

MyUI: Mainstreaming Accessibility through
Synergistic User Modelling and Adaptability

FP7-ICT-2009-4-248606

Prototype for user context management
infrastructure and user modelling

Public Document

Deliverable number D1.2 Date of delivery 12-2011

Status Final Type Prototype

Workpackage WP1 - User and Context Modelling

Authors
UC3M (José Alberto Hernández, David Larrabeiti),
FZI (Oliver Strnad, Andreas Schmidt)

Keywords Context Manager; Ontology; User Profile; XML-RPC; C#

Abstract

This deliverable reviews the basic concepts and implementation of the
Context Manager for the MyUI system architecture. The Context
Manager is designed to capture the user’s profile and context and
provide this information to the MyUI services such that, the User
Interface offered to the end-user can be individualised to a particular
user, taking into account his/her perceptual, cognitive and motor
impairments. This deliverable is intended to serve as an update of the
previous D1.1, showing the details and the refined Context Manager of
the MyUI system.

 2010-2012 MyUI Consortium

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 2 of 30

Table of Contents

1. INTRODUCTION AND SCOPE ... 3

2. BRIEF REVIEW OF THE CONTEXT MANAGER AS DESCRIBED IN D1.1 4

2.1 USER PROFILE .. 4
2.2 SENSOR DATA .. 5

3. CONTEXT MANAGER - IMPLEMENTATION AND FUNCTIONALITY 6

3.1 CONTEXT MANAGER UPDATE ... 6
3.1.1 Architectural changes ... 6
3.1.2 Graphical User Interface ... 7
3.1.3 Development Support ... 11
3.1.4 Finalization of the Context Manager API .. 11
3.1.5 More Flexible Data Model ... 15

3.2 SENSOR ONTOLOGY UPDATE ... 15
3.2.1 Application-Specific Sensors .. 15
3.2.2 Timeout Sensor ... 17
3.2.3 Attention Sensor ... 17
3.2.4 TmtGameSensor ... 17
3.2.5 CorsiTestSensor .. 18
3.2.6 Current State of the Sensor Ontology ... 18

4. FINALIZATION OF THE USER PROFILE... 18

4.1 FINAL VERSION .. 18
4.1.1 User Profile Variable: Successful Interactions .. 21
4.1.2 User Profile Variable: State transitions ... 21
4.1.3 User Profile Variable: Experience ... 21

4.2 DEVELOPMENT OF AN INSTANCE OF THE USER PROFILE ... 21
4.2.1 User Profile Drift ... 22

4.3 MANUAL ADAPTATION OF THE USER PROFILE .. 24

5. THE ROLE OF GAMES FOR USER PROFILING ... 26

6. SUMMARY AND DISCUSSION .. 29

REFERENCES ... 30

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 3 of 30

1. Introduction and Scope

As specified in the Description of Work (DoW) page 91, this deliverable attempts to provide a:

“software prototype of user and context modeller, including a description of the refined context
ontology and user modelling concept.”

As such, this deliverable refines the MyUI’s context management system described in D1.1.
Recalling from D1.1 the MyUI system must provide a Context Management system that collects
and aggregates contextual information about the user and his/her environment (via sensors), and
stores that information in a user profile . This user profile provides the base for the adaptation of
the User Interface (UI) to the particular context of the user, thus providing individualised services.

The previous Deliverable D1.1 described a preliminary version of the Context Management system
(or Context Manager) as originally conceived and implemented by Month 12. The Context
Manager has been further refined, both in concept and implementation. This deliverable
summarises the main changes and updates of the Context Manager, and its involvement in the
MyUI project. Section 2 briefly reviews the Context Manager concept and the new updates
introduced. Section 3 further describes the implementation of the Context Manager. It also provides
concepts for sensors introduced after deliverable D1.1 and examples about how to use the updated
version of the Context Manager. Section 4 proposes the final selection of user profile variables
discusses newly added user profile variables and illustrates the development of an instance of a
user profile for a user over time. At the end of the section the user profile drift – an inherent
problem of the user profiling system used in MyUI is discussed with solutions showing the
problem can be handled. Also the possibility and corresponding side-effects of manual updates of
the user profile will be shown. Section 5 includes a brief description of the role of the Context
Manager in Task 4.5, about the use of games for user profiling. Finally, Section 6 concludes this
deliverable.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 4 of 30

2. Brief Review of the Context Manager as Described in D1.1

In D1.1 the general concepts of the Context Manager have been described. This chapter recalls
some of these concepts.

The Context Management system captures the situation of a user. More concretely:

“Context is the system-side representation of a user’s situation as far as it is relevant to the system,
framework or application at hand” (see [1]).

For MyUI the Context Manager manages user profile data and context data in the form of sensor
information. Its main purpose is capturing and aggregating sensor events as well as the adaptation
of the user profile based on this information.

The managed data is captured in a structured way and defined in ontology schemas. For this
purpose we presented the User Profile Ontology and the Sensor Ontology in D1.1. Both will be
refined later in the document.

The Context Manager was implemented on top of the open source middleware OpenAAL
developed within the European-founded project SOPRANO. Since the software of the MyUI
system consists of multiple distinct parts where each part has a connection to the Context Manager
it was decided to provide an API for the Context Manager. For this task a XML-RPC interface has
been implemented to support a platform- and programming-language-independent communication
between all components. The interface of the Context Manager is described in D1.1 and D4.2.

2.1 User Profile

The User Profile is a collection of information about the user of the MyUI system. It consists of
static data like email address, first name, last name, etc. and information particularly important for
the user interface customization. To achieve this, the MyUI user profile focuses on possible
disabilities and impairments related to the usage of user interfaces.

