

As WFS reproduction systems require a significantly higher number of loudspeakers / signal
channels / amplifier and D/A-conversion modules than conventional surround systems, their
application is restricted to a limited range of applications mainly due to their costs. Thus, low-
resolution reproduction systems seem to be useful to allow a playback of object based audio
scenes even on loudspeaker systems of lower loudspeaker numbers.

Based on experiences with current WFS rendering implementations, dedicated modules to
control loudspeaker setups of low loudspeaker numbers were developed at Fraunhofer IDMT.
Driving coefficient generators were implemented that cope with lower loudspeaker numbers
and higher loudspeaker inter-distances compared to WFS setups. Coefficient calculation can
adapt to given listener setups and loudspeaker arrangements with the aim of reproduction the
same object based audio scene that originally was produced for WFS setups with an overall
similar listener experience.

Driving coefficients are calculated, applying parametrically controllable models that invoke
listener and loudspeaker setup descriptions. The underlying geometric models are adapted to
current WFS implementations. Coefficients are generated to provide localisation clues to the
listener corresponding to a given virtual source position. Although wave front reconstruction
cannot be sufficiently be achieved to perform true wave field synthesis, source localisation (of
reduced accuracy) is still possible by providing stimuli that can be interpreted by the human
auditory directional perception system (see also [7]). At the listener position, these localisation
clues lead to a directional impression that is strongly influenced by direction of arrival, level of
arrival and time of arrival of the individual loudspeaker contributions.

Like the WFS reproduction systems, the low resolution reproduction systems are based on
loudspeaker setups that surround the listener area.

The significant reduction of loudspeaker numbers impairs the localisation precision compared
to that of a full WFS loudspeaker setup. The effect of focused sound sources is also reduced.

Control parameters include the same audio object description data set that is used to control
the above-mentioned WFS rendering approaches. Due to this compatibility of object control
interfaces, the same object based audio scenes can be reproduced by both approaches.

Driving coefficient calculation from source positions utilizes geometric models that were also
designed to support true 3D loudspeaker arrangements. The requirement of enclosing
loudspeaker setups in the 2D horizontal plane is extended here to a virtual 3D enclosure. That
means that the listener area must be enclosed by a loudspeaker setup forming a volume that
contains the listener area. A typical case of such a loudspeaker setup would be a ring of
loudspeakers distributed in the horizontal plane and additional loudspeakers above the listener
area. This setup can be controlled to approximate virtual elevated sound source positions.

The following figure shows an audio object based production software that was extended by
3D positioning of virtual audio objects. The example screenshot shows a top view of a
semispherical dome setup of loudspeakers and different audio objects combined to an audio
scene. To derive 3D coordinates from the 2D graphical user interface positions, object
positions can be transformed from the horizontal plane by placing them onto a configurable 3D
surface that is indicated as light blue area.

DIOMEDES D3.6 Page 32/62

Figure 16: Object based audio scene production software for 3D positioning of audio objects

The driving coefficient calculation approaches are similar for low resolution 2D and 3D setups.
In the currently implemented module, a selection of one of both approaches is conducted by
evaluating a configured loudspeaker setup. As invalid loudspeaker setups are neglected, the
design of a reproduction loudspeaker system should be prepared considering the described
restrictions.

2.3.4 Real-time Audio Rendering Implementation: Modular Software Framework

As described above, the operation of rendering a virtual audio source with a given input signal
to a loudspeaker setup consisting of a number of N loudspeakers, can generally represented
by conducting N convolution operations of the input signal with N loudspeaker specific driving
coefficient sets. If a number of S virtual sources should be rendered simultaneously on a
reproduction system, a number of SxN convolutions have to be conducted applying individual
FIR kernels for each crossing point of the resulting filter matrix.

As processing costs grow with filter length, number of rendered virtual sources and number of
loudspeakers, wave field synthesis (WFS) rendering processes lead to a high occupation of
available processing capacity on the processing platform. Additional processing effort is spent
for a real-time driving coefficient design as it is usually applied in such reproduction systems.
Finally, controlling operations and additional signal processing (e.g. audio decoding) increase
the needed processing power.

The usual platform for audio rendering within the DIOMEDES architecture will be a PC
system. Current PC systems are capable to handle the complete signal processing for a WFS
system. To conduct rendering on such systems, the software processes have to be optimised.
While the overall complexity of the rendering software processes can be reduced by adapted
optimising and consolidating the processing operations, a real time rendering of complex
audio scenes to complex loudspeaker setups can also be made possible, by exploiting the
multi processing features of modern PC systems.

DIOMEDES D3.6 Page 33/62

For that reason, a multi threading framework was developed specially for the application in
audio reproduction systems. The design of this software framework was adapted to the needs
of multi-channel audio processing, rendering and related audio operation as needed for WFS
and low resolution rendering.

Basic features of this software framework are:

- support of multi-threading on multi-core/multi-processor machines

- support of modular processing system designs built from a small set of basic module
classes

- standardised set of configuration and connection interfaces (message connections
and audio connections)

- extensible infrastructure: implementation of new modules fulfilling specific
requirements

- configurable module arrangements (signal flow graphs) and individual configurable
blocks

- automatic generation of processing schedule

The following figure schematically outlines the module-type arrangement of an example
configuration structure.

Figure 17: Example arrangement of different module types within the software framework

The module type “ExternalBlock” has the function of global audio signal input and output. This
type of block can be connected with modules of the “ProcessingBlock” type. All modules of
this type require audio signal connections to other modules. In typical audio rendering
configurations, the convolution matrix is implemented in dedicated modules of this type.
Modules of the so called “MessageBlock” type can handle and distribute non-continuous
message data, e.g. control instructions. In the diagram, these modules control processing
modules that are able to handle data of message type.

This modular approach allows for splitting up the overall processing task into individual
operational entities. The computation needs of these modules are distributed over time and
over CPUs to optimally exploit the system’s computation capacity.

In the case of WFS audio rendering, the signal processing task can be distributed to a number
of processing modules, while a separate MessageBlock module conducts all driving coefficient
calculation tasks. An instance of ExternalBlock encapsulates the interface to the multi-channel
audio devices. Furthermore a dedicated MessageBlock module provides a socket based
control interface for incoming external control instructions. Finally a processing module can
conduct all decoding and timing processing that is needed to allow synchronised audio scene
rendering within the DIOMEDES system.

DIOMEDES D3.6 Page 34/62

DIOMEDES audio rendering cluster: module implementation status

The modules used within the DIOMEDES audio cluster software framework and their final
state of implementation will be indicated in the following list:

DIOMEDES D3.6 Page 35/62

Table 1: Audio cluster and encoder modules: state of progress

Module category State of implementation

WFS coefficient calculation

WFS rendering

Implemented

Low resolution 2D / 3D driving coefficient calculation

Low resolution 2D / 3D rendering

Implemented

Driving coefficient convolution matrix Implemented

Audio scene decoder for stream reception, decoding, clock
recovery and synchronisation, high quality audio resampling:
“NetDecoder”

Implemented

Universal audio scene decoder for file and network stream
decoding “StreamPlayer”, to replace “NetDecoder” module

Implementation will
continue after
DIOMEDES

Scene adaptation extensions (viewpoint changes) Implemented

Real-time audio scene encoder (includes audio scene capturing,
coding, packaging)

Implemented

Module example: Universal audio scene decoder “StreamPlayer”

A planned module that has entered the implementation phase is the “StreamPlayer” module.
This processing module will allow the decoding of object based audio scenes. The module will
have the following features:

 flexible, extensible component for playback of file- and stream-based media

 support of different types of synchronisation references (e.g. internal time reference,
PCR timing information of MPEG2-TS based formats, SMPTE longitudinal time code)

 implements generic interface for buffering and decoding (support of diverse codecs
shall be possible)

 interface for synchronization timers

 optional interface for file transport control

This module is under development and will replace the current “NetDecoder” module of the
DIOMEDES architecture in a later stage of the audio renderer.

