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EXECUTIVE SUMMARY

The aim of this deliverable D3.13 is to provide methods that are capable of extracting musi-
cally meaningful descriptors from the audio signal of recordings. We approach this task using
machine learning techniques to elaborate methods that predict semantic concepts on the granu-
larity of musical segments. The major achievements reported in this deliverable are summarized
in the following.

Two user studies to assess human agreement between semantic concepts for describ-
ing music were conducted. The first was organized as a structured online survey, in which
participants had to indicate the perceived strength of emotions, tempo, complexity, and kinds of
instruments for each of 15 expert-defined segments of Beethoven’s 3rd symphony “Eroica”. The
second study stimulated short descriptions during a live performance of RCO, in which atten-
dees used their mobile phones to indicate particularly remarkable events in the performance.
Both studies evidence that there is little agreement among different music listeners on music
descriptions.

A novel music segmentation algorithm from audio, based on Convolutional Neural Networks,
is proposed. It automatically detects segment boundaries in music recordings, exploiting per-
ceptually informed spectrogram features. Evaluation on a standardized test collection shows
that our method is able to substantially outperform the previous state of the art.

In addition to segmentation from the audio, we exploit a recently proposed segmentation al-
gorithm for symbolic representations in order to develop a novel user interface to explore
music by its structural components and by key. This “PatternViewer” is empirically evalu-
ated in a user study on Beethoven’s 1st and 3rd symphonies and turns out to be particularly
useful for people less experienced in classical music, who represent an important target group
of PHENICX.

Features to describe textural sound qualities of music in terms of timbral, temporal, and struc-
tural properties of sound on the segment-level are proposed. In addition, we present a new
user interface, “Snakeskin”, to explore a music piece by these properties and give an example
for Beethoven’s 3rd symphony.

We approach the problem of instrument activity detection and instrument group activity
detection from audio by proposing novel methods that draw from research in speaker verifica-
tion. We show on a public corpus of non-orchestra music that our methods produce competitive
results, close to the current state-of-the-art algorithms. We further assemble a corpus of 11
different performances of Beethoven’s 3rd symphony “Eroica”, together with instrument and
instrument group annotations, and present first promising results on this corpus.

A method to detect activity classes, such as music or applause, was already proposed in
D4.3. In the deliverable at hand, we propose an extension to this method to deal with the
detection of singing voice. We evaluate the method on various datasets, among others a
manually annotated corpus of four operas. This corpus itself represents a valuable asset for
future research. We show that our method performs at least as well as other state-of-the-art
approaches, while being much less computationally expensive.

The insights gained and the methods developed in this deliverable support, among others, WP6
“Exploration and Interaction”. In particular, Task 6.1 “Visualisation of music pieces and their
performances” benefits from the “PatternViewer” visualization method for musical segments
and the “Snakeskin” visualization of sound qualities, which are proposed here. Also Task 6.2
“Personalised multimodal information system” draws from D3.13’s methods to identify semantic
concepts, in that the personalized system requires a variety of information to select from in order
to tailor its content to the user.
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1 INTRODUCTION

1.1 Overview

The deliverable D3.13 responds to WP3, Task 3.2 of the PHENICX project, as described in
the Description of Work (DoW). The goal of this task is to provide methods for multifaceted
and musically meaningful analysis of audio streams and performances. To this end, we elab-
orate techniques employing advanced signal processing and machine learning approaches to
address various musical aspects, such as instrumentation, segments/motifs, tonality, or melody.
These aspects, which can be regarded as semantic labels, are to be learned on the level of
segments of a music piece.

In the deliverable at hand, we focus on the following aspects: First, we perform two user stud-
ies in order to figure out which semantic concepts listeners agree on, and could hence be
robustly learned (Section 2). According to the DoW, the concepts are to be learned on the
level of musical segments. We thus need to elaborate methods to segment music pieces into
somehow meaningful segments that could represent themes or motifs. We approach this task
from the audio side (Section 3) and from the MIDI side (Section 4). Based on the identified
segments, among others, we elaborate methods that describe the textural qualities of sound
and music (Section 5). Another category of semantic concepts we address is information about
“what is going on” in the piece at a certain moment. To approach this task, we present several
approaches to detect activity of instruments from the audio signal (Section 6) and to identify
general activity classes, such as music, speech, applause, silence, and singing voice (Sec-
tion 7). Eventually, Section 8 summarizes the main contributions of this deliverable and points
out some future work.

1.2 Main objectives and goals

The main objective of the deliverable at hand is to provide semantically meaningful descriptors
of a musical piece. In particular, these descriptors should not be learned on the level of an
entire piece, rather on more fine-grained shorter snippets, or segments, of the piece under
consideration. The rationale behind this work is to provide methods that serve the following
purposes, among others.

• Learning: to learn about the musical structure of a composition, e.g., motifs, themes,
key, and modulations;

• Searching: to search for particular excerpts or segments in a music piece, which exhibit
certain musical or sound qualities;

• Navigating: to permit the listener to navigate in a given piece according to various
aspects, e.g., “jump to the next passage that sounds similar to the current one” or “jump
to the next passage where a solo instrument is playing”;

• Browsing: to offer the listener visualizations of structure and sound qualities that can
help them exploring a music piece in detail.

1.3 Methodology

Our research is carried out obeying the rules of highest scientific standards, in our opinion.
Where possible, we evaluate our methods on existing and publicly available corpora and com-
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pare them to state-of-the-art methods. In the case of this deliverable, we additionally had to
create some “ground truth” datasets ourselves since suited datasets have not been available
before, for instance, for the instrument group activity detection in classical orchestra music and
for the singing voice detection in classical operas.
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2 USER STUDIES ON SEMANTIC CONCEPTS

Prior to elaborating methods that predict semantic labels from audio, we first had to identify
which semantic concepts listeners use to describe music and which concepts they perceive
in music. For this purpose, we performed two user studies: one conducted in an orchestra
setting, where listeners could mark arbitrary points in time and attach a free-form description to
them, and one online survey in which we exposed listeners to predefined segments identified by
expert and asked them about their perception according to a variety of dimensions. The former
connects to the use case “Capture the Moment” and was carried out as a collaboration between
UPF, VD, RCO, and JKU. The latter is an extension to an offline study (carried out previously
by UPF and MIT) and was conducted as a joint endeavor of JKU and UPF. Both studies are
detailed in the following.

2.1 Descriptors from music perception

In order to assess which semantic descriptors are suited best to learn from audio data, we
conducted an online user study. To this end, we used 15 segments of Beethoven’s 3rd sym-
phony, “Eroica”, which were manually identified by music experts. This online study can be
regarded as a follow-up to another study, carried out by UPF and MIT, which solely focused on
the perception of emotions in classical music and in which 26 music experts participated (with
an average of 6.3 years of musical education). Since one main goal of PHENICX is to reach out
to new audiences, our follow-up online study was not restricted to people already knowledge-
able in classical music. Rather it should include a wide range of people with varying musical
expertise.