As described in Figure 1 there are multiple levels of abstraction involved. On the ontological level
we have classes like “User”, properties like “hasName” and datatypes like “String”. This level is
called the user profile. The next level of abstraction is the concrete instantiation of this user profile
for a given user. Each triple of an instance of the class “User”, a property and an instantiation of
e.g. “String” is called a user profile variable value.

Figure 1: Example showing a part of the user profile. The blue circles present the schema level, the
arrows indicate the properties and the green circles are the instances of the corresponding classes that

form a concrete instance of the user profile.

The methodology used to create the user profile ontology and a detailed description of the RDF-
based data model can be found in D1.1.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 5 of 30

2.2 Sensor Data

Since one of the goals of MyUI is to provide a suitable adaptation of the user interface to the user it
is important to also adopt the user profile. This means that the aforementioned disabilities and
impairments, or at least their symptoms in terms of UI utilization, need to be measured constantly.
Based on these measurements the user profile is adopted.

In order to integrate the ability of measuring the properties of a given user the Context Manager
captures and aggregates structured sensor data modelled in the sensor data ontology. Two different
types of sensors are distinguished at this point: physical sensors and virtual sensors. While physical
sensors are real devices such as a webcam or a RFID-reader, virtual sensors are mainly
implemented in software. The Context Manager captures the measurements of the different sensors
in form of a so called sensor event which is basically a triple of sensor identifier, the measured
property and a value for that measured property. A sensor event can be e.g. that a webcam sensor
measured a distance of 2.5 meters between the display and the user.

In order to enable the Context Manager to automatically derive useful information from the
sensors, meta-information about each sensor is needed. The meta-data contains statements like
which user carries a given RFID-transponder and to which installation the RFID-reader that
detected the transponder is connected.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 6 of 30

3. Context Manager - Implementation and Functionality

The main concept of the Context Manager is basically the same as originally conceived in the
project and reported in D1.1 (and further reviewed in the previous section). However, the original
ontology for the sensor data has been extended with new concepts as ideas came up for further
measurements of the user, like measuring the attention of the user by tracing the direction he is
looking at. The sensor ontology has also been extended with new attributes for the data originating
from the games described later in this deliverable.

Furthermore a new feature was included into the adaptation engine, which allows the user of the
MyUI application better control over the adaptation process by giving him the ability to reject an
adaptation of the user interface that took place.

The rationale behind this is that measurements of the user’s disabilities can be wrong due to outer
factors influencing the system. For example the user profile variable for attention could indicate
that the user is inattentive. But the measurements just showed the user as inattentive because he
was looking at someone entering the room. In this case the adaptation of the user interface could be
inappropriate for the user and the user would have the ability to tell the system that he was satisfied
with the adaptation he had before the change. Support for this mechanics has also been included in
the Context Manager by extending the sensor ontology.

3.1 Context Manager Update

As of D1.1 the Context Manager was a monolithic application on top of OpenAAL running on a
dedicated server at FZI in Karlsruhe. The drawbacks of such a solution were that every partner
needed access to the internet in order to develop or test the MyUI framework. Furthermore the
internet connection used to transfer the user profile data and sensor events between the adaptation
engine and the Context Manager introduced heavy delays to the adaptation of the user interface,
which was unacceptable for the adaptation tasks the MyUI framework carries out. During
discussions inside the project it was found that there was a demand for installing local instances of
the Context Manager in order to support debugging and development of the other components.
There were also concerns regarding data security associated with the centralized storage of context
information, which will also be targeted by the following features.

To address these issues it has been decided to create a new implementation of the Context Manager
including the following points:

 Replace the centralized architecture of the system by an architecture where every
installation of the MyUI system has its own instance of the Context Manager running.

 Graphical User Interface to configure sensors, create users and change the user profile
 Development support by giving detailed information about what is happening inside the

Context Manager and by providing access to the underlying database
 Finalize the API of the Context Manager used by other components of the MyUI system

for the communication with the Context Manager
 Engineer a more flexible data model

3.1.1 Architectural changes

As described above the centralized architecture implemented in MyUI had certain drawbacks
regarding usability, configuration and processing speed. There was only one instance of the
Context Manager running for all instances of the MyUI framework. While this approach worked
for the development of the first prototype it showed to limit the further development of the
framework.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 7 of 30

Also, the centralized approach made debugging and error tracing difficult, since a secure remote
desktop connection to the server running the Context Manager would have been needed to read the
error logs. Even more difficult to handle was a situation where simultaneous access to development
APIs from multiple partners to the Context Manager appeared. This resulted in simultaneous and
conflicting updates of the user profile for a given user.

To overcome these limitations a new Context Manager has been implemented in C# to improve its
performance and benefit from the rapid application development approach of Visual Studio for C#
when it comes to graphical user interfaces. It has been decided that the software will be
implemented as a stand-alone application each project partner can use on their own systems
without relying on a slow socket connection over the public internet like the old version of the
Context Manager did. Furthermore the database has been replaced by SQLite which is an
embeddable relational database supporting SQL and which is used in multiple large-scale software
projects like Photoshop Lightroom by Adobe. The data format of SQLite databases is open and can
therefore be read and modified by a broad range of utilities.

By providing the ability to replace the database of the Context Manager it is now possible to have
different databases for different studies and archive the results of these studies, as well as providing
pre-configured databases to project partners.

Figure 2: Simplified overview of a complete installation of the MyUI framework.