Audio-visual synchronisation, clock recovery, timing and signal processing strategies
within the audio scene decoder

A crucial part of the DIOMEDES audio cluster structure is the audio scene decoder module
which is embedded into the audio rendering software framework. It

- receives streaming data from the terminal PC,

- parses the Information contained in the MPEG-2 TS container (mainly signalling
information of PMT and PAT, and timing data - PCR),

- selects the packetized elementary streams (PES) fed into the core audio scene
decoder structures,

- parses the information contained in the PES packet headers (mainly timing
information: PTS),

DIOMEDES D3.6 Page 36/62

- feeds the PES payload to the audio codec component and the object description
generator,

- conducts system clock recovery (to adapt the internal sampling rate conversion),

- resamples the decoded audio signals according to the recovered system clock,

- provides the audio scene data (audio signal and object description data) to the
following modules of the rendering framework in a synchronized way.

Furthermore it provides following capabilities

- handle network stream adaptation (permanent check of format availability in input
streams, choice of the decoded stream)

- support switching between decoded streams,

Regarding the output audio sample rate, the DIOMEDES audio cluster is a stand-alone
module. It is not synchronized with other devices of the transmission chain via direct audio
sample clock connections (e.g. word clock).

For this reason, the clock of the stream input system is regenerated within the audio cluster to
conduct a resampling of the coded audio signal to the (typically fixed) sampling rate of the
cluster’s audio device. This prevents the audio cluster from clock drifts and buffer
overflows/underruns. The resampling operation provides a link between the external system
clock (broadcast system clock and terminal PC clock) and the cluster’s audio hardware
sample rate clock. This approach prevents the software structure from relying on hardware
specific software interfaces that allow sample rate adjustments.

In performing a clock recovery, the decoder module follows the recommendations of standard
[2]. Following figure shows the proposed clock recovery structure of this standard, as it is
applied in common DVB receiver systems.

Figure 18: Example clock recovery structure (from [2])

The regenerated clock is represented by a counter that operates at a frequency generated by
a VCO. The VCO frequency is adapted according to a low-pass filtered time difference signal
between regenerated clock and incoming timing information that is carried by transport stream
packets.

Based on the structure of this control loop, the clock recovery structure of the DIOMEDES
audio cluster was derived. It has the structure shown in the following figure.

DIOMEDES D3.6 Page 37/62

Figure 19: Audio cluster: timing and clock recovery in audio scene decoder module

Incoming PCR information is used for timing control by generating a difference signal from
reconstructed clock value and latest incoming stream time stamp. Like in the standard’s
example structure, the difference signal is low pass filtered. After this operation, a nonlinear
element derives setting values that correct the rate of the reconstructed clock to minimize the
resulting time error. The design of this non-linear element has a significant influence on the
duration of the convergence process, on stability of the control loop and on the resulting rate
changes. Thus, its parameters are adjusted to keep resulting pitch changes due to sample
rate conversion within the range of inaudibility.

The structure shows that the reconstructed system clock is derived by integrating the audio
hardware sample rate. The nonlinear element delivers a correction factor affecting the
integration.

Having regenerated the system clock indicated by the incoming stream’s timestamp values,
the audio decoder module performs a conversion of the transmit audio signal sampling rate as
described above. As an object based audio scene typically is represented by a set of multiple

audio object signals, the efficiency of the sample rate conversion algorithms has a significant

impact on the overall computational effort of the audio rendering cluster.

Using existing methods for arbitrary sample sample rate conversion (ASRC), it is difficult to

meet these efficiency requirements. For this reason, efficient algorithms for ASRC have been

investigated and developed within this project. [13] considers the the use of an optimized
continuous-time resampling filter, termed optimized image band attenuation design (OIB), in

combination with oversampling. This approach uses an overall optimization method originally
proposed in [12] that adapts the coefficients of the oversampling component to the

characteristics of the resampling filter. In [14], the computational efficiency of the proposed

algorithm is compared to established methods. It is shown that the OIB design achieves a
significant reduction of the computational complexity.

2.3.5 Audio Reproduction Setups During Development and Experiments

Two main loudspeaker setups were built up at Fraunhofer IDMT for audio rendering
development, demonstrator testing and conducting perception experiments in the DIOMEDES
context. Both setups are part of one dome system of approximately semispherical shape. The
following section describes both loudspeaker setups.

DIOMEDES D3.6 Page 38/62

Figure 20: 3D audio lab at Fraunhofer IDMT: Horizontal 2D audio systems

Wave Field Synthesis setup

88 Loudspeakers enclose a listener area in the horizontal plane. The loudspeakers (2 band
systems) are grouped to 11 loudspeaker panels by 8 loudspeakers each. The panels are
specially designed for WFS reproduction and offer built-in 8-channel D/A converters and
power amplifiers. All eight individually driven loudspeakers of one panel are controlled by one
optical ADAT connection transmitting 8 audio signals. All 11 ADAT signal chains are fed by
two optical MADI connections, each able to carry up to 64 audio signals simultaneously. One
multi-CPU PC system supplies both MADI signal bundles of the WFS sub system by
conducting efficient audio signal processing.

Low resolution and 3D loudspeaker setup

23 individual loudspeakers in the horizontal plane are arranged within the same ring as the
WFS loudspeaker system above the WFS loudspeaker panels. Additional 29 loudspeakers are
arranged above both loudspeaker rings and form a dome of approximately semispheric shape.
The 52 individual ring and dome loudspeakers are passive 2-band loudspeaker systems of
higher quality (model: Kling & Freitag “CA106”) than the panel loudspeakers. A power
amplifier array and a 64 channel D/A converter are used to drive the dome loudspeaker
system. 1 optical MADI connection is used to transmit the individual speaker signals from one
multi-CPU PC system to the converter.

In addition to both loudspeaker setups, a group of four subwoofers surround the listening area.
Like the WFS and dome loudspeaker systems, each subwoofer is driven by an individually
generated driving signal. The signal processing software of each audio processing PC is able
to generate 4 subwoofer signals.

The loudspeaker rings enclose an area of approximately elliptic shape (half axis of 2.40m and
2.80m) within the horizontal listener plane. An inner part of this area is used as listening area.

DIOMEDES D3.6 Page 39/62

Figure 21: 3D audio lab at Fraunhofer IDMT: 3D low resolution setup (dome)

Both loudspeaker setups are placed in a dedicated 3D audio laboratory of Fraunhofer IDMT.
To prevent cooling noises of power amplifiers and PC systems, the 3D audio lab is separated
from the machine room. The facilities of the lab allow for preparing flexible signal connections
between both rooms. While the loudspeakers and panels of the two speaker rings are set up
on stands, the dome loudspeakers are mounted on pantographs that are designed to allow
almost arbitrary speaker positioning and rotation. A broad variety of loudspeaker setups can
thus be realised using the facilities of IDMT’s 3D lab.

2.3.6 Generation of Channel Based Audio Streams: Audio Scene Downmix

Within the DIOMEDES architecture, channel based audio transmission of low channel number
is used as basic audio format of DVB-T2 broadcast mode. P2P mode will be used to transmit
a full object based audio scene.

Established channel based audio formats were chosen for basic audio transmission via DVB.
AC-3 coding of 5.1 channels was chosen to be the main option for DVB-T2 audio coding in
DIOMDES. As the audio cluster supports decoding of other established formats (e.g. 2.0 audio
/ MPEG-1 Layer II), the creation of such formats during the production process is a reasonable
part of the broadcast side design. The channel based formats have a fixed channel layout
(mapping of signals to speaker positions).

