

DIOMEDES WP5 Page 1/32

DIstribution Of Multi-view Entertainment using content aware
DElivery Systems

DIOMEDES

Grant Agreement Number: 247996

D5.4

Report on Security Prototype Components

DIOMEDES WP5 Page 2/32

Document description

Name of document Report on Security Prototype Components

Abstract This document describes the functionality and

the architecture of the security components

developed in Task 5.6 (Security Server, Security

Client). The description also includes security-

related workflows, the evaluation of algorithms

and performance evaluations of the developed

modules.

Document identifier D5.4

Document class Deliverable

Version 1.2

Author(s) J. Hasselbach (IDMT)

QAT team N. Just (IRT), E. Ekmekcioglu (UNIS)

Date of creation 05 September 2011

Date of last modification 31 January 2012

Status Final

Destination EC

WP number WP5

DIOMEDES WP5 Page 3/32

TABLE OF CONTENTS

1 INTRODUCTION .. 6

2 MODULES AND FORMATS .. 7

2.1 Security Server... 7
2.1.1 API ... 7
2.1.2 Internal Structure ... 10
2.1.3 Performance .. 10

2.2 Security Client .. 11
2.2.1 API ... 11
2.2.2 Internal Structure ... 15
2.2.3 Performance .. 16

2.3 P2P Chunk Header Format ... 17

3 WORKFLOWS ... 18

3.1 P2P Chunk Generation (at the server side) ... 18
3.2 P2P Chunk Processing (at the client side) .. 21
3.3 Discovery of available P2P content ... 22
3.4 Upload of “user generated content” .. 23

4 ALGORITHM EVALUATION ... 24

4.1 Recommendations ... 24
4.2 Symmetric Encryption Algorithms... 24
4.3 Signature Algorithms .. 25
4.4 Hash Algorithms .. 26
4.5 Key Management Approaches ... 27
4.6 Conclusion ... 28

5 CONCLUSION ... 29

APPENDIX A: GLOSSARY OF ABBREVIATIONS ... 31

DIOMEDES WP5 Page 4/32

LIST OF FIGURES

Figure 1 – Security Server (functionalities, input and output channels).. 7

Figure 2 – Security Server (internal structure) ... 10

Figure 3 – Security Client (functionalities, input and output channels) ... 11

Figure 4 – Security Client (internal structure) ... 15

Figure 5 – Work flow for the generation of P2P chunks at the server side ... 18

Figure 6 – Example binary tree for storing receiver keys ... 20

Figure 7 – Example Steiner Tree ... 20

Figure 8 – Workflow for the processing of P2P chunks at the client side ... 21

Figure 9 – Workflow for discovering available P2P content ... 22

Figure 10 – Workflow for uploading “user generated content” ... 23

DIOMEDES WP5 Page 5/32

LIST OF TABLES

Table 1 – P2P Chunk Header Format .. 17

Table 2 – Recommended key lengths [2] ... 24

Table 3 – Comparison of symmetric encryption algorithms .. 24

Table 4 – Comparison of signature algorithms ... 25

Table 5 – Comparison of hash algorithms .. 26

Table 6 – Comparison of stateless broadcast encryption schemes [1] .. 27

Table 7 – Selected algorithms .. 28

DIOMEDES WP5 Page 6/32

1 INTRODUCTION

1.1 Purpose of the document

This document provides a description of the modules developed in task 5.6. In particular, it

describes the functionalities, the APIs, and the internal structure of the “Security Server” and

the “Security Client”. Moreover, the document describes all relevant workflows related to the

mentioned modules and includes a summary of the algorithm evaluation process.

1.2 Scope of the work

The workflows described in this document are related to the following scenarios: secure

distribution of 3D A/V content via P2P network (including access control and content

authentication), upload of user generated content and discovery of content available for P2P

download.

1.3 Objectives

The main objective of this document is to describe the modules developed in task 5.6 and the

P2P content protection approach in general.

