
Project acronym: TRESCCA
Project title: TRustworthy Embedded systems for Secure Cloud Computing
Project number: European Commission – 318036
Call identifier: FP7-ICT-2011.1.4
Start date of project: 01 Oct. 2012 Duration: 36 months

Document reference number: D2.4
Document title: Hardware Security Module
Version: 1.1
Due date of document: 31st of March 2015
Submission date: 6th of July 2015
Lead beneficiary: IMT
Participants: Jérémie BRUNEL (IMT), Guillaume DUC (IMT), Salaheddine

OUAARAB (IMT), Renaud PACALET (IMT), Abdelmalek SI

MERABET (IMT)
Reviewer:

Project co-funded by the European Commission within the 7th Framework Programme
DISSEMINATION LEVEL

PU Public X
PCA Public with confidential annex
CO Confidential, only for members of the consortium (including Commission Services)

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

EXECUTIVE SUMMARY

This document, part of the deliverable D2.4, describes the content of the archive containing the source code of
the Hardware Security Module (HSM-Mem) and how to use it.

Page: 1/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

CONTENTS

1 Introduction 5
1.1 Document Versions Sheet . 5

2 HSM-mem architecture 6
2.1 Position and role in the global TRESCCA platform . 6
2.2 Internals of the HSM-mem . 6
2.3 Control and status registers of the HSM-mem . 8

3 Organization and content of the archive 16

4 Use of the archive 18
4.1 Tests . 18

4.1.1 Compilation regression tests . 18
4.1.2 Simulation regression tests . 20

4.2 Synthesis . 21

5 Conclusion 22

Page: 2/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

LIST OF FIGURES

2.1 TRESCCA client HW architecture with HSMs . 7
2.2 Example HSM-NoC and HSM-mem prototype on a ZedBoard. 8
2.3 The internal architecture of the HSM-mem . 10
2.4 Hardware Security Module cfg register layout: ConFiGuration register 11
2.5 Hardware Security Module status register layout: STATUS register 11
2.6 Hardware Security Module mik register layout: Master Integrity Key 11
2.7 Hardware Security Module mck register layout: Master Confidentiality Key 13
2.8 Hardware Security Module agrwadd register layout: Atomic Group Read-Write ADDress . . 14
2.9 Hardware Security Module agrwdata register layout: Atomic Group Read-Write DATA . . 15
2.10 Hardware Security Module agrwcmd register layout: Atomic Group Read-Write CoMmanD . 15

Page: 3/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

LIST OF TABLES

2.1 Hardware Security Module cfg register fields . 8
2.2 Hardware Security Module status register fields . 9
2.3 Hardware Security Module mik register fields . 9
2.4 Hardware Security Module mck register fields . 11
2.5 Hardware Security Module agrwadd register fields . 14
2.6 Hardware Security Module agrwdata register fields . 14
2.7 Hardware Security Module agrwcmd register fields . 15

Page: 4/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

1 INTRODUCTION

The deliverable D2.4 of the TRESCCA project consists of an archive file containing the VHDL source files
of the Hardware Security Module (HSM-Mem), simulation and synthesis scripts, and of this document that
describes the content of the archive and how it can be used.

The most recent version of the archive can be downloaded from the SecBus project website:
https://secbus.telecom-paristech.fr/raw-attachment/wiki/Downloading/secbus-0.1.tgz.

The Hardware Security Module for memory protection (HSM-Mem) is responsible for enciphering and de-
ciphering the data read/written from/to the external memories and for managing and checking their integrity. It
sits on-chip, between the central interconnect and the memory controller. The full description of the architecture
of the HSM-Mem and a SystemC model are included into the deliverable D2.2.

The first part of this document is a brief reminder of the HSM-Mem architecture. Compared to D2.2, it does
not provide any new information. It is given here to such that this document is as self-contained as possible.
The second part presents the organization and the content of the archive. The third part describes how to use
the different scripts and makefiles to test and synthesize the HSM-Mem.