The creation of a complex object based audio scene is a process of higher complexity than
creating a 2.0 or 5.1 mix. To reduce the overall effort of creating audio content for DIOMEDES
transmission, the generation of 5.1 and 2.0 audio mixes is possible by automatically
conducting a downmix of an object based audio scene to the desired channel based formats.
To realize these steps, a two-stage procedure is applied based on the object based audio
scene content:

1. Automatic downmix from complex object based audio scene to basic channel based
surround format (5.1), applying dedicated downmix approaches of Fraunhofer IDMT.

DIOMEDES D3.6 Page 40/62

2. Downmix from channel based surround format of step 1 to basic channel based stereo
format (2.0), by applying dedicated downmix approaches of IRT.

As a result of this processing chain, three instances of the audio scene are produced (see
audio architecture block diagram).

The following downmix approaches are be considered for use within DIOMEDES context:

Downmix from object based to channel based surround format using adaptive audio
scene rendering:

An object based audio scene consisting of a set of virtual source objects is processed by an
audio scene rendering tool for controlling low-resolution loudspeaker setups (same approach
as described above). The loudspeaker setup is configured to represent a virtual surround (5.1)
loudspeaker setup. The resulting driving signals for these loudspeakers are the 5.1 channel
set that will be used for further coding and downmixing. By varying the virtual speaker setup in
its parameters, the downmix result can be influenced and adjusted. The downmix signals are
be generated by using the IDMT rendering implementation.

Downmix from channel based surround sound to channel based 2.0 format

The common 5.1 setup, suggested in ITU-R BS.775-2 [11], is provided as a multichannel
configuration. Beyond that and due to the continuing importance of two-channel sound with
respect to domestic television broadcast, 2.0 audio is transmitted as an ancillary format.

For a reduction of complexity of the object based audio scenes, an automatic downmix
processes is be used. This helps to provide a high production efficiency and safes costs
towards manual mixing. A two-stage process is applied to the object based content, as
described above.

In order to perform a WFS to 5.1 downmix a special rendering engine for low resolution
speaker configurations is used. For this purpose there are known alternative technologies like
the redistribution of virtual source objects from a audio scene to the channel based format with
the help of the Vector Base Amplitude Panning (VBAP) approach [8]. This technique is easy to
implement, but ignores among other things the frequency dependence of human localization
and therefore doesn’t reproduce the original perception of a WFS-playback system [10]. With
VBAP, a virtual sound source at a certain position is created by applying the tangent panning
law between the closest pair of loudspeakers. Another loudspeaker spatialization technique,
which enables a more realistic representation of an object based audio scene with a 5.1
speaker setup, is the virtual microphone approach (ViMiC) [9]. At ViMiC, the source audio
objects are placed into a simulated room equipped with virtual microphones. The driving signal
for every speaker is typically generated by placing an artificial microphone in this virtual room
at exactly the same position that ITU-R BS.775-2 suggests for the loudspeakers of the
playback system. Besides the positioning and orientation of microphones, the ViMiC model
also simulates their basic directivity pattern. Furthermore a shoe-box room model is used in
order to increase the perception of sound source distance and the acoustic environment.

The virtual microphone technique however can, inherent to the system, lead to a higher
amount of crosstalk and therewith to more correlation between the loudspeaker’s driving
signals compared to a conventional 5.1 mix.

Also the 5.1 downmix using the IDMT object based audio scene processing leads to inter-
channel correlations in the 5.1 downmix. During multichannel playback this won’t lead to any
perceivable difference in audio quality, whereas an automatic 5.1 to 2.0 downmix will usually
react very sensitive on highly correlated signals. Therefore the dedicated 5.1 to 2.0 downmix
system by IRT had to be adapted to the DIOMEDES specific demands.

 Adaption work

With established methods of downmixing 5.1 audio content to 2.0 stereo, coherent signals
between center channel resp. surround channels and left / right- channels usually lead to the

DIOMEDES D3.6 Page 41/62

occurrence of comb-filter effects, which can heavily degrade audio quality in terms of timbre,
localization and volume balance. The IRT downmix on the other hand tries to identify comb-
filters in the frequency domain by comparing the result of the electro acoustic peak level
summation (IST) with the desired value (SOLL). This value is deduced from the level
perception of our hearing within the sound field: In the case of several sound sources playing
at the same time within a room, it is assumed, that the sensed overall level is corresponding to
a sound power summation of the individual levels. Following equations are illustrating the
basic operating principle for two signals (A and B) summed together:

If the resulting level of the electrical summation AIST doesn’t correspond to the calculated
ASOLL, thus at this specific frequency index a comb-filter can be assumed. In consequence the
amplitude value A is automatically corrected to ASOLL.

To preserve the original level of effective power after downmixing with the IRT system, the
level of the center channel, as well as the surround channels have to be lowered by -3dB, as
can be seen in the following figure. This value is related to the assumption of a sheer sound
power summation and doesn’t completely represent the complex processes within a natural
sound field. As a result, the overall level, the timbre and the direct- / diffuse-sound ratio can
change compared to the multichannel playback and in dependence of the input signal
characteristics.

Figure 22 Functional schematic and attenuation coefficients used with the IRT downmix
system by default

This effect observed, also increases with the amount of correlation between the 5.1 audio
channels and had to be compensated for the use in DIOMEDES. Subsequently an enhanced
model of the downmix process was developed and implemented, which controls the correction
of the surround channels dependent on the degree of correlation between the summands.
Therefore the correlation is separately determined for different bands within the frequency
spectrum. For each of this bands, lower than 1,5kHz, the correction target is derived from the
following rule:

DIOMEDES D3.6 Page 42/62

In this equation c is representing the correlation coefficient. With this approach, a better
preservation of the multichannel signal properties can be achieved.

 Implementation

For the use in DIOMEDES a hardware demonstrator was created (see following figure), as not
to stress the computing power of the audio cluster. For this purpose an already existing
embedded linux system, based on a x86 platform, had been chosen. The system is connected
to the audio renderer either by ADAT or MADI. Beyond it supports a file-based workflow
employing “Watch Folders”. The synchronization can be solved tethered via wordclock,
because of the assumed proximity between the downmix and the audio cluster.

Figure 23 DIOMEDES hardware demonstrator used for the processing of the 5.1 to 2.0
downmix

The demonstrator enables the user to freely set the downmix coefficients and other important
parameters electively by the use of an internal display or a web interface connected with the
browser. The integrated JSON interface would furthermore allow an automatic control directly
by the rendering engine.

2.3.7 Rendering of channel based audio formats (Upmix)

Due to the limited transmission capabilities of the DVB transmission channel, only
conventional channel based audio formats are chosen to be distributed in DVB-mode.

Regardless, the audio rendering software structures and the loudspeaker setups of the
DIOMEDES audio cluster are prepared for the rendering of object based audio scenes.

To reproduce the channel based formats of DVB transmission (usually 5.1 or 2.0 formats) with
the audio cluster, these formats are transformed to a static object based audio scene during
decoding. As this conversion makes use of the static channel layouts of the conventional
audio formats, the conversion can be described with following steps:

- audio decoding

- generation of object description data: information retrieved from MPEG2-TS signalling
and/or audio stream signalling is used to reconstruct a channel layout using “virtual
loudspeakers” – virtual sound objects are positioned at the standard positions of the
current channel layout. Influence on this positioning will be allowed via the
configuration interface of the decoder module.

This virtual loudspeaker approach will in most cases lead to the reproduction of up to 6 virtual
sources on a loudspeaker setup of a higher number of loudspeakers. Thus, this process can
be referred to as an automatic upmixing process.