To achieve this goal, we recruited participants from colleagues, by posting to mailing lists and
in social media, and by a mail to all students of JKU. Eventually, more than 200 participants
took the survey, among which 178 completed it. Completing the questionnaire took around 40
minutes per participant. We asked participants a range of questions, split into three categories.
Screenshots of the survey are provided in Figures 1, 2, and 3; details about the options avail-
able to participate for each answer, as well as their numeric coding for the following analysis,
are provided in Table 1. First, the participants in the survey had to provide some general per-
sonal information (related to demographics and inclination to music and to classical music, in
particular), cf. Figure 1. In the next step, they were ask to fill in a personality questionnaire,
cf. Figure 2, since we also wanted to investigate relationships between music perception and
personality traits. This questionnaire is the standardized “Ten Item Personality Measure” [23].
Afterwards, the participants were presented a carefully designed questionnaire, which they had
to fill in for 15 segments of Beethoven’s 3rd symphony, “Eroica”, cf. Figure 3. The segmentation
was performed manually by music experts to ensure a maximum of coherence and consistency.
The questionnaire shown to participants for each segment was composed of four categories
of perceptual aspects: emotions, tempo, complexity, and instrument types. The emotion de-
scriptors were taken from the “Geneva Emotion Music Scale” (GEMS) [75] and four basic hu-
man emotions from psychological literature. They can be seen in the upper part of Figure 3
(question 1). We further asked participants to indicate the perceived tempo, the perceived
complexity, and the number of kinds of instruments of the segment (questions 2, 3, and 4,
respectively). Asking for kinds of instruments rather than individual instruments was motivated
by the fact that it seemed too hard, even for experts, to identify for instance, whether 2 or 3 flutes
are playing. Eventually, in question 5, participants could optionally give an additional description
of the segment.

The most important results of the study, concerning the deliverable at hand, are shown in Ta-
bles 2 and 3. From the former, we see that participants were slightly biased towards students
(minimum age of 18 years, median of 25 years), which does not come as a surprise since we
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Figure 1: Basic user questionnaire of the survey.

sent a mail to all JKU students, asking them to participate. They also had an additional incentive
as RCO thankfully provided us with a stack of CDs to give as a gift to our student participants.
As for participants’ listening frequency, while there are a few outliers who listen to classical mu-
sic up to 40 hours per week and to other genres even up to 70 hours, the average participant
listens to classical music 3 hours per week and to other genres 11 and a half hours per week.
Interestingly, the median for classical music listening (1) is much lower than that of listening to
other genres (8). Looking at the distribution of listening frequencies, it seems that participants
either love classical music and devote a whole lot of time to it, or do not care at all about it.
Less than half of the participants indicated to play an instrument (median of 0), but most had
some form of musical education, on average as much as 6 years. Participants attend on av-
erage 2 classical and 4 non-classical concerts per year. Compared to the results for listening
frequency of classical vs. non-classical music, an interesting observation can be made: lovers
of classical music attend many more concerts than listeners of other genres, in relation to the
time spent on listening to their preferred genre. Most participants were not or somewhat familiar
with Beethoven’s “Eroica”.

Table 3 shows the agreement among participants for each investigated aspect. Krippendorff’s α
is used as measure of agreement, and computed for each segment separately (among all user
ratings for that segment). The resulting 15 values per aspect are then averaged and shown in
Table 3. Unfortunately, as we can see, the agreement for most aspects is very low. Participants
do not (0.00–0.20) or at most slightly (0.21-0.40) agree on almost all concepts. The values
indicating moderate agreement (0.41–0.60) according to [40] are printed in bold. However, data
whose agreement falls below an α of 0.67 is typically discarded [38].
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Figure 2: Personality questionnaire of the survey.

Table 1: Options available to participants for the questions in the survey, and their numerical
encoding for analysis.

Aspect Options Encoding

Age free-form years

Gender male or female —

Country list selection from 193 countries —

Listening classical free-form hours per week

Listening non-classical free-form hours per week

Playing instrument free-form hours per week

Musical education free-form years

Concerts classical free-form attendances per year

Concerts non-classical free-form attendances per year

Familiar with “Eroica” unfamiliar, somewhat familiar, very familiar 0–2

All personality traits strongly disagree–strongly agree 1–7

All emotions strongly disagree–strongly agree, don’t know 0–6, -1

Perceived tempo slow, fast, don’t know 0, 1, -1

Perceived complexity very low–very high, don’t know 0–4, -1

Kinds of instruments 1, 2, 3, 4, more, don’t know 1, 2, 3, 4, 5, -1

Description of the excerpt free-from —

2.2 Free-form descriptors during a concert

The results of the previous study are well in line with those of another experiment we conducted
in the context of our use case “Capture the Moment”. To this end, we implemented a very
simple prototype application running on smart phones, which allows users to pinpoint and save
particular moments in a live performance, just by pressing a button on their device. In addition,
listeners could give a short description of the captured moment, as free text. We stored both
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Figure 3: Music tag questionnaire of the survey.

the time stamp and the short description in a database. We performed an experiment during
an RCO concert, a performance of Shostakovich 5th symphony, which took place on October
11, 2014. Thirty concert goers were equipped with the application and indicated a total of 290
markers (“capturings”) during the performance. A preliminary investigation of the collected data
showed that about 50% of the markers were attached a description. When taking a closer
look at these descriptions, we found that the vast majority of them can be categorized into
three classes: (i) instruments, e.g., “viola”, “celesta”, “harp”, flute solo”, (ii) indications of liking,
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Table 2: Basic statistics of the participants.
Aspect µ σ med. min. max.

Age 27.4745 8.0355 25 18 67

Listening classical 3.0561 5.4304 1 0 40

Listening non-classical 11.4311 11.4403 8 0 70

Playing instrument 2.2781 5.0673 0 0 40

Musical education 6.4286 5.7717 5 0 28

Concerts classical 2.3061 4.8799 1 0 40

Concerts non-classical 4.4541 7.6576 2 0 70

Familiar with “Eroica” 0.8469 0.6540 1 0 2

Table 3: Mean, standard deviation, and agreement for investigated aspects of music perception.
Bold face is used to denote moderate agreement. Scores are averaged over all 15 segments.

Aspect µ σ Krippendorff’s α

Transcendence 2.4207 1.0852 0.0092

Peacefulness 3.1517 0.8922 0.4405
Power 1.4302 0.9940 0.4189
Joyful activation 2.0391 1.1581 0.3139

Tension 1.6780 1.2309 0.2102

Sadness 1.7247 1.1486 0.3095

Anger 0.5251 0.7593 0.2925

Disgust 0.4888 0.6990 0.1216

Fear 0.8933 0.9999 0.2617

Surprise 1.3820 1.0996 0.0560

Tenderness 2.8150 1.0401 0.3455

Tempo 0.0284 0.1666 0.4998
Complexity 2.0347 0.7843 0.1034

Instruments 3.9750 0.9447 0.0743

e.g., “great”, “nice”, “sweet”, and (iii) emotions and feelings, e.g., “beautiful”, “exciting”, “tense”,
“crazy”. While the unstructured free-form nature of the descriptions did not allow for a more
detailed quantitative analysis, the empirical observation of the descriptions and time stamps,
again, showed that different listeners provided very different kinds of descriptors and used a
heterogeneous vocabulary to describe music.