1.1 Document Versions Sheet

Version Date Description, modifications, authors

1.0 2015-04-17 Initial version for Technical Review. J. BRUNEL (IMT), G. DUC

(IMT), S. OUAARAB (IMT), R. PACALET (IMT), A. SI MER-
ABET (IMT)

1.1 2015-07-06 Add functional description of HSM-Mem. J. BRUNEL (IMT),
G. DUC (IMT), S. OUAARAB (IMT), R. PACALET (IMT), A. SI

MERABET (IMT)

Page: 5/23

https://secbus.telecom-paristech.fr/raw-attachment/wiki/Downloading/secbus-0.1.tgz

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

2 HSM-MEM ARCHITECTURE

2.1 Position and role in the global TRESCCA platform
The TRESCCA client platform is a modular and flexible HW/SW architecture that is adaptable to different ap-
plication use cases ranging from embedded systems over smart phones and tablets to set top boxes. TRESCCA
itself does not specify or propose a specific HW/SW architecture but provides a set of HW and SW components
that can be integrated into typical System-on-Chip (SoC) designs.

The HW architecture of the platform, as shown in Fig. 2.1 is based on existing off-the-shelf SoC designs
(e.g. multi-core ARM-based SoCs) which are extended by hardware security modules (HSMs). These HSM
significantly improve the security of the systems by protecting the external memory bus (HSM-mem) and by
controlling the access and sharing of internal SoC IP components by Virtual Machines. This document is
about HSM-mem only. Please refer to deliverable D2.3 Security Hardware with Support for Virtualization for
a description of the HSM-NoC.

One of the demonstration targets for the HSMs is based on the Zynq cores from Xilinx[1]. Figure 2.1 shows
how the two HSMs are inserted in a Zynq-based prototyping platform (like, for instance, the ZedBoard[2]).
The different address ranges used by the processor to access its address space are shown and explain how the
memory accesses can be routed through the Programmable Logic (PL) where the HSMs are mapped.

The Hardware Security Module for memory protection (HSM-mem) is responsible for enciphering and
deciphering the data read/written from/to the external memories and for managing and checking their integrity.
It sits on-chip, between the central interconnect and the memory controller. It is driven by a small set of
interface registers (as any hardware peripheral) and by control data structures stored in external memories, a
bit like a Memory Management Unit (MMU) is driven by tables of Page Table Entries (PTE) also stored in
external memories. Each access to the external memories issued by the System on Chip (SoC) flows through
the HSM-mem before reaching the memory controller. Upon read accesses, the returned data flow through
the HSM-mem before reaching the central interconnect. The HSM-mem uses the physical addresses of the
memory accesses to identify what Security Policy (SP) to apply, both in terms of confidentiality and integrity.
The association between physical memory pages and SPs is specified by a table of Page Security Parameter
Entries (PSPEs) stored in external memory. PSPEs contain several fields among which one finds the index of a
SP. SPs are also stored in a table in external memory. The HSM-mem is capable a walking through these tables
of control data structures autonomously.

2.2 Internals of the HSM-mem
Figure 2.3 illustrates the global architecture of the HSM and the interconnections between the different sub-
modules.

The HSM embeds three types of modules:

• Interface modules handle the requests coming from the SoC interconnect, check whether protection is
required or not, and route the requests-responses accordingly.

– VciSplit

Page: 6/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

Figure 2.1: TRESCCA client HW architecture with HSMs

– VciMerge

– VciInputCtrl

– VciMemCtrl

– MemArbiter

• Protection modules are in charge of managing or applying the cryptographic primitives.

– SecurityCtx_Ctrl

– Security_Ctrl

– MT_Ctrl

– MTCache_Ctrl

– MS_Ctrl

– MSCache_Ctrl

– CryptoEngine_conf

– CryptoEngine_int

– CryptoArbiter

– ScArbiter

– IrqHandler

• Miscellaneous (internal caches, general purpose 256-bits registers R0 to R4, FIFOs, multiplexers...)

The VHDL source code of all these modules and of their assembly as the complete HSM-mem is given in
the archive, as will be explained in chapter 3.

Page: 7/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

DDR
(512 MB)

On-Chip
Memory
(OCM)

External
memory

DDR
CTRL

AS0

AS0: [0...1G[
AS1: [1G...2G[
AS2: [2G...3G[
ASOCM: [4G-256K...4G[

Interface
registers

Interface
registers

FPGA
fabric

AXI_HP0
ASOCM

Zynq core
AS0

AS1 AS0AS2

CPU

AXI_GP0AXI_GP1

Re-mapping

Processing System

HSM-NoC HSM-mem

IRQ 61,62

IR
Q

91

Figure 2.2: Example HSM-NoC and HSM-mem prototype on a ZedBoard.