DIOMEDES D3.6 Page 43/62

3 AUDIO-VISUAL ADAPTATION TECHNIQUES

3.1 Overview

Within the DIOMEDES architecture, the video and audio clusters are connected to the
adaptation decision engine that triggers adaptation especially in video cluster and terminal
modules to varying reception and reproduction parameters of the terminal system. The
adaptation of both audio and video clusters to varying viewpoint positions is one example for
the system’s adaptation.

The following chapter pays special attention to the system’s adaptation based on adaptation
decisions.

3.2 Audio-Visual Adaptation

3.2.1 Adaptation Decision

The Adaptation Decision Engine (ADE) Module considered in DIOMEDES project is the block
for deciding the media stream priorities, which are used by the P2P Software Module and
Video Cluster for performing their respective content adaptation operations. The proposed
adaptation decision taking algorithm responds to the “user terminal initialisation” and “context
change” messages received from the Control Module. The operations of the adaptation
decision taking algorithm are described in the following subsections.

3.2.1.1 ADE Module operation at the user terminal initialisation phase

In this phase, it is assumed that no KPI metadata and user requested viewpoint ID have been
received by the ADE module. Therefore, the ADE module assigns default priorities to the
views. Under the default priority settings, the middle cameras are given the highest priority,
while priority ranking reduces as views are further away from the centre. It is also assumed
that the middle-left view takes higher priority over the middle-right view.

Each view contains three components, which are uniquely identified by Program ID (PID) as
used in MPEG-2 Transport Stream format. Thus, once the view priorities are assigned, the
priority for each PID associated to individual views has to be set. Base layer PID of a view
always has the highest priority over the enhancement layer PID and depth map PID for a
given video stream. Assuming there is a total of 3 viewpoints in the multi-view video stream,
and view priority order is calculated as V1>V2>V3, the priority order for the PIDs is shown in
Table 2. It should be noted that P=1 refers to highest priority, whereas P=7 refers to lowest
priority.

Table 2. The priority order of the PIDs

View priority order
(View-ID)

V1 V2 V3

Base PID P=1 P=3 P=4

Enhancement PID P=5 P=6 P=7

Depth PID P=2 P=3 P=4

The base PID of view V1 is assigned the highest priority since it is assumed to be the PID for
backward compatible 2D view for serving legacy 2D displays. The ADE Module subsequently
checks whether the user terminal is receiving the DVB streams. If it receives them, they are
excluded from priority list message, so that the P2P Software Module does not download the
stereoscopic views over the Internet unnecessarily. Assuming V1 and V2 form the
stereoscopic video pair delivered through DVB, and also assuming that these viewpoints do
not have an enhancement layer (as defined in system requirements in D2.1), the revised
priority list is shown in Table 3. Furthermore, any view not required by the renderer will be
excluded from the priority list.

DIOMEDES D3.6 Page 44/62

Table 3. The revised priority order of the PIDs excluding DVB streams

View priority order
(View-ID)

V1 V2 V3

Base PID N/A N/A P=3

Enhancement PID N/A N/A P=4

Depth PID P=1 P=2 P=3

Note that some PIDs listed are assigned equal priority level, which depicts that the existence
of either without the other is useless in the rendering process. For example, an extra view
without its depth map cannot be incorporated in Depth Image Based Rendering (DIBR)
process.

3.2.1.2 ADE Module operation when a change in context is detected

When new KPI metadata or user requested viewpoint information is received, it is considered
as a context change.

When user requested viewpoint information is received, the ADE Module assigns higher
priority to the closest 3 real camera viewpoints required to render the user requested
stereoscopic view pair, as shown in Figure 24. Assuming user requested viewpoint ID = x.y,
the following steps describe the prioritisation algorithm.

1. Calculate the virtual view pair xi.yi = {x1.y1, x2.y2} to be rendered, based on x.y and

physical distance input parameter

2. Determine the closest 3 real camera views (xi, xi+1, xi+2) for rendering x1.y1 and x2.y2.

These camera views are selected amongst the existing view-IDs and they are referred

to as core camera views.

3. Calculate fitness of real camera views (i.e., xi, xi+1 and xi+2) for synthesising the virtual

view pair determined in step 1 (i.e, x1.y1 and x2.y2), using the KPI metadata.

4. Assign priority orders to (xi, xi+1, xi+2) based on fitness computed in step 3.

5. Assign the priority order for the remaining view-IDs based on the decreasing fitness

for synthesising user requested viewpoint. This is done as described in step 3.

C CC C

~6 cm

User requested
virtual viewpoint

(ID = x.y)

C

x1 x2 x3x1.y1 x2.y2

......

y1 y2

Figure 24. Real camera viewpoints required to render the user requested stereoscopic view
pair

Calculation of the virtual view pair

The first step of the adaptation decision taking algorithm is to determine a virtual view pair,
which forms the 3D view requested by the user. Since both the relative physical distances
between each camera and the separation between a stereo-camera pair (i.e., ~6 cm) are

DIOMEDES D3.6 Page 45/62

known to the ADE Module, it can calculate x1.y1 and x2.y2 accordingly. This is presented in
Figure 24.

Determine the closest real camera views

In order to accurately render the virtual view pair calculated in the first step, the ADE Module
needs to identify the real camera views that are in the closest proximity of the virtual views.
These real camera views can be two three depending on the position of the user requested
virtual viewpoint. Therefore, the second step focuses on determining which of the 2~3 real
camera views out of all the available real camera views are necessary for rendering the virtual
viewpoint. If both of the views constituting the user requested viewpoint fall in between two
existing View IDs, then only 2 cameras are selected.

Calculation of fitness of real camera

In the third step, the ADE Module determines the fitness of each real camera view for
synthesising the virtual view pair. This is done by assuming that the virtual view pair is
synthesised using only one real camera view at a time. The fitness of a given real camera
view is obtained by averaging the quality of the virtual views synthesised from this real
camera. The method used for computing the quality of synthesised views is described in
Section 3.2.1.3.

Assign the priority order

In the fourth step, the ADE Module determines the priority order for the 2~3 real camera views
based on their fitness as defined in the previous step. Subsequently, the priorities for the base
layer, enhancement layer and depth map of each view should be determined. For this
purpose, the adaptation decision taking algorithm looks at the PIDs associated with each layer
and depth map. The priority order amongst those is as follows:

 The base layer PID has always higher priority over the enhancement layer PID

and depth map PID for the camera that has been assigned with the highest

priority.

 For the remaining two cameras out of the selected three cameras, the base layer

PID and depth map PID have equal priority.

 The enhancement layer PIDs of all three cameras have the lowest priority.

 The enhancement layer PID of the camera that has the highest priority, has the

highest priority over the enhancement layer PIDs of the remaining cameras.

Assign the priority order for the remaining views

The fitness of each remaining camera view is also computed as described in step 3. The
ranking of the PIDs of the remaining views (i.e., the cameras that are in the three-camera set
found in step 2) are assigned with lower rankings than the lowest rank PID of the core camera
views.

An example priority order is shown in Table 4, assuming there are 8 camera views. Here, V1,
V2 and V3 are assumed to be the core camera views (based on the calculation in Step 2), and
based on the camera fitness, the overall view priority order is calculated as
V1>V2>V3>V4>V5>V6>V7>V8.

Table 4. An example priority order of the PIDs assuming V1, V2 and V3 are the core camera
views

View priority order (View-
ID)

V1 V2 V3 V4 V5 V6 V7 V8

Base PID P=1 P=3 P=4 P=8 P=10 P=12 P=14 P=16

Enhancement PID P=5 P=6 P=7 P=9 P=11 P=13 P=15 P=17

Depth PID P=2 P=3 P=4 P=8 P=10 P=12 P=14 P=16

3.2.1.3 Fitness criterion for real camera views to synthesise virtual views

DIOMEDES D3.6 Page 46/62

To synthesise virtual views requested by users, the most suitable real camera viewpoints need
to be identified. For this purpose, a fitness criterion is proposed. Fitness refers to the
projection of the objective quality of the original camera view to the location of the user
requested virtual viewpoint as depicted in Figure 25. Projection was performed by a function
derived through a subjective experiment, in which the quality of the rendered views at a set of
selected target locations was assessed. For each target location, a stereoscopic view pair was
rendered from a single real camera view and they are displayed on a stereoscopic display.
The quality assessment was conducted using the non-categorical judgment method 0, where
the observers rated the stereoscopic sequence. The experimental results are presented in
Figure 26 for the Band and Music test sequences.