3.1.2 Graphical User Interface

By having one instance of the Context Manager for every installation of the MyUI framework the
control over the configuration of these installations was also transferred to the project partners in
order to ease the creation of demo-installations, the integration of new sensors or to test adaptations
of the MyUI User Interface a graphical user interface has been created for the Context Manager.

Partners running an own instance of the Context Manager can now create new databases or open
already existing ones. Furthermore it is now possible to edit the database with the graphical user
interface. Maintenance operations like adding a user, creating a new sensor or editing the user
profile of a user are now easy to accomplish.

Figure 3 shows the main menu of the Context Manager GUI. The File menu allows creating a new
database or opening an already existing one (for example, the one provided is “myui_example.db”).

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 8 of 30

After this, the Server menu allows to start the Context Manager server. Once the database is opened
and the server is started, we can see from the Users list a number of users loaded in the database. In
this example, there is only one user in the database: Arthur Dent, identified by his id, namely
47110815. You can edit his profile by clicking the “Edit Profile” button.

Figure 3: Main Menu of the Context Manager Server Console

After clicking the Edit Profile button, the menu of Figure 4 is shown. This figure allows modifying
the user’s id, name and email address. Additionally, there is a list of Perceptual attributes and their
current values, including: Visual Acuity, Colour perception, Field of vision, etc. The Menu also
shows other Cognitive related properties, Motor properties and Misc properties, along with their
values (see Figure 5, Figure 6 and Figure 7).

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 9 of 30

Figure 4: User Profile Perceptual Properties

Figure 5: User Profile Cognitive Properties

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 10 of 30

Figure 6: User Profile Motor Properties

Figure 7: User Profile Misc Properties

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 11 of 30

3.1.3 Development Support

The new graphical user interface contains a part dedicated to provide logging information. The user
of the Context Manager is now able to see in real-time which statements are stored into the
database and what inference steps the Context Manager performs internally.

Furthermore the SQLite-format allows opening the database files with 3rd party software like
SQLite Manager (see Figure 8). This enabled developers to get all the raw information inside the
MyUI Context Manager and make tweaks for debugging purposes.

Figure 8: Opening the database with SQLite Manager (German Screenshot)

3.1.4 Finalization of the Context Manager API

The Context Manager provides an interface to the other parts of the MyUI framework, offering
them the possibility to query, modify or delete information from the Context Manager. Since MyUI
consists of multiple applications implemented in different programming languages (e.g. C#, PHP)
an easy to use cross-platform standard for remote procedure calls had to be chosen.

As a solution the XML-RPC protocol, which is the precursor of the SOAP protocol, fits these
requirements. XML-RPC is a text-based protocol transported on top of the HTTP protocol. In
contrast to SOAP the protocol is very simple and should therefore be easy to understand by
developers. There are implementations for most of the commercially used programming languages
which makes it portable across different platforms. The reader is referred to Deliverable D4.2 for a
brief review of XML-RPC.

The following table presents the API for the Context Manager which is exposed via XML-RPC.
For each method its name, the expected parameters, a description of the return value as well as a
short example is given. All examples provided are written in Java-like pseudo code.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 12 of 30

Method myui.PublishSensorEvent
Description The method PublishSensorEvent can be called by a client to post a detected

sensor event to the Context Manager of MyUI in the form of a context triple.
Currently the systems is capable to process sensor events from the following
sensors:

 Distance Sensor measuring the distance between the head of the user
and the display device

 Gesture Sensor detecting lean-forward and lean-backward gestures of
the user

 RFID reader detecting whether a RFID transponder is in range or not
 Attention sensor detecting whether the user is looking at the display of

the MyUI system
 Timeout sensor detecting whether the user executes no actions inside

the MyUI application for a given time
 A sensor capturing the results of the Trail-Making-Game
 A sensor capturing the results of the Corsi-Test-Game

Each sensor can detect different properties of its environment. Therefore the
following properties were defined for the existing set of sensors:

 distanceToHead
 detectedGesture
 detectedRfidTag
 detectedTimeout
 detectedCorsiScore
 detectedCorsiDetailScore
 detectedTmtTime
 detectedTmtMisclicks

Parameters 1st parameter The first parameter given to this method is of
type string and holds the identifier of the sensor
that emitted the sensor event.

2nd parameter The second parameter is of type string and holds
the property that has been measured by the
sensor.

3rd parameter The third parameter is also of type string and
holds the value of the measured property.

Return value This function returns a Boolean that indicates whether the call succeeded and
the sensor event has been stored inside the Context Manager.

Example // Publish that the sensor with the identifier Distance01
// detected a distance to the head of the user of 25.0 cm
Myui.PublishSensorEvent(“Distance01”,
 “distanceToHead”, “25.0”);

// Publish that the sensor Camera01 detected a lean-forward
// gesture
Myui.PublishSensorEvent(“Camera01”,
 “detectedGesture”, “Forward”);

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 13 of 30

Method myui.GetUserProfile
Description The method GetUserProfile allows the client to retrieve a complete user profile

of a given user.
Parameters 1st parameter The first parameter given to this method is of

type string and holds the identifier of the user
whose complete user profile shall be retrieved.

Return value This method returns a list of Strings where each String contains all data about
one specific user profile variable. The data is transmitted as XML. If no user
profile for the given user identifier was found an empty list is returned.

Example // Retrieve the user profile of “Artur”
Myui.GetUserProfile(“Artur”)

The following two entries of the user profile show how each string in the list is
constructed:
<varName>LastName</varName>
<varValue>Dent</varValue>
<varUpdateTime>Thu Nov 17 16:52:36 CET 2011</varUpdateTime>

<varName>FirstName</varName>
<varValue>Artur</varValue>
<varUpdateTime>Thu Nov 17 17:22:45 CET 2011</varUpdateTime>

Method myui.UpdateUserProfile
Description The method UpdateUserProfile allows the client to directly set the value of a

user profile variable for a given user.
Parameters 1st parameter The first parameter given to this method is of

type string and holds the identifier of the user
whose complete user profile shall be retrieved.