The consistent results of these two studies, i.e., that semantic descriptors vary too strongly
between listeners, even when they are provided in a structured way of a limited set to choose
from, required us to slightly adapt the focus of this deliverable. We hence decided not to focus
on a fully fledged “auto-tagger” that is capable of learning arbitrary labels for arbitrary segments
in a music piece, as this seems unachievable given the results of our two studies. Instead, we
elaborated methods capable of identifying general musical concepts that are as objective as
possible. In particular, we developed methods that

• segment an audio stream, i.e. identify meaningful boundaries between musically coherent
parts in the piece, and visualize the identified segments, which can well represent motifs
or themes,

• assign descriptions of textural sound qualities to short segments of audio and visualize
them,

• identify whether an instrument or instrument group is active at a certain moment in time
from an audio stream,

• identify certain activity classes from audio, such as music, speech, silence, and applause,
with a particular focus on singing voice detection.
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3 AUTOMATIC SEGMENTATION BASED ON AUDIO

There are two principal ways to automatically produce a description of a music piece from an
audio recording in terms of labeled, characterized segments: (i) run characterization algorithms
that continuously monitor the audio data and output instantaneous information, such as the
instruments playing, then segment this information into coherent parts, or (ii) run a segmentation
algorithm that divides the audio recording into coherent parts, then characterize the segments.
For this deliverable, we focused on the second option. We researched ways to segment an audio
recording of a music piece into musically coherent parts, aiming to reproduce segmentations
manually done by music experts. Our approach turned out to considerably outperform existing
methods in terms of agreement with these human annotations.

3.1 State of the Art

An overview paper to audio structure analysis by Paulus et al. [57] distinguishes three funda-
mental approaches to segmentation: novelty-based (detecting transitions between contrasting
parts), homogeneity-based (identifying sections that are consistent with respect to their musical
properties), and repetition-based (building on the determination of recurring patterns).

Novelty is typically computed using Self-Similarity Matrices (SSMs) or Self-Distance Matri-
ces (SDMs) with a sliding checkerboard kernel [17], building on engineered audio descriptors
like timbre (MFCC features), pitch, chroma vectors, and rhythmic features [56]. Techniques
capitalizing on homogeneity use clustering [18] or state-modelling (HMM) approaches [5], or
both [46, 45]. Repeating pattern discovery is performed on SSMs or SDMs [47], and of-
ten combined with other approaches [55, 51]. Some algorithms combine all three basic ap-
proaches [64].

Interestingly, almost all existing algorithms are hand-designed from end to end. To the best
of our knowledge, only two methods are partly learning from human annotations: Turnbull
et al. [67] compute temporal differences at three time scales over a set of standard audio
features including chromagrams, MFCCs, and fluctuation patterns. Training Boosted Decision
Stumps to classify the resulting vectors into boundaries and non-boundaries, they achieve sig-
nificant gains over a hand-crafted boundary detector using the same features. McFee et al. [51]
employ Ordinal Linear Discriminant Analysis to learn a linear transform of beat-aligned audio
features (including MFCCs and chroma) that minimizes the variance within a human-annotated
segment while maximizing the distance across segments. Combined with a repetition feature,
their method defined the state of the art in boundary retrieval.

3.2 Approach

From the review of the state of the art, we obtained two insights: (i) The novelty-based approach
alone can already be quite successful, and (ii) learning from annotations of human experts
seems superior to designing an algorithm completely by hand.

Hence, for the proposed segmentation approach, we elaborate a decent boundary detection
method, then use advanced machine learning methods to further reduce the amount of manual
engineering compared to the state of the art. Specifically, we use a Convolutional Neural Net-
work (CNN) to detect segment boundaries, and we train it directly on perceptually informed
spectrograms (logarithmic frequency and logarithmic magnitude representations) instead of
complex engineered music-specific features.
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Figure 4: Structure of the Convolution Neural Network we use.

CNNs are deep neural networks of a particular architecture that exploits the spatial structure of
images, and thus are also suited well for processing spectrograms. We trained a CNN, whose
structure is depicted in Figure 4, to classify spectrogram excerpts of about 30 seconds into
whether or not they have a boundary near the center. Once trained, we can apply the CNN
to highly overlapping excerpts of a new audio recording to obtain a boundary probability curve
over time, and report the peaks of that curve as segment boundaries. Initial results were already
close to the state of the art, and by developing means to cope with the temporal inaccuracy and
scarceness of training examples, we significantly improved over previous methods. For more
technical details, please refer to [69].

3.3 Evaluation

We trained our artificial neural network on a set of 633 music recordings, then tested it on a
separate set of 487 recordings to estimate how well it generalizes. Since we aimed at developing
a general music segmentation method, the music pieces are of different genres and origins,
including classical and popular music. Each music piece was annotated by one or two music
experts according to a specific set of guidelines in the context of the SALAMI project [65].

An accepted way to measure performance in boundary detection is to compare the predicted
boundaries (of an algorithm) to the annotated boundaries (of an expert) and count the number
of true positives (prediction is at most X ms from a yet unmatched annotation), false positives
(no matching annotation within X ms of prediction) and false negatives (unmatched prediction
within X ms of an annotation). From these, we can compute the F-measure, a number between
0.0 and 1.0, balancing how many predicted boundaries are correct (precision) and how many
annotated boundaries are correctly found (recall).

In terms of F-measure, our method advances the state of the art from 0.52 to 0.62 for a tolerance
of 3,000 ms, and from 0.33 to 0.46 for a tolerance of 500 ms, as shown in Figure 5, in comparison
to other recent approaches from literature. The results shown in the figure are all achieved on
the same dataset of 487 recordings, mentioned above. Our method hence does not only
detect more of the human-annotated boundaries correctly, it is also significantly more
accurate in timing than previous approaches. To relate these numbers, the F-measure of
human experts evaluated against each other is 0.76 for the large tolerance and 0.68 for the
smaller one – this is the best any algorithm can hope to achieve. The F-measure of a baseline
algorithm that just predicts boundaries at a regular interval is 0.13.
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Figure 5: Performance in terms of F-measure achieved by current segmentation algorithms, the
topmost bar representing our approach. The vertical dotted lines denote the performance of
the baseline and the best achievable performance on the given dataset based on the human
annotations.
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4 DETECTING AND VISUALIZING THEMES AND MOTIFS FROM
SYMBOLIC REPRESENTATIONS

If given a symbolic MIDI representation of the music piece in addition to its audio recording,
we are to some extent capable of automatically identifying musically more meaningful seg-
ments, such as themes or motifs. The performance of respective algorithms is, however,
strongly dependent on the material under consideration; classical orchestra music represents
a particularly challenging type of material. Applying an audio-to-score alignment technique,
already reported in D4.3 “Automatic Extraction of Performance-related Parameters from Audio
Recordings and Live Performances”, allows users to explore a performance via structural music
elements.