C

Locations of the rendered
virtual viewpoints

Location of the
real cameraView synthesis for

virtual viewpoints

Figure 25. The concept of quality projection from real camera location to the user requested
virtual viewpoint

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-50 -40 -30 -20 -10 0

M
O

S

Distance (cm)

Band Music

Figure 26. The average MOS results vs. the distance between the real and rendered (i.e., user
requested) virtual view locations

As observed from the results, the visual quality of the rendered virtual views presents an
exponential dropping behaviour with increasing distance from the real camera location. The
approximated function for the above subjective MOS results is:

xbeaMOS (1)

where x is the distance between the real camera location and the location of the rendered

virtual view (in centimetres), and 0.6663a and 0545.0b . This approximation is

illustrated in Figure 27 for the combined results of the Band and Music sequences. The values

for the constants a and b were determined using a curve fitting technique. The

abovementioned function was adapted for the projection function as follows:

 xb

ref eaQF 1,0max (2)

DIOMEDES D3.6 Page 47/62

where F is the fitness, and refQ is the quality of the real camera view. refQ is dependent on

the perceptual quality of the coded camera frames as well as the quality of the corresponding
depth map frames.

Figure 27. The MOS vs. distance plot for the Band and Music sequences showing the
approximated function

3.2.2 Video Adaptation

DIOMEDES handles viewpoint adaptation and quality adaptation of individual viewpoints
(through selective enhancement layer streaming) jointly, as described in Section 2.4.1. In this
sense, view scalability corresponds to adjusting the number of views being downloaded via
P2P Software Module and SNR scalability corresponds to adjusting the number of
enhancement layers being downloaded via P2P Software Module.

ADE Module generates the priority descriptions incorporating both of the mentioned scalability
options. The priority of base quality and enhancement quality layers, as well as depth maps of
each viewpoint is ordered in the same list, where P2P Software Module makes use of these
priority descriptions to perform the necessary video adaptation operations accordingly.

In the viewpoint adaptation scenario, the ADE Module excludes the viewpoints that are not
required by the Video Cluster from its priority list before passing this information to the P2P
Software Module (via the Control Module). In turn, the P2P Software Module does not
download any streams associated to discarded viewpoints, which are not in the priority list.

In the network adaptation scenario (for adjusting quality), the P2P Software Module uses the
same ADE Module-generated priority list to select the most prioritised enhancement layer
streams considering their availability. In this way, the adequate number of enhancement
layers, depth maps, and views can be adjusted by the P2P Software Module. P2P Software
Module dynamically manages all downloading sessions based on the currently available
bandwidth capacity, and chunk availability within a time window, and starts discarding streams
starting from the least prioritised ones to match the current capacity. Otherwise, all requested
streams to construct the required viewpoint are streamed.

The adaptation process in P2P SW Module has been implemented using a content-aware
adaptive chunk scheduling mechanism. When the downloading session starts, the P2P
module initializes one scheduling window per each base layer/ enhancement layer/ depth map
in the priority list. Within this window, the most prioritised streams’ chunks are requested by
proper weighting (i.e. the chunk of the stream that is on the top of the ranking list has the most
likelihood to be the requested chunk in the next slot). If the play out time approaches, which
means that the downloading capacity is reached and/or stream availability is low, the
weighting of the least prioritised streams’ chunks in the ranking list are reduced gradually,
while the weighting for more prioritised streams’ chunks is increased. If a chunk can be

DIOMEDES D3.6 Page 48/62

received before the play-out deadline, which is indicated by the AV Synch module, then the
next scheduled chunk is requested for downloading. Using this pattern, it is possible to adapt
the total content downloading rate to the available network rate, where the stream ranking is
taken into consideration.

As mentioned in Section 2.4.1, video adaptation operations entail the user selection of specific
viewpoints. For this purpose, the Control Module is invoked by the user viewpoint selection
console (implemented as part of the user interface), where both the ADE Module and the
Video Renderer Module are informed about the user requested View ID. ADE Module
inherently incorporates the delivered user requested View ID information in prioritising the
PIDs in the ranking list that is sent to the P2P SW module. At the same time, Video Renderer
takes the user requested View ID to synthesise the view, or the view pair at exactly the
camera coordinates of the user requested View ID. Hence, the viewpoint adaptation
corresponds to both reconfiguring the video renderer and at the same time reconfiguring the
P2P Software’s download scheduling to help generate (render) the requested virtual camera
viewpoint.

3.2.3 Audio Adaptation

The aspects of audio adaptation within the DIOMEDES context can be divided into different
categories:

 Adaptation of object based audio scene to different reproduction systems. (Varying in
loudspeaker setup)

 Adaptation of object based audio scene to different reproduction configurations
(Varying in display and listener setup)

 Adaptation to varying video viewpoint of 3D multiview video renderer

 Adaptation to varying channel properties (Controlled by adaptation decision engine).

The following section gives a more detailed view on these categories.

3.2.4 Adaptation to different reproduction systems

The range of sound reproduction systems that should be supported within the DIOMEDES
context spans from loudspeaker arrangements of 5 loudspeakers to dense loudspeaker
setups like they are used for Wave Field Synthesis systems. The DIOMEDES system
architecture uses an object based audio scene transmission approach to allow a scene
transmission that is independent of a certain speaker layout, in contrast to the established
channel based formats like 2.0 or 5.1. As the object based transmission allows the broadcast
of numerous individually positioned sound objects, the scalable receiver system can be
customized regarding reproduction precision. The sound reproduction precision increases with
higher number of loudspeakers. In some cases, even 3D loudspeaker systems can be utilized
on the receiver side. This variety of possible loudspeaker systems within the current context
can be grouped in:

- 2D wave field synthesis loudspeaker setups (high resolution, high number of
speakers)

- 2D low resolution loudspeaker setups (significantly lower loudspeaker number that
WFS loudspeaker setup)

- 3D low resolution loudspeaker setup (includes loudspeakers above horizontal listener
plane)

These types of setups are supposed to surround the listener area. For each type of setup, a
dedicated rendering approach is implemented, as described above in the Audio Rendering
chapter. One common audio scene description format (object description format) is shared
among these approaches and allows adapting of one content stream to different speaker
setups.

DIOMEDES D3.6 Page 49/62

As the audio rendering cluster will be configured to drive one given loudspeaker setup that is
not changed during operation, all incoming object based and channel based audio scenes are
rendered to one loudspeaker system. Thus, this type audio scene adaptation will have a
constant parameter set during operation.

3.2.5 Adaptation to different reproduction configurations (listener & display setups)

The DIOMEDES user terminal and rendering sub-system will meet varying conditions when it
is configured at different user sites. Following parameters are expected to differ between
terminal setups and to be the main aspects to be considered for an automatic audio scene
adaptation:

- size and shape of the overall loudspeaker setup

- size and position of the listener area within the loudspeaker setup

- size and position of the video display in relation to loudspeaker system and listener
area

As these aspects vary among different reproduction setups, a degradation of following
perceptual aspects would to be expected, if an object based audio scene was reproduced
without dedicated scene adaptation strategies.