2.3 Control and status registers of the HSM-mem
The HSM is controlled through a set of interface registers and a set of data structures stored in external memory.
The HSM low-level software driver offers a small set of software primitives to access both. Before listing these
primitives we will explore the interface registers and explain their role. In the following the interface registers
are read-write, unless otherwise stated. An unused register’s field is represented as a grey area. Reading an
unused field always returns a zero value and writing it has no effect. When reading or writing a register with
unused fields it is recommended to assume zero values and to write zero values in unused fields because if
future versions make use of these fields the zero value will always be the default one, corresponding to the
current behaviour.

The configuration register

The configuration register (cfg, figure 2.4 and table 2.1) defines the global configuration of the HSM (address
of the Master Block in external memory, various enable flags, definition of the protected memory area). It is
mainly used at HSM initialization. The interrupts enable flag can also be set/unset during execution.

Table 2.1: Hardware Security Module cfg register fields

Name Width Long name Description
mbba 8 bits Master Block Base

Address
Aligned multiple of 16MB. 8 MSBs only. Must be set prior
use of external memory.

en 1 bits hsm ENable 0=disable, 1=enable.

Page: 8/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

Name Width Long name Description
ie 1 bits Interrupt Enable 0=disable, 1=enable.
pce 1 bits Pspe Cache Enable 0=disable, 1=enable.
spce 1 bits SP Cache Enable 0=disable, 1=enable.
msce 1 bits Mac Set Cache En-

able
0=disable, 1=enable.

mtce 1 bits Mac Tree Cache
Enable

0=disable, 1=enable.

ive 1 bits IV Enable 0=disable, 1=enable.
ivce 1 bits IV Cache Enable 0=disable, 1=enable.
psiz 3 bits Protected SIZe Size of protected memory area: 1=64MB, 2=256MB,

3=1GB, 4=4GB.
padd 8 bits Protected ADDress Start address of protected memory. Aligned multiple of

16MB. 8 MSBs only.

The status register

The status register (status, figure 2.5 and table 2.2) is read only. It contains indicators about the current state
of the HSM. Reading the status register clears the pending interrupts flag.

Table 2.2: Hardware Security Module status register fields

Name Width Long name Description
busy 1 bits BUSY flag 0=idle, 1=busy.
errt 3 bits ERRor Type If not 0 on HSM interrupt, indicates the type of error:

0=none, 1=PSPE invalid, 2=SP invalid, 3=integrity viola-
tion (MAC sets), 4=integrity violation (MAC trees).

errc 1 bits ERRor Cause Type of access that caused error: 0=read, 1=write.
erra 27 bits ERRor Address Address of group which access caused an error (27 MSBs).

The master integrity key register

The master integrity key register (mik, figure 2.6 and table 2.3) is write only and is used at start-up to set the
key used to compute the MAC nodes of the MAC trees (Master MAC tree and MAC trees protecting regular
memory pages).

Table 2.3: Hardware Security Module mik register fields

Name Width Long name Description
ikey0 32 bits Integrity KEY0 32 LSBs of MIK.K.
ikey1 24 bits Integrity KEY1 24 MSBs of MIK.K (most significant byte ignored).
ikey2 32 bits Integrity KEY2 32 LSBs of MIK.K1.
ikey3 32 bits Integrity KEY3 32 MSBs of MIK.K1.
ikey4 32 bits Integrity KEY4 32 LSBs of MIK.K2.
ikey5 32 bits Integrity KEY5 32 MSBs of MIK.K2.