The importance of this pattern discovery task is underlined by its recent inclusion in the “Music
Information Retrieval Evaluation eXchange” (MIREX) under the name “Discovery of Repeated
Themes & Sections”.1 Organizer of this task is Tom Collins, a former member of the JKU
team.

While the algorithm for pattern discovery itself was not developed specifically for PHENICX,
but again by JKU’s research group [10], we combined it with a key detection algorithm [39] to
elaborate an appealing user interface for exploring the structure of classical pieces. More details
can be found in [53].

4.1 State of the Art

Geometric representation-based algorithms currently represent the state of the art in music
pattern discovery, as evidenced by the novel MIREX task mentioned above. A particularly
popular family of these algorithms is the so-called Structure Induction Algorithms (SIA) [52]
which aim at finding maximal translatable patterns for a given point set that represents the notes.
In short, given the notes in sequential temporal order, the SIA algorithm identifies transpositions
of groups of notes. The SIA algorithm has been taken as a basis for later improvements, among
others, SIATEC and COSIATEC [52], SIAR [9], SIARCT [11], and SIARCT-CFP [10]. The last
one is used in the work at hand. Details can be found in the referenced publications.

4.2 Approach

4.2.1 Detection of Themes and Motifs

The employed SIARCT-CFP algorithm [10] extends the SIARCT method by a fingerprinting
component to overcome the problem of inexact pattern occurrences, by allowing for matches
that are also to a certain degree inexact. The algorithm thus accounts for variability in the data
and is motivated by the fact that many themes and motifs occur with some variation, such as
transpositions or additional notes. To this end, the output of the SIARCT algorithm is first cat-
egorized. Since different occurrences of a certain pattern might be quite similar according to
some measure of symbolic music similarity, a threshold is used and only one of such similar oc-
currences, which is deemed musically most important, is kept. Eventually, a fingerprint of each
extracted pattern is computed and matched against a database containing musically meaningful
patterns. To this end, the fingerprinting technique developed by Arzt et al. [3] is applied. This
procedure accounts for rhythmic variations, transpositions, and time shifts in the patterns under
consideration.

1http://www.music-ir.org/mirex/wiki/2014:Discovery_of_Repeated_Themes_%26_Sections
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Figure 6: Screenshot of the “PatternViewer” application for Beethoven’s symphony no. 1.

4.2.2 “Pattern Viewer” Visualization

To provide a user-friendly application to explore the identified themes and motifs in a piece, we
developed the so-called “Pattern Viewer” [54], a user interface that visualizes the structure
as well as the key of the piece under consideration. A screenshot is given in Figure 6. Indi-
cator box no. 1 shows the media control bar that can be used to seek within the piece; no. 2
shows a global-scale point-set representation, colored by the current key of the music, with the
vertical bar (that can again be dragged) indicating the position within the audio; no. 3 shows a
local-scale piano-roll representation, illustrating the contents of a pattern occurrence from the
top-left graph; no. 4 shows a colored circle of fifths to identify the current key; no. 5 shows a
pendular graph representing the hierarchical, repetitive structure of the current piece, which can
be used for jumping to the respective segments. Currently selected is the first occurrence of
the main theme C1, whose notes are a subset of the larger repeated section A1 known as the
exposition [54].

For the key estimation we used the Krumhansl-Schmuckler key finding algorithm applied to
a symbolic representation of the piece [39]. The mapping of keys to colors is based on the
assumption that tonalities and colors are in some way analogous [58].

For the discovery of patterns, we used the SIARCT-CFP algorithm [10], which is capable of
accurately identifying themes and motifs in short music pieces. Please note that it is not possible
yet to find all the smaller motifs in a symphonic piece automatically. For this kind of material, the
SIARCT-CFP algorithm is still able to identify some of the bigger repetitive elements, though.
Smaller motifs shown in the pendular graph of Figure 6 are added by hand. The construction of
the nodes and edges of the graph is completely algorithmic.

4.3 Evaluation

We evaluated the proposed “PatternViewer” application via an empirical user study [53]. Eigh-
teen subjects (students from JKU) with varying levels of musical expertise interacted with visu-
alizations of two excerpts from Beethoven’s symphonies (no. 1 and no. 3). One visualization
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Figure 7: Screenshot of the “ScoreViewer” application for Beethoven’s symphony no. 3.

(“ScoreViewer”) showed the staff notation of the music, synchronized automatically to an or-
chestral recording. This visualization was also developed in the context of the PHENICX project
and is described in detail in deliverable D6.3 “Performance Visualisation Technology”, using the
alignment technique reported on in D4.3 “Automatic Extraction of Performance-related Param-
eters from Audio Recordings and Live Performances”. A screenshot is provided in Figure 7 to
facilitate comparison. The other visualization participants were exposed to was the “Pattern-
Viewer” that additionally revealed the music’s repetitive and tonal structure. Classical music
appraisal skills of the participants were assessed via multiple-choice questions covering the
topics of instrumentation, dynamics, repetition, and tonality. Results indicated that interacting
with the “PatternViewer” visualization led to a significant improvement in listeners’ appraisal of
the repetitive and tonal structure of a piece of music, compared to interacting with the “Score-
Viewer”. The size of this effect was well predicted by the amount of formal musical training, in
that less expert listeners exhibited larger improvements using the “PatternViewer” than
more experienced listeners. With the current high level of interest in applications to improve
a user’s linguistic, numeric, or musical prowess, these findings for music appraisal skills are of
more general significance.
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5 SURVEYING MUSIC USING TEXTURAL SOUND QUALITIES

This section is concerned with the characteristics of textural sounds and their application for sur-
veying music. While most music visualizations are event-based, i.e. focused on notes or motifs,
we rather want to take a look at perceptually relevant timbral and micro-temporal qualities that
are descriptive for the overall sonic appearance of the music. For a survey of a musical piece on
a larger time scale, temporal details can be neglected and perceived qualities be regarded as
quasi-stationary, that is, being significant for durations of at least a few seconds. This leads us to
the notion of a sound texture where acoustic qualities are more or less stationary [63].