- change in overall level and time of arrival proportions of the audio scene

- displacement of the focusing feature of virtual audio source

- displacement of virtual sources in relation to the listener position and change of
perceived perspective

- displacement of virtual sound sources in relation to visual events of the video
presentation

The aim of audio scene adaptation is to preserve the major aspects of the audio scene.
Additional to the mentioned aspects, a list of architecture and system specific aspects could
be named that also influence the design of an automatic scene adaptation. They are not
presented in this document due to their close relation to internals of the implemented
rendering system and production chain.

Not all of these aspects can be equally preserved using an automatic scene adaptation, as
they concur with each other. For example, the position of virtual audio sources in relation to
the listener position cannot be preserved when a congruent audio-visual presentation has
higher priority in all system configurations. The following figure shows schematically the
relative position and size of listener areas and displays belonging to 2 different reproduction
setups.

Figure 28: Example listener and display configurations: audio scene adaptation

DIOMEDES D3.6 Page 50/62

Based on prioritising the audio scene aspects that should be preserved on different
reproduction setups, a design of an automatic audio scene adaptation could be done. The
resulting audio scene adaptation affects the overall object based audio production chain as
follows:

- audio scene rendering is generally extended by a module conducting automatic scene
adaptation; this module is applied before scene rendering during scene production
(broadcast side) and during reproduction (receiver side)

- scene adaptation is generally a geometric transformation of the audio object
arrangement

- an audio scene production is realised by positioning audio objects in relation to a
standard listener and display setup; the resulting true positions of audio objects are
hidden from the user

- to enable automatic scene adaptation, the data structure that describes an audio
object is extended by data fields that control the scene adaptation

- the audio scene production tools are extended to support the audio scene adaptation
features

The current rendering structure was extended by implementing modules that conduct
automatic scene adaptation before rendering to display and listener arrangements. The
description of these arrangements is part of the configuration data set that is evaluated by the
audio cluster during start-up phase. Thus, this data accompanies the conventional rendering
configuration data structures that describe the WFS or low resolution loudspeaker setup.

3.2.6 Adaptation to varying video viewpoint of 3D multiview video renderer

The DIOMEDES architecture allows for viewpoint changes by the terminal user that affect the
video rendering by shifting the rendered camera view.

To adapt the the rendered audio scene to a varying viewpoint, a module for geometrical
transforming the incoming object or channel based audio scene was implemented in the audio
cluster. This module “SceneScaler” offers a range of geometrical transformations and
modifications that can be applied to a given audio scene description:

- scaling, translation, rotation of audio object positions

- modification of audio object properties (source type, source properties, level and delay
properties)

These modifications can be configured statically during configuration of the audio cluster or
controlled during the realtime rendering via internal message commands within the audio
cluster’s processing framework.

The viewpoint information sent to the audio cluster via JSON messages consists of the
following parameters describing the video viewpoint in relation to the audio scene position:

- viewpoint positions (cartesian metrical coordinates, 3D)

- viewing direction (cartesian vector, 3D)

The SceneScaler module receives the adaptation properties after converting the JSON
viewpoint description into a set of transformation parameters.

As the viewpoint adaptation is affecting the audio scene description before rendering, the
incoming audio object signals remain unaffected. Besides the object based audio scene, also
ncoming channel based audio formats can be processed by the viewpoint adaptation as they
are rendered as set of audio objects at defined object positions.

DIOMEDES D3.6 Page 51/62

3.2.7 Adaptation to transmission channel properties

Stream and channel configurations

The two media input channels of the DIOMEDES terminal structure are DVB-T2 and P2P
(WAN). Each channel is capable of transporting multiple audio streams of different formats
simultaneously beside the stereo video streams. The following table shows the useful plus the
planned combinations of audio stream types and transmission channels within the DIOMEDES
architecture.

Table 5: Overview of the transmission channels and usable audio stream types
(includes estimates of the expected bitrate ranges)

 DVB-T2 P2P

Object based audio
scene (constant max.
number of simultaneous
objects),
>= 500kbit/s

Not to be implemented. Included in minimal
(default) configuration

Basic audio stream
(Surround 5.1, e.g. AC-3)
< 500kbit/s

Included in minimal
(default) configuration

Optional
(not used for DIOMEDES)

Basic audio stream
(Stereo 2.0, e.g. AC-3,
MPEG-1 Layer II)
,<=320kbit/s

Optional Optional
(not used for DIOMEDES)

The minimal configuration of broadcast streams is represented by one basic audio stream
transmitted via DVB-T2 and one full object based audio scene stream transmitted via P2P.
The basic audio stream will be a 5.1 surround stream that preferably will be generated by
automatic downmix approaches directly from the object based audio scene as described
above. The integration of automatic 5.1 to 2.0 downmix allows the generation of an additional
audio stream that can be transmitted via DVB-T2 channel. This option was chosen to be
implemented within DIOMEDES project.

If the terminal is running in P2P-only mode, only one object based audio stream is received.
This audio stream is fed into the audio decoder and rendering modules. No decisions are
required for this variant. If future modifications of the system architecture should allow multiple
formats for P2P mode, a decision, which stream to decode and to render, would be necessary.

If the terminal is running in DVB-only mode, one or more basic, channel-based audio streams
are received. These audio streams are fed into the audio decoder and rendering modules. A
decision, which stream to decode and to render, is necessary.

If the terminal is running in combined DVB and P2P mode, multiple audio streams are
received. These audio streams are fed into the audio decoder and rendering modules. A
decision, which stream to decode and to render, is necessary.

The following sections describe the audio adaptation decisions that are implemented within
the DIOMEDES terminal.

Stream switching structure: Audio cluster

The audio cluster is planned to be implemented with following features:

DIOMEDES D3.6 Page 52/62

- Multiple audio streams can be streamed to the audio cluster simultaneously, using
different PIDs. All streams are expected to be signalled using Program Association
Table (PAT) and Program Map Table (PMT) (according to MPEG-2 Part 1: Systems
[2]).

- The decoder module of the audio cluster will be able to support decoding a set of
formats including the DIOMEDES object based audio scene format and basic-mode
surround formats.

- If multiple streams of supported formats are present, an internal set of priority rules will
determine, which stream is preferably decoded and rendered (e.g. the object based
format is preferred to the basic format). The set of priority rules will be transformed into
an internal stream priority list. The interruption of currently decoded streams and the
reception of new streams of higher priority can trigger a stream switching.

The original plan of an external control of stream switching with a priority list sent to the audio
cluster from the ADE was discarded, as the internal priority mechanism seemed to be
sufficient for the audio cluster stream control.

The original plan of implementing double decoder structures for nearly seamless stream
switching was deferred as seamless stream switching is a comfort feature and stream
switching with a short decoding interruption seemed acceptable for the demonstrator
implementation.

DIOMEDES D3.6 Page 53/62

4 FUNCTIONALITY AND QUALITY EVALUATION

4.1 Overview

The implementation of the rendering modules within DIOMEDES architecture was evaluated
regarding their functionality and rendering quality. Since the deliverable D3.4 focuses mainly
on the rendering quality aspects, quality evaluation is only treated cursory in the following
section.

4.2 Evaluation of Functionality

4.2.1 Video Rendering Functionality

Image quality

It has been shown that the MVD renderer is able to synthesize high quality images when
supplied with high-quality images and depth maps, however it is very sensitive to errors in the
depth maps and camera calibration information. Unfortunately, despite very careful
preparations and lengthy depth estimation processes, practically all live multiview contents
have some errors and imprecision in terms of camera calibration information (and thus
rectification) and depth estimation. To make the renderer more robust against these inevitable
artefacts in the input, we proposed and implemented several improvements to the algorithm,
as well as implemented another view generation method in the renderer, which is more on the
traditional side of view synthesis methods. Our subjective evaluation shows that that the point
cloud based method performs better when synthesizing views from the contents used in the
project, and gives plausible results when the virtual cameras stay inside the camera baseline.
Of course, providing good quality images outside this area is clearly desirable, the real-time
constraint poses a very strict restriction on the set of algorithms and improvements we can
use. For this reason, implementation of sophisticated inpainting algorithms was out of scope.
In the final system, when the viewer’s movements are bounded with the area that has been
captured with the cameras, the views generated are of good quality.

