
<Insert confidentiality level here>
© All Rights Reserved

SEVENTH FRAMEWORK PROGRAMME

“Information Society Technologies”

D3.1

+Spaces platform overall Architecture

Project acronym: +Spaces

Project full title: Policy Simulation in Virtual Spaces

Contract no.: 248726

Workpackage: 3. System and Tools development
Editor: Magdalini Kardara ICCS/NTUA

Author(s): Magdalini Kardara ICCS/NTUA
Fotis Aisopos ICCS/NTUA

Athanasios Papaoikonomou ICCS/NTUA
Omri Fuchs IBM

Michal Jacovi IBM
Zak Mandel IBM

Christoph Friedrich SCAI Fraunhofer
Ilias Spais ATC

Fanny Coudert KULeuven
Authorized by

Doc Ref:
Reviewer Michal Jacovi IBM
Reviewer Ido Guy IBM
Reviewer Ilias Spais ATC

Dissemination Level

+Spaces Output/Deliverable D3.1 Page i of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Date Author Comments Version Status
01-06-2010 Magdalini

Kardara
TOC 0.2 draft

13-07-2010 Magdalini
Kardara

Assignment of sections 0.7 draft

26-07-2010 Magdalini
Kardara

Ready for internal review 0.12 Pre-final

31-07-2010 Magdalini
Kardara

Final 1.0 Final

+Spaces Output/Deliverable D3.1 Page ii of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Executive Summary

This document presents the overall architecture of the +Spaces platform. The
platform design has been based on the requirements and specifications set out by
WP2. The current document describes the process of mapping requirements to
platform capabilities and outlines the platform architecture including a detailed
description of the components layout, their internal architecture as well as of the
interactions among them. It also includes the XML schemata that will be used for the
representation of the generic entities in the framework of the +Spaces platform

+Spaces Output/Deliverable D3.1 Page iii of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Table of Contents
1 Introduction ... 1

2 + Spaces Design Principles and Process ... 2

1.1Design Principles..2

1.1.1Service Oriented Infrastructure..2

1.2Design Process...2

1.2.1Unified Process...2

1.2.2Unified Modelling Language...3

3 +Spaces Platform Analysis .. 4

1.3Use Case and Specifications Analysis...4

1.3.1Application Scenario and Use Cases..4

1.3.2Functional and non-functional Requirements Analysis...7

1.3.3Legal Requirements..8

1.4Platform Capabilities..10

1.4.1Polling, Debating and Simulation in Virtual Spaces...10

1.4.2Virtual Spaces Interoperability..11

1.4.3Data Aggregation and Distribution..11

1.4.4Data Analysis...12

1.4.5Recommendation and Reputation..12

1.4.6Data De-identification (pseudonymization)..13

1.4.7Data recovery..13

1.4.8SLA Management..14

1.4.9Trust and Security...15

4 +Spaces Platform Design .. 16

1.5General Overview..16

+Spaces Output/Deliverable D3.1 Page iv of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.6VS Management Layer...17

1.6.1VS Manager...18

1.6.2VS Adaptors...22

1.7Middleware Layer..25

1.7.1Experiment Manager..25

1.7.2ServicesManager...27

1.7.3NotificationManager...29

1.7.4DataManager..33

1.7.5ConfigurationManager..34

1.7.6SLAManager..36

1.8Built-in Analysis Services..38

1.8.1Data Analysis Service ..38

1.8.2 Recommendation Service..38

1.8.3Reputation Service..39

1.9+Spaces FrontEnd...39

1.10Platform Security...40

1.11Overall Architecture...41

1.11.1Component Diagram...41

1.11.2Interactions between components...41

1.11.2.1Sequence Diagram 01: Service Registration and Recovery................................41

1.11.2.2Sequence Diagram 02: Experiment Creation...42

1.11.2.3Sequence Diagram 03: Actions Distribution...45

1.11.2.4Sequence Diagram 04: Experiment Results..47

1.11.2.5Sequence Diagram 05: Recommendations..47

1.11.2.6Sequence Diagram 06: Reputation...48

1.12Data Schemata...49

+Spaces Output/Deliverable D3.1 Page v of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.12.1EndpointReferenceType..49

1.12.2AttributedURIType..50

1.12.3MetadataType...50

1.12.4ReferenceParametersType..50

1.12.5Subscribe...50

1.12.6FilterType..50

1.12.7SubscriptionPolicyType ..51

1.12.8SubscribeResponse ..51

1.12.9Unsubscribe..51

1.12.10UnsubscribeResponse...51

1.12.11PauseSubscription...51

1.12.12PauseSubscriptionResponse ...52

1.12.13ResumeSubscription...52

1.12.14ResumeSubscriptionResponse..52

1.12.15Notify..52

1.12.16NotificationMessage ..52

1.12.17CreateAgreementInputType...53

1.12.18CreateAgreementOutputType ..53

1.12.19RegisteredService..53

1.12.20RegistrationInputType...53

1.12.21RegistrationOutputType..54

1.12.22RecoveredExperimentsReturnType...54

1.12.23RecoveredActionsReturnType...54

1.12.24PolicyType...55

1.12.25AnalysisServiceType..55

1.12.26Evidence..55

+Spaces Output/Deliverable D3.1 Page vi of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.12.27Recommendation..55

1.12.28Experiment..56

1.12.29Action..56

5 Conclusion .. 57

6 References ... 57

Table of Figures

Figure 1:+Spaces High level architecture..16

Figure 2: VS Management Layer Architecture..17

Figure 3: VS Adaptors registration..19

Figure 4: Allocate VS Resource Sequence Diagram...20

Figure 5: ServicesManager class diagram...28

Figure 6: Services Subscribe to new experiment..30

Figure 7: Configuration Manager Design..36

Figure 8:+Spaces security through certificates...41

Figure 9:+Spaces component diagram..41

Figure 10: Sequence Diagram 01: Service Registration and Recovery....................................42

Figure 11: Sequence Diagram 02: Experiment Creation...44

Figure 12: Sequence Diagram 03: Actions Distribution...46

Figure 13: Sequence Diagram 04: Experiment Results..47

Figure 14: :Sequence Diagram 05: Recommendations...48

Figure 15 :Sequence Diagram 06: Reputation...49

+Spaces Output/Deliverable D3.1 Page vii of vii

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1 Introduction
This document aims to outline the initial architecture design of the +Spaces platform.

Section 2 describes the design principles and processes followed during the design.

In Section 3 the main application scenario is presented and a brief overview of the use cases
and functional requirements that are explained in detail in D2.21 is also given. What is more,
the legal framework that is outlined in D2.32 is examined in order to translate to actual legal
requirements that should be taken into account in the platform design. Through the study of
the abovementioned requirements and specifications the platform capabilities are derived.

Section 4 presents in detail the architecture of the +Spaces platform. The overall
architecture as well as the internal architecture of the components of the +Spaces platform
is outlined here. Diagrams are used in order to better depict the associations and
interactions between the various components. It should be noted that since the architecture
design and implementation will follow an iterative process, the architecture presented in the
current document reflects the developments that will take place during the first iteration.
Though the general architecture of the platform is not likely to change greatly between
iterations it is expected that several modifications in the components’ design will take place.
The final design for each iteration will be included in the components implementation
reports that will be released in combination with the components.

+Spaces Output/Deliverable D3.1 Page 1 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

2 + Spaces Design Principles and Process

1.1 Design Principles

1.1.1 Service Oriented Infrastructure
Service Oriented Architecture is an architectural paradigm based on reforming application
functions and pieces of information into a “service” that can be accessed through a common
interface regardless of the location of the function or of the piece of data.

The +Spaces SOAP based platform has to exhibit the following characteristics3:

• Loosely Coupled Services: Loose coupling is an approach to the design of distributed
applications that emphasizes on agility (that is to adapt to changes). Loose coupling
intentionally sacrifices interface optimization to achieve flexible interoperability
among systems that are disparate in technology, location, performance, and
availability. A loosely coupled application is isolated from internal changes in others
by using abstraction, indirection, and delayed binding in the interfaces between the
applications. As compared to traditional, tightly coupled applications, loosely
coupled applications aim to be more reusable and adaptable to the unexpected.

• Synchronous: Supporting the synchronous invocation and execution of services, in
the sense that when an end user or service requests information or invokes a
function, a connection between the two end-systems must be maintained until a
response is received.

• Asynchronous: Supporting also asynchronous interactions in which information is
sent without the expectation of getting back an immediate response. This
characteristic is very important in the cases where there is no requirement to
maintain a connection between the two end-systems while waiting for a response.

1.2 Design Process
Task 3.2 “Middleware Design and Architecture” followed the Unified Process4,5 principles
and UML for the analysis and design of the +Spaces initial architecture and it is anticipated
that this process will be also used by the development tasks during the implementation and
validation of their components.

1.2.1 Unified Process
This Process is a framework which guides the tasks, people and products of the software
design process. It is a framework because it provides the inputs and outputs of each activity,
but does not restrict how each activity must be performed. The Unified Process is:

• Iterative and Incremental: The Unified Process has an iterative and incremental
model. That is, the design process is based on iterations which either address
different aspects of the design process or move the design process. In essence the
end result is incrementally produced.

+Spaces Output/Deliverable D3.1 Page 2 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

• Use case driven: In the Unified Process use cases are used to ensure that the
evolving design is always relevant to what is required by the end user. In fact, the
use cases act as the one consistent thread throughout the whole of the
development process.

• Architecture centric: The Unified Process explicitly acknowledges the importance of
the architecture for the successful completion of the project. It prescribes the
successive refinement of the executable architecture thereby attempting to ensure
that the architecture remains relevant.

1.2.2 Unified Modelling Language
Unified Modelling Language has been used in the analysis and design of the +Spaces
platform in Task 3.2. The platform functionalities, models and processes presented in this
document are illustrated using UML diagrams, at the level this is possible for an initial
architecture, and these diagrams will be further detailed in the upcoming WP3 reports.
Using UML, the Task 3.2 work is well organized and the results are efficiently capitalized
from the development Tasks. More specifically, in the subsequent sections of this document
we have used Sequence Diagrams and Component Diagrams.

Sequence diagrams model the flow of logic within a system in a visual manner, enabling
both to document and validate the logic behind the system’s development, and are
commonly used for both analysis and design purposes. Sequence diagrams are the most
popular UML artefact for dynamic modelling, which focuses on identifying the behaviour
within a system. Other dynamic modelling techniques include activity diagramming,
communication diagramming, timing diagramming, and interaction overview diagramming.
Sequence diagrams, along with class diagrams and physical data models are the most
important design-level models for modern business application development.

Also in this paragraph component diagrams are used. They are especially helpful in the initial
architectural modelling efforts which focus on identifying the architectural landscape for the
+Spaces system, as they enable modelling of the high-level software components and more
importantly the interfaces to those components. Components may both provide and require
interfaces. An interface is the definition of a collection of one or more methods, and zero or
more attributes. The component diagram shows the interrelationships between different
components that may be developed by different partners and in that way establishes and
formal communication channel between them that is necessary during the development
process.

+Spaces Output/Deliverable D3.1 Page 3 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

3 +Spaces Platform Analysis

1.3 Use Case and Specifications Analysis

1.3.1 Application Scenario and Use Cases
The main application scenario is briefly described in the following section highlighting the
technical challenges for the +Spaces platform and thereafter the results of the use case
analysis are presented.