5.1 State of the Art

The overwhelming bulk of the literature dealing with audio features is about “song” characteriza-
tion and classification [19], where two of the predominant tasks are genre classification [4] and
emotion respectively mood classification [35]. They are usually tackled using a set of audio de-
scriptors combined with machine learning algorithms to unearth potential relationships between
feature combinations and the target classes. In most cases, the classification is performed on
discrete classes, either genre classes like ‘rock’, ‘pop’, ‘jazz’, ‘classical music’, ‘world music’,
etc., or mood classes like ‘happy’, ‘sad’, ‘dramatic’, ‘mysterious’, ‘passionate’, etc.

While the genre concept is not applicable to general – especially textural – sound, the task of
modeling emotion respectively affect in sound and music is somewhat comparable to the task
of modeling perceptual qualities. With the existence of a continuous representation of emo-
tion in the valence–arousal plane [62, 6], Yang et al. [74] formulate music emotion recognition
(MER) as a regression problem to predict such arousal and valence values. They test both
linear regression and Support Vector Regression (SVR) based on a selection of 18 – mostly
spectral – musical features. Alternative approaches have been published in [43, 48, 29], among
others.

The prevailing visual representations of musical sound are based on low-level physical param-
eters, such as instantaneous amplitude or spectral coefficients in the omnipresent waveform or
spectrogram displays [1]. However, such visualizations are highly abstract, lacking an intuitive
relationship to perceptual attributes of sound.

We have directed our attention to the translation of humanly accessible higher-level semantic
respectively affective concepts into adequate graphical representations. When connecting the
auditory to the visual domain, principles of synesthesia come into play. These have been widely
explored by Whitney [72], Levin [44] and many others, often putting emphasis on aesthetic
aspects and emancipating it as a genre of its own, known as “Visual Music”. For an overview,
please refer to [8].

5.2 Approach

In our original research, we followed a three-stage approach: Firstly, we identified percep-
tual qualities relevant for textural sounds. As described in detail in [28], by conducting mixed
qualitative-quantitative interviews within the repertory grid framework we elicited 10 bi-polar
qualities based on a corpus of 100 textural sounds.

Secondly, in [26] we took the five most prominent of those qualities, namely high–low,
ordered–chaotic, smooth–coarse, tonal–noisy, and homogeneous–heterogeneous, covering tim-
bral, temporal, and structural properties of sound, and constructed audio descriptors capable
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Figure 8: “Snakeskin” visualization of Beethoven’s 3rd symphony, 2nd movement (Adagio).

of modeling those. Finally, in [27] we developed an adequate, intuitively accessible visualiza-
tion strategy, encoding the same five textural qualities. The implementation makes use of tiled
maps, essentially combining low-dimensional projection and iconic representation.

The construct high–low is encoded in brightness and coloring, tonal–noisy in color saturation,
smooth–coarse in the smoothness of the tile outline, ordered–chaotic in the regularity of tile
positioning on a grid, and homogeneous–heterogeneous in the variance of random deviations
of the above parameters.

5.3 Visualization Example

The original intention was to use this kind of visualization as a basis for two-dimensional screen-
based sound browsing. In the context of PHENICX, the graphical representation has rather been
used in a time-linear fashion, depicting the development of sound qualities along the duration of
a piece of music.

As there is no objective “ground truth” for the sound textures at hand, rather than performing
a quantitative evaluation, we discuss an exemplary visualization of Beethoven’s 3rd symphony
“Eroica”. Figure 8 depicts the visualization of the second movement, performed by RCO under
the conduction of Ivàn Fischer. Here, the time resolution is quite coarse, depicting the whole
piece of 15:30 minutes at once, revealing its global structure. The time scale can be chosen
according to the intended level of detail, bounded by the minimum time support necessary for
the calculation of the audio features of about five seconds.

Looking at the figure, we note the dark double-bass-carried beginning, becoming more colorful
within the first minute with the entry of woodwinds. After another double-bass section just before
minute 2, we can see some graphical disorder, connected to irregular tempo respectively agog-
ics. The smooth and colorful passage around minute 3 is generated by soloistic appearances
of woodwinds (bassoon and clarinet). After an alternation of high and low sections around
minute 4, we enter a longer section of roughness and less saturated colors, indicating more
pronounced contours (e.g., staccato notes) and a more complex spectrum. The fugue, starting
at around minute 7 is easily distinguishable by its high order and homogeneity, as well as rough,
grayish appearance due to the dominance of brass and string instruments. After calming down
at minute 9, we find another more energetic section until minute 10, featuring low strings and
brass winds, before returning to more smoothness, produced by woodwinds. After a more het-
erogeneous section which is terminated by low and rough soloistic strings just before minute 13,
we enter a smooth and dark section, leading to a particularly agogic passage after minute 14,
before the movement settles to a calm, contained closing.
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6 INSTRUMENT ACTIVITY DETECTION

Instrument activity detection (IAD) is the automatic detection of musical instruments to deter-
mine which instrument or instruments are active in a recorded or live audio music excerpt at a
certain point in time. In this section, we present our investigations of and methods to IAD for
classical music in the context of the PHENICX project.

We first review the state of the art in IAD, then investigate different IAD tasks for classical and
non-classical music. As an extension to state-of-the-art approaches, we propose a new method
to detect major instrument groups in polyphonic classical pieces.

6.1 State of the Art

6.1.1 State of the Art in Instrument Activity Detection (IAD)

The task at hand aims at detecting major active instruments in a classical music piece. Al-
though the focus of PHENICX is classical music, some of the existing methods developed for
non-classical music may be generalized and used within the project. Because the problem of
accurately identifying all musical instruments solely from the audio signal is too hard, we can
re-define the problem as follows:

1. Problem no. 1: Provide labels for monophonic recordings (instrument recognition for solo
musical pieces)

2. Problem no. 2: Provide indexes for locating the predominant instrument in a musical
mixture (predominant instrument recognition for polyphonic musical pieces)

3. Problem no. 3: Provide indexes for locating all active instruments in a musical mixture
(instrument detection for polyphonic musical pieces)

Some work has already been carried out to target the first problem on non-classical music
[14, 2, 15, 12]. For the second problem, two main approaches are used on non-classical music:
(i) methods that use source separation and (ii) methods that do not use source separation.
Promising approaches that use source separation include [7, 71]. Methods of the latter category
(no source separation) include [21, 20]. The last and hardest problem (no. 3) can also be
approached either with or without source separation techniques [66, 73, 36]. In [16], to simplify
the hardest problem no. 3, instead of using perceptual descriptors and detecting the instrument
names, a taxonomic classification is done and instrument groups are detected.

Some works, for example Kitahara et al. [37], propose several techniques to improve instrument
recognition in duo and trio music. More recent works deal with instrument recognition in poly-
phonic music. For instance, Fuhrmann et al. [20] propose a method for automatic recognition
of predominant instruments with Support Vector Machine (SVM) classifiers trained on features
extracted from audio signals. Tzanetakis [68] focus on the detection of voice, while Essid et
al. [16] present an approach using a taxonomy-based hierarchical classification, in which the
classifiers are trained on combinations of instruments.