Performance

The main challenge in terms of performance was that most processing steps had to be done
on the GPU, otherwise chances are very low that the renderer can achieve real-time
performance generating multiple views on a single PC. Performance tests shown that one of
the possible bottlenecks, uploading large textures to the GPU’s memory with every frame
indeed has a penalty, however it is possible to upload textures with sufficient speed. This can
be reduced by uploading only selected cameras and associated depth maps, those with the
highest contribution to the final image. The result is that view generation can work in real-time.
Generating multiple views of course has a performance penalty, but this can be partially
eliminated by reducing the resolution of the rendered images (something we can safely do, as
the separate views have reduced resolution on current multi-view displays anyway, as
discussed above).

Viewing freedom and adaptation

The proposed renderer is highly flexible in terms if input and output configurations, as it can
basically operate with arbitrary camera arrangements on both sides, as well as using the
decompressed images directly. Also, the renderer itself does not restrict the viewers from
moving the camera anywhere in the scene, however, in the final system, it is desirable that
viewers can see the recorded scene from viewpoints that have been captured by the multiview
camera system, to maintain good visual quality (“less is more”).

DIOMEDES D3.6 Page 54/62

The renderer is also flexible enough to accept data via different data transmission methods
(even simultaneously), maintaining synchronization, and to accommodate to varied amount of
data available at its input according to changing network conditions.

4.2.2 Audio Rendering Functionality

Core audio rendering functionality

The core audio rendering modules were tested at Fraunhofer IDMT’s various audio
reproduction systems (rendering includes coefficient calculation and optimized signal
convolution), rendering an audio scene of 32 simultaneous sources each (live signal input):

- WFS reproduction on a setup of 88 loudspeakers and 4 subwoofers

- Low resolution 2D reproduction on a setup of 23 loudspeakers and 4 subwoofers

- 3D low resolution reproduction on a setup of 52 loudspeakers and 4 subwoofers

- 3D low resolution reproduction on a setup of 60 loudspeakers and 4 subwoofers

In all situations, the audio processing was running on Linux x86 quad core PCs (2.8GHz). The
rendering behaviour was stable for all tests.

Audio rendering functionality in combination with file and network decoding

For achieving a higher CPU usage, the pure audio rendering configurations were extended by
existing object based audio scene file decoder and the DIOMEDES network audio scene
decoder module. Each decoder module had to conduct audio decompression of 32 audio
channels of an audio scene. The combinations were tested on the following setups:

- Low resolution 2D reproduction on a setup of 23 loudspeakers and 4 subwoofers

- 3D low resolution reproduction on a setup of 52 loudspeakers and 4 subwoofers

- 3D low resolution reproduction on a setup of 60 loudspeakers and 4 subwoofers

The audio rendering configurations were stable for all cases.

Audio rendering functionality with 2 rendering and 2 decoding instances on one PC

For the audio visual quality perception test described in D3.4, the audio rendering and
decoding structures were doubled on one PC. An object based audio scene streaming
configuration was created that allows the rendering of a scene on a high resolution
loudspeaker setup when streamed to a first stream decoder, and the rendering on a subset of
the loudspeaker setup when streamed to the second network decoder module running on the
PC. In addition to that, 2 different sets of 32 equalisation filters were applied simultaneously to
the object signals before rendering (compensation of the different loudspeaker densities for
both rendering options).

Two rendering instances were configured to deliver the audio signals for different subsets of
the connected 88 loudspeaker setup from 32 simultaneous audio objects:

- WFS reproduction on a setup of 88 loudspeakers (complete setup) and 4 subwoofers

- Low resolution 2D reproduction on a setup of 22 loudspeakers (subset of the 88
loudspeakers) and 4 subwoofers

The signal outputs of these rendering instances were added to be output to the same
loudspeaker system.

DIOMEDES D3.6 Page 55/62

Two spatial audio scene streaming decoders (“NetDecoder”) were receiving and decoding the
incoming audio scene streams. The 32 output signals of the decoders were fed to the audio
renderers via 2 arrays of 32 FIR convolvers each for frequency response equalization.

Only one decoder module received an audio scene stream at a time.

The system was fed with multiplexed stereo HD video and object based audio scene streams
within a series of the 40min AV-perception tests. The audio rendering was reliable throughout
the tests series.

Audio timing / AV synchronisation functionality

The synchronisation of audio rendering with an external video playback was controlled
preparing different MPEG-2 TS example streams. Each stream contained object based audio
scenes, mono or stereo video streams, and in some cases channel based audio streams to
validate channel based format decoding. The following list shows some of the content
examples that were used for the test streams:

- DIOMEDES “Music”: HD Stereo Video, object+channel based audio, ca. 20sec

- DIOMEDES “Lecture”: HD Stereo Video, object based audio, ca. 20sec

- DIOMEDES “Fencing”: HD Video, object+channel based audio, ca. 15sec

- DIOMEDES AV Sync Test video: HD video, object+channel based audio, >5min

- Trailer “The Settlers” PC game: PAL Video, object based audio, >3min

- Trailer “Creating Waves”: PAL Video, object based audio, >1.5min

- DVB-S example TV program streams (ASTRA satellite): PAL or HD Video, channel based
audio

- DVD example streams: PAL video, channel based audio, streamed from DVD Video using
VLC player software

All streams were sent from a dedicated streaming PC to both audio rendering PC and a video
playback PC (using VLC player as video decoder and player). Streaming was done using
DIOMEDES tools from IRT and OPTIBASE, a dedicated DIOMEDES streaming tool from
Fraunhofer IDMT, VLC Player software and embedded streaming software of a DVB-S
receiver.

All test streams showed very good synchronization properties. Audio rendering was stable
even over long test periods (e.g. AV perception tests using long series of DIOMEDES lecture
and music sequences), but VLC player video playback sometimes was unstable.

The tests of AV synchronicity between DIOMEDES audio rendering and DIOMEDES video
cluster still have to be completed.

4.3 Quality Evaluation

4.3.1 Visual Quality Evaluation based on viewer tests and Quality of Experience Model

Detailed description of the conducted visual experiments can be found in Deliverable 3.4.

4.3.2 Audio Quality Evaluation

Evaluations of the perceived quality of the audio coding and audio rendering applied in
DIOMEDES have done in the context on Quality of Experience (QoE) evaluation. Detailed
descriptions of these experiments are included in D3.4.

DIOMEDES D3.6 Page 56/62

5.1 to 2.0 Downmix quality evaluation measurement

For a proof of effectiveness of the proposed enhancements, a metrological verification was
conducted. Therefore, a loudspeaker setup according to the recommendation ITU-R BS. 775-
2 was placed in the anechoic chamber, as can be obtained from the following figure. The
measurements had subsequently been verified under practical conditions in a common
broadcast studio environment.

Figure 29 Measurement setup in the anechoic chamber

An artificial head, positioned at the sweet spot of the arrangement, served as a measurement
device. Pink noise and natural music was used in order to excite the setup. To identify timbral
and loudness changes within a time-variant audio signal, the measurement of integrated 1/3-
octave-band levels had been utilized with an integration time of up to 120 seconds.

For test evaluation purposes the playback of the multichannel sound, of the ITU-, and the IRT
downmix was measured. Furthermore the resulting graphs were shown in a common diagram.
Thus it is possible to assess the level deviation between the different downmix systems and
the changes made to the algorithm of the IRT downmix.