1.4 Structure of the document

Chapter 1 provides the introduction for this document. Chapter 2 contains descriptions of the

security modules as well as the specification of the P2P chunk header format. Chapter 3

depicts the workflows related to the security modules. Chapter 4 provides a summary of the

algorithm evaluation process. Chapter 5 contains the conclusion.

DIOMEDES WP5 Page 7/32

2 MODULES AND FORMATS

2.1 Security Server

The main functionalities of the Security Server are:

 access control - in order to avoid unauthorized access to content

 content registration and authentication - in order to prevent sharing of malware and

unauthorized content

 content discovery – in order to allow users to select content to be retrieved via P2P

The Security Server encrypts and digitally signs the transport stream chunks provided by the

3D Content Server. Moreover, this component is responsible for the management of keys and

receivers - including key generation, storage and efficient key distribution using the available

broadcast channels. The Security Server generates so called P2P chunks consisting of a P2P

chunk header (see Table 1 for details) and the actual payload. The payload can contain

encrypted and signed A/V data, signed content metadata, or key information generated by the

Security Server (the “broadcast header”, see Chapter 3.1 for details).

2.1.1 API

The Security Server provides an API for registering content (including “user generated

content”), i.e. it serves as central entry point for new content. Figure 1 provides an overview of

the functionalities, and input and output channels of the Security Server.

Figure 1 – Security Server (functionalities, input and output channels)

DIOMEDES WP5 Page 8/32

uploadData

public void uploadData(java.lang.String contentReference,

 ContentDescription contentDescription,
 javax.activation.DataHandler handler)

This method triggers the preparation of content coming from a trustworthy

source (e.g. the 3D Content Server). One chunk per method call is uploaded.

Parameters:

contentReference - unique identifier for a content

contentDescription - description of the content, the description object

contains the following parameters: metadata flag, b/e-layer flag, a/v flag, PID,

view ID, PCR, channel ID, signature over the provided content, certificate of

the content source

handler - the actual content in binary format (streamed via MTOM

attachment). For each chunk generated by the TsChunker, there is one method

call

uploadUserGeneratedData

public void uploadUserGeneratedData(long receiverId,

 byte[] dataSignature,

 byte[] receiverCertificate,

 java.lang.String description,

javax.activation.DataHandler handler)

This method triggers the preparation of user generated content. This request

must be signed by the requester in order to be authenticated. One file per

method call is uploaded.

Parameters:

receiverId - the unique receiver id

dataSignature - the user signature over the provided content

receiverCertificate - the X.509 certificate of the user

description - a short textual description for the provided content

handler - the actual content in binary format (streamed via MTOM

attachment)

subscribe

public boolean subscribe(int channelId,

 long receiverId)

This method can be used in order to subscribe receivers to a “channel”. When

this method is called, the binary tree storing the receiver information of the

given channel is updated. The given receiver will be able to access future

file:///E:/workspace/diomedes-security-service-java/doc/de/fraunhofer/idmt/diomedes/security/ws/ContentDescription.html

DIOMEDES WP5 Page 9/32

content of the certain channel. (Remark: There is a 1:N relationship between

content provider and channel, i.e. there can be different channels from the

same provider. Regarding the prototype implementation, only 1 provider and 1

channel is used.)

Parameters:

channelId - determines the channel

receiverId - determines the receiver to be revoked

Returns:
boolean - true in case of success, false otherwise

unsubscribe

public boolean unsubscribe(int channelId,

 long receiverId)

This method can be used in order to revoke receivers from a “channel”. When

this method is called, the binary tree storing the receiver information of the

given channel is updated. The given receiver will be excluded from access of

future content.

Parameters:

channelId - determines the channel

receiverId - determines the receiver to be revoked

Returns:
boolean - true in case of success, false otherwise

getAvailableContent

public byte[] getAvailableContent()

This method can be used in order to request a list of available content. Each

content item, which has been provided by the 3D Content Server using the

uploadData method, will be part of this list.

Returns:
byte [] - a serialized HashMap containing pairs of content reference and

content description

DIOMEDES WP5 Page 10/32

2.1.2 Internal Structure

In contrast to chapter 2.1.1., which depicts the API, figure 2 shows the internal structure of the
Security Server, i.e. the most important classes.