 2nd parameter The second parameter is of type string and
contains the name of the user profile variable
(eg. LastName).

 3rd parameter The third parameter is of type string and
contains the new value for the user profile
variable given in parameter two.

Possible Values Possible values for the second parameter are:
FirstName (String)
LastName (String)
Email (String)
VisualAcuity (Numeric, [0,4])
FieldOfVision (Numeric, [0,4])
AmbientLight (Numeric, [0,4])
Hearing (Numeric, [0,4])
AmbientNoise (Numeric, [0,4])
LanguageReception (Numeric, [0,4])
LanguageProduction (Numeric, [0,4])
UnderstandingAbstractSigns (Numeric, [0,4])
Attention (Numeric, [0,4])
ProcessingSpeed (Numeric, [0,4])
WorkingMemory (Numeric, [0,4])
LongTermMemory (Numeric, [0,4])
SpeechArticulation (Numeric, [0,4])
FingerPrecision (Numeric, [0,4])
HandPrecision (Numeric, [0,4])

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 14 of 30

ArmPrecision (Numeric, [0,4])
ContactGrup (Numeric, [0,4])
PinchGrip (Numeric, [0,4])
ClenchGrip (Numeric, [0,4])
HandEyeCoordination (Numeric, [0,4])
ICTLiteracy (Numeric, [0,4])

Return value The method returns a Boolean indicating whether the call succeeded.
Example // Update the user profile variable “VisualActuity” of

// a user with the identifier “Artur” to a value of 4.0
Myui.UpdateUserProfile(“Artur”, “VisualAcuity”, “4.0”);

Method myui.GetUserVariable
Description The method GetUserVariable allows the client to retrieve the value of a given

user profile variable. This method was introduced for convenience of the
developer to allow the retrieval of user profile variables without parsing the
complete user profile.

Parameters 1st parameter The first parameter given to this method is of
type string and holds the identifier of the user
whose user profile shall be retrieved.

 2nd parameter The second parameter is of type string and holds
the name of the user profile variable that shall
be retrieved.

Return value This method returns a single String that contains the value of the user profile
variable given in the second parameter.

Example // Retrieve the user profile variable “VisualAcuity” of “Artur”
Myui.GetUserVariable(“Artur”, “VisualAcuity”);

This call returns the string “4.0” if “Artur” has a visual acuity of “4”.

Method myui.GetUserVariableHistory
Description The method GetUserVariableHistory allows the client to retrieve a list of

triples that shows the development of a user profile variable for a given user.
Parameters 1st parameter The first parameter given to this method is of

type string and holds the identifier of the user
whose user profile shall be retrieved.

 2nd parameter The second parameter is of type string and holds
the name of the user profile variable that shall
be retrieved.

Return value This method returns a list of strings where each string contains one user profile
statement in the form of a triple consisting of the user identifier, the name of
the user profile variable, the value of the user profile variable and the time it
was set to this value.

If a user profile variable was not yet explicitly set to a value for the given user
a standard value is returned and the time of the last change of this user profile
variable is the current timestamp.

Example // Retrieve the user profile variable history of
// “VisualAcuity” for the user “Artur”
Myui.GetUserVariableHistory(“Artur”, “VisualAcuity”);

This call could return the following XML-snippet:
 <profileStatement>
 <userId>Artur</userId>

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 15 of 30

 <userVariable>VisualAcuity</userVariable>
 <value>3.25</value>
 <timeSet>02.08.2011 14:41:03</timeSet>
 </profileStatement>

3.1.5 More Flexible Data Model

In the old version of the Context Manager the ontology schema had to be pre-defined at design
time of the Context Manager. This resulted in a lot of minor updates of the Context Manager
component– one for each update of the ontology schemas. Since MyUI will be a framework
providing other developers with the ability to develop own applications on top of MyUI it has been
found that functionality to programmatically change the underlying ontology schema is needed.

As described in deliverable D1.1, the ontology schema is composed of classes and properties
similar to RDF Schema. As part of the new Context Manager an API has been implemented to
create new classes and properties during run-time. This allows developer tools or even context
augmentation services which generate contextual information of a higher abstraction level from
low level context events to programmatically alter the schema.

Although the addition of new concepts to the ontology schema is now possible the implementation
doesn’t support the removal of concepts from the schema. This behaviour is intended since the
Context Manager is designed to never “forget” instantiations of these concepts (the captured
information). Therefore removing a concept from the ontology schema would mean to lose all
instances of this concept which would work against the rule of never forgetting information.

3.2 Sensor Ontology Update

This chapter provides information about the extensions of the sensor ontology integrated into the
Context Manager since deliverable D1.1. Each section will present the concept of one newly added
sensor and explains how the sensor data is acquired and how the data originating from this sensor
will be used to update the user profile inside the Context Manager.

3.2.1 Application-Specific Sensors

This chapter describes the concepts of application-specific sensors. An application specific sensor
is a virtual sensor which relies on information the application developer provides to the MyUI
system. The main purpose of this type of sensors is to detect usage patterns which indicate that the
user has problems using a given application. Since these problems vary between different
applications – e.g. a successful interaction in an email-application can be something completely
different than a successful interaction in an instant messaging application - the application
developer has to provide these software-sensors with his application.

Each concept presented in this section comes with examples for an implementation in the MyUI
email-application presented in D4.2 / R4.3.2.