DIOMEDES D3.6 Page 57/62

Figure 30 Measurement of coherent pink noise in the anechoic chamber

Figure 31 Measurement of natural music in the broadcast studio

As can be abstracted from the first figure above, the level of the improved IRT downmix at
lower frequencies is averaged 2dB closer to the multichannel playback than the older downmix
version. The remaining gap is almost consistent over the measured frequency range and
mainly refers to the static surround attenuation of -3dB, which is set to the downmix algorithm
by standard. Therefore it can be easily improved by adjusting this parameter in relation to the
input signal and in this way achieved a high congruence to the multichannel playback.

The result of the ITU downmix also looks very good regarding the overall level deviation from
the surround playback. In practice however, this observation has to be qualified, because this

DIOMEDES D3.6 Page 58/62

downmix signal still contains the comb filter related distortions and moreover leads to a wrong
level ratio between the center and surround channels.

The measurement under practical conditions, as shown in figure directly above, confirms the
described findings. It also illustrates, that the progression of the adapted IRT algorithm is up to
2dB closer to the multichannel signal, which causes a distinctly perceivable improvement of
the overall loudness preservation. Beyond that, the revised algorithm still effectively eliminates
annoying comb filter effects and thus means the best possible compromise for the use in
DIOMEDES.

DIOMEDES D3.6 Page 59/62

5 SUMMARY
 This deliverable described the concepts and structure of the stereo multi-view video and
spatial audio rendering components within the DIOMEDES architecture.

The development of the final multiview video plus depth (MVD) rendering as an integration of
an existing MVD renderer and a stereoscopic multiview renderer framework was described.
The interconnection of the video rendering with the video decoding was emphasized, as the
high video data rates in the DIOMDES multiview scenario require fast transmission designs
and interfaces. The treatment of video rendering artifacts when utilizing the MVD renderer with
depth map data of varying quality was discussed. Furthermore, attention was paid to the video
rendering on multiview and light field displays.

For the DIOMEDES audio rendering, the object based audio scene approach was chosen and
adapted to the broadcast and network transmission scenario. The rendering of scenes of
audio objects, that are transferred in a streamable container format was described,
highlighting the different audio rendering approaches utilized for DIOMDES. For home use, an
audio rendering for less expensive loudspeaker systems than Wave Field Synthesis (WFS)
was implemented. For the DIOMEDES use cases, the integration of audio rendering and
decoding is shown. The simultaneous decoding of the audio scene and rendering onto a
loudspeaker system have been implemented and performed within a modular multithreading
software framework, that was presented. The automatic downmixing of the object based audio
scenes to conventional channel based audio formats for broadcast transmission was
described.

Special attention was paid to the aspect of synchronicity of audio and video rendering. The
influence of the timing, clock regeneration from media stream time stamps and
synchronisation mechanisms on the rendering was described.

The ability of the rendering architecture to adapt to different use cases and working conditions
was presented. The Adaptation Decision Engine (ADE) was introduced as main instance for
control module and video cluster, that defines the stream priorities for network transmission
and processing. The handling of different video viewpoints and quality, of available base,
enhancement and depth video streams was defined. Besides video rendering adaptation, the
adaptation of the DIOMEDES audio cluster was described. The ability of the audio rendering
to adapt flexibly to a wide range of loudspeaker setups, to different listener and display
configurations, to video viewpoint changes and to the incoming audio scene streams was
shown.

Finally, a set of functionality and quality evaluations was presented, that highlight some
aspects of the achieved features of the DIOMDES rendering components.

DIOMEDES D3.6 Page 60/62

6 REFERENCES

[1] ITU-T Recommendation BT.500–11, “Methodology for the Subjective Assessment of

the Quality of Television Pictures,” Jun. 2002.
[2] MPEG-2 Part 1: Systems, ISO/IEC 13818-1

[3] Berkhout, A.J.: "A Holographic Approach to Acoustic Control", J.Audio Eng.Soc., vol.
36, December 1988, pp. 977–995

[4] Verheijen, E.N.G: "Sound Reproduction by Wave Field Synthesis", PhD thesis, Delft
University of Technology, 1997

[5] E.W. Start: "Direct Sound Enhancement by Wave Field Synthesis", PhD thesis, Delft
University of Technology, 1997

[6] S. Brix, T. Sporer, and J. Plogsties: "CARROUSO - An European approach to 3D-
audio", 110th AES Convention. Audio Engineering Society (AES), May 2001

[7] Wittek, H.: "Perceptual differences between wavefield synthesis and stereophony",
PhD thesis, University of Surrey, 2007

[8] V. Pulkki; “Virtual Sound Source Positioning Using Vector Base Amplitude Panning”,
Journal of the Audio Engineering Society, 45/6:456– 466, 1997

[9] J. Braasch: "A loudspeaker-based 3D sound projection using Virtual Microphone
Control (ViMiC)", Convention of the Audio-Eng. Soc. 118, Preprint 6430, Barcelona,
2005

[10] D. Griesinger, "Stereo and surround panning in practice," in Proceedings of the 112th
Audio Engineering Society Convention, Munich, Germany, May 2002.

[11] Recommendation ITU-R BS.775-2, “Multichannel stereophonic sound system with and
without accompanying picture”, International Telecommunication Union,
Radiocommunication Sector, January 2006

[12] A. Franck and K. Brandenburg, “An overall optimization method for arbitrary sample
rate converters based on integer rate SRC and Lagrange interpolation,” in Proc. IEEE
Workshop Applications Signal Processing to Audio and Acoustics, New Paltz, NY,
Oct. 2009.

[13] A. Franck, “Arbitrary sample rate conversion with resampling filters optimized for
combination with oversampling,” in Proc. IEEE Workshop Applications Signal
Processing to Audio and Acoustics, New Paltz, NY, Oct. 2011.

[14] A. Franck, “Performance evaluation of algorithms for arbitrary sample rate
conversion,” in AES 131st Conference, New York, NY, Oct. 2011.

DIOMEDES D3.6 Page 61/62

Appendix: Glossary of abbreviations

 A/V Audio/Video

 ADAT Alesis Digital Audio Tape

 ADE Adaptation Decision Engine

 API Application programming interface

 ASRC Arbitrary sample rate conversion

 BSD Berkeley Software Distribution

 CPU Central Processing Unit

 D/A Digital/analogue

 Dx.x Deliverable x.x

 DVB Digital Video Broadcasting

 ES Elementary Stream

 FIR Finite impulse response

 GOP Group of pictures

 GPU Graphics Processing Unit

 HCA Host Channel Adapter

 HD High Definition

 IPoIB IP over InfiniBand

 ITU International Telecommunication Union

 JSON JavaScript Object Notation

 KPI Key Performance Indicator

 LUT Look-up table

 MADI Multichannel Audio Digital Interface

 MOS Mean Opinion Score

 MPEG Moving Picture Experts Group

 MVD MultiView plus Depth

 NAL Network Abstraction Layer

 OFED Open Fabrics Enterprise Distribution

 P2P Peer-to-peer

DIOMEDES D3.6 Page 62/62

 PAL Phase alternate line

 PAT Program Association Table

 PCR Program Clock Reference

 PDE Partial differential equation

 PES Packetized Elementary Stream

 PID Packet Identifier

 PMT Program Map Table

 PTS Presentation Time Stamp

 QoE Quality of Experience

 RC Reliable Connection

 RDMA Remote Direct Memory Access

 RGB Red green blue

 SDK Software development kit

 SMPTE Society of Motion Picture and Television Engineers

 TCP/IP Transport control protocol / Internet protocol

 TS Transport stream

 UD Unreliable Datagram

 UDP User Datagram Protocol

 VBAP Vector Base Amplitude Panning

 VCO Voltage controlled oscillator

 ViMiC Virtual Microphone

 WAN Wide area network

 WFS Wave field synthesis

 WP Work Package