Figure 2 – Security Server (internal structure)

2.1.3 Performance

The following section provides the details of the test setup, including the used hardware,

software and test content parameters.

 Intel Core 2 Duo CPU (T7500@2,2 GHz), 2 GB Ram, Windows 7 (64 bit)

 Content: ~200 MB size, ~6500 chunks having sizes between 20 kb and 70 kb per

chunk, real time data rate: ~1,1 MB/s

 10 test runs

 Max. data rate of the Security Server: ~1,7 MB/s

 Peak CPU usage: 40%

 Peak Heap Memory Usage: 100 MB

DIOMEDES WP5 Page 11/32

2.2 Security Client

The Security Client decrypts P2P chunks received from the P2P Client and validates content

integrity and authenticity. In case of validation failure, e.g. due to transmission error or

manipulation, it notifies the P2P Client to recover data and/or to prevent further sharing of

corrupted data. Finally it sends decrypted and validated MPEG2-TS packets to the AV-Sync

Module.

The main functionalities of this module are:

 to authenticate data coming from the P2P Software Module and to provide feedback in

case of failed authentication

 to decrypt data coming from the P2P Client

 to manage related key information (for both content decryption and authentication)

2.2.1 API

Figure 3 provides an overview of the functionalities and input and output channels of the

Security Client.

Figure 3 – Security Client (functionalities, input and output channels)

DIOMEDES WP5 Page 12/32

TCP port 1 – message port
The following messages are supported:

UserLogin:

 required for uploading user generated content, in order to sign the upload request

 the password unlocks the private key of the user

Request example:

Response example:

JSON schema for the request:

{

"properties":{

"method":{

"type":"string"

},

"params":{

"type":"object",

"properties":{

"ConnNumber":{"type":"number"},

"login":{"type":"string"},

"password":{"type":"string"}

}

},

"id":{

"type": "number"

}

}

}

{

"jsonrpc":"2.0",

"result":true,

"id":1

}

{

"jsonrpc":"2.0",

"method":"UserLogin",

"params":

{

"ConnNumber":301,

"login":"name",

"password":"changeme"

},

"id":1

}

DIOMEDES WP5 Page 13/32

UploadContent:

 triggers the upload of user generated content to the server (chapter 3.4 depicts
the related work flow, including the server side processing)

Request example:

Response example:

JSON schema for the request:

{

"properties":{

"method":{

"type":"string"

},

"params":{

"type":"object",

"properties":{

"ConnNumber":{"type":"number"},

"path":{"type":"string"},

"description":{"type":"string"}

}

},

"id":{

"type": "number"

}

}

}

{

"jsonrpc":"2.0",

"result":true,

"id":2

}

{

"jsonrpc":"2.0",

"method":"UploadContent",

"params":

{

"ConnNumber":302,

"path":"mymovie.avi",

"description":"some info about the content"

},

"id":2

}

DIOMEDES WP5 Page 14/32

GetAvailableContent:

 requests a list of available P2P content to be shown to the user for selection

Request example:

Response example:

JSON Schema for the request:

{

"properties":{

"method":{

"type":"string"

},

"params":{

"type":"object",

"properties":{

"ConnNumber":{"type":"number"}

}

},

"id":{

"type": "number"

}

}

}

{

"jsonrpc":"2.0",

"result":

[1,

[["2F2CCCEB-62DA-451F-9CAF-495DE9429F54",

"Fancy Band in Surrey"]]],

"id":2

}

{

"jsonrpc":"2.0",

"method":"GetAvailableContent",

"params":

{

"ConnNumber":303

},

"id":2

}

DIOMEDES WP5 Page 15/32

TCP port 2 – chunk authentication port

This port accepts binary data in the format specified in Chapter 2.3. For each received

binary chunk, there is a response message indicating the status of the binary chunk.

Possible return values are:

OK – chunk has been successfully validated

INVALID – signature is missing or corrupt

ERROR – the chunk structure is corrupt

TCP port 3 – chunk decryption port

This port accepts binary data in the format specified in Chapter 2.3. For each received

binary chunk there is a response message indicating the status of the binary chunk.