+Spaces Output/Deliverable D3.1 Page 4 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

3.1.1.1 Application Scenario

This section will give a detailed overview of the generic application scenario in
order to identify the challenges that need to be addressed and use them in order
to outline the desired platform capabilities.

The application scenario is initiated by the policy maker who plans to introduce a
new policy and wishes to measure public opinion and evaluate citizens’ reactions.
The policy maker (PM) will access the front end of the platform in order to create a
new experiment in one or more of the virtual spaces (3D VWs and SNs) available.
The PM will choose among the experiment types available (poll, debate,
simulation) and configure the experiment accordingly. They will also select which
virtual spaces to deploy it to, as well as the analysis services that they wish to use
for further processing of the data. The analysis services available for selection will
include the built-in +Spaces analysis services (data analysis, recommendation, and
reputation) as well as external services with similar or complimentary functionality
that may be later registered to the platform. The user’s selection will be based on
the operations that each service is able to offer as well as the price of each option.
Upon selecting a service the user also agrees to pay the respective price for its
operations.

After the PM has finished configuration, the experiment will be created on the
selected virtual spaces, the analysis services will be notified and the experiment
will be activated. The recommendation service, if selected, will suggest users that,
based on the experiment description and the users’ own interests, may be
interested to participate; and send them invitations. The recommendations will be
improved if the PM provides an initial list of relevant people, that the
recommendation service will enhance. Recommendations will also be available on
a per user basis.

Even with no specific experiment going on, virtual space users will be invited to
participate in the +Spaces experience. They will be introduced with the +Spaces
concept, presented with the expectations from them, and be asked to sign a
consent form that will allow +Spaces to monitor their different activities in the
virtual space.

After the experiment is activated, the virtual spaces users may participate in it with
a variety of actions depending on the experiment type. All the actions (both those
related to an experiment and other interactions) will be recorded in the platform,
filtered and forwarded to the analysis services. In order to ensure data protection
the virtual id of the users’ identifies will not be sent to the services, aliases will be
used instead. The analysis services will perform a real-time processing of the data
they receive. In order to perform a more thorough analysis, the data analysis
service may need the users’ reputation rates.

+Spaces Output/Deliverable D3.1 Page 5 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

While the experiment is active as well as after it has ended, the PM who created it
is able to access the front end and view the results. The data analysis service will
provide an analytical display of the results based on the filtering criteria defined by
the user such as demographics (age, location etc), reputation rate etc.

The experiment will continue running until its ending clause has been satisfied. The
ending clause might be one of the following:

• The expiration date has been reached

• The desired number of users has participated

After the end of the experiment, the users that have participated and have
declared their interest in the outcome of the experiment will be notified of the
final results.

3.1.1.2 Use Cases

Following the scenario and the initial technical analysis of it, use cases have been produced
that describe the scenarios in a more consistent and formal way. The use cases have been
presented extensively in Deliverable 2.2 6 where more information concerning them can be
found. These use cases are representative of the demands end-users will have on the
+Spaces platform to provide the expected functionalities.

By analysing the use cases, various key capabilities have been identified. These are: Polling,
Debating and Simulation in Virtual Spaces, Virtual Spaces Interoperability, Data Aggregation
and Distribution, Data Analysis, Recommendation, Reputation, Data de-identification, Data
Recovery, SLA Management, Trust and Security.

More details about these key capabilities for the platform can be found in section 3.1.1.2. In
the following table the aforementioned capabilities are linked to the use cases they are
associated with. The numbering of the use cases follows that of D2.2 report6.

Key Capability Use Case

Polling, Debating and Simulation in
Virtual Spaces

UC4, UC5, UC6, UC7, UC8, UC9, UC10, UC11, UC12,
UC13, UC15, UC16, UC17, UC18, UC19, UC21

Virtual Spaces Interoperability UC6, UC7, UC11, UC12, UC15, UC20

Data Aggregation and Distribution UC8, UC13

Data Analysis UC5, UC10, UC15, UC18, UC19

Recommendation and Reputation UC5, UC10, UC14, UC15, UC18, UC19, UC21

Data De-identification UC8, UC13

Data Recovery

+Spaces Output/Deliverable D3.1 Page 6 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

SLA Management UC5, UC10, UC15, UC16, UC18

Trust and Security

 Table 1:+Spaces platform capabilities and use cases

It can be seen that two of the platform capabilities, namely Data Recovery and Trust and
Security are not associated with any Use Cases. This is because they represent generic non-
functional requirements (Fault tolerance and Security respectively) that are not derived
directly from use cases but are of particular importance for our platform.

1.3.2 Functional and non-functional Requirements Analysis
The functional and non-functional requirements of the platform have been derived from the
user requirements set out by the end users of the platform and are presented in detail in
D2.2. Functional requirements are closely correlated with the Use Cases described in the
above section. The association between functional and non-functional requirements and the
platform capabilities are displayed in the following table.

Key Capability Requirements

Polling, Debating and Simulation in
Virtual Spaces

Functional:
R1.1, R1.2, R1.3,

Non-functional:

Virtual Spaces Interoperability Functional:
R2.1, R2.2

Non-functional:

Data Aggregation and Distribution Functional:
R2.1, R2.2

Non-functional:

Data Analysis Functional:
R3.7, R3.8, R4.9, R7.x

Non-functional:

Recommendation and Reputation Functional:
R1.5, R4.4, R4.4, R4.7, R6.x

Non-functional:

Data De-identification Functional:

Non-functional:
Reliability

Data Recovery Functional:

+Spaces Output/Deliverable D3.1 Page 7 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Non-functional:
Fault Tolerance – Robustness, Reliability

SLA Management Functional:

Non-functional:
Reliability

Trust and Security Functional:
R5.2

Non-functional:
Security, Reliability

Table 2:+Spaces platform capabilities and functional requirements

It can be noticed that only a small set of Functional Requirements listed in D2.3 appears in
the above table. This is because the table includes only functional and non functional
requirements that are directly associated with a platform capability. The rest of the
requirements platform have been taken into account in the platform specification and will
be included in the architecture design as individual features and capabilities.

1.3.3 Legal Requirements
D2.3 contains an analytical report of the Legislative Framework that applies in the domains
that the +Spaces project aims to tackle. Based on this analysis and in combination with the
platform functionalities as required by the end users the following legal requirements have
been extracted and will be considered during the design and implementation of the
platform.

LR1. Processing personal data

User profile information is considered personal data and cannot be processed (even if
pseudonymized, as long as the identity can be retraced by +Spaces service provider) without
clearly informing the user on how the information will be used, and getting user consent.
Collecting and processing personal information is a key factor for the success of our platform
as all third party services need some level of personal information for their analysis. Data
analysis services will need them for the filtering of the results according to used groups
(based on sex, age, location etc) while recommendation and reputation services rely heavily
on them for delivering more accurate estimations.

In order to comply with the legal restrictions we have decided to provide a consent form
that clearly declares to all users that by participating to our experiments they are giving their
consent for their profile information to be processed for the experiment purposes and that it
will not be used for any other reason or revealed to third parties.

As an extra layer of protection we have decided to pseudonymize the data sent to third
party services for analysis, so that only the abstraction layer on top of the virtual spaces is
aware of the virtual spaces IDs of participating users. Full anonymization however will not be

+Spaces Output/Deliverable D3.1 Page 8 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

supported as it is essential to be able to retract IDs from aliases for recommendation
purposes. More on that can be found in the following section.

An additional issue that needs to be addressed here is the processing of sensitive data,
which quoting from D2.3 includes data “revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, trade-union membership, and ... data concerning health or
sex life”. As explained in the deliverable, in the case of sensitive data implicit consent of the
user, i.e. making sure that he has received and read the information before the data are
collected, is not enough, instead the user must give their explicit consent for their data to
be processed. This means that the users need to perform some action indicating that they
have read the consent form and agree to allow the processing of their data. In most cases
this means ticking a box or pressing an “I agree” button. Several EU countries have
introduced stricter legal provisions requiring the written consent of users, whereas others
allow the processing of sensitive data made public by the user without requiring his or her
express consent. The domestic data protection law applicable to the data processing is
defined by the place where the data controller is established. A key point will therefore be
to define which entity qualifies as data controller within the meaning of the applicable data
protection framework. In the context of +Spaces, it is likely that we face a situation of joint
controllership where both the policy maker who determines the purpose of the experiment
and the the +Spaces provider who determines the essential elements of the means used to
achieve this purpose will be deemed data controllers. This requirement should therefore be
dealt with on a case-by-case basis.

The issue of sensitive data needs to be taken into account in the +Spaces platform. Although
end users will be instructed not to create experiments that encourage users to disclose such
data , due to the political nature of the experiments as well as the option given to the users
to speak their minds anonymously, one cannot eliminate the possibility that users
themselves will reveal data falling under one of the aforementioned categories. In order to
ensure compliance with European legislation, experiments that allow users to express their
opinions freely (debated and simulation) will be accompanied by a consent form with a tick
box. More specific requirements imposed by domestic laws will be timely taken into
account.

As can be seen in D2.1 and D2.2 the signing of consent forms has also been identified as a
user requirement and a functional requirement (UR12.13 and R8.5 respectively)

LR2. User‘s access to personal data

After the users have given their consent for the processing of their data they must at any
time be able to see what personal data of theirs have been collected and also ask for this
data to be deleted. We will support this requirement by ensuring that within the experiment
page or space links are provided through which the user can gain access to their personal
data and in case they change their mind and no longer wish to participate, ask for this data
to be deleted from the system. Authentication mechanism will be established at this point in
order to ensure the true identity of the user.

+Spaces Output/Deliverable D3.1 Page 9 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

LR3. Collecting no more data than necessary for the experiment purposes

According to EU law, only the amount of data that is necessary for the purposes of a specific
application must be collected and processed by it. In the case of +Spaces this means
participation to the experiment as well as other user actions that will be used in order to
provide users with good recommendations and rate their reputation. We will determine
those actions carefully in order to ensure that no unnecessary data is collected. Moreover,
after the experiment has ended the data collected in the frame work of an experiment will
be deleted from the platform. For their better performance, the analysis service may keep
aggregated data or the conclusions their analysis for a specific user (e.g. reputation rates,
likes and dislikes etc.) but it will not be possible to retrieve user’s actions after the end of an
experiment. The deletion of experiment related data after the end of the experiment has
also been identified as a user requirement and a functional requirement (UR12.11 and R8.4
respectively).

1.4 Platform Capabilities
The platform capabilities have been derived from the specifications and requirements from
the section above. The current section gives a brief overview of each capability and the
technical challenges associated with each one in the context of +Spaces.

1.4.1 Polling, Debating and Simulation in Virtual Spaces
Each experiment application can be deployed in one or more virtual spaces. Some
application types are planned to be supported in all of the targeted virtual spaces while
others may be supported in only a subset. For each type of experiment and for each virtual
space some setting up and configuration is performed, this is different between experiments
and platforms. This includes creating accounts, users, and other platform specific operations
such as allocating spaces, pages and other in-platform resources. The deployment of
applications is the process of adding the specific application data to the platform, making it
available for targeted virtual space users and setting up the process of allowing users to
participate and use the application, as well as the process of collecting the data from the
platform.