6.1.2 Limitations of the State of the Art

Instrument activity detection in polyphonic music is a big challenge. Although some methods
have been proposed for the first and second problems, the third problem still needs further
investigations. In particular when it comes to classical music, all state-of-the-art methods to IAD
are very limited. The three most important reasons are: (i) the lack of an annotated dataset
to be used specifically for IAD in classical music (ii) the fact that classical music, especially
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orchestral music the PHENICX project focuses on, is per definition highly polyphonic and shows
sophisticated forms of instrumental interplay and (iii) for a new IAD task, a new complex set of
different features is usually needed.

To address the first point, we prepare a dataset using 11 different performances of Beethoven’s
3rd symphony “Eroica”. To go one step further towards the second issue, we study the detection
of most dominant instrument groups on the provided dataset. To target the third issue, we
propose an utterance-level transformation technique which creates a low-dimensional space
with a better representation of our instrument classes. We only use MFCC features and a
simple k-nearest neighbors (KNN) classifier with k=1 and cosine distance. To show that our
features also work with other classifiers, a Probabilistic Linear Discriminant Analysis (LDA) is
used to model the class distributions.

6.2 Approach

In the context of this deliverable, we elaborate methods that target problems no. 2 and 3. In
particular, we focus on the two tasks of (i) predominant IAD and (ii) instrument group activity
detection.

6.2.1 Features

Mel-Frequency Cepstrum Coefficients (MFCCs) are features that have proven useful for many
audio and music processing tasks [14, 30]. MFCCs provide a compact representation of the
spectral envelope and are probably more musically meaningful than other common represen-
tations. Even though there are better representations based on MFCCs such as [42], we stay
away from feature engineering and focus on the modeling techniques. Additional studies on
feature extraction will be conducted later on to further improve results. For the experiments at
hand, we have extracted standard MFCCs.

6.2.2 Datasets

Two datasets have been used in our experiments. The first dataset, IRMAS [7], is intended
for training/testing methods for the automatic recognition of predominant instruments in musical
audio, though not specifically classical music. The instruments considered are: cello, clar-
inet, flute, acoustic guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human
singing voice.

The second dataset was prepared specifically for this task using 11 different performances of
Beethoven’s 3rd symphony “Eroica”. We extracted more than 4,000 excerpts of three seconds
length from the recorded CD audio tracks of live performances. More information about the
audio files can be found in Table 4. The most dominant instrument groups for each excerpt
were computed using an audio-to-score alignment algorithm [22] and music scores for the an-
notations. Randomly selected alignments were checked manually to validate the correctness
of the annotations. The available instrument groups in this Eroica dataset are: string, brass,
woodwind, and percussive. Because of the infrequent presence of some of these instruments,
we decided to distill a set of most frequently co-appearing groups instead of separate classes.
These are: string, string-brass-woodwind, and string-woodwind.

6.2.3 Proposed instrument detection systems

Three new instrument detection systems, all based on MFCC features, are proposed to address
problem no. 2, hence to identify the predominant instrument. In systems 1 and 2, we use a
feature transformation technique as a post-processing step after extracting a set of statistics,
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Table 4: Orchestra, conductor, year of performance, and movement(s) used of Beethoven’s
symphony no. 3 in the Eroica dataset.

Orchestra Conductor Year Mov.

Berlin Philharmonic Orchestra Furtwängler 1952 1

NBC Symphony Orchestra Toscanini 1953 1

Philharmonia Orchestra Klemperer 1959 1

Berlin Philharmonic Orchestra Von Karajan 1963 1

Chicaco Symphony Orchestra Solti 1973 1

Wiener Philharmoniker Bernstein 1978 1

Chamber Orchestra of Europe Harnoncourt 1991 1

Orchestre Révolutionaire et Romantique Gardiner 1993 1

Tonhalle Orchester Zürich Zinman 1998 1

London Symphony Orchestra Haitink 2005 1

Royal Concertgebouw Orchestra Fischer 2013 1,2,3,4

which is called “statistical supervectors” or Baum-Welch statistics [34]. In system 1, a simple
KNN classifier is fed with the transformed features. In system 2, we employ Probabilistic Linear
Discriminant Analysis (PLDA), instead of KNN to show that our approach is not limited to a single
classifier. In system 3, Principal Component Analysis (PCA) is used as a similar transformation
approach as i-vectors in systems 1 and 2.

System 1: Ivector-LDA-CosineKNN system This method employs a post-processing method
called “i-vector extraction” [13] on the computed MFCCs, which converts features of each au-
dio segment into an information-rich low-dimensional fixed-length-vector. A 1024-component-
Gaussian Mixture Model (GMM) is trained for the Universal Background Model (UBM). UBM is
a Gaussian mixture model (GMM) which is trained as an instrument-independent model using
all training data. From each audio file, a set of statistics are extracted as a supervector. These
statistics are the posterior probabilities of the Gaussian components for observations of different
instruments. Eventually, a simple KNN classifier with k=1 and cosine distance is used to classify
the samples. A block diagram of the proposed system is shown in Figure 9.

System 2: Ivector-LDA-PLDA system This system is similar to system 1, but uses a Proba-
bilistic Linear Discriminant Analysis (PLDA) classifier [33, 49], instead of KNN.

System 3: PCA-LDA-PLDA system This system is the same as system 2, except for its use
of Principal Components Analysis (PCA) instead of i-vector extraction.

Figure 9: Block diagram of an i-vector based system.
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6.3 Evaluation

The IRMAS dataset comprises a training set and 3 test sets. We used this predefined split in
our experiments. For the Eroica dataset, we randomly selected 70% of data in each class as
our training set and the rest for testing. Because of the lack of annotated data, we only used the
training excerpts from “Eroica”, yet using data from other classical pieces will be helpful in the
future to achieve more generalization. We calculated performance measures, such as precision,
recall, and F-measure separately for each class and also report unweighted averages of the
measures, which is proposed in [7] as macro measures. A random baseline and a state-of-the-
art method by Bosch et al. [7] is used to compare our results to. The state-of-the-art method
uses different sets of features, a feature selection step and a Support Vector Machine (SVM)
classifier with a polynomial kernel of degree 4.

6.3.1 Non-classical music

Results achieved on the IRMAS dataset by systems 1, 2, and 3 are shown in Tables 6, 7 and 8,
respectively. A comparison of the averaged results between different systems and baselines
is given in Table 5. System 1 outperforms the other proposed systems with an average pre-
cision of 42.16%, recall of 28.51% and F-measure of 31.86% for the 11 class predominant
instrument recognition task. The proposed systems are considerably better than the random
baseline, which has an average precision of 15.29%, recall of 8.82%, and F-measure of 9.57%.
In comparison with the state-of-the-art method, System 1 has a 3.61 percentage points better
recall than the state-of-the-art algorithms. But the state-of-the-art method outperforms our best
system in precision and F-measure by 15.64 and 3.04 percentage points, respectively. Be-
cause more detailed results for the state-of-the-art method are not provided in [7], a class-wise
comparison is not possible; yet by looking at Table 6, we can observe that clarinet (“cla”) is
the hardest class, while voice (“voi”), electric guitar (“gel”), and violin (“vio”) are the easiest to
detect.