Possible return values are:

OK – chunk has been successfully decrypted

ERROR – the chunk structure is corrupt, i.e. the chunk does not comply with the

format specified in Chapter 2.3

2.2.2 Internal Structure

In contrast to chapter 2.2.1., which depicts the API, figure 4 shows the internal structure of the
Security Client, i.e. the most important classes.

Figure 4 – Security Client (internal structure)

DIOMEDES WP5 Page 16/32

2.2.3 Performance

The following section provides the details of the test setup, including the used hardware,

software and test content parameters.

 Intel Core 2 Duo CPU (T7500@2,2 GHz), 2 GB Ram, Windows 7 (64 bit)

 Content: ~200 MB size, ~6500 chunks with a size between 20 kb and 70 kb per

chunk, real time data rate: ~1,1 MB/s

 10 test runs

 Decryption:

o Max. data rate: ~5,9 MB/s

o Peak CPU usage: 14%

o Peak heap memory usage: 18 MB

 Authentication:

o Max. data rate: ~1,9 MB/s,

o Peak CPU usage: 40%

o Peak heap memory usage: 40 MB

DIOMEDES WP5 Page 17/32

2.3 P2P Chunk Header Format

For each chunk received from the 3D Content Server, the Security Server creates a “P2P
chunk” consisting of a header (see Table 1) and the actual payload, which could be AV-data,
metadata or key information.

Byte Bytes Parameter

1 1 Flags

Bit 1 set: payload is encrypted

Bit 2 set: payload contains enhancement layer information

Bit 3 set: payload has been signed

Bit 4 set: payload contains “content metadata” (instead of AV-content)

Bit 5 set: payload contains audio data

Bit 6/7: reserved for future use

Bit 8 set: payload contains “key information”

2 - 17 16 Chunk ID: unique chunk identifier

18 - 33 16 Content ID: unique content identifier

34 - 37 4 PID: packet ID, used for identifying different elementary streams

38 - 43 6 PCR: program clock reference, used for synchronizing P2P and DVB-T
streams

44 - 47 4 Chunk count

48 - 303 256 Signature field (containing: length of the signature (4 bytes), the actual
signature over the header - excluding the signature field itself, 24 bytes
payload hash)

304 1 View ID: identifies different video views

305 -
308

4 Payload size (in bytes)

Table 1 – P2P Chunk Header Format

DIOMEDES WP5 Page 18/32

3 WORKFLOWS

3.1 P2P Chunk Generation (at the server side)

Figure 5 – Work flow for the generation of P2P chunks at the server side

In order to prepare the content for the P2P distribution, video and audio streams (MPEG2-TS)
are encapsulated in so called “P2P Chunks”. In the first step, the 3D Content Server
(TsChunker module) generates chunks for each stream belonging to certain content (e.g.
different views/ quality layers/ audio objects). In order to generate chunks that can be decoded
independently, the size of a single chunk is defined by one GOP (Group of Pictures - frames

DIOMEDES WP5 Page 19/32

between two key frames that can be decoded without additional information) for video streams
and one second for audio streams. The video streams are split into “base layer chunks” that
are mandatory for video decoding, and “enhancement layer chunks” that are available for
decoding only if the communication channel capacity is high enough. MPEG2-TS chunks and
related information are transferred to the Security Server. The Security Server generates “P2P
Chunks” from the MPEG2-TS chunks, which consist of a header (see Table 1) and the
payload.

Key Management

Within the DIOMEDES project, an important aspect is to implement access control mechanism
for content to be distributed via P2P communication. While all receivers should be able to
participate in the distribution process, only authorized users should have access to the actual
content. In general, the broadcasting scheme to be used should be able to encrypt a message
so that multiple users are able to decrypt it.

A broadcast message is usually divided into 2 parts: a header (“broadcast header”) and a
body part. The body contains the protected content and the header contains information
needed to access the content (i.e. key information).