Polls typically include presenting a topic and one or more questions. The questions may
encourage various types of responses, such as selecting a single possible answer, selecting
several possible answers, rating or providing a level of agreement with a statement and
unstructured responses.

Debating experiments are initiated by presenting a topic of interest, raising various
arguments and questions, and calling for responses. Participants' contribution to debates,
synchronous or a-synchronous, is typically not structured, and relates not only to the initial
statement but also to responses by other users.

In simulation we collect data on users' behaviour, to understand the change in behaviour as
a result of changing certain aspects of the virtual space (e.g., implementing a policy). Two
ways are considered to learn the effect of the applied change: the first is to observe users'
+Spaces Output/Deliverable D3.1 Page 10 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

operations before the change and after the change; and the second is to observe two setting
and only apply the change in one setting, and compare the users' behaviour in the two
settings.

1.4.2 Virtual Spaces Interoperability
A single experiment is deployed in several virtual spaces platforms possibly at the same
time. For each type of experiment application we collect the full set of data required for
deployment in each virtual platform. Analysing the required data we derive a level of
abstraction for each type of experiment allowing us to define the experiment once and use
that definition in all of the supported virtual platforms. This data is sometimes accompanied
with specific platform information. In addition we define the full set of data for the results
we collect from the various platforms.

We explore various mechanisms for sharing data directly between different virtual
platforms. These mechanisms allow increasing the participation in applications in some
platforms by targeting users from other virtual platforms. In addition, this supports enriching
experiments and potentially provoking more responses from users by presenting data
coming from other platforms. Data coming from users of virtual spaces other than the one a
user is in, may be different due to the characteristics of the other platform such as typical
profile of users, means of displaying the topic, limitations and methods of participation, etc.

1.4.3 Data Aggregation and Distribution
The aggregation and distribution of data is of great importance for our project since the
success of the experiments is heavily dependent on the reliable transferring of data from the
virtual spaces to the analysis services. The data refers to actions taking place in the virtual
spaces that may be of interest to the analysis services. Since we aim to target highly
populated VWs and SNs in order to attract the maximum number of participants, the
platform needs to be able to aggregate and store large amounts of data. The abstract layer
that will reside on top of the virtual spaces will transform the data retrieved to a common
format and forward them to the +spaces middleware where they will be stored. The data
will also be forwarded to the analysis services. As has been explained in the application
scenario, each experiment will be assigned to specific analysis services based on the
government user’s selection. Actions relevant to an experiment will be forwarded only to its
corresponding analysis services. Reputation and recommendation services will also receive a
broader set of actions representing the user’s general behaviour inside the Virtual Space and
not directly linked to any experiment.

For privacy reasons, in order to avoide storing unnecessary information, when a certain time
has elapsed since the end of an experiment all data gathered for the experiment purposes
will be deleted. The analysis service might aggregate data for future use but will not keep
any information connecting specific actions to a user.

+Spaces Output/Deliverable D3.1 Page 11 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.4.4 Data Analysis
The objective of the Data Analysis service is to present the results from experiments in visual
form and to help policy makers to interpret the results. It gathers pseudonymized data
during experiments on polls, debates and simulations and allows the e-government frontend
to query for intermediate and final results of experiments. The main service will be to return
a link to a data analysis report, upon given an experiment ID. The link returned will be a URL
which references an application server (e.g. Tomcat). The presentation layer of the data
analysis service will provide interactive elements, which allow filtering of results. Data
analysis of running experiments will happen in near real-time.

1.4.5 Recommendation and Reputation
This section describes two separate services, that are both based on social information and
user created content gathered from interactions of +Spaces users in the virtual spaces. The
two services will share a code base for aggregating and analyzing the information, and each
service will add its own functionality.

The objective of the recommendation service is twofold: on the one hand it is intended to
provide recommendations of interesting/relevant experiments for users, in order to attract
more users to the experiments; on the other hand, it will provide recommendation of
relevant people for experiments. Both types of recommendations (experiment
recommendations and people recommendations) will be based on social information.

When an experiment first starts, its description and initial list of potential participants (if
provided by the PM) will be passed to the recommendation service in order to produce a list
of recommended people who should be invited to participate. The recommendations will be
based on past interactions of people in the virtual spaces, based on which we can infer their
interests and social network.

Any user visiting a virtual space, may occasionally (e.g., when idle) be presented with a
recommendation to experiments (polls, debates, etc.) that are potentially of interest. These
recommendations will be based on the user’s topic of interest, as well as on the user’s social
network (friends expressed an interest in the recommended item).

The main objective of the reputation service is to protect the system against misuse, by
identifying patterns of malicious behaviour and assigning low reputation rates to users who
express these patterns. In addition, and based on the types of social interactions received
from the virtual spaces, additional types of reputation may be defined, such as involvement,
influence, and more. The data analysis service will gain from an influence reputation, as it
may weigh different contributions based on the influence reputation of their contributors.

The results of the reputation service will also be used in order to support the moderator
functionality. The moderation of debates in order to detect malicious users is an important
user requirements and its effectiveness will rely heavily on the Reputation Service. The
moderator will use reputation rates in order to better assess users and more easily identify
and ban those with malicious behaviour.

+Spaces Output/Deliverable D3.1 Page 12 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.4.6 Data De-identification (pseudonymization7)
The +Spaces platform collects some participants' actions in the scope of the experiment in
the virtual spaces. Data of such operations contains information about the operating user
and at least the virtual space user-id.

We introduce mechanisms to support maximal user privacy with the limitations of
requirements from the functional specification

The recommendation and reputation services collect and process information about users'
actions. They rely on the history of the user’s created content and interactions with other
users and with the space, in order to produce reputation information; and they rely on the
interactions of the user’s social network for producing recommendations. For this purpose,
the interactions of a single user need to be aggregated under a unique user entity.
Anonymous data is thus not a viable solution.

We present a pseudonymization mechanism which creates a pseudonym for each user in
each virtual space. Thus, a user identifier is not processed after the pseudonymization stage.

Transaction pseudonym system, in which a user is assigned a new pseudonym for each
transaction is a stronger privacy and de-identification mechanism however due to the
requirements highlighted above we cannot make use of such a system.

Since the pseudonyms are only exposed internally within the middleware, pseudonyms
usability is not considered important in our context, whereas unlinkability is important. To
further enhance the unlinkability by third parties the pseudonymization mechanism will use
randomly generated pseudonyms, when creating a pseudonym for a new user, while using
the same pseudonym for each user over time.

1.4.7 Data recovery
As has been mentioned above, the reliable transferring of data from the virtual spaces to the
analysis services is a key priority for our platform. In order to ensure that no actions are lost
due to service failure. a recovery mechanism needs to be setup. In our design we have
considered two alternative options. The first option was to establish a reliable messaging
mechanism between the middleware and the services that ensures that all messages are
delivered and delete messages after they have been sent. The second option was to store all
actions for active experiments and instead of focussing on reliable messaging to build a
recovery mechanism that allows services to retrieve past messages in cases of failure.

Choosing the first option would require setting up a FIFO messaging buffer between the
middleware and each available service. After ensuring that the message has been delivered
to the service it would be deleted from the corresponding buffer. One negative implication
of this option is that we would need to dynamically create a new buffer for each available
service as well as have multiple instances of an action to each buffer. It would also mean
that it would not be possible for the services to retrieve past actions from the middleware as
no actions are stored. So in the case that during the running of an experiment a service

+Spaces Output/Deliverable D3.1 Page 13 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

decides that it also requires other types of actions than the ones it subscribed for initially it
will not be possible to retrieve them.

As a result we have decided to implement the second option, namely store all actions safely
in the middleware from where services can retrieve them at any time. We will also build a
data recovery mechanism that allows services to poll for past actions based on the
timestamp of the latest action that they received. The recovery mechanism will then return
a list of all actions that occurred between the timestamp and the current time. Elaborate
filtering options will be enabled so that it is possible to retrieve only specific types of actions
or actions from a specific virtual space.

1.4.8 SLA Management
The aim of the +Spaces project is to provide government agencies with a powerful platform
that allows them to retrieve large amounts of data from the Virtual Spaces and process them
through the means of specialised analysis tools. For the scope of the +Spaces platform, the
built-in analysis services that will be implemented and showcased will be the Data Analysis,
Recommendation, and Reputation services described in 4.1.1.15. In order, however, to make
the +Spaces platform a commercially viable tool beyond the end of the project, we need to
allow for external services to be registered and managed by the platform. This will give
government users the option to choose between different services with similar
functionalities as well as allow for the addition of different types of processing tools that
have not been foreseen during the project’s implementation. Government users will be able
to select the services they wish to use for their experiment based on the level of Quality of
Service offered by each service provider as well as the price requested. The QoS monitoring
and billing will be made through the use of Service Level Agreements (SLA).

SLAs are a powerful tool for Service Providers (SP), allowing them to offer Quality of Service
(QoS) guarantees to potential customers. SLA contracts have been widely accepted by the
SOA community as a means to establish a level of trust between the two parties (Service
Provider and Consumer) and are currently considered by many as a prerequisite for all
commercial SOA applications

In our platform, SLAs will be established between the analysis service providers and the
government users and will be monitored by the platform. Upon registration, the service
providers will offer an agreement containing the QoS guarantees and pricing terms for the
use of their services. On the creation of a new experiment, and more specifically during the
service selection process, the government user will be presented with all the available
offers. Upon the selection of a service, an agreement will be established between the two
parties. While the experiment is running, the +spaces platform will monitor usage in order to
evaluate conformance to the promised QoS terms and calculate charges. The SLA framework
is presented in more detail in 4.1.1.12.

+Spaces Output/Deliverable D3.1 Page 14 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.4.9 Trust and Security
Security is always an important parameter for any application that gathers and
operates on sensitive data. Since the project is about policy simulation, it is vital to
protect the exchanged messages from corruption and unauthorized access. We will try
to satisfy three of the basic security requirements which are confidentiality, integrity
and authenticity of data.

Confidentiality is about preventing the disclosure of information to unauthorized individuals
or systems. To achieve this goal, we will encrypt the SOAP messages exchanged
between the various services. Integrity is about taking measures to ensure that the
messages have not been tampered with during their exchange . We will use the notion
of digital signatures for this purpose. Finally, authentication is the process of
determining whether something is, in fact, what it is declared to be. Such a
requirement is satisfied through the use of authentication tokens like digital
certificates, username tokens or SAML tokens.

The primary goal should be to protect the privacy of users by adequately protecting
their personal data . Data security and de-identification , as described in 3.2.6, are the
“tools” to achieve that.

+Spaces Output/Deliverable D3.1 Page 15 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

4 +Spaces Platform Design

1.5 General Overview
Figure 1 presents the high level architecture of the +Spaces system. As can be seen in the
figure, the +Spaces consists of two layers, the VS Management layer and the +Spaces
Middleware layer.

Figure 1:+Spaces High level architecture

The VS Management acts as an abstraction layer on top of the Virtual Spaces. It provides a
common interface to the underlying Virtual Spaces and can be used as a standalone tool. For
each participating Virtual Space an adaptor will be developed acting as a bridge between the
Virtual Space and the +Spaces platform.