3.2.1.1 Circles
While navigating through an application the user could have problems and start navigating in
circles. One possible scenario is where the user forgets where inside the structure of the application
he currently is. Since MyUI applications are already organized in states and directional transitions
between these states the detection of circular navigation fits well with the system.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 16 of 30

Figure 9: Example of a circular navigation inside an application. The user starts with state S1 and
navigates to S2. From there he starts navigating from S3 to S5 and back to S2 because he cannot

remember how to reach S1 again.

For this task the system could analyze applications at deployment time for occurrences of circular
transitions between the application states. Whenever the application is used during run-time the
system has to check for occurrences of the sequences found during the analysis of the application.

3.2.1.2 Repeated Back
The repeated back can be seen as a special case of circular navigation. While the circular
navigation detection takes circles introduced by direct links in the navigation of the application into
account (see e.g. Figure 9: ଵܵ, ܵଶ, ܵଷ, ܵହ, ܵଶ,⋯) the repeated back tracks the usage of the “Back”-
button available in all applications of the MyUI framework.

Figure 10: Example of a possible application with three states and two bidirectional transitions
between states.

While using the “Back”-button to quickly navigate through an application, e.g. to get back to the
main menu, is not a behavior that should be tracked there are situations where a repeated usage of
the “Back”-button could indicate a problem the user has with the structure of an application. Figure
10 shows a very simple application with three possible states. When entering the application the
user is in state	 ଵܵ. From there he can move to ܵଷ via ܵଶ or go back from ܵଷ to ܵଶ or from ܵଶ to	 ଵܵ. If
the user starts a sequence like ሺ ଵܵ, ܵଶ, ଵܵ, ܵଶሻ this behavior could indicate one of the following:

 The user cannot remember which information ଵܵ contained and needs to switch back
between ܵଶ and ଵܵ to the task in ܵଶ.

 The user is lost in the structure of the application either because he doesn’t understand it or
because he cannot recall it.

3.2.1.3 Successful Interaction
This sensor detects whether the user achieved a pre-defined goal in the application with the user
interface adaptation he is currently using. These goals are defined by the developer of an
application and are regarded as successful interactions. A goal can be reached by a single action or
by a sequence of actions the user has to perform.

If we take the email application as an example a successful interaction could be writing an email.
This goal would consist of several steps the user would have to perform:

1. Select the email application from the main menu

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 17 of 30

2. Select “New” from the menu of the email application
3. Select the recipient for the mail
4. Enter a subject
5. Enter text for the body of the mail
6. Press the “Submit” button

After completing these steps the sensor would send a sensor event to the context manager. But
what can the system infer about the user from this information?

The assumption is that the total number of successful interactions is very low for a bad adaptation
and becomes higher with the quality of the adaptation rising over time. The number of successful
interactions is therefore an indirect measurement of the adaptation quality.

However there are several points to take into account. The first point is that the system has to know
the starting point of a sequence of interactions, which can be resolved by taking all actions since
the last successful interaction into account. Also the number of successful interactions alone does
not provide a reliable approximation of the adaptation quality. It is possible that the user reaches a
pre-defined goal for the application by trial-and-error or via a large amount of steps which would
mean that the adaptation is not well-suited for the user. On the other hand a low number of steps to
reach a certain goal would indicate that the user knows what he is doing and is able to use the user
interface without problems, which would mean that the adaptation is well-suited for the user at
hand.

3.2.2 Timeout Sensor

The timeout sensor is a virtual sensor associated with a given end-user issuing an event whenever
the end-user of the MyUI system is inactive for a certain period of time. It is currently realized as a
JavaScript inside the MyUI application an end-user is going to see on his display device (e.g. the
television).

The idea behind measuring a timeout in the application usage is that the user will hesitate if
something is unclear to him respectively he cannot understand what is presented to him or if the
user is inattentive. These are signs that the adaptation is not suitable for the user and he should be
provided with another adaptation with e.g. less information displayed or higher font size.

In the current implementation the Context Manager adopts the user profile variables for visual
acuity, language reception and attention if the timeout sensor issues a sensor event. With this event
the Context Manager also gets the number of seconds the user has been inactive.

3.2.3 Attention Sensor

The attention sensor is a physical sensor based on a webcam associated with a given installation of
the MyUI system. The webcam application running on the same device the MyUI interface is
running on detects the line of vision of a user by tracking his eyes, nose and mouth. If the
application detects an interruption of the line of vision between the webcam and the end-user that
lasts longer than a configurable threshold a sensor event is issued stating that the user is inattentive.

The current implementation of the Context Manager adopts the user profile variable for attention
once such a sensor event arrives. It has to be tested if it is reasonable to include further analysis of
previous sensor events stating the inattentiveness of a user since a single event may not mean that
the user is inattentive in general. However many of these events in a short period of time could give
better evidence of the inattentiveness of the user.

3.2.4 TmtGameSensor

In order to support the games developed in task 4.5 of WP4 a virtual sensor associated with a given
user was added to capture the results the end-user achieved while playing the Trail-Making-Test

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 18 of 30

game. This concept of a virtual sensor has two different properties containing the game results.
First the time it takes the user to complete the game is measured, second the number of misclicks
the user produced while playing the game is measured.

Currently these measurements are used to adopt the user profile variables for attention, processing
speed, working memory and finger precision. For further details please refer to the section
dedicated to the games in this deliverable and to the upcoming deliverable D4.5 which will present
the games and the user profile changes.