Page: 9/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

mtcm
cmd

mtm
cmd

cmd
mtcm

mtm

cmd

sppspecmdstatusconfig data block add block
registers

IO

R4

p
_

v
ci

_
ta

rg
et

_
se

c

m
o

d
se

c

p
_

v
ci

_
ta

rg
et

cmd

R0

irq_out

mem_ctrl
rq0

rq1 rq2

rq4

rq5

rq3

c_
p

sp
e

c_
sp

io
_

a
ck

io
_

b
lo

ck

io
_

h
a

n
d

le
r_

w
ri

te

cmd

wR0

wR3

rR0

rR3

mt_ack

mt_cmd

ctx
_

cm
d

ms_cmd

ms_ack

ctx
reg

rq1

rq0

sc_rq

busy

sc_busy

rR0

wR2

irq irq

irq

irq

wdata

rR0

rR1

rR2
rR3

wR0

crypto

cmd

M
_

ct
x

_
in

it

M_ctx

M_up

rR0
rR1

rR2

cry_mac

cry_cmd

data

rR0rR2

rR2

rR1
rR0 rR1

rR2
rR3

rR4

wR0
wR1

wR2
wR3

wR4

rR4

d
a

ta

a
ck

cm
d

d
a

ta

d
a

ta

a
ckcm

d

d
a

ta

direct
data

rR4

R1R2R3

MT_Ctrl

MS_Ctrl

p_vci_initiatorp_vci_target

p_enable
p_mb_addr

p_addr
p_size

p_vci_io_target

p_irq_c

p_irq_e

p_vci_target_unsec

mt_cry
cmd

ms_cry

cmd

VciSplit

MemArbiter

VciMerge

V
ci

In
p

u
tC

tr
l

V
ci

M
em

C
tr

l

Arbiter

Sc−

Arbiter

Context−

Handler

Ctrl

Security−

Irq−

Security−

Crypto−

_Ctrl
CryptoEngine_conf

CryptoEngine_int

MTCache−

_Ctrl

MSCache−

_Ctrl

Figure 2.3: The internal architecture of the HSM-mem

Page: 10/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

0789101112131415162021232431

padd psiz iv
ce iv
e

m
tc

e

m
sc

e
sp

ce

pc
e ie en mbba

Figure 2.4: Hardware Security Module cfg register layout: ConFiGuration register

0134531

erra

er
rc errt

bu
sy

Figure 2.5: Hardware Security Module status register layout: STATUS register

031

ikey0

32555663

ikey1

6495

ikey2

96127

ikey3

128159

ikey4

160191

ikey5

192223

224255

Figure 2.6: Hardware Security Module mik register layout: Master Integrity Key

The master confidentiality key register

The master confidentiality key register (mck, figure 2.7 and table 2.4) is write only and is used at start-up to set
the key used to encipher / decipher the Security Policy area of the Master Block.

Table 2.4: Hardware Security Module mck register fields

Name Width Long name Description
ckey0 32 bits Confidentiality

KEY0
32 LSBs of MCK.K.

Page: 11/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

Name Width Long name Description
ckey1 24 bits Confidentiality

KEY1
24 MSBs of MCK.K (most significant byte ignored).

ckey2 32 bits Confidentiality
KEY2

32 LSBs of MCK.K1.

ckey3 32 bits Confidentiality
KEY3

32 MSBs of MCK.K1.

ckey4 32 bits Confidentiality
KEY4

32 LSBs of MCK.K2.

ckey5 32 bits Confidentiality
KEY5

32 MSBs of MCK.K2.

Page: 12/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

031

ckey0

32555663

ckey1

6495

ckey2

96127

ckey3

128159

ckey4

160191

ckey5

192223

224255

Figure 2.7: Hardware Security Module mck register layout: Master Confidentiality Key

The group (or block) atomic read-write operations

The HSM offers atomic operations to securely access an aligned 64-bits double word or an aligned 256-bits
group in external memory. The 256-bits atomic accesses are required for proper initialization of read-only
memory pages protected by the block cipher in counter mode (confidentiality) and / or MAC sets (integrity).
They are the only way to guarantee the write-once property1. The atomic accesses are also used to efficiently
access PSPEs (64-bits) and SPs (2 × 256-bits). Atomic accesses in the PSPE area of the Master Block are
always 64-bits. Accesses elsewhere in memory are always 256-bits. Requesting an atomic access is done by
setting a set of interface registers (see below); writing the agrwcmd register launches the access (and must
thus be the last register setting of a request). Upon read accesses the read 64 or 256 bits are retrieved from
the agrwdata register. When the HSM performs the requested atomic access it automatically applies the
defined Security Policy, based of the target address, as for regular load-store operations. Note: regular load-
store accesses in the Master Block are forbidden. Accessing the Master Block must absolutely be done through
the atomic operations.

The same set of registers is also used to initialize the MAC tree of a newly allocated read-write memory
page that must be integrity-protected. The only relevant parameter for the MAC tree initialization is the byte
base address of the protected regular page. The associated PSPE and SP provide all the other parameters. Two
different commands are dedicated to this MAC tree initialization:

• If the MAC tree to initialize is the first of its page of MAC trees, the topmost levels of the other MAC
trees in the same page of MAC trees are not verified when computing the root MAC of the page of MAC
trees.