The +Spaces Middleware contains the main functionality of the platform. It handles the
communication and data flow between the government end users, the VS Management
Layer and the built-in and external analysis services. It offers data persistence, storing all
information about experiments, actions and services and supports a recovery mechanism
that allows analysis services to retrieve their data in case of failure.

The +spaces platform is able to manage services that enhance the functionality of the
platform by providing powerful processing functionalities. Three built-in analysis services will
be developed in the framework of the +Spaces project: the Data Analysis, Recommendation,
and Reputation Services. The platform will however support the addition of more services,
with similar or different functionalities, giving the government users a wider selection of
tools.
+Spaces Output/Deliverable D3.1 Page 16 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Finally the e-gov Front-End is a graphical interface that interacts with the platform via the
+Spaces API and provides government end-users with an easy to use access point to the
platform functionality.

1.6 VS Management Layer
VS Management Layer is responsible for providing an interface between the +Spaces
Middleware Layer and external systems, such as 3D virtual worlds and social networking
sites. The layer’s main goal is the transparent interoperability between all kinds of virtual
worlds.

Figure 2: VS Management Layer Architecture

The layer includes a central component named VS Manager, which will centralize and
manage all the work with plurality of components named VS Adaptors, which will provide a
technical communication to virtual worlds.

The layer will provide an interface for VS Adaptors management, scheduling of VS resources
and deployment of experiments into virtual worlds.

VS Adaptors will monitor utilised resources in virtual worlds and report actions back to VS
Manager component, which will match these actions to a relevant experiment, replace real
users information with their pseudonyms ad forward actions to an upper layer (in case of
+Spaces, to Experiment Manager component).

+Spaces Output/Deliverable D3.1 Page 17 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

The layer will be designed to be generic and can be reused in any other project.

1.6.1 VS Manager
VS Manager is a central component of the layer, and is responsible for centralizing the work
of all VS Adaptors and to implement a convenient interface to a Middleware Layer. The
manager itself will include several internal components, each responsible for handling part
of the work, which will be defined on a low level design. For example, a resource scheduling
component, a users’ pseudonymization component, etc.

Management of VS Adaptors:

The VS manager is responsible for managing the VS adaptor components, their registration,
configuration, and the retrieval of their status.

• Adaptor registration
A new adaptor will be installed by the system administrator as a separate
application. After adaptor installation, the administrator will declare the adaptor to
the VS Manager, using the application interface (to avoid unauthorized access).
Upon a new adaptor declaration, the manager component will register it in its
database. The adaptor component itself is responsible for reporting its status to the
manager component.

• Configure adaptors
A main configuration will be performed upon adaptor registration. The manager
component will load the adaptor configuration from a database and will configure
the adaptor.
The manager will provide a configuration application interface for configuration
changes. On each configuration change, it will store relevant configuration in its
database and forward updates to a relevant adapter(s). Configuration parameters
will be evaluated during low level design and grouped in 2 categories: common
parameters for all adapters and adaptor specific parameters. Probably, adaptor
specific parameters will be injected by administrator directly into adaptors, using
one of the known mechanism, such as properties file.
The project aims to create a web administration console for layer, that will
concentrate all needed configuration parameters.

• Get adaptors list
The adaptors list items will include ID, type, name of VS and some other basic
characteristics that will be defined later.

• Get adaptor capabilities
Adaptor capabilities include poll/debate/simulation, ability to create a new resource
programmatically, etc.

• Get adaptor statuses
This includes adaptor status (starting, ready, error) and status of connection to VS.

+Spaces Output/Deliverable D3.1 Page 18 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 3: VS Adaptors registration

VS resources handling:

The manager component will be responsible for handling all allocated resources in virtual
spaces, to handle their reservation, scheduling, status, etc. It will be responsible for storing
the information in its database and will be able to restore it on failover. The information that
will be stored is general information only, while resource specific parameters will be saved
by the adaptors.

• Add a new resource
The resource is allocated externally by a government employee and declared to a
system using the application interface. The basic resource details will be stored in
tables of the VS Manager, for reservation and scheduling. The manager will notify
the relevant adaptor about a newly allocated resource, and the adaptor is required
to preserve the resource specific information.

• Manage resources reservation and scheduling
The manager will be responsible to handle resources availability, to allow resource
reservation based on time range.

+Spaces Output/Deliverable D3.1 Page 19 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

• Get available resources
There will be several types of query: currently available resources, resources at
specific time range, etc.

• Create a new resource (if applicable)
Not all adaptors will support this functionality. If an adaptor supports such
functionality, it will return created resource parameters to the manager component,
which will be able to preserve it and to add to the scheduling mechanism.

Figure 4: Allocate VS Resource Sequence Diagram

Experiment handling:

The manager will provide an application interface for deploying experiment details on
selected resources. For example, to deploy poll information on a selected poll booth(s) in 3D
world.

• Deploy experiment on selected resource
The manager will check selected adaptor status, will check the resource scheduling
and will pass deployment information to selected adaptor. It will store experiment
ID for utilized resource, in order to be able notify upper layer on detected activity
related to the resource. The manager will also store a details related to monitoring
task of adaptor, in order to be able to restart this task after failover or cancel if the
task was expired.

• Stop experiment deployment on selected resource
The manager will clean its database information and pass the request to the
selected adaptor.

+Spaces Output/Deliverable D3.1 Page 20 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

• VS actions handling
The VS Manager will accept all reported actions from VS Adaptors, replace user
names by their pseudonyms (see below), load relevant experiment ID and pass the
action to an upper layer.

• Notify VS user
The manager will support passing of user notification requests from upper layer to
selected adaptor.

Users’ pseudonymization:

The manager will be responsible to hide real user names from the upper layer. For this
purpose it will create a pseudonym for each involved VS user and will create bi-directional
mapping in its database (optional: to use LDAP).

On each reported action from a VS world, the manager will try to find the user pseudonym in
its database and to replace the real name with it. On failure to find defined pseudonym, it
will create a new pseudonym.

On each request to notify VS user, the manager will find a real user VS name by its
pseudonym and replace it in all requests to VS Adaptor. On failure to find the name, the
manager will not pass the request and return error to the upper layer.

Failover recovery:

The manager component will be able to handle both recovery of the whole system and
recovery of specific adaptor. In both cases the manager will load configuration information
and configure adaptor(s). Then it will retrieve all the tasks related to running experiments
and for each task will check resource allocation expiration. Expired allocations will be
cancelled. Unexpired tasks will be passed to recovered adaptors and adaptors will be
responsible to try to recover missed actions and to report them to the system.

Sharing of actions between virtual worlds:

Optionally, the VS Manager will be able to share activities between virtual worlds, by
reinjection of users’ votes, opinions and other activities from one adaptor to another
adaptor(s). The adaptors will be responsible to display these events on a selected
resource(s).

In this way users will be exposed to opinions of users from other worlds, and will have the
possibility to distribute experiment links to additional accounts in many virtual worlds.

+Spaces Output/Deliverable D3.1 Page 21 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2011] under grant agreement no. 248726

<Insert confidentiality level here>
© All Rights Reserved

1.6.2 VS Adaptors
VS Adaptor components implement a technology bridge to specific virtual worlds. For
simplicity, it is assumed that each component will handle connection to one virtual world
only. Each adaptor will implement a required protocol, specific for each virtual world.

Adaptors will be responsible to store virtual world connection parameters, to store allocated
resources details, and to provide the following functionality:

1. To request configuration information from VS Manager on start-up

2. To open connection to virtual world and to report connection status to VS Manager

3. Deploy experiment details on selected resource(s) in virtual world

4. Monitor experiment progress and report relevant actions to VS Manager

5. Pass messages to selected users

6. Recover missed actions after failure recovery (whenever applicable)

7. Create new resources in virtual world (wherever applicable)

8. Display activities from other worlds (votes, opinions), injected by VS Manager

4.1.1.1 Open Wonderland Adaptor

The Open Wonderland (OWL) VS adaptor shall be responsible for managing an experiment in
an OWL installation, collecting and reporting experiment results to the VS Manager. The
adaptor shall be part of an OWL installation, and shall be deployed using the OWL modules
mechanism.

Functions

The adaptor shall expose an API that allows deploying, managing and stopping experiments.
The VS adaptor shall provide the following functions itemised in section 4: 1, 2, 3, 4, 5, 8.

Communications

The adaptor shall communicate with an OWL installation using a RESTful API. The API shall
require authentication.

The VS adaptor shall report relevant actions to the VS Manager via a mechanism yet to be
decided.

4.1.1.2 Facebook Adaptor

Overview

+Spaces Output/Deliverable D3.1 Page 22 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

The Facebook adaptor is responsible for publishing information in the Facebook platform,
managing the published information, and monitor users' responses.

We consider two approaches for experiments on Facebook, and for different experiments
we may use one or the other.

• Facebook application

Facebook applications are third party applications (+Spaces is the third party in this
case) that are hosted on third party servers. Facebook users may 'add' an application
and allow the application to access various information and functions of their
Facebook account. This may include list of friends, age, gender and other profile
information as well as permission to perform functions like publish a status on the
user's behalf. We are interested mainly in information and not functionality.

The application itself appears as an internal page within Facebook and may contain
various content and functions.

• Use Facebook inherent functions

Some types of experiments may take advantage of internal Facebook building blocks
such as joining groups, commenting on walls, 'liking' topics or pages, becoming
friends, etc. We will explore the options to programmatically create manipulate and
monitor such elements using the Facebook API.

Communications

In the case of inherent functions, we will use Facebook RESTful API. In the case of a
Facebook application the application will either be collocated with the Facebook adaptor, or
expose a RESTful API.

Facebook application must be hosted on servers accessible from the internet, not behind
firewall or NAT.

Retrieved results, comments and other user interactions are sent from the adaptor to the
VSManager.

4.1.1.3 Twitter Adaptor

Overview

The twitter adaptor is a separate stand-alone application. Its function is to publish
information in the twitter micro-blogging platform, to enable the +Spaces applications, and
collect information back from twitter.com.

+Spaces Output/Deliverable D3.1 Page 23 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

In Twitter, hashtags are a common mechanism for tagging tweets, categorizing them and
making finding them easier. The twitter adaptor will make use of the twitter search API
utilizing user-ids as well as hashtags to collect information and provide it back to the
middleware.

Functions

The adaptor exposes an API that allows deploying, managing and stopping experiments, and
uses a continuous channel to report in-space user actions back to the middleware.

Deploying an experiment in twitter includes publishing one or more tweets by one or more
users. These tweets may include external links. The tweets typically include +Spaces and
specific experiment hashtags.

The Adaptor will collect information about the experiment, i.e tweets with our hashtags,
directed to our user accounts, retweets etc, and in addition collect tweets made by
participating users, to provide the required data for the recommendation and reputation
services.

Communications

The adaptor communicates with the twitter platform using its RESTful APIs. Some methods
in the twitter RESTful API requires authentication using the OAuth protocol, specifically
'Tweeting' or publishing information on behalf of a user. For that +Spaces will have one or
more tweeter accounts, and the required OAuth authorization tokens to publish
information.

Some of the methods for retrieving information back from twitter do not require
authentication.

Retrieved results, comments and other user interactions are sent from the adaptor to the
VSManager.