Table 5: Overall results for instrument recognition using different methods, on the IRMAS
dataset.

Prec Rec F-measure

SOA 57.80 24.90 34.90
RND 15.29 8.82 9.57

Sys1 42.16 28.51 31.86

Sys2 41.83 28.48 30.88

Sys3 39.62 25.26 27.31

Table 6: Instrument recognition measures (in %) using the Ivector-LDA-CosineKNN system
(no. 1) on the IRMAS dataset.

cel cla flu gac gel org pia sax tru vio voi avg

Prec 20.91 3.76 29.19 45.39 76.20 21.23 67.93 42.92 32.26 38.14 85.82 42.16

Rec 20.72 8.06 33.13 25.79 30.25 17.17 23.42 29.75 47.90 42.65 34.77 28.51

F-measure 20.81 5.13 31.03 32.90 43.31 18.99 34.83 35.14 38.55 40.27 49.49 31.86

Table 7: Instrument recognition measures (in %) using the Ivector-LDA-PLDA system (no. 2)
on the IRMAS dataset.

cel cla flu gac gel org pia sax tru vio voi avg

Prec 19.83 4.94 25.31 42.39 79.18 22.49 70.41 43.50 31.08 34.77 86.27 41.83

Rec 21.62 12.90 37.42 26.54 26.65 18.01 20.80 26.69 46.71 42.18 33.72 28.48

F-measure 20.69 7.14 30.20 32.64 39.87 20.00 32.12 33.08 37.32 38.12 48.48 30.88
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Table 8: Instrument recognition measures (in %) using PCA-LDA-PLDA system (no. 3) on the
IRMAS dataset.

cel cla flu gac gel org pia sax tru vio voi avg

Prec 6.13 3.42 38.69 44.27 81.46 26.68 66.90 33.94 22.35 34.77 77.19 39.62

Rec 17.12 6.45 32.52 20.93 28.45 32.96 19.30 11.35 35.33 49.76 23.66 25.26

F-measure 9.03 4.47 35.33 28.43 42.17 29.49 29.95 17.01 27.38 40.94 36.22 27.31

Table 9: Instrument recognition measures (in %) using the random baseline on the IRMAS
dataset.

cel cla flu gac gel org pia sax tru vio voi avg

Prec 4.76 1.21 7.66 20.33 36.26 9.96 31.95 13.45 4.87 4.94 32.73 15.29

Rec 11.71 4.84 11.66 9.16 10.51 7.48 7.74 11.35 7.78 6.16 8.62 8.82

F-measure 6.77 1.94 9.25 12.63 16.30 8.54 12.46 12.31 5.99 5.49 13.65 9.57

Table 10: Instrument recognition measures (in %) using the Ivector-LDA-CosineKNN system
(no. 1) on the Eroica dataset.

string string-woods string-brass-woods avg

Prec 77.24 62.84 76.12 72.07

Rec 36.36 17.99 20.52 24.96

F-measure 49.45 27.97 32.33 36.58

6.3.2 Classical music

Since classical music is more challenging than other kinds of music, instead of predicting individ-
ual instrument classes, we opted to classify instrument groups. Three major instrument groups
have been identified in the Eroica dataset: (i) strings, (ii) woodwinds, and (iii) brass. Since
most of the time different instrument groups are active together, we created a new class set by
merging those instrument groups that co-occur frequently. The resulting three new classes are
(i) strings, (ii) strings-woodwinds (iii) strings-brass-woodwinds. Table 10 shows the results of
system 1 on the Eroica dataset, as this system outperformed on both the IRMAS and the Eroica
datasets. System 1 achieved an unweighted averaged precision of 72.07%, recall of 24.96%,
and F-measure of 36.58% in the three-class problem on the Eroica dataset, which are much
higher results than those achieved on the IRMAS set, because only the 3 merged classes are
considered.

In summary, our methods achieved an F-measure very close to the state-of-the-art IAD method
on the IRMAS dataset, while using much simpler features (only MFCCs) and a much less com-
plex classifier. As for classical orchestra music, we prepared a new dataset “Eroica” for in-
strument detection and recognition purposes. Our approaches already achieved considerable
classification results for the merged instrument groups in this Eroica dataset.
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7 DETECTION OF ACTIVITY CLASSES

As a final category of semantic concepts, we target information about the current (musical or
non-musical) activity in an audio stream, in particular a recording of a live performance. Meth-
ods to determine some of these classes, music, speech, applause, and silence, have already
been developed as part of deliverable D4.3 “Automatic Extraction of Performance-related Pa-
rameters from Audio Recordings and Live Performances”, elaborated on in Section 5 “Detecting
relevant activity classes”. To this end, two new features, the Continuous Frequency Activation
(CFA) and Curved Frequency Trajectory (CFT) were adapted and the problem was treated as
a binary classification task, which means that all of the four classes could be detected inde-
pendently of each other. On a manually annotated dataset assembled from various sources,
we already achieved quite good results (>97% F-measure for applause and music detection,
>93% for speech detection, and >78% for detecting silence). For more details, please refer to
D4.3 and to Pieringer [59].

For the deliverable at hand, we developed, in the same vein as done for D4.3, a method to
classify a given audio snippet according to whether it contains singing voice or not. This is a
particularly challenging task as voice is frequently confused with certain kinds of instruments,
e.g., some playing styles of electric guitars. Our method is described in detail in [42] and sum-
marized in the following.

7.1 State of the Art

Quite a lot of work has been devoted to the task of identifying singing voice in an audio signal.
Recent approaches include Regnier and Peeters [61], whose method is based on thresholding
the outputs of vibrato and tremolo detectors. Hsu and Jang [31] use Gaussian Mixture models
(GMMs) as states in a fully connected Hidden Markov Model (HMM) and the Viterbi algorithm.
Hsu et al. [32] extend [31] by performing harmonic/percussive source separation prior to the
actual singing voice detection. Ramona et al. [60] use a very diverse feature set and a Support
Vector Machine (SVM) as classifier. The method by Mauch et al. [50], that seems to yield one
of the best results achieved so far, employs a complex set of expensive features, based among
others on features inferred from the F0 trajectory of the predominant source, e.g., pitch fluctu-
ation or normalized amplitude of harmonic partials. They use HMMs and SVMs as classifier.
A more decent literature review can be found in our paper [41]. In summary, all approaches to
singing voice detection available so far involve rather complex and computationally expensive
features and/or classifiers.