3.2.5 CorsiTestSensor

As with the TmtGameSensor, the CorsiTestSensor has been integrated into the ontology in order to
support the games developed in task 4.5 of WP4. The CorsiTestSensor is a virtual sensor associated
with a given user that is used to represent the results of the Corsi-Test game. The CorsiTestSensor
has two different properties. The first contains the highest game-level the end-user reached while
the second contains the final score the end-user achieved.

3.2.6 Current State of the Sensor Ontology

As stated several new concepts have been introduced to the MyUI sensor ontology. In order to get a
complete overview of this ontology the following graphical representation has been prepared:

Figure 11: Current state of the Sensor Ontology

4. Finalization of the User Profile

4.1 Final Version

This chapter presents the final version of the MyUI user profile. While most of the user profile
variables have been kept since D1.1 some have been added or removed. The subchapters below
Table 1 provide detailed descriptions of the new user profile variables.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 19 of 30

Name of variable Description Value Space Taxonomy Data Type Reference / Source
Visual Acuity Ability to perceive what is

displayed on the screen
[0,4] Perceptual Float WHO ICF B2100

WHO ICF B21022
WHO ICF B21020
ISO 22411
D2.1: URS07
D2.1: URS09
FRS01-02

Field of Vision Describes how limited the field
of vision of the given user is.

[0,4] Perceptual Float

Ambient Light The amount of ambient light at
the users place.

[0,4] Perceptual Float

Ambient Noise The amount of ambient noise at
the users place.

[0,4] Perceptual Float

Hearing Describes how limited the
user’s ability to hear sounds is.

[0,4] Perceptual Float

Language Reception Ability to understand written or
spoken language

[0,4] Cognitive Float WHO ICF B1670
ISO 22411

Language Production Ability to speak and write
language

[0,4] Cognitive Float WHO ICF B1671
ISO 22411
D2.1: URC07

Understanding Abstract Signs Ability to understand abstract
signs and pictograms

[0,4] Cognitive Float D2.1: UR20

Attention Ability to handle multiple
things at the same time, resp.
focusing on something.

[0,4] Cognitive Float D2.1: URC05
WHO ICF B140
ISO 22411

Processing Speed Ability to process information
fast.

[0,4] Cognitive Float D2.1: URC04
ISO 22411

Working Memory Ability to remember an exact
sequence of steps in a process
and the ability to orientate in
this process.

[0,4] Cognitive Float D2.1: URC03
ISO 22411

Long Term Memory Ability to learn and remember
information for a long time.

[0,4] Cognitive Float D2.1: URC02

ICT Literacy Ability to use modern [0,4] Cognitive Float

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 20 of 30

information technology.
Hand-Eye Coordination Ability to coordinate the

movement of the hands with
things seen.

[0,4] Cognitive Float D2.1: URC19

Speech Articulation Ability to speak [0,4] Motor Float WHO ICF B310
Finger Precision Ability to move the fingers

precisely.
[0,4] Motor Float ISO 22411

Hand Precision Ability to move the hand
precisely.

[0,4] Motor Float ISO 22411

Arm Precision Ability to move the arms
precisely.

[0,4] Motor Float ISO 22411

Contact Grip Ability to control things by
touching them.

[0,4] Motor Float ISO 22411

Pinch Grip Ability to press single buttons. [0,4] Motor Float ISO 22411
Clench Grip Ability to hold object. [0,4] Motor Float ISO 22411
First Name The first name of the user. General String
Last Name The last name of the user. General String
Email Address The email address of the user. General String
Preferred Language The language the user prefers

to use.
English,
German,
Spanish

General Enumeration

Successful Interactions The number of successful
interactions with the system.

 General Integer D1.2

State transitions The number of state transitions
the user carried out.

 General Integer D1.2

MyUI Experience The experience with the MyUI
system.

[0, 4] General Float D1.2

PreferenceTonalOutput Selects whether the user prefers
output enhanced with sounds.

True
False

General Boolean

PreferenceSpeechOutput Selects whether the user prefers
speech-output in addition to
text.

True
False

General Boolean

Table 1: Final MyUI user profile

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 21 of 30

4.1.1 User Profile Variable: Successful Interactions

As shown in the section which describes the development of an instance of the user profile over
time, the number of successful interactions needs to be saved inside the user profile. In order to do
this a new user profile variable has been integrated into the user profile which is stored as an
integer data type.

4.1.2 User Profile Variable: State transitions

To facilitate the measurement of experience with the MyUI framework for a given user the user
profile has been extended to include the number of state transitions the user carried out in the
MyUI system. This can be regarded as a measurement for the usage time of the system by the given
user because every usage of the system is connected to state transitions.

4.1.3 User Profile Variable: Experience

What is the definition of experience? Perhaps some function of usage time and number of
successful interactions. A high usage time alone does not mean that the user has a high level of
experience with the MyUI system. Furthermore some sort of gradient for the successful interactions
over time could lead to some results. A steep gradient would indicate that the user is currently
performing quite good which is only possible with a certain amount of experience with the system
and a good adaptation of the user interface. A small gradient would either mean that the user has
not much experience with the system and still learns how to use it, or that the adaptation of the user
interface is not suited for the user.

4.2 Development of an Instance of the User Profile

The initial user profile does not necessarily have something to do with the capabilities and
limitations of the user. It starts with all values set to zero which means that the user has no
limitations regarding the usage of ICT user interfaces.

Since the difference between the actual value of a user profile variable and the reality can be large
the user will have problems to use the user interface adapted to the initial instance of the user
profile. Another problem is that the user does not know the system and will therefore make
mistakes during usage. This means that there will be many sensor measurements indicating these
problems arriving at the Context Manager.