External links

Due to some of twitters characteristics such as unstructured text and 140 characters
limitations, some of the experiments may include links to external web pages. We will use
on of the tinyurl mechanisms to shorten the urls. The external web pages utilize regular web
pages flexibility for presenting and collecting data. We use a mechanism exposed by twitter
allowing us to redirect users browser to twitter.com with a status parameter that is them
inserted to the tweet text box, if the user is logged in. This method enables us to mix flexible
web presentation techniques with twitter's 140 characters text limitations.

External pages must be hosted on servers accessible from the internet, not behind firewall
or NAT.

+Spaces Output/Deliverable D3.1 Page 24 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

4.1.1.4 Blogger Adaptor

Overview

The Blogger adaptor deploys and monitors experiments in the Blogger.com blogging
platform.

Functions

The Blogger adaptor allows publishing new posts in a blog and posting comments, on behalf
of the experimenters. It monitors comments made by other users, and can retrieve the
available information about the commenting users. The available information varies since
users may be identified using several different identity mechanisms each containing
different data elements. For Blogger.com users, this information may contain also blogs the
user follows and blogs the user owns.

Blogger.com also supports widgets and embedding web pages in a blog, the adaptor also
handles embedding such web pages and collecting usage information from them.

Communication

The Adaptor communicates with the Blogger using RESTful API. Methods for posting new
blogs, new posts and new comments requires user authentication. We use https
user/password authentication with Google accounts. Retrieving comments and public profile
information is done over http with no authentication; results are presented in an ATOM
format.

Retrieved results, comments and other user interactions are sent from the adaptor to the
VSManager.

1.7 Middleware Layer
This section presents in detail the components of the +spaces platform middleware. For
each component a detailed design layout is provided, including functionality overview,
internal architecture and interfaces.

1.7.1 Experiment Manager
This component is the main component that interacts with the system's front end and UI. All
of the user functions are concentrated and managed in the experiment manager. The
experiment manager operates as an orchestrator of the various platform components.

It communicates directly with the Services Manager, VS Manager, Front end, and
Configuration and SLA managers.

As the endpoint of the platform before the frontend component, this component is
responsible for exposing platform capabilities and current condition, such as available
services, available virtual spaces and virtual space resources. It enables creation of an
experiment that will be deployed in various virtual spaces. This process includes assigning

+Spaces Output/Deliverable D3.1 Page 25 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2011] under grant agreement no. 248726

<Insert confidentiality level here>
© All Rights Reserved

the proper services to the experiment, retrieval of the recommended users, and ordering
the VS Layer to activate the experiment. As actions made by participants begin to flow back
from the VS Layer, the Experiment Manager stores them, evaluates the specific policy and
distributes them to the assigned services via Services Manager component.

The frontend component may ask the experiment manager for results, in which case the
experiment manager will refer the request to the data analysis service and return a
reference to the front end where results can be viewed.

Experiment control, modifications, management and termination are also controlled by the
Experiment Manager.

The experiment manager exposes data about ongoing experiments within the platform.

Experiment Manager

High Level Description The component is responsible for managing all experiments and actions
related to them

getServices
@WebMethod Collection <Service> getServices()

Description Returns a collection of the available analysis services.
getVirtualSpaces

@WebMethod Collection <Space> getVirtualSpaces()
Description Returns a collection of the available virtual spaces.

createExperiment
@WebMethod String createExperiment (Experiment experiment)

Description Create an experiment based on the data in the experiment object and
returns an experiment ID.

newAction
Void newAction (Action action)

Description Used for reporting a new participants action in one of the virtual
spaces.

storeAction
Void storeAction(Action action)

Description Persists the actions details.
evaluatePolicy

evaluatePolicy (Policy policy)
Description Evaluates the policy associated with an experiment in order to decide

how to process an action.
getExperimentData

@WebMethod Collection <String> getExperimentData(String experimented,
Collection<String> propertiesNames)

Description Returns current values for experiment parameters such as number of
participants experiment duration etc.

getExperimentResults
@WebMethod URL getExperimentResults (String ExperimentID)

+Spaces Output/Deliverable D3.1 Page 26 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Experiment Manager
Description Returns a URL to a web page where a report can be downloaded or a

web report can be viewed.

1.7.2 ServicesManager

4.1.1.5 Overview

The ServicesManager is the component responsible for managing the analysis services as
well as managing and coordinating all communication between them and other middleware
services. The ServicesManager accepts registration requests from analysis services, registers
them in the +Spaces platform and maintains their details. When a new experiment is
created, based on the government user’s selection, the ServicesManager assigns the
experiment to the analysis services. Throughout the experiment, when an action occurs, it
will initiate notifications to the services assigned to this experiment.

4.1.1.6 Component Design

The ServicesManager will consist of three classes:

• The RegistrationManager will be responsible for accepting and handling new
registrations to the +Spaces platform.

• The ServiceRegistry will be responsible for managing all registered services. It
will accept queries from the ExperimentManager and the Front-End in order
to return all the available services that are registered to the platform. It will
also communicate with the SLA Manager in order to retrieve
AgreementOffers associated with each service.

• The ExperimentAssignmentManager will be responsible for managing the
associations between the Services and the Experiments Assigned to them. It
will interact with the NotificationManager in order to send notifications for
new experiments as well as actions associated with an experiment. It will also
communicate with the SLAManager in order to create an Agreement when a
new assignment has been created.

+Spaces Output/Deliverable D3.1 Page 27 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 5: ServicesManager class diagram

4.1.1.7 Interface

Services Manager

High Level Description Manages built-in and external analysis services and handles communication
between middleware and them

register
@WebMethod RegistrationOutputType register(RegistrationInputType serviceRegistration)

Description Registers a new analysis service to the platform
getAvailableServices

List<RegisteredService> getAvailableServices()
Description Returns a list of all registered services that are currently available.

List<RegisteredService> getAvailableServices(AnalysisServiceType serviceType)
Description Returns a list of all registered services of the given type that are

currently available.
assignServicesToExperiment

void assignServicesToExperiment(String experimentID, List<String> services)
Description Assigns the analysis services to the experiment and notifies the services.

setPolicy
void setPolicy(PolicyType type)

Description A notification from the ExperimentManager that is responsible for
evaluating the forwarding policy informing the service of the new
policy

getServiceURLForExperiment
List<URL> getServiceURLForExperiment(String experimentID, AnalysisServiceType type)

Description Returns analysis services of the given type that are assigned to the
experiment

List<URL> getServiceURLForExperiment(String experimentID)
+Spaces Output/Deliverable D3.1 Page 28 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Services Manager
Description Returns all analysis services that are assigned to the experiment

getExperimentRecommendationsForUser
List <String> getExperimentRecommendationsForUser(String UserID)

Description Polls recommendation service and returns a list of all recommended
experiments for this user

getRecommendedUsersforExperiment
List <String> getRecommendedUsersforExperiment (String experimentID)

Description Polls recommendation service and returns a list of all recommended
users for this experiment

getReputationForUser
@WebMethod ReputationRate getReputationForUser (String userID)

Description Polls reputation service and returns reputation rate for users
getUsersWithReputation

@WebMethod List<String> getUsersWithReputation(ReputationRate rate)
Description Polls reputation service and returns users with reputation rate higher

than the given rate

1.7.3 NotificationManager

4.1.1.8 Overview

The NotificationManager will be responsible for notifying the analysis services of new
experiments as well as actions taking place in the Virtual Spaces. There are various types of
actions that can take place in the framework of a Virtual Space. While in the case of polls
and debates one can expect a small and easy to predefine set of action types, in the case of
simulation, depending on the specific scenario, the types of actions that can be associated
with an experiment may vary greatly. The analysis services may be interested in all of the
actions that may take place in a VS or in a small fraction of them. For example, reputation
services are generally interested in getting as much information for the user as possible in
order to produce a more trustworthy reputation rate while a data analysis service might only
need voting events.

The decision on what action needs to be sent to each service is taken based on
subscriptions. In order to receive notifications for a specific type of action the service needs
to subscribe to notifications associated with this particular type. It should also be possible to
subscribe to all action types available.

+Spaces Output/Deliverable D3.1 Page 29 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 6: Services Subscribe to new experiment

Upon creation of a new experiment the analysis services receive a notification. The
notification contains the ID of the new experiment, experiment description and tags, as well
as the action types available. After receiving the notifications, the services must send
subscription requests in order to specify the action types they are interested in receiving. In
order to avoid loss of data, the +Spaces platform will allow some time for the services to
subscribe and then activate the experiment. If, however, a service fails to subscribe to action
types in time (due to failure or other delay) it can always subscribe after the activation of the
experiment and retrieve the lost actions via the data recovery mechanism.

The sequence diagram describes the abovementioned process. Both services are notified of
the new experiment but AnalysisService2 fails to subscribe in time for the new experiment
due to service failure. AnalysisService1 on the other hand subscribes normally to the action

+Spaces Output/Deliverable D3.1 Page 30 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

types it is interested in (voting and conversation) and as soon as the experiment is activated
it starts receiving notifications.

When AnalysisService2 recovers from failure, it uses the data recovery mechanism described
in 4.1.1.10 in order to retrieve older messages and then subscribes to the new experiment. It
should also be noted that in case of failure the service will first use the data recovery
mechanism in order to retrieve notifications for new experiments so even if the service fails
before receiving the notification it will still be able to recover all actions in the experiment.

4.1.1.9 Component Design

The architecture of this component has been designed following the OASIS Publish-
Subscribe Notification for Web services design pattern specification. WS-Notification is a
family of related white papers and specifications that define a standard Web services
approach to notification using a topic-based publish/subscribe pattern. The Publish-
Subscribe Notification for Web Services sets the general requirements for the WS-
Notification family of specifications, describes each of the specifications that make up this
family and defines a set of terms and concepts used in the specifications. The WS-Base
Notification specification defines the Web Services interfaces for notification producers and
notification consumers, as well as for the subscription manager, handling the subscriptions.
It includes standard message exchanges to be implemented by service providers that wish to
act in these roles.

The main notions and entities involved in the subscription and notification processes as
described in the aforementioned specifications are the following8:

• A Situation is an event that is known to the NotificationProducer and may be of interest
to external parties

• A Notification is a description of a Situation (represented by a Notify message) that the
NotificationProducer wishes to communicate to other entities.

• A NotificationProducer is responsible for producing Notifications for those
NotificationConsumers for which Subscriptions have been registered. The
NotificationProducer will send Notifications for different Situations to each
NotificationConsumer based on the parameters specified in the respective Subscription
request representing the topics of their interest.

• A NotificationConsumer is an endpoint capable of receiving Notifications produced by a
NotificationProducer as a result of Subscription.

• A Subscription represents the relationship between a NotificationConsumer and a
NotificationProducer and contains the topic of interest for which the former wishes to
receive Notifications from the latter.

• A SubscriptionManager is an endpoint that implements message exchanges associated
with querying and manipulating Subscription resources.

• A Subscriber is the entity that sends the Subscription requests (represented by a
SubscribeRequest message) to a NotificationProducer.