Regarding the choice of an appropriate broadcast encryption scheme for DIOMEDES, the
following factors have been identified as relevant: the number of sources (multi-source vs.
single-source), the availability of additional communication channels besides the broadcasting
channel(s), and performance (considering various criteria). Performance criteria include the
amount of encrypted session keys (header size) to be broadcast, the amount of keys to be
stored by each receiver (storage space), and the computational overhead for receivers
(processing time). Depending on the specific setup, the importance of each criterion may
differ. Considering the above, the following (non-functional) requirements have been identified
for the DIOMEDES project [1]:

1. There is no additional (secure) point-to-point channel besides the broadcast channels
DVB-T and P2P available, thus a stateless broadcast encryption scheme is preferred.
(stateless schemes: schemes that do not require additional communication channels
for distributing key information)

2. A single-source broadcast setup is used, i.e. the application of public key cryptography
is not required.

3. The processing delay introduced by the security operations should be as low as
possible, i.e. processing time is an important factor.

4. Depending on the availability of tamper resistant memory on the receiver device, the
required space for storing keys might become important.

5. Depending on the broadcast channel to be used for the distribution of key information,
the size of the broadcast header might be an important factor, e.g. the header size is
more relevant for the DVB-T channel than for the P2P channel.

Based on the requirements stated above, various broadcast encryption schemes have been
evaluated (see Chapter 4 for details).

The selected (and implemented) broadcast encryption scheme (“Complete Subtree” – CS) is
based on a balanced binary tree of height log where the leaves represent the N receivers
(Figure 6). During the setup of the system, unique AES keys (128 bit) are generated and
assigned to each vertex in the tree. In a next step, each receiver is provided with a secret
information (log N keys of all its tree ancestors, see Figure 6) to be stored in a tamper
resistant area (e.g. on a Smart Card or in the memory of the receiver device). A 1:1
relationship between channel and tree is assumed, i.e. for each channel (which will play out
different content), there is exactly one tree. This means the owner of the “secret information” is
authorized to access all content related to a specific channel (resp. tree).

DIOMEDES WP5 Page 20/32

Figure 6 – Example binary tree for storing receiver keys

To find the cover for a set of privileged receivers, the Steiner tree for the set of revoked
receivers is created by marking the edges between the revoked receivers and the root (Figure
7). Due to the tree representation, a single message can be used to distribute this information
(the so called "broadcast header") to all receivers. On the receiving side, a matching key for
one of the privileged subsets needs to be found and subsequently, the actual decryption
needs to be performed.

The actual content is distributed only once, encrypted with a session key K (also 128 bit AES),
while the session key K is encrypted with the keys of the privileged subsets.

Figure 7 – Example Steiner Tree

Figure 7 shows an example Steiner Tree. Leafs (receivers) L11, L12 and L14 are marked as
revoked. By removing the resulting Steiner Tree from the binary tree, two subsets L1 and its
descendants and L13 are remaining.

DIOMEDES WP5 Page 21/32

The encryption process consists of the following steps:

3.2 P2P Chunk Processing (at the client side)

Figure 8 – Workflow for the processing of P2P chunks at the client side

ENCRYPT

K – session key

H – broadcast header

C – plain content

B – broadcast body (the encrypted content)

Sr – receiver’s secret key set

ENC - encrypt

1. Generate the receiver’s secret information Sr and store it
at the receiver (see Figure 6)

2. Generate session key K
3. B = ENCK(C)
4. Generate broadcast header H = ENCSr(K)

DIOMEDES WP5 Page 22/32

Figure 8 shows the data flow at the client side. Once the P2P chunks are received by the P2P
Client, the Security Client analyzes the chunk header and verifies the signature. In case of
success, the P2P client immediately shares the chunks with other peers. Chunks, which have
been successfully verified, are ready for decryption by the Security Client. The Security Client
extracts and decrypts the payload. The “broadcast header” containing the key information
required for decrypting the AV content, is also distributed via the P2P network using special
P2P chunks (“key info chunks”). After decrypting and de-packetising, the payload is sent to the
AV-Sync Module.