1If the initial write of the 256-bits group was not atomic, it could lead to multiple enciphering and / or MAC computations with a
partly initialized group.

Page: 13/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

• If the page of MAC trees already contains initialized MAC trees, the topmost levels of the other MAC
trees in the same page of MAC trees are verified when computing the root MAC of the page of MAC
trees.

The atomic group read-write address register

The atomic group read-write address register (agrwadd, figure 2.8 and table 2.5) is used to set the byte address
of the 64-bits double word or 256-bits group to access atomically.

031

agrwa

Figure 2.8: Hardware Security Module agrwadd register layout: Atomic Group Read-Write ADDress

Table 2.5: Hardware Security Module agrwadd register fields

Name Width Long name Description
agrwa 32 bits Atomic Group

Read-Write Ad-
dress

Group’s or block’s byte address for atomic group read-
write operations. Aligned on group’s or block’s boundary:
LSBs are ignored. Block atomic access if address falls in
PSPEs, else group atomic access.

The atomic group read-write data register

The atomic group read-write data register (agrwdata, figure 2.9 and table 2.6) is used to store the data to
write or to retrieve the read data of an atomic access. Upon 64-bits accesses (PSPEs), only one quarter of
this 256-bits register is used and the quarter used depends on the alignment of the 64-bits double word in the
256-bits group.

Table 2.6: Hardware Security Module agrwdata register fields

Name Width Long name Description
data0 32 bits DATA0 Read data or data to write (lowest address in memory).
data1 32 bits DATA1 Read data or data to write.
data2 32 bits DATA2 Read data or data to write.
data3 32 bits DATA3 Read data or data to write.
data4 32 bits DATA4 Read data or data to write.
data5 32 bits DATA5 Read data or data to write.
data6 32 bits DATA6 Read data or data to write.
data7 32 bits DATA7 Read data or data to write (highest address in memory).

The atomic group read-write command register

The atomic group read-write command register (agrwcmd, figure 2.10 and table 2.7) is used to set the re-
quested command:

• read (of a 64-bits PSPE or a 256-bits group),

Page: 14/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

031

data0

3263

data1

6495

data2

96127

data3

128159

data4

160191

data5

192223

data6

224255

data7

Figure 2.9: Hardware Security Module agrwdata register layout: Atomic Group Read-Write DATA

• write (of a 64-bits PSPE or a 256-bits group).

• initialize first MAC tree of a page of MAC trees

• initialize a MAC tree that is not the first of its page of MAC trees

02331

cmd

Figure 2.10: Hardware Security Module agrwcmd register layout: Atomic Group Read-Write CoMmanD

Table 2.7: Hardware Security Module agrwcmd register fields

Name Width Long name Description
cmd 3 bits Atomic Group

Read-Write CoM-
manD

0: none, 1: read, 2: write, 3: init, 4: continue. HSM applies
SP defined for target group or block.

Page: 15/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

3 ORGANIZATION AND CONTENT OF THE ARCHIVE

The archive (as version 0.1) is organized as follow:

• COPYING and COPYING-FR: These two files contain the license (in English and in French) under
which the source code of the HSM-Mem is distributed. The CeCILL version 2.1, a free and open-source
software license (similar to the well-known GPL) was chosen.

• Makefile: This is the main makefile to launch the tests or the synthesis of the different parts of the
HSM-Mem

• scripts: This directory contains all the scripts used to launch simulations, tests, synthesis...

• bitfields: This directory contains the definition of the different data structure (SP, PSPE, configura-
tion and status registers...).

• src: This directory contains the VHDL source files of the HSM-Mem and its submodules:

– arbiters: This directory contains the code of the different arbiters (example: the mod-
ule MemArbiter (file mem_arbiter.vhd) is in charge of arbiter the access to the module
VciMemCtrl).

– axi_bridge: This directory contains the package axi_bridge with the definitions of the AXI
interfaces used by the HSM.

– axi_secbus_bridge: This directory contains the AXI SecBus bridge module (the HSM-Mem
with its AXI interfaces for the Zedboard with some test features) and the synthesis script for Vivado.

– axi_vci: This directory contains the AXI-to-VCI and VCI-to-AXI bridges.

– bc: This directory contains the block cipher (DES-X) and its modes of operation.

– caches: This directory contains the different caches used in the HSM-Mem (MS, MT, PSPE, SP).

– crypto: This directory contains the modules CryptoEngine_conf (cryptographic engine for
confidentiality) and CryptoEngine_int (cryptographic engine for integrity).