+Spaces Output/Deliverable D3.1 Page 31 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

The architecture of the component is shown below

4.1.1.10 Interface

The methods providing the basic functionality required can be seen below:

Notification Manager

High Level Description Notifies analysis services for new experiments and actions held in the VSs.
Also, receives and manipulates subscriptions for already registered services.

notifyOfNewExperiment

void notifyOfNewExperiment (int experimentID, String [] services)

Description Sends notification for a new experiment creation to the subscribed
services and handles subscriptions.

notifyOfAction

void notifyOfAction (EndpointReferenceType serviceURL, String notificationMessage,
Action action)

+Spaces Output/Deliverable D3.1 Page 32 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Notification Manager
Description Send notification for a new VS action to the subscribed services.

subscribe

@WebMethod SubscribeResponse subscribe (Subscribe subscribeRequest)

Description Create a subscription for a registered service on a new topic.

unsubscribe

@WebMethod UnsubscribeResponse unsubscribe (Unsubscribe unsubscribeRequest)

Description Unsubscribe from a topic.

pauseSubscription

@WebMethod PauseSubscriptionResponse pauseSubscription (PauseSubscription
pauseSubscriptionRequest)

Description Pause an active subscription.

resumeSubscription

@WebMethod ResumeSubscriptionResponse resumeSubscription (ResumeSubscription
resumeSubscriptionRequest)

Description Resume a paused subscription.

1.7.4 DataManager

4.1.1.11 Overview

The DataManager component will provide analysis services with an access point to the
+Spaces database, allowing them to recover older data that they have lost due to failure. As
has been explained above, besides distributing it to the services, the +Spaces platform will
store all data regarding the experiments and the actions taking place in the virtual spaces
and associated with them. In case of failure, services will poll the DataManager for the
actions and experiments that they have missed based on the id of the latest action that they
received.

Depending on the number of events (actions or new experiments) that have occurred since
the last message received (so, essentially depending on how long the service was down),
the Datamanager will either return a list of all events or, in case the number of events
exceeds a threshold, a message stating that the list of actions will follow. In the latter case
the recovery mechanism will be activated in order to create an xml file containing all the

+Spaces Output/Deliverable D3.1 Page 33 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

events and send them to the service. The threshold will have a default value but will also be
able to be defined by the platform administrator via the ConfigurationManager.

Apart from data recovery in case of failure, in which case all events after the time of failure
need to be retrieved, the DataManager could also be used for retrieving data for other
reasons. One example is if during the running of an experiment a service becomes interested
in actions of a type to which it did not subscribe at the beginning of the experiment. In that
case, the service will need to subscribe to the NotificationManager for this action type in
order to receive future actions but also to poll the DataManager for such actions that
occurred before the time of failure. In order to allow for such cases, elaborate polling
options will be enabled so that it is possible to retrieve a set of actions based on user
defined criteria.

4.1.1.12 Interface

DataManager

High Level Description Implements the data recovery mechanism allowing the service to query the
database for older experiments or actions

getExperiments
@WebMethod RecoveredExperimentsReturnType getExperiments(String experimentID)

Description Returns all experiments that have been assigned to the service and are
newer than the experiment with the specified ID

getActions
@WebMethod RecoveredActionsReturnType getActions(String actionID)

Description Returns all actions that are associated with an experiment assigned to
the service, their action type matches the service’s subscription and are
newer than the actions with the specified ID.

@WebMethod RecoveredActionsReturnType getActions(String actionID, String
ExperimentID)

Description Returns all actions that are associated with the given experiment, their
action type matches the service’s subscription and are newer than the
actions with the specified ID.

@WebMethod RecoveredActionsReturnType getActions(String actionID, String
ExperimentID, ActionType actionType)

Description Returns all actions that are associated with the given experiment, are of
the given action type and are newer than the actions with the specified
ID.

1.7.5 ConfigurationManager
The configuration manager is an internal system management component and is not
relevant to specific use case scenarios.

+Spaces Output/Deliverable D3.1 Page 34 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Overview and motivation: All of the +Spaces middleware components are configurable, and
operate differently with different configuration parameters.

 The configuration manager is the focal point for system configuration. It contains and
exposes all of the configuration parameters for the middleware components.

The configuration manager prevents re-developing configuration mechanisms for each
component. Also, it is a single point of administration control, where the entire
middleware's behaviour is determined.

Properties types: the configuration properties are divided to two groups:

• System wide properties

This group contains properties that apply to the entire system and are cross-
components. These properties will be read and acted upon by several middleware
components and do not include information that is component specific. Typical
system wide properties include urls, ports, jndi names etc.

• Components specific properties

This group contains properties that are relevant only to specific components. Typical
component specific properties include various thresholds, timeout values etc.

Defaults: Configuration parameters have default values.

Persistency: Each parameter is made persistent by the configuration manager.

A snapshot of the configuration values can be taken, saved and then restored, to support
quick system-wide configuration changes.

 User interface: the configuration manager exposes a GUI allowing an administrator to
change various configuration parameters values.

Communication: there are two modes of communicating the configurations values from the
configuration manager to the components:

o request-response mode: in this mode a component issues a request to the

configuration manager asking for one or more relevant properties values.
The configuration manager sends the values in a response. This mode is
typically used when a component starts or re-starts it's operation.

 This mechanism will use RMI calls.

o Notify mode: In this mode the configuration manager initiates a notification

to one or more of the components to announce the change in one or more
of the configuration properties.

+Spaces Output/Deliverable D3.1 Page 35 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

 This mechanism will use a JMS BUS.

Figure 7: Configuration Manager Design

1.7.6 SLAManager

4.1.1.13 Overview

The SLAManager will create, monitor and evaluate Service Level Agreements
between analysis services and government organisations. The SLAs will allow
service providers to give QoS guarantees as well as set pricing terms for the usage
of their services. The SLAs between the two parties will be based on the agreement
offer that the service provider gives when registering and is agreed upon by the
government user when selecting the service. The monitoring results describing the
service usage that will be used in order to evaluate the SLA and decide whether
there has been a violation of the terms or estimate the charges are retrieved from
the ExperimentManager.

4.1.1.14 Component design

This component has been designed following the WS-Agreement Specification from the
Open Grid Forum (OGF)9. Web Services Agreement Specification (WS-Agreement) is a Web
Services protocol for establishing agreement between two parties, such as between a
service provider and consumer. It defines schemas for specifying agreements, as well as the

+Spaces Output/Deliverable D3.1 Page 36 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2011] under grant agreement no. 248726

RMI
interface

<Insert confidentiality level here>
© All Rights Reserved

Web Service interface for managing agreement life-cycle, including creation, expiration, and
monitoring of agreement states.

In our case, when registering a new Service (e.g. Data Analysis Service), the service provider
provides an agreement template, defining guarantee and pricing terms for his service. The
Service Manager must invoke the createAgreementTemplate method of the SLAManager, so
that the latter can create an agreement offer object and store it to the Database. Upon the
specific Service’s choice for a new experiment by a Government user, the Experiment
Manager retrieves the provider’s offer from the SLA Manager through the
getAgreementOffer method and the end-user is asked to confirm the agreement offer
terms, as defined in this template. Then the Service Manager invokes the createAgreement
method of the SLAManager that stores the created SLA into an XML file, based on the WS-
Agreement Standards described above. Moreover, a polling service running within this
component must periodically request for a list of the active experiments running, as well as
for the current value of specific metrics (e.g. Poll votes) from the Experiment Manager, so as
to confirm the SLA validity and update the end-user billing.

4.1.1.15 Interface

SLA Manager

High Level Description Creates SLAs based on the WS-Agreement specification and periodically
checks the validation of the agreements and updates billings.

createAgreement

CreateAgreementOutputType createAgreement (CreateAgreementInputType
agreementOffer)

Description Creates a Service Level Agreement and stores it in an XML file.

createAgreementTemplate

void createAgreementTemplate (EndpointReferenceType serviceURL,
AgreementTemplateType agreementOffer)

Description Create a new agreement template for the registered service

getAgreementOffer

AgreementType getAgreementOffer (EndpointReferenceType serviceURL)

Description Returns the provider’s service agreement offer, so that the end user
consents.

+Spaces Output/Deliverable D3.1 Page 37 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.8 Built-in Analysis Services
In this section the built-in analysis services that will be developed within the project
framework are described here. Presented in the following sections are the functionality
overview and the interfaces of the services, the detailed internal architecture for them will
be outlined in separate deliverables (D.3.5.x).

1.8.1 Data Analysis Service
Overview

The objective of the Data Analysis service is to gather pseudonymized data during
experiments and provide intermediate and final results of experiments to the government
users. The presentation layer of the data analysis service will provide interactive elements,
which allow filtering of results. Data analysis of running experiments will happen in near
real-time.

Interface

DataAnalysisService

High Level Description Gathers experiment related data in order to create a graphical analysis of
experiment results

getDataAnalysisURL
@WebMethod URL getDataAnalysisURL(String experimentID)

Description This method returns the URL that contains the results of the experiment in
visual form. The presentation layer of the data analysis service will provide
interactive elements, which allow filtering of results. Data analysis of
running experiments will happen in near real-time.

1.8.2 Recommendation Service
Overview

The recommendation service subscribes to the middleware (as can be seen in the sequence
diagrams) for receiving social network information (user operations with the space and with
other users). The information is pseudonymized, as the recommendation service gathers the
history of operations of unique users, in order to study their interests and construct their
social network.

Interface

RecommendationService

High Level Description Provides recommendations for users by analysing the history of users’
actions.

+Spaces Output/Deliverable D3.1 Page 38 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

1.8.3 Reputation Service
Overview

Like the recommendation service, the reputation service receives social network information
from the system and estimates a reputation rate for users based on their history of actions.

Interface

ReputationService

High Level Description Provides reputation rate estimation for users by analysing the history of
user’s actions.

getReputationForUser
@WebMethod ReputationRate getReputationForUser – (String userID, ReputationType

reputationType)
Description Given a user, the service returns a reputation rate for this user, expressing

the user’s reliability with respect to malicious use.
Based on the types of social interactions received from the virtual spaces,
additional types of reputation may be defined, such as involvement,
influence, and more. In such a case, the call will be given an additional
parameter, with the requested type of reputation.

getRecommendationsForUser
@WebMethod List getUsersWithReputation (ReputationRate reputationRate,

ReputationType, reputationType)
Description Given a reputation rate (and type, when relevant), the service returns a

list of users that match the desired reputation (or have a reputation that is
equal or higher than the given rate).

1.9 +Spaces FrontEnd
+Spaces Front End is the presentation layer that lies between the platform and the end
users. As most of the common UI, +Spaces front end is a friendly, eye-pleasing and easy to
use GUI for the user, and its design will help him/her to exploit the functionalities that will
be offered by the +Spaces platform. It has also a project-specific appearance which can be
individualized with the use of several skins and skin objects. It is accessible through internet
for all potential users, authenticated or not, depending on the services desired. A more
detailed analysis of the interface will be included in D3.6.

+Spaces front end is also called e-Gov Front End as it refers to Governmental offices / policy
makers’ domain of +Spaces end users. To this end, it interacts with +Spaces API in an
appropriate way in order to handle, retrieve and display data to the policy makers. In
addition, it is also connected with data analysis service to provide the desired statistical
reports to the end user. Consequently, e-Gov Front End will present to the policy maker’s

+Spaces Output/Deliverable D3.1 Page 39 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

end users domain the functionalities/modules that are defined for all the category’s roles
(content submitter, debate moderator, administrators). Finally, they will be described in
details in D3.610 and some of them, reported as examples, are the following: user roles
management, login/out functionality, monitoring, system administration, content
management, moderation, deployment of an experiment, presentation of statistical reports
and data analysis, participation in an experiment etc.