The decryption process can be defined as follows:

3.3 Discovery of available P2P content

Figure 9 – Workflow for discovering available P2P content

Figure 9 depicts the P2P content discovery workflow. For each content item, there is so called
“content metadata”. A “content metadata” file is a text file in JSON format providing information
about the related content. The Security Server stores the metadata files and provides an
interface for accessing the contained information.

DECRYPT

K – session key

H – broadcast header

C – plain content

B – broadcast body (the encrypted content)

Sr – receiver’s secret key set

DEC - decrypt

1. K = DECSr(H)
2. C = DECK(B)

DIOMEDES WP5 Page 23/32

3.4 Upload of “user generated content”

Figure 10 – Workflow for uploading “user generated content”

Figure 10 shows the steps for uploading the “user generated content”. In order to establish
non-repudiation during the upload of “user generated content”, the user needs to digitally sign
the upload request using his own private key that is encrypted with the user’s secret
password.

DIOMEDES WP5 Page 24/32

4 ALGORITHM EVALUATION

This chapter provides an update of the algorithm evaluation based on the requirements of the
integrated demo-setup, especially considering the average chunk size as produced in the 3D
Content Server.

4.1 Recommendations

In order to select appropriate algorithms and key lengths, the recent recommendations (2011)
of the ECRYPT EU-project [3] have been taken into consideration:

“ECRYPT II - European Network of Excellence for Cryptology II is [...] funded within the
Information & Communication Technologies (ICT) Programme of the European Commission's
Seventh Framework Programme (FP7) under contract number ICT-2007-216676.”

The following table summarizes the recommendations regarding encryption and signature
algorithms [2]. For the DIOMEDES security prototypes, level 5 key lengths have been
considered as minimum and level 7 key lengths as maximum values.

Protection Level Symmetric Asymmetric Elliptic Curve Hash

5 Legacy Standard
Level (2011 – 2020)

96 bit 1776 bit 192 bit 192 bit

6 Medium-term (2011 –
2030)

112 bit 2432 bit 224 bit 224 bit

7 Long-term (2011 –
2040)

128 bit 3248 bit 256 bit 256 bit

Table 2 – Recommended key lengths [2]

4.2 Symmetric Encryption Algorithms

 Tested
Key
Length

Performance Implementations
(Java)

IP & Costs

Twofish 128 bit 44,5 MB/s BouncyCastle not patented, free use

Serpent 128 bit 36,0 MB/s BouncyCastle not patented, free use

AES
(Rijndael)

128 bit 50,3 MB/s
(ECB-mode)

BouncyCastle,
SunJCE

not patented, free
use

RC6 128 bit 66,1 MB/s BouncyCastle patented (RSA
Laboratories), may
require licensing and
royalty payments

MARS 128 bit 27,9 MB/s No common provider not patented, available
worldwide under a
royalty-free license
(IBM)

Table 3 – Comparison of symmetric encryption algorithms

DIOMEDES WP5 Page 25/32

Table 3 compares common symmetric encryption algorithms regarding their performance,
support by software-frameworks, intellectual property rights and costs. The test setup is as
follows:

 Intel Core2 Duo E8500 @ 3,16 GHz, 4GB Ram

 Linux (Mandriva 2008.1), kernel version: 2.6.35.13-92.fc14.x86_64

 JRE 1.6.0_21-b06

 Cryptography Frameworks: Bouncy Castle (BC), MARS implementation by Popa
Tiberiu (Avalable at: http://n3vrax.wordpress.com/2011/07/28/mars-encryption-
algorithm-in-java/)

 1000 encryption jobs with 50kb input each

For the prototype implementation, the AES algorithm using 128 bit keys has been selected
(RC6 provides better performance, but it is patented and license payments may be required).
According to Table 2, this can be considered as “Level 7 security”. (Remark: “Level 5 security”
would have been sufficient for the project’s purposes, but the BC provider does not support
key lengths lower than 128 bit for the AES algorithm.)