As the Context Manager is adapting the user profile in accordance with the arriving sensor events
the user profile will start fitting the capabilities and limitations of the user better. The better the
user profile gets the less sensor events indicating problems with the user interface will occur.

Figure 12: Development of a user profile over time.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 22 of 30

At one point the user interface adaptation and the knowledge of the user about the system reaches a
point where further adaptations won’t make any sense since the user can handle the system without
any usability problems. However the sensors will still perform measurements of the user and there
is a chance that sensors provide false-positives about possible problems the user has during the
usage of the MyUI system. In the worst case these measurements trigger changes in the user profile
which result in an adaptation of the user interface. The user’s limitations are rated worse than they
actually are. This behavior can therefore lead to a worsened user experience.

4.2.1 User Profile Drift

The situation described above is inherent to the MyUI system. Since the user profile and the sensor
measurements focus only on the detection of problems in the interaction between the user and the
user interface, every sensor event makes the value of user profile variables worse. This leads to all
user profile variables capturing the limitations of a user converging against the maximum value of
four over time.

There are multiple possibilities to resolve this issue which are discussed in the following sections.

4.2.1.1 Explicit Continuous Assessment of Users
The user is assessed with a test battery on a regular schedule in order to measure the quality of the
adaptation. Although this method would provide the best adaptation to the user there are several
drawbacks that would need to be investigated.

The first problem would be that there has to be at least one explicit assessment for each user profile
variable. Although the neuropsychology provides us with a broad range of standardized assessment
tools for a large number of limitations and capabilities (see Lezak et.al.) the compilation of such a
complex test battery would consume a lot of time and would have to be done with every change of
the user profile structure in the future. Also the user would have to complete the whole test battery
on a regular base in order to keep his user profile up-to-date in the MyUI system. The completion
of such a large quantity of tests would consume a lot of time on the side of the user. Given the fact
that one of the goals of MyUI is to be mostly unobtrusive with regards to the user such methods
cannot be regarded as a solution to the problem of negative user profile drift.

4.2.1.2 Fixed Continuous Decrease of User Profile Variables
Another possibility to handle the negative user profile drift is to continuously decrease the user
profile variables of a given user. During the usage of the MyUI system all user profile variables
capturing limitations of a certain user will be continuously decreased by a constant factor. The
decrease will occur at fixed time intervals.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 23 of 30

Figure 13: Qualitative illustration of fixed continuous decrement of user profile variables

The diagram above illustrates an example for this solution. The blue line indicates the value of the
user profile variable “Visual Acuity” at time t=0 to t=6. The red line is the threshold where the user
interface adaptation will change based on “Visual Acuity”. At time t=0 the user profile is initialized
for the first time.

When looking at the illustration above it becomes clear that this approach can lead to a system that
will constantly toggle at the transition between two different UI adaptations. For example “Visual
Acuity” is set to 2.9 and a sensor event arrives which leads to “Visual Acuity” being set to 3.4 the
user interface will be adapted. If the factor is 0.5 the user profile variable will be set back to 2.9
after a certain amount of time if no other sensor event arrives. This again leads to an adaptation of
the user interface.

It is also being mentioned that the time interval between two automatic decreases of the user profile
variables plays an important role. If this time interval is configured to be too small then the user
profile will constantly describe the user as being better than he actually is. This becomes the case
when the user generates less sensor events than automatic decreases happen. If the time interval is
too large the user profile drift will be slowed down but not completely eliminated. The same
assumptions hold when it comes to the factor by which the user profile is decreased every time the
automatic decrease takes place.

4.2.1.3 False-Positive Detection on Update
Since the abovementioned method raises the problem of defining exactly the time interval between
decrements and the value of the decrement of the user profile variables another method will be
proposed. While the fixed continuous decrease method for the user profile variables is an
“antagonist” to the sensor events - which increment user profile variables – that works more or less
independent from the sensor events, the false-positive detection tries to adapt the user profile
changes caused by sensor events directly.

This adaptation will be based on the Context Manager deciding whether each user profile change
will lead to a positive change in the UI adaptation or if the change is a false-positive. A false-
positive would be a sensor event which results in the change of one or more user profile variables
which does not adapt the user interface in a way that increases usability or – even worse – reduces
usability for the user.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 24 of 30

This would mean for a perfectly adapted user interface the rate of detected sensor events during its
usage would converge against zero, while the number of successful interactions between the user
and the interface would be high. For a poor adaptation to the needs of the user the opposite would
be the case: while the rate of detected sensor events would be very high, the rate of successful
interactions would be low.

To evaluate whether an adaptation is good or bad the ratio between the number of sensor events
and the number of successful interactions could be used.

4.3 Manual Adaptation of the User Profile

Depending on the usage frequency and the intensity of MyUI it takes some time until the system is
adapted to the user in a way that usage is possible without problems. During this training period it
is difficult to learn how to use the system because of multiple adaptations of the user interface
taking place.

To overcome this issue an initial assessment of the user at the beginning of his MyUI usage would
be necessary, where an acceptable adaptation is achieved by directly setting the values of user
profile variables. This assessment could be done by specially trained personal during a bilateral
session with the user.

The basic assumption behind this is that such a manually created user profile will be better suited
for the user than a user profile which is solely based on automated measurements.

Although the user profile created during the manual assessment of the user should provide a
reasonable good adaptation of the user interface it is still possible that the user interface should
adapt to the user. This happens because

 the performance of the user during the usage of applications is not constant with regards to
“good” and “bad” days of the user

 the sensors connected to the MyUI system measure false-positives indicating a limitation
of the capabilities of a user although no limitation exists. (see page 23)

With the possibility of false-positives and their detection already covered in a subsequent chapter
of this deliverable there is also a proposed solution that covers the variation of user capabilities and
limitations.