1.10 Platform Security
According to the architecture, the platform will protect the messages exchanged
between the middleware and the analysis services (e.g. recommendation, reputation,
and data analysis services). To accomplish that , we will use the WS-SecureConversation
standard, that works in conjunction with WS-Security , WS-Trust and WS-Policy .

WS-SecureConversation starts with a handshake between the parties involved, in order
to establish a security context. A security context provides session based security, rather
than establishing new keys for every message. It is based on the concept of session key
(like in TLS/SSL) and it is more lightweight than the WS-Security standard, in the case
of frequent message exchanges.

The security context can be created by using username tokens, mutual certificates or
SAML tokens. In our case, we will use the certificate option. Through a security tool (e.g.
Openssl) we will create a certificate authority (CA) which will be trusted by all entities
in the system. Each entity will be assigned a new certificate, signed by our CA. Finally, we
will use the concept of keystore and trustore. The keystore is the place where each entity
keeps the keys that belong to it while trustore is the repository for the trusted CAs. The
proper configuration of keystores/trustores can ensure that confidentiality, integrity
and authentication are satisfied in our platform.

+Spaces Output/Deliverable D3.1 Page 40 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 8:+Spaces security through certificates

1.11 Overall Architecture

1.11.1 Component Diagram
Figure 9 depicts the component diagram of the +Spaces platform.

Figure 9:+Spaces component diagram

1.11.2 Interactions between components
In the following sections the sequence of interactions between the components of the
+spaces platform are displayed through UML Sequence diagrams.

1.11.2.1 Sequence Diagram 01: Service Registration and Recovery
Figure 10 depicts the sequence of interaction between +Spaces middleware services and
analysis services during registration as well as in the case of recovery after service failure.
The Data Analysis Service is depicted in the diagram but the process is the same for all
analysis services, both built-in and external.

+Spaces Output/Deliverable D3.1 Page 41 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

The registration process is initiated by the Data Analysis Service that performs a registration
request to the platform. As has been explained in 4.1.1.12, apart from the service related
data such as the service endpoint and operation description, the registration request may
optionally contain an agreement offer describing the promised QoS level as well as the
pricing terms for service usage. The agreement offer is forwarded to the SLAManager and
stored there .

The lower part of the diagram depicts the data recovery process

Figure 10: Sequence Diagram 01: Service Registration and Recovery

1.11.2.2 Sequence Diagram 02: Experiment Creation
Figure 11 depicts the sequence of interaction between +Spaces components during
experiment creation. The scenario is initiated by the government user who accesses the
platform front-end in order to create a new experiment.

When the end-user requests the creation of a new experiment s/he will be asked to select
several configuration options as described in D2.2. One of the configuration parameters is
the analysis services that will be used for the analysis of the experiment data. In order to get
get all the available analysis services, the front-end will invoke the ServiceManager. For each
registered service, the ServiceManager will invoke the SLAManager in order to get the
agreement offer associated with the use of this service and return a list with all services. The
services with the respective description and agreement offer will be returned to the front-
end and presented to the user in order to make his/her selection.

When the user selection is made, the front-end will invoke the CreateExperiment method of
the ExperimentManager with the configuration parameters as input parameters. The
ExperimentManager will then store experiment details and forward the request to the VS

+Spaces Output/Deliverable D3.1 Page 42 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Manager. For each VS adaptor, the VSManager will invoke the respective method for
creating a new experiment in the Virtual Space.

After the experiment has been deployed in the Virtual Space and before it has been
activated the ExperimentManager will invoke the ServicesManager in order to assign the
selected services to the experiment. This means creating an agreement between the end-
user and the analysis service provide based on the agreement offer proposed by the service
provider (and accepted by the end-user by selecting the service) and then notifying the
service of the experiment creation.

Before activating the experiment, the ExperimentManager will also ask the ServicesManager
to poll the Recommendation Service for a list of potentially interested users for this specific
experiment. Based on the experiments description tags and the users’ history the
Recommendation will come-up with a list of users that are more likely to be willing to
participate to the experiment and to whom the new experiment will be advertised. The list
of users will then be passed to the VSManagement layer. The experiment will subsequently
be activated on all Virtual Spaces and the users will be able to participate.

+Spaces Output/Deliverable D3.1 Page 43 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 11: Sequence Diagram 02: Experiment Creation

+Spaces Output/Deliverable D3.1 Page 44 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2011] under grant

<Insert confidentiality level here>
© All Rights Reserved

1.11.2.3 Sequence Diagram 03: Actions Distribution
Figure 12 describes the sequence of interactions between the components that are involved
in the distribution of actions taking place in a Virtual Space to the analysis services.

The sequence is initiated when an action is performed in a Virtual Space. Depending on the
virtual space implementation the adaptor will either forward each action to the adaptor or
the adaptor will poll the virtual space API for actions. The adaptor will then forward the
action to the VSManager. After de-identification of the action which is done by replacing
the user id with a pseudonym, the VSManager will forward the action to the +Spaces
platform and more specifically the ExperimentManager.

The ExperimentManager will store the actions details and poll the ConfigurationManager in
order to get the action distribution policy associated with this particular experiment. The
policy can be either to send each action as a separate message or to send the actions
periodically. The policy may also contain a clause, for example depending on the rate of
incoming actions the ExperimentManager may need to switch between the two policies.
After getting the policy from the ConfigurationManager, the ExperimentManager will
evaluate the policy and associated clause and decide on how to send the actions. If the
policy has changed since the last action sent, the ExperimentManager will notify the
ServicesManager on the new policy in order for the two services to be in synch.

If the policy is to send each action separately the policy will send the action directly to the
ServicesManager. Otherwise it will gather actions and periodically forward them to the
ServicesManager. Upon receiving the action(s) the ServicesManager will retrieve the analysis
services associated with the experiment and invoke the NotificationManager which will then
filter the actions based on the subscriptions of the analysis services (see 4.1.1.7) and send
notifications for each action to the services.

+Spaces Output/Deliverable D3.1 Page 45 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 12: Sequence Diagram 03: Actions Distribution

+Spaces Output/Deliverable D3.1 Page 46 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2011] under grant

<Insert confidentiality level here>
© All Rights Reserved

1.11.2.4 Sequence Diagram 04: Experiment Results
The sequence of interactions taking place when the end user accesses the front-end in order
to retrieve the results is depicted in Figure 13.

The +Spaces Front-End polls the ExperimentManager in order to get back the results. The
ExperimentManager will retrieve the experiment details from the database and poll the
ServicesManager for the DataAnalysisService that has been assigned this experiment. The
ExperimentManager will return this information to the Front-End which in turn will poll the
DataAnalysisService with the experiment ID in order to get the web page with the graphic
results and present them to the user.

Figure 13: Sequence Diagram 04: Experiment Results

1.11.2.5 Sequence Diagram 05: Recommendations
The Recommendations sequence diagram depicted in Figure 14 is initiated when the VS
adaptor wants to find recommendations for a specific user. The adaptor will poll the VS
Manager which in turn will de-identify the user ID by replacing with a pseudonym and ask
the ServicesManager for recommendations. The ServicesManager will poll the
RecommendationService and return a list of experiments that might potentially be of
interest to the user.

+Spaces Output/Deliverable D3.1 Page 47 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 14: :Sequence Diagram 05: Recommendations

1.11.2.6 Sequence Diagram 06: Reputation
When the DataAnalysisService wants to retrieve the reputation rating for a specific user that
participated in an experiment or to get all users that have a reputation above a specific
threshold, it polls the ServicesManager. The ServicesManager retrieves the
ReputationService that is responsible for this experiment and polls it for the reputation of
the specific user or all users with a high reputation. The ServiceManager then sends the
reputation results to the DataAnalysisService.

The sequence is depicted in Figure 15.

+Spaces Output/Deliverable D3.1 Page 48 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

Figure 15 :Sequence Diagram 06: Reputation

1.12 Data Schemata
The data XML schemata for the representation of entities used in the +Spaces project will be
outlined in this section. As this is still an early stage only data types that can be defined at
this point are presented here, some are left to be presented at later deliverables (i.e. the
component implementation reports). Even in the data types defined here modifications may
be necessary at a later point and these will be included as well in the aforementioned
reports.

1.12.1 EndpointReferenceType
name type description N Reference

address AttributedURITy URI of the [1..1] 4.1.1.15

+Spaces Output/Deliverable D3.1 Page 49 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

pe EndpointReference

metadata MetadataType Metadata of the
EndpointReference

[1..1] 4.1.1.15

referenceParamet
ers

ReferencePara
metersType

Other Reference
Parameters of the
EndpointReference

[1..1] 4.1.1.15

any List<Object> List of any objects [1..1]

1.12.2 AttributedURIType

name type description N Reference

value String String value of the
URI

[1..1]

1.12.3 MetadataType

name type description N Reference

any List<Object> List of any objects [1..1]

1.12.4 ReferenceParametersType

name type description N Reference

any List<Object> List of any objects [1..1]

1.12.5 Subscribe

name type description N Reference

consumerReferenc
e

EndpointRefere
nceType

EndpointReference
of the notification
consumer

[1..1] 4.1.1.15

filter FilterType Filters the
subscription topic

[1..1] 4.1.1.15

initialTerminationTi
me

GregorianCalen
dar

Subscription
termination date

[1..1]

subscriptionPolicy SubscriptionPoli
cyType

Subscriber
requirements for
policy

[1..1] 4.1.1.15

1.12.6 FilterType
name type description N Reference
+Spaces Output/Deliverable D3.1 Page 50 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

topic String Subscription topic [1..1]

1.12.7 SubscriptionPolicyType

name type description N Reference

messageRate int Defines notification
message rate

[1..1]

1.12.8 SubscribeResponse

name type description N Reference

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the subscription

[1..1] 4.1.1.15

currentTime XMLGregorianC
alendar

Subscription time [1..1]

terminationTime XMLGregorianC
alendar

Subscription
termination date

[1..1]

1.12.9 Unsubscribe

name type description N Reference

consumerReferenc
e

EndpointRefere
nceType

EndpointReference
of the notification
consumer

[1..1] 4.1.1.15

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the subscription

[1..1] 4.1.1.15

1.12.10 UnsubscribeResponse
name type description N Reference

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the deleted
subscription

[1..1] 4.1.1.15

currentTime XMLGregorianC
alendar

Unsubscription time [1..1]

1.12.11 PauseSubscription
name type description N Reference

consumerReferenc EndpointRefere
nceType

EndpointReference [1..1] 4.1.1.15

+Spaces Output/Deliverable D3.1 Page 51 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

e of the notification
consumer

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the subscription

[1..1] 4.1.1.15

1.12.12 PauseSubscriptionResponse

name type description N Reference

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the paused
subscription

[1..1] 4.1.1.15

currentTime XMLGregorianC
alendar

subscription pause
time

[1..1]