4.3 Signature Algorithms

 Tested Key
Length

Performance Implementations (Java) IP & Costs

RSA/SHA-256 1776 bit 3,3 MB/sec BouncyCastle,
SunRsaSign

not patented,
free use

ECDSA/SHA-
256

192 bit 4,9 MB/sec BouncyCastle not patented,
free use

Table 4 – Comparison of signature algorithms

Table 4 compares common signature algorithms regarding aspects such as performance,
support by software-frameworks, intellectual property rights and costs. The test setup is as
follows:

 Intel Core2 Duo E8500 @ 3,16 GHz, 4GB Ram

 Linux (Mandriva 2008.1), kernel version: 2.6.35.13-92.fc14.x86_64

 JRE 1.6.0_21-b06

 Cryptography Framework: Bouncy Castle (BC)

 1000 signing jobs with 50kb input each

For the prototype implementation, the ECDSA/SHA-256 algorithm using 192 bit keys has
been selected. According to Table 2, this can be considered as “Level 5 security”.

DIOMEDES WP5 Page 26/32

4.4 Hash Algorithms

 Tested Key
Length

Performance Implementations
(Java)

IP & Costs

SHA256 (256
bit)

256 bit 61,3 MB/s BouncyCastle,
SUN

not patented, free
use

Tiger (192 bit) 192 bit 71,9 MB/s BouncyCastle not patented, free
use

WHIRLPOOL 512 bit 7,7 MB/s BouncyCastle not patented, free
use

RIPEMD 160 bit

Comment: no
known attacks,
can be

compared to
SHA1 - but due
to its lesser
popularity it has
been not as
much
scrutinized,
thus there is
higher risk of
undiscovered
weaknesses

33,7 MB/s BouncyCastle not patented, free
use

Table 5 – Comparison of hash algorithms

Table 5 compares common hashing algorithms regarding aspects such as performance,
support by software-frameworks, intellectual property rights and costs. The test setup is as
follows:

 Intel Core2 Duo E8500 @ 3,16 GHz, 4GB Ram

 Linux (Mandriva 2008.1), kernel version: 2.6.35.13-92.fc14.x86_64

 JRE 1.6.0_21-b06

 Cryptography Framework: Bouncy Castle (BC)

 1000 hashing jobs with 50kb input each

For the prototype implementation, either Tiger or SHA256 are used (depending on the
application context, e.g. regarding digital signatures (chapter 4.4), there is no implementation
available using the Tiger algorithm).

DIOMEDES WP5 Page 27/32

4.5 Key Management Approaches

From a security perspective, the main challenges in the DIOMEDES broadcasting setup are:

1. Efficient content and key distribution for large user bases

2. Access control

3. Authentication of content

While existing DRMS are able to address point 2, they do not provide solutions for point 1 and
point 3. Although it would be technically possible to use existing DRMS “on top” of some
broadcasting scheme (addressing point 1), there would be a large overhead when applied to
small-sized chunks, such as the ones used by the DIOMEDES-P2P system.

Table 6 – Comparison of stateless broadcast encryption schemes [1]

Table 6 compares common stateless broadcast encryption schemes regarding processing
time, storage space and broadcast header size. Parameters are: N – the total number of
receivers, r – the number of revoked receivers and k – an arbitrary integer value. Overall, the
Complete Subtree scheme (CS) seems to be a good choice for the specific DVB-T/P2P
broadcast scenario, since this scheme provides the best trade-off:

 CS provides a good performance with respect to the processing time at the receiver

 CS provides a good performance with respect to the required storage space at the

receiver

 Although CS cannot compete with other schemes for r << N, it seems to be a good

choice because of its flexibility with respect to changing r.

 Another point in favor of CS is the low implementation effort (in comparison to the

other schemes).

The detailed evaluation can be found in the recently published paper: „Access Control and
Content Authentication for Hybrid DVB-T2/P2P Broadcasting“ [1].

DIOMEDES WP5 Page 28/32

4.6 Conclusion

Task Selected algorithms Summary

Symmetric
Encryption

AES (128 bit) Secure, fast, patent-free

 Flexible: also streaming modes

are supported, which typically

execute at a higher speed than

block ciphers and which are

particularly suited for applications

where plaintext comes in

quantities of unknown length.