While a manually set value of a user profile variable provides a very good mapping of the user’s
capabilities and limitations at the time of setting the variable value, the value can still change over
time. However one would not expect the user profile variable value to change largely. In fact there
would be small derivations from the manually set value. This would mean that we would have to
put a smaller weight on the user profile variable updates coming from sensor events after a user
profile variable has been set.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 25 of 30

Figure 14: Example of a explicitly set user profile variable (at t=1) with subsequent
sensor events (t=2 and t=3). The red squares indicate the new value with a weight
for the sensor events of 0.2 and the blue diamonds indicate the new values without

a weight.

For example if a user profile variable has been explicitly set to 2, subsequent sensor events could
change the value of a user profile variable in a way that the derivation from the explicitly set value
becomes very large. This would be inaccurate since we assume that the explicitly set value is a
better representation of the user. Therefore a factor of 0.2 is applied to changes of user profile
variables that have been set explicitly before if the changes originate in a sensor event.

0

1

2

3

4

5

6

0 2 4 6 8 10 12

U
se
rP
ro
fi
le
 V
ar
ia
b
le
 V
al
u
e

Time

Time

State Transitions

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 26 of 30

5. The Role of Games for User Profiling

Finally, this section briefly reviews the new role of the Context Manager in providing an initial
estimate of the User Profile. Essentially, a set of basic games, offered to the new user, will provide
a basic estimate on the user’s perceptual, motor and cognitive skills, which will serve to aid the
User Interface Adaptation Engine in a first User Interface proposal. Next we provide a first version
of the current games developed in Task T4.5 of Work Package 4 for a first estimate on the user’s
profile, but the reader is referred to deliverable D4.5 for a more detailed documentation on this
matter.

Figure 15 shows the welcome menu for a given user. As shown, second row, fourth column offers
the application Games, where these games may be accessed by the user.

Figure 15: Main menu for a user without impairments

All games have been developed in Flash, and they easily integrate with the CakePHP framework.

Game: Trail Making Test.

Figure 16 shows the welcome page for the Trail Making Test Game, where the user can either start
the game or read the Instructions of this game.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 27 of 30

Figure 16: Welcome screen of the Trail Making Test game

After clicking Start, the user will be prompted with the game shown in Figure 17.

Figure 17: The Trail Making Test game

In this game, the user must click on the circles following an increasing order, that is, the user must
find the circle number 1 and click it, then find circle number 2 and click it, the circle number 3 and
so on until he/she clicks the 25 circles. The program measures the amount of time that the user
takes in completing this game and the number of wrong clicks, both out of sequence clicks and
clicks outside the circles (see Fig. 13). These three parameters capture several cognitive and motor
skills of the user, and can be used to establish a first estimate on some user’s profile variables, for
instance:

Attention, which is a numeric value in the range [0,4]
ProcessingSpeed, again a numeric value in the range [0,4]
WorkingMemory, numeric value in the range [0,4]

 FingerPrecision, numeric value in the range [0,4]

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 28 of 30

Essentially, the time taken by the user to complete the game should provide input to Attention,
ProcessingSpeed and WorkingMemory. However, the number of wrong clicks may produce an
update on Attention and FingerPrecision. The matching between the game scores and the Context
Manager attributes will be further refined in Deliverable D4.5.

Figure 18: Output of the Trail Making Test game after completion

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 29 of 30

6. Summary and discussion

This deliverable has reviewed the updated version of the Context Manager (CM) from the original
version described in D1.1. Conceptually, the Context Manager remains the same but it has been
refined with new attributes collected from the WebCam and the RemoteController devices. These
sensors provide input about the user concerning aspects: Perceptual, Cognitive and Motor skills of
the user. Such new information provides the base for highly individualised User Interface to a
particular user.

In addition, the CM has been reimplemented in C# because of its better performance behaviour and
code simplicity. The new Context Manager also provides a Graphical User Interface (GUI) that
eases the management and administration of the sensors, users, and attributes involved in the User
Profile. A summary of this GUI has been revised throughout the document.

Finally, this deliverable also describes the new role of the Context Manager in capturing an initial
profile of the user via cognitive games. This new role of the Context Manager is further extended in
D4.5 from WP4.

MyUI / FP7-ICT-2009-4-248606 D1.2 / Final

 Page 30 of 30

References

1. A. Schmidt: “Ontology-based User Context Management: The Challenges of Dynamics and
Imperfection”. In Robert Meersman and Zahir Tahiri, editors, On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE. Part I., volume 4275 of Lecture Notes in
Computer Science, pages 995–1011. Springer, 2006.

2. S. Staab and R. Studer: “Handbook on Ontologies”. Second edition. Springer, 2009.

3. S. Rollwage Kresser, M. Klein and P. Wolf “Collaborating context reasoners as basis for affordable
AAL Systems. In Proc. of the 4rd Workshop on Artificial Intelligence Techniques for Ambient
Intelligence (AITAmI09), 2009.

4. P. Wolf and A. Schmidt and M. Klein: “Applying Semantic Technologies for Context-Aware AAL
Services: What we can learn from SOPRANO”. In Proc. of Workshop on Applications of Semantic
Technologies, Informatik 2009

5. P. Wolf, A. Schmidt, J. Parada Otte, M. Klein, S. Rollwage, B. König-Ries, T. Dettborn, A.
Gabdulkhakova: “OpenAAL - the open source middleware for ambient-assisted living (AAL)”. In
Proc. of AALIANCE conference, Malaga, Spain, March 11-12, 2010