1.12.13 ResumeSubscription

name type description N Reference

consumerReferenc
e

EndpointRefere
nceType

EndpointReference
of the notification
consumer

[1..1] 4.1.1.15

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the paused
subscription

[1..1] 4.1.1.15

1.12.14 ResumeSubscriptionResponse
name type description N Reference

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the resumed
subscription

[1..1] 4.1.1.15

currentTime XMLGregorianC
alendar

subscription resume
time

[1..1]

1.12.15 Notify

name type description N Reference

message NotificationMess
age

message [1..1] 4.1.1.15

1.12.16 NotificationMessage

name type description N Reference

+Spaces Output/Deliverable D3.1 Page 52 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

subscriptionRefere
nce

EndpointRefere
nceType

EndpointReference
of the subscription

[0..1] 4.1.1.15

topic String Subscription topic [0..1]

producerReferenc
e

EndpointRefere
nceType

EndpointReference
of the notification
producer

[0..1] 4.1.1.15

message String Textual description of
notification

[1..1]

1.12.17 CreateAgreementInputType
name type description N Reference

agreementInitiator EndpointRefere
nceType

EndpointReference
of the agreement
initiator

[1..1] 4.1.1.15

agreement AgreementType Agreement object on
which the SLA will be
created

[1..1] External
Reference11

1.12.18 CreateAgreementOutputType

name type description N Reference

agreementEPR EndpointRefere
nceType

EndpointReference
of the agreement

[1..1] 4.1.1.15

1.12.19 RegisteredService

name type description N Reference

ID String Service ID [1..1]

name String Service name [1..1]

serviceEPR EndpointRefere
nceType

EndpointReference
of the service

[1..1] 4.1.1.15

description String Service description [0..1]

agreement AgreementType Agreement object
that sets the terms of
usage of the service

[1..1] External
Reference12

1.12.20 RegistrationInputType

name type description N Reference

+Spaces Output/Deliverable D3.1 Page 53 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

name String Service name [1..1]

serviceEPR EndpointRefere
nceType

EndpointReference
of the service

[1..1] 4.1.1.15

description String Service description [0..1]

agreement AgreementType Agreement object
that sets the terms of
usage of the service

[1..1] External
Reference13

agreement AgreementType Agreement object
that sets the terms of
usage of the service

[1..1] External
Reference14

1.12.21 RegistrationOutputType

name type description N Reference

success boolean Was the Registration
Successful?

[1..1]

description String Justification in case
of failure

[0..1]

1.12.22 RecoveredExperimentsReturnType
name type description N Reference

mode Enum <String>
{“RESULTS_INCLU
DED”,
“RESULTS_TO_FOL
LOW”}

Are the results
included in this
message as a list or
will they be sent
separately

[1..1]

experiments List <Experiment> List of experiments,
null if mode =
“RESULTS_TO_FOL
LOW”

[0..1]

description String Justification [0..1]

1.12.23 RecoveredActionsReturnType
name type description N Reference

mode Enum <String>
{“RESULTS_INCLU
DED”,
“RESULTS_TO_FOL
LOW”}

Are the results
included in this
message as a list or
will they be sent

[1..1]

+Spaces Output/Deliverable D3.1 Page 54 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

separately

actions List <Action> List of experiments,
null if mode =
“RESULTS_TO_FOL
LOW”

[0..1]

description String Justification [0..1]

1.12.24 PolicyType

name type description N Reference

PolicyType Enum <String>
{“SEND_EACH_AC
TION”,
“SEND_IN_BULK”}

Type of actions
forwarding policy

[1..1]

1.12.25 AnalysisServiceType

name type description N Reference

ServiceType Enum <string>

{“DATA_ANALYSIS”,
“REPUTATION’,
“RECOMMENDATI
ON”}

Type of analysis
service

[1..1]

1.12.26 Evidence
name type description N Reference

relatedPeople <List> Person List of related people [1..1] “Person data”
type to be
defined in
3.5.1

relatedTags <List> Tag List of related tags [1..1] “Tag” data
type to be
defined in
3.5.1

1.12.27 Recommendation

name type description N Reference

title String Title of
recommendation

[1..1]

+Spaces Output/Deliverable D3.1 Page 55 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

like URL Recommended item [1..1]

source String Name of the virtual
space from which the
recommendation
came

[0..1]

score float Score of
recommendation
(between 0 and 1)

[1..1]

evidence Evidence why the
recommendation is
given to the user

[1..1] 4.1.1.15

1.12.28 Experiment

name type description N Reference

name String Name of Experiment [1..1]

user String ID of user who
created the
experiment

[1..1]

spaces List <String> IDs of the virtual
Spaces where the
experiments are
deployed

[1..1]

description String Free text description
of the experiment

[1..1]

configuration Collection
<ConfigurationP
arameter>

Set of configuration
parameters

[1..1] To be defined
in 3.4.1

tags List <String> List of topics relevant
to an experiment

[1..1]

1.12.29 Action
name type description N Reference

user String ID of user who
performed the action
(pseudonymized)

[1..1]

+Spaces Output/Deliverable D3.1 Page 56 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

<Insert confidentiality level here>
© All Rights Reserved

space Strin> IDs of the virtual
space where the
action took place

[1..1]

type Enum <String> Action type [1..1]

description String Structured textual
description of the
action

[1..1]

5 Conclusion
The current document has provided a detailed description of the initial architecture of
the +Spaces platform design. Any changes and deviations from these architecture
specifications will be included in the individual component implementation reports
that will be released together with the component implementations. The first version
of these deliverables is D3.3.1 Middleware Components Report, which is due in M12.

6 References

+Spaces Output/Deliverable D3.1 Page 57 of 66

The research leading to these results has received funding from the European Community's Seventh Framework Programme

1 +Spaces Project, “ D2.2 Functional Specifications”, ATC and other partners, June 2010

2 +Spaces Project, “ D2.3 Ethical Issues”, KULueven, June 2010

3 OASIS Service Oriented Architecture Reference Model http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=soa-rm

4 I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Software Development Process”, Addison-Wesley, 1999.

5 J. Hunt, ”Guide to the Unified Process featuring UML, Java and Design Patterns, Springer Professional
Computing”, Springer Verlag, Sept. 2003, page 33.

6 +Spaces Project, “ D2.2 Functional Specifications”, ATC and other partners, June 2010

7 http://en.wikipedia.org/wiki/Pseudonymization

8 Web Services Base Notification Specification 1.3 (WS-BaseNotification), OASIS Standard, 1 October 2006,
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

9 Web Services Agreement Specification (WS-Agreement), OGF Standard, 14 March 2007,
http://www.ogf.org/documents/GFD.107.pdf

10 +Spaces Project, D3.6, “+Spaces API”.

11 WS-Agreement Schema: http://schemas.ggf.org/graap/2007/03/ws-agreement

12 WS-Agreement Schema: http://schemas.ggf.org/graap/2007/03/ws-agreement

13 WS-Agreement Schema: http://schemas.ggf.org/graap/2007/03/ws-agreement

14 WS-Agreement Schema: http://schemas.ggf.org/graap/2007/03/ws-agreement

http://www.ogf.org/documents/GFD.107.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

	1 Introduction
	2 + Spaces Design Principles and Process
	3 +Spaces Platform Analysis
	3.1.1.1 Application Scenario
	This section will give a detailed overview of the generic application scenario in order to identify the challenges that need to be addressed and use them in order to outline the desired platform capabilities.
	The application scenario is initiated by the policy maker who plans to introduce a new policy and wishes to measure public opinion and evaluate citizens’ reactions. The policy maker (PM) will access the front end of the platform in order to create a new experiment in one or more of the virtual spaces (3D VWs and SNs) available. The PM will choose among the experiment types available (poll, debate, simulation) and configure the experiment accordingly. They will also select which virtual spaces to deploy it to, as well as the analysis services that they wish to use for further processing of the data. The analysis services available for selection will include the built-in +Spaces analysis services (data analysis, recommendation, and reputation) as well as external services with similar or complimentary functionality that may be later registered to the platform. The user’s selection will be based on the operations that each service is able to offer as well as the price of each option. Upon selecting a service the user also agrees to pay the respective price for its operations.
	After the PM has finished configuration, the experiment will be created on the selected virtual spaces, the analysis services will be notified and the experiment will be activated. The recommendation service, if selected, will suggest users that, based on the experiment description and the users’ own interests, may be interested to participate; and send them invitations. The recommendations will be improved if the PM provides an initial list of relevant people, that the recommendation service will enhance. Recommendations will also be available on a per user basis.
	Even with no specific experiment going on, virtual space users will be invited to participate in the +Spaces experience. They will be introduced with the +Spaces concept, presented with the expectations from them, and be asked to sign a consent form that will allow +Spaces to monitor their different activities in the virtual space.
	After the experiment is activated, the virtual spaces users may participate in it with a variety of actions depending on the experiment type. All the actions (both those related to an experiment and other interactions) will be recorded in the platform, filtered and forwarded to the analysis services. In order to ensure data protection the virtual id of the users’ identifies will not be sent to the services, aliases will be used instead. The analysis services will perform a real-time processing of the data they receive. In order to perform a more thorough analysis, the data analysis service may need the users’ reputation rates.
	While the experiment is active as well as after it has ended, the PM who created it is able to access the front end and view the results. The data analysis service will provide an analytical display of the results based on the filtering criteria defined by the user such as demographics (age, location etc), reputation rate etc.
	The experiment will continue running until its ending clause has been satisfied. The ending clause might be one of the following:
	The expiration date has been reached
	The desired number of users has participated
	After the end of the experiment, the users that have participated and have declared their interest in the outcome of the experiment will be notified of the final results.
	3.1.1.2 Use Cases

	4 +Spaces Platform Design
	4.1.1.1 Open Wonderland Adaptor
	4.1.1.2 Facebook Adaptor
	4.1.1.3 Twitter Adaptor
	4.1.1.4 Blogger Adaptor
	4.1.1.5 Overview
	4.1.1.6 Component Design
	The ServicesManager will consist of three classes:
	The RegistrationManager will be responsible for accepting and handling new registrations to the +Spaces platform.
	The ServiceRegistry will be responsible for managing all registered services. It will accept queries from the ExperimentManager and the Front-End in order to return all the available services that are registered to the platform. It will also communicate with the SLA Manager in order to retrieve AgreementOffers associated with each service.
	The ExperimentAssignmentManager will be responsible for managing the associations between the Services and the Experiments Assigned to them. It will interact with the NotificationManager in order to send notifications for new experiments as well as actions associated with an experiment. It will also communicate with the SLAManager in order to create an Agreement when a new assignment has been created.
	4.1.1.7 Interface
	4.1.1.8 Overview
	4.1.1.9 Component Design
	The architecture of the component is shown below
	
	4.1.1.10 Interface
	4.1.1.11 Overview
	4.1.1.12 Interface
	4.1.1.13 Overview
	The SLAManager will create, monitor and evaluate Service Level Agreements between analysis services and government organisations. The SLAs will allow service providers to give QoS guarantees as well as set pricing terms for the usage of their services. The SLAs between the two parties will be based on the agreement offer that the service provider gives when registering and is agreed upon by the government user when selecting the service. The monitoring results describing the service usage that will be used in order to evaluate the SLA and decide whether there has been a violation of the terms or estimate the charges are retrieved from the ExperimentManager.
	4.1.1.14 Component design
	4.1.1.15 Interface

	5 Conclusion
	6 References