 In case OFB streaming mode is

used, AES provides good

robustness with respect to

damaged message parts, i.e. in

case bytes are damaged in

transmission only those bytes in

the decrypted cipher text are

affected, thus the error does not

propagate to other parts of the

message.

Cryptographic
Hashes

SHA-256 (256 bit) or Tiger
(192 bit)

 Secure, fast, patent-free

Signatures ECDSA/SHA-256 (192/256
bit)

 Secure, fast, patent-free

Key Management Complete Sub-tree Good performance with respect to

the processing time at the

receiver

 Good performance with respect to

the required storage space at the

receiver

 Header size: good overall

performance with respect to a

growing number of revoked

receivers r

 Low implementation effort (in

comparison to the other schemes)

Table 7 – Selected algorithms

Table 7 gives the summary of the selected algorithms for encryption, signing, hashing and key

management.

DIOMEDES WP5 Page 29/32

5 CONCLUSION

This document presented how access control, content registration and content authentication

are addressed within the context of a hybrid DVB-T/P2P MPEG2-TS broadcasting scenario. It

was shown how the respective functionalities have been implemented within the DIOMEDES

architecture. The presented approaches are agnostic to the content format and distribution

channel, and thus should be adaptable to other application scenarios. The modules and

workflows described in this document have been implemented and successfully tested in an

integrated setup. The presented approach has been also described in a conference paper [1]

(published in the proceedings of ICITST 2011).

DIOMEDES WP5 Page 30/32

REFERENCES

[1] J. Hasselbach, P. Aichroth. “Access control and content authentication for hybrid DVB-
T2/P2P broadcasting” presented at International Conference for Internet Technology and
Secured Transactions (ICITST-2011), Abu Dhabi, UAE, Dec. 2011.

[2] ECRYPT II “Yearly Report on Algorithms and Keysizes (2010-2011)”, Internet:

http://www.ecrypt.eu.org/documents/D.SPA.17.pdf, 2011, [Dec. 05, 2011]

[3] ECRYPT II Project, Internet: http://www.ecrypt.eu.org, 2011, [Dec. 05, 2011]

DIOMEDES WP5 Page 31/32

APPENDIX A: GLOSSARY OF ABBREVIATIONS

A

AES Advanced Encryption Standard

A/V Audio / Video

API Application Programming Interface

B

BGW Boneh Gentry Waters (Broadcast Encryption Scheme)

C

CS Complete Subtree (Broadcast Encryption Scheme)

D

DES Data Encryption Standard

DSA Digital Signature Algorithm

DRMS Digital Rights Management System

DVB Digital Video Broadcast

E

ECDSA Elliptic Curve DSA

ECB Electronic Code Book (Block Cipher Mode)

G

GOP Group Of Pictures

I

ICITST
International Conference for Internet Technology and

Secured Transactions

IP Intellectual Property

J

JSON-RPC JavaScript Object Notation – Remote Procedure Call

JRE Java Runtime Environment

L

LSD Layered Subset Difference (Broadcast Encryption Scheme)

M

MTOM Message Transmission Optimization Mechanism

MPEG-TS Motion Picture Experts Group - Transport Stream

DIOMEDES WP5 Page 32/32

N

NIST National Institute of Standards and Technology (USA)

NSA National Security Agency (USA)

O

OFB Output Feedback Mode (Block Cipher Mode)

P

P2P Peer to Peer

PCR Program Clock Reference

PID Packet ID

R

RC6 Rivest Cipher 6 (symmetric encryption scheme)

RSA Rivest Shamir Adleman (asymmetric encryption scheme)

S

SOAP
“Simple Object Access Protocol” – not used anymore as

acronym

SHA Secure Hash Algorithm

SSD Stratified Subset Difference (Broadcast Encryption Scheme)

SD Subset Difference (Broadcast Encryption Scheme)

T

TCP/IP Transmission Control Protocol / Internet Protocol

TS Transport Stream

U

UDP User Datagram Protocol

UUID Universally Unique Identifier

X

X.509 Standard for a public key infrastructure

http://de.wikipedia.org/wiki/Transmission_Control_Protocol/Internet_Protocol