– des: This directory contains the package DES with all the constants and functions used by the
DES-X algorithm.

– fifo: This directory contains a simple FIFO module.

– global: This directory contains packages with structures, interfaces and functions used by the
other modules.

– io_input: This directory contains the module IOInputCtrl that responds to commands
(Load, Store, Init, InitPage) sent via the IO registers of the HSM-Mem.

– mem_ctrl: This directory contains the module MemoryCtrl that handles the read-write requests
from the different HSM modules to the external memory.

Page: 16/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

– ms_ctrl: This directory contains the module MS_Ctrl which manages the integrity protection
and verification using MAC sets.

– mt_ctrl: This directory contains the module MT_Ctrl which manages the integrity protection
and verification using MAC Trees.

– random: This directory contains a random number generator for testing purpose.

– register: This directory contains the module reg_data that encapsulates the behavior of the
internal registers of the HSM-Mem.

– sec_ctrl: This directory contains the module Security_Ctrl which is one of the main sub-
modules of the HSM-Mem. It manages the read-write accesses to the protected region of the exter-
nal memory, including the Master Block.

– sec_ctx: This directory contains the module Security_Context_Ctrl which manages the
security contexts associated with memory pages, that is PSPEs and SPs.

– vci: This directory contains a VCI pattern generator for testing purpose.

– vci_input: This directory contains the module VciInputCtrl which handles read-write re-
quests from the processor to/from the protected memory area.

– vci_merge: This directory contains the module VciMerge which multiplexes requests from
VciSplit and MemoryCtrl to the memory controller.

– vci_secbus: This directory contains the top modules vci_secbus and axi_secbus
(the full HSM-Mem module with VCI or AXI interfaces). It also contains test patterns
(axi_ini_in.txt, axi_tgt_in.txt, vci_ini_in.txt, vci_tgt_in.txt) used to
validate the HSM-Mem.

– vci_io_target: This directory contains the module vci_io_target which implements the
VCI IO target of the HSM-Mem and manages the IO registers.

– vci_ram: This directory contains a RAM model used in several tests.

– vci_split: This directory contains the module VciSplitwhich receives VCI requests through
its target interface, checks whether they fall in the protected region of the external memory and,
depending on the check, routes them through one or the other of its two VCI initiator interfaces.

Page: 17/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

4 USE OF THE ARCHIVE

This section describes how to use the content of the archive.

4.1 Tests
Two sets of regression tests can be launched using the Makefile provided in the archive:

• the target ms-tests launches the compilation regression tests that verifies whether all design units of
all modules compiler without error;

• the target ms-sim-tests launches the simulation regression tests.

These tests require Modelsim from Mentor Graphics (tested with Modelsim SE-64 version 10.4 on Linux).

4.1.1 Compilation regression tests
secbus-0.1 % make ms-tests
Modelsim compilation non-regression test:
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_ram’
Modelsim compilation non-regression test:

vci_ram: OK
ram: OK
axi_ram: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_ram’
make[1]: Entering directory ’/scratch/secbus-0.1/src/crypto’
Modelsim compilation non-regression test:

cryptoConf: OK
cryptoConf_sim: OK
cryptoInt: OK
cryptoInt_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/crypto’
make[1]: Entering directory ’/scratch/secbus-0.1/src/bc’
Modelsim compilation non-regression test:

bc: OK
bc_sim: OK
bc_sim_pkg: OK
desx: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/bc’
make[1]: Entering directory ’/scratch/secbus-0.1/src/sec_ctrl’
Modelsim compilation non-regression test:

security_ctrl: OK
security_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/sec_ctrl’
make[1]: Entering directory ’/scratch/secbus-0.1/src/caches’
Modelsim compilation non-regression test:

mt_cache: OK
sp_cache: OK
sp_cache_sim: OK
ms_cache: OK
ms_cache_sim: OK
rnd_cache_gen: OK
ram: OK
pspe_cache: OK
pspe_cache_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/caches’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_input’
Modelsim compilation non-regression test:

rnd_vci_initiator: OK
rnd_ctx_gen: OK
vci_input_ctrl_sim: OK
vci_input_ctrl: OK
rnd_sec_gen: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_input’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_bridge’
Modelsim compilation non-regression test:

axi_bridge_pkg: OK

Page: 18/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_bridge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_secbus_bridge’
Modelsim compilation non-regression test:

axi_secbus_bridge: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_secbus_bridge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/ms_ctrl’
Modelsim compilation non-regression test:

sr_ff: OK
ms_ctrl: OK
ms_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/ms_ctrl’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_vci’
Modelsim compilation non-regression test:

axi4lite_2_vci: OK
axi4_2_vci: OK
vci_2_axi4: OK
axilite_vci_sim: OK
axi_vci_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_vci’
make[1]: Entering directory ’/scratch/secbus-0.1/src/global’
Modelsim compilation non-regression test:

global: OK
utils: OK
numeric_std: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/global’
make[1]: Entering directory ’/scratch/secbus-0.1/src/register’
Modelsim compilation non-regression test:

reg_data: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/register’
make[1]: Entering directory ’/scratch/secbus-0.1/src/mt_ctrl’
Modelsim compilation non-regression test:

mt_ctrl: OK
mt_cache_ctrl_sim: OK
mt_cache_ctrl: OK
mt_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/mt_ctrl’
make[1]: Entering directory ’/scratch/secbus-0.1/src/io_input’
Modelsim compilation non-regression test:

io_input_ctrl: OK
io_input_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/io_input’
make[1]: Entering directory ’/scratch/secbus-0.1/src/random’
Modelsim compilation non-regression test:

rnd: OK
random_pkg: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/random’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_io_target’
Modelsim compilation non-regression test:

vci_io_target: OK
vci_io_target_sim: OK
rnd_io_handler_tgt: OK
rnd_vci_io_init: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_io_target’
make[1]: Entering directory ’/scratch/secbus-0.1/src/fifo’
Modelsim compilation non-regression test:

fifo: OK
fifo_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/fifo’
make[1]: Entering directory ’/scratch/secbus-0.1/src/arbiters’
Modelsim compilation non-regression test:

direct_data_arbiter: OK
crypto_int_arbiter: OK
crypto_int_arbiter_sim: OK
mt_arbiter: OK
reg_arbiter: OK
mem_arbiter: OK
sc_arbiter: OK
irq_arbiter: OK
ctx_arbiter: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/arbiters’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_merge’
Modelsim compilation non-regression test:

vci_merge: OK
vci_merge_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_merge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/sec_ctx’
Modelsim compilation non-regression test:

security_ctx_ctrl: OK
security_ctx_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/sec_ctx’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_split’
Modelsim compilation non-regression test:

vci_split: OK
vci_split_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_split’
make[1]: Entering directory ’/scratch/secbus-0.1/src/des’
Modelsim compilation non-regression test:

des_pkg: OK
des_pkg_sim: OK

Page: 19/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

make[1]: Leaving directory ’/scratch/secbus-0.1/src/des’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci’
Modelsim compilation non-regression test:

rnd_vci_initiator: OK
vci_pack: OK
rnd_vci_target: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_secbus’
Modelsim compilation non-regression test:

axi_secbus_wrapper: OK
axi_secbus_sim: OK
vci_secbus: OK
vci_secbus_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_secbus’
make[1]: Entering directory ’/scratch/secbus-0.1/src/mem_ctrl’
Modelsim compilation non-regression test:

rnd_mem_gen: OK
vci_mem_ctrl: OK
vci_mem_ctrl_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/mem_ctrl’

4.1.2 Simulation regression tests
The archive contains unit regression tests for all the important submodules of the HSM-Mem (files
*_sim.vhd). It also contains tests for the HSM-Mem module itself (both VCI and AXI versions).

The tests of the VCI version of the HSM-Mem are based on VCI transactions recorded using the virtual
platform and the HSM-Mem SystemC model. These transactions are provided to the VHDL implementation of
the HSM-Mem and the test environment verifies that it behaves as expected.