7.2 Approach

In contrast to the previously sketched methods, the approach we elaborated for the deliverable
at hand uses a rather lightweight feature set that is computationally inexpensive and can
thus theoretically also be used for on-line detection of voice in music. We already proposed in
[41] a simple method for singing voice detection, which solely uses optimized long-term MFCCs
along with their first derivative. It does not require preprocessing and employs a simple median
filter to smooth the predictions of the Random Forest classifier used in the actual classification
step. Motivated by the remarkably good performance of this very simple method in comparison
to much more complex approaches such as [60, 50], we extended our method, focusing on the
problem of frequent false positives our previous method [41] was prone to.

In contrast to other state-of-the-art methods, such as [60, 50], our current method, presented
in [42], does not presume that the voice is the predominant source in the mix. The method is
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Figure 10: Spectrogram and Fluctogram representation of an audio signal.

Figure 11: Comparison of the discriminative power of lower and higher MFCCs. The upper two
plots depict only the 5 lowest MFCCs for a string quartet and a vocal piece, while the lower two
plots show the highest 5 MFCCs for the same two pieces.

based on three features that describe temporal characteristics of the audio signal. The three
feature are the Fluctogram, the Spectral Contraction, and the Vocal Variance. The Fluctogram
captures sub-semitone fluctuations of partials by a 17-dimensional feature vector derived from
the spectrogram (cf. Figure 10). The Spectral Contraction measures how much of the energy
in the signal is located in the center of the frequency spectrum. It is simply defined as the ratio
between a weighted version of the spectrum and the original spectrum. The Vocal Variance
feature is inspired by the fact that slow variations of the spectrum are related to changes of the
shape of the vocal tract. Since the lowest MFCCs capture such slow variations, we use MFCCs
1–5 as well as their variances over windows of 11 successive frames. An illustration of the
usefulness of this feature is given in Figure 11, which reveals that the lowest 5 MFCCs are much
better able to reveal differences between instruments (strings in this case) and singing voice
than the higher MFCCs. The three proposed features are extended by the Spectral Flatness [25]
feature that estimates the noise in an audio signal. The combined feature vector is then fed into
a Random Forest classifier. For more details, the reader is kindly referred to [42].
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Table 11: Performance measures (in %) of our method in comparison with Ramona et al.’s [60],
Mauch et al.’s [50], and Vembu and Baumann’s [70] approaches. Best results for each perfor-
mance measure are printed in bold face.

Ramona et al. [60] Mauch et al. [50] Vembu and Baumann [70] Our approach [42]

Jamendo

Precision — — 70.8 88.0
Recall — — 84.2 86.2
F-measure 84.3 — 76.9 87.1
Accuracy 82.2 — 77.4 88.2

RWC

Precision — 88.7 82.7 87.5

Recall — 92.1 80.8 92.6
F-measure — 90.4 81.8 90.0

Accuracy — 87.2 81.3 87.5

7.3 Evaluation

We evaluated our approach using two publicly available corpora that provide singing voice an-
notations: the Jamendo corpus of 93 royalty-free songs annotated by Ramona et al. [60] and
the RWC music database of 100 songs released by Goto et al. [24] and annotated by Mauch
et al. [50]. Since Ramona et al. only report results of their method on the Jamendo set and
so do Goto et al. on the RWC set, we could unfortunately solely compare the results achieved
by our method on the respective datasets for which figures of merit are available. We further
include results reported by Vembu and Baumann in [70] as they are available for both datasets.
A summary of the results is given in Table 11. We can thus conclude that our method, while
exploiting rather simple features and being computationally quite inexpensive, is never-
theless at least on par with other other state-of-the-art methods.

In addition to the evaluation experiments carried out in our paper [42], we further evaluated
the approach on classical material, in particular, a manually annotated dataset comprising four
operas: Don Giovanni and Zauberflöte by Mozart, Madama Butterfly by Puccini, and La Traviata
by Verdi. The annotations were not only made on the level of singing voice vs. no singing voice;
additionally, the gender of the singer was identified. This dataset thus also represents a valuable
resource for future research beyond this deliverable. In a four-fold cross validation setting (using
three operas for training and the forth for testing), our approach achieved an average F-measure
of 92.4% and accuracy of 90.9%. We hence conclude that the approach is, in general, suited
for classical music, even though opera music is quite different in terms of singing style from
pop and rock music.
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8 CONCLUSION

In this deliverable report, we presented our work towards the identification, extraction, and visu-
alization of semantic concepts from music recordings, in particular on the segment-level. The
deliverable’s main contributions can be summarized as follows:

• two user studies carried out on different user groups (mainly students through an online
survey and attendees of a classical concert) to identify which semantic concepts listeners
agree on; both studies evidence little agreement among listeners for the vast majority of
concepts,

• a new audio music segmentation algorithm based on deep neural networks, which signifi-
cantly improves over the previous state of the art,

• a novel user interface to explore a music piece by its themes and motifs and by key,

• identification and extraction of features that describe textural sound qualities in terms of
timbral, temporal, and structural dimensions as well as a visualization tool that illustrates
these sound qualities for a given recording,

• novel approaches to instrument activity detection and instrument group activity de-
tection, which adopt methods used in speaker identification,

• a novel method to singing voice detection, which is computationally less expensive, but
of equal predictive performance than the current state of the art,

• new annotated datasets, in particular, an instrument-annotated collection of 11 differ-
ent performances of Beethoven’s 3rd symphony “Eroica” and a singing voice-annotated
corpus of 4 operas (annotations are also available for the gender of the singer), which
represent valuable resources for future research,

The methods developed and insights gained in this deliverable will be further exploited in WP6
“Exploration and Interaction”. In particular, the developed “PatternViewer” visualization method
for musical segments fits well into Task 6.1 “Visualisation of music pieces and their perfor-
mances”. In addition, Task 6.2 “Personalised multimodal information system” requires the
methods developed in the deliverable at hand, to identify semantic concepts, as the person-
alized music information system needs to select from a variety of information about the music
piece, to address the specific needs of individual users with different backgrounds.

We foresee several next steps as follow-ups to this deliverable: (i) a deeper analysis of the in-
terrelationship between user characteristics (demographics, education, music experience, per-
sonality traits, etc.) and music perception/characterization, (ii) extending our symbolic pattern
discovery algorithm to symphony-length classical repertoire, (iii) improving our methods on in-
strument activity detection and instrument group activity detection, (iv) integrating our meth-
ods for singing voice detection with previous methods to identify other activity classes (silence,
music, applause, speech), and investigate the identification of joint activities (e.g., music and
singing), and (v) extending our annotated datasets for instrument activity and singing voice de-
tection.

Addressing (i), UPF and JKU are currently taking a deeper look into the results of their user
studies. To achieve (iii), we will strengthen the collaboration between JKU, OFAI, and TUD and
draw from the findings of D3.10 and D3.11 to investigate truly multi-modal approaches (using
MIDI, audio, image, and video). Drawing from D4.3 and D3.13, we will further strengthen the
collaboration between OFAI and JKU to target (iv).
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