secbus-0.1 % make ms-sim-tests
Modelsim simulation non-regression test:
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_ram’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_ram’
make[1]: Entering directory ’/scratch/secbus-0.1/src/crypto’
Modelsim simulation non-regression test:

cryptoConf_sim: OK
cryptoInt_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/crypto’
make[1]: Entering directory ’/scratch/secbus-0.1/src/bc’
Modelsim simulation non-regression test:

bc_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/bc’
make[1]: Entering directory ’/scratch/secbus-0.1/src/sec_ctrl’
Modelsim simulation non-regression test:

security_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/sec_ctrl’
make[1]: Entering directory ’/scratch/secbus-0.1/src/caches’
Modelsim simulation non-regression test:

pspe_cache_sim: OK
sp_cache_sim: OK
ms_cache_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/caches’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_input’
Modelsim simulation non-regression test:

vci_input_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_input’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_bridge’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_bridge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_secbus_bridge’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_secbus_bridge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/ms_ctrl’
Modelsim simulation non-regression test:

ms_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/ms_ctrl’
make[1]: Entering directory ’/scratch/secbus-0.1/src/axi_vci’
Modelsim simulation non-regression test:

axi_vci_sim: OK
axilite_vci_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/axi_vci’
make[1]: Entering directory ’/scratch/secbus-0.1/src/global’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/global’
make[1]: Entering directory ’/scratch/secbus-0.1/src/register’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/register’
make[1]: Entering directory ’/scratch/secbus-0.1/src/mt_ctrl’
Modelsim simulation non-regression test:

mt_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/mt_ctrl’

Page: 20/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

make[1]: Entering directory ’/scratch/secbus-0.1/src/io_input’
Modelsim simulation non-regression test:

io_input_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/io_input’
make[1]: Entering directory ’/scratch/secbus-0.1/src/random’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/random’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_io_target’
Modelsim simulation non-regression test:

vci_io_target_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_io_target’
make[1]: Entering directory ’/scratch/secbus-0.1/src/fifo’
Modelsim simulation non-regression test:

fifo_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/fifo’
make[1]: Entering directory ’/scratch/secbus-0.1/src/arbiters’
Modelsim simulation non-regression test:

crypto_int_arbiter_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/arbiters’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_merge’
Modelsim simulation non-regression test:

vci_merge_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_merge’
make[1]: Entering directory ’/scratch/secbus-0.1/src/sec_ctx’
Modelsim simulation non-regression test:

security_ctx_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/sec_ctx’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_split’
Modelsim simulation non-regression test:

vci_split_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_split’
make[1]: Entering directory ’/scratch/secbus-0.1/src/des’
Modelsim simulation non-regression test:

des_pkg_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/des’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci’
Modelsim simulation non-regression test:
make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci’
make[1]: Entering directory ’/scratch/secbus-0.1/src/vci_secbus’
Modelsim simulation non-regression test:

vci_secbus_sim: OK
axi_secbus_sim: OK

make[1]: Leaving directory ’/scratch/secbus-0.1/src/vci_secbus’
make[1]: Entering directory ’/scratch/secbus-0.1/src/mem_ctrl’
Modelsim simulation non-regression test:

vci_mem_ctrl_sim: OK
make[1]: Leaving directory ’/scratch/secbus-0.1/src/mem_ctrl’

4.2 Synthesis
The HSM-Mem can be synthesized for the ZedBoard using Xilinx Vivado. Software stack (including the Soft-
ware Security Module) and demonstration applications will be provided as part of WP4.

The synthesis can be launched with the command make axi_secbus_bridge.vsyn inside the di-
rectory src/axi_secbus_bridge. It has been tested with Vivado version v2014.4 64-bit on Linux.

Page: 21/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

5 CONCLUSION

This deliverable (D2.4) contains the VHDL code of the HSM-Mem and the simulation and synthesis envi-
ronment. This hardware component requires a software driver (the Software Security Module) that has been
developed in WP3 (deliverable D3.1).

Demonstrations of a full system, including the HSM-Mem, are being developed in WP4.

Page: 22/23

Project: TRESCCA Document ref.: D2.4
EC contract: 318036 Document title: Hardware Security Module

Document version: 1.1
Date: 2015-07-06

BIBLIOGRAPHY

[1] Xilinx all programmable socs: http://www.xilinx.com/products/silicon-devices/
soc.html.

[2] Digilent. ZedBoard: http://zedboard.org/product/zedboard. http://zedboard.org/product/
zedboard.

Page: 23/23

http://www.xilinx.com/products/silicon-devices/soc.html
http://www.xilinx.com/products/silicon-devices/soc.html
http://zedboard.org/product/zedboard
http://zedboard.org/product/zedboard

	Introduction
	Document Versions Sheet

	HSM-mem architecture
	Position and role in the global TRESCCA platform
	Internals of the HSM-mem
	Control and status registers of the HSM-mem

	Organization and content of the archive
	Use of the archive
	Tests
	Compilation regression tests
	Simulation regression tests

	Synthesis

	Conclusion

