

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 1 of 33

Deliverable 3.5
Methods to extract web information from music

piece as a whole

Grant Agreement nr 601166

Project title Performances as Highly Enriched aNd Interactive

Concert eXperiences

Project acronym PHENICX

Start date of project (dur.) Feb 1st, 2013 (3 years)

Document reference PHENICX-WD-WP3-JKU-140715-Webinfo_Methods-

1.1

Report availability PU - Public

Document due Date Jul 31st, 2014

Actual date of delivery Jul 25th, 2014

Leader JKU

Reply to Markus Schedl (markus.schedl@jku.at)

Additional main contributors

(author’s name / partner acr.)

David Hauger (david.hauger@jku.at)

Marko Tkalčič (marko.tkalcic@jku.at)

Document status Final

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 2 of 33

Project funded by ICT-7th Framework Program from the European Commission

Table of Contents

EXECUTIVE SUMMARY ... 3

1 BACKGROUND ... 5

2 INTRODUCTION .. 6

2.1 OVERVIEW ... 6

2.2 METHODOLOGY .. 6

2.3 CONVENTION .. 7

3 EXTRACTING MULTIMEDIA MATERIAL FROM GENERAL AND MUSIC-SPECIFIC WEB

SOURCES ... 8

3.1 STATE-OF-THE-ART IN MUSIC INFORMATION EXTRACTION ... 8

3.2 LIMITATIONS OF STATE-OF-THE-ART APPROACHES FOR CLASSICAL MUSIC 9

3.3 EXISTING MIE APPROACHES IN AN ORCHESTRA SETTING .. 10

3.4 RETRIEVING WEB INFORMATION FROM WIKIPEDIA ... 11

3.5 RETRIEVING WEB INFORMATION FROM LAST.FM ... 14

3.6 RETRIEVING WEB INFORMATION FROM FREEBASE .. 18

3.7 STORAGE AND USE OF THE WEB INFORMATION .. 25

4 EVALUATION OF RELEVANCE AND QUALITY OF THE RETRIEVED MATERIAL 26

5 CONCLUSION ... 31

6 REFERENCES .. 32

6.1 WRITTEN REFERENCES ... 32

6.2 ACRONYMS AND ABBREVIATIONS.. 32

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 3 of 33

Executive Summary

This deliverable presents methods to mine multimedia material on composers,

performers, pieces, and instruments from web sources. It naturally relates to Music

Information Extraction (MIE), which is the task of identifying and acquiring structured pieces of

information about music from unstructured or semi-structured sources. The deliverable is a

result of Task 3.5 and will be used in particular to support WP5 when it comes to create

personalized multimedia information systems for Classical music.

We first reviewed the state-of-the-art in MIE, whose methods rely on machine learning

and pattern recognition techniques, in particular rule-based analysis, to identify highly specific

categories of information. We found that almost all state-of-the-art methods seem not

suited for Classical music, as they have been developed for Rock music. Nevertheless, we

extended a rule-based approach to identify members and their instruments in

orchestra, based on web pages gathered via querying Google, which is the state-of-the-art in

MIE. Manual inspection of the results showed, however, that this approach performs inferior

than using only a few, albeit high-quality web sources.

As a result, we concentrated our efforts on developing techniques to identify and acquire

multimedia material from three dedicated web sources: Wikipedia/DBpedia, Last.fm,

and Freebase. To this end, we elaborated methods that take into account structural

information of the resources, disambiguation techniques required for music entities with

ambiguous names (e.g. “Bach”, which also means “brook” in German), and methods to identify

and acquire different multimedia material and different versions of this material.

Applying these methods to input provided by the consortium member RCO, we created corpora

of multimedia material on composers, pieces, performers, and instruments, parts of which have

already been delivered in months 6 and 12 for deliverables D3.7 and D3.8, respectively. The

developed methods and extensions thereof will further be required for deliverable D3.91.

In order to validate the relevance and quality of the acquired material, we performed

several assessments:

Manual inspection of the acquired material showed that on the one hand, information from

Last.fm and Freebase is more structured and more concise than the one from Wikipedia. On the

other hand, Wikipedia usually provides much more information in higher detail and various

modalities. These facts allow to create different representations for different users,

1 Deliverables D3.7, D.3.8, and D3.9 refer to the creation of corpora containing supporting multimedia

material of different amounts and specificity: D3.7: “initial corpus”, D3.8 “standardized corpus”,

D3.9: “final corpus”.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 4 of 33

varying, for instance, length of biographies, amount of images or audio material shown2, or the

music entity focused on (composer, piece, performer, or instrument).

We further used a crowd-sourced questionnaire to assess how potential users of a

multimedia information system perceive different categories of multimedia information

provided. Investigated categories were entity (composer, performer, piece, and instrument),

modality (text, image, audio), and amount or length of the presented material (few/short

vs. many/long). We investigated all combinations of these three aspects, asking 167

participants to judge each combination according to whether it was (i) interesting and (ii)

provided novel information. Through this questionnaire, we found that there are no general

preferences, irrespective of the user, towards any specific multimedia material or categories of

information. This in turn means that harvesting multimedia material of different nature (entity,

length, and modality) is crucial to satisfy each user’s individual information need, and it

supports our approach to target the different information categories.

In conclusion, the methods developed for this deliverable can be used to mine relevant and

high-quality multimedia material about the music entities of composer, piece, performer, and

instrument. They will be used to support deliverable D3.9 (“final corpus of supporting

multimedia material”) and to enable the creation of personalized music information systems,

which is part of WP5.

2 A good example is given in D3.8 (“standardized corpus of supporting multimedia material”) for the

composer Debussy, in which not only images of himself, but also interesting additional material was

identified; for instance, an image of his grave and an image of a French banknote depicting his

portrait.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 5 of 33

1 BACKGROUND

This deliverable D3.5 responds to WP3, Task 3.5 of the PHENICX project, as described in the

Description of Work (DoW). The goal of this task is to extract web information for different

musical entities. The developed methods are hence used to extract material found on the

web, on musical pieces, as well as on composers, instruments, and performers. We examined

both music-specific and general sources of information and performed a user study to assess

different aspects of the material (such as general users’ preference towards particular kinds of

material).

The developed methods are used to retrieve multimodal web information, i.e. textual

information as well as different types of image and audio material. Preliminary versions of the

methods described in the deliverable at hand have already been used to create two datasets:

D3.7 (initial corpus of supporting multimedia material) and D3.8 (standardized corpus of

supporting multimedia material), which are available to all partners. Improved algorithms will be

used in D3.9 (final corpus of supporting multimedia material).

The results of this work support WP5, in particular Task 5.5 (improving meta-data based

matching of music items at different levels of specificity). Furthermore, the multimedia material

acquired through the developed methods is crucial to WP6 for Task 6.2 (personalized

multimodal information system), to build user-aware music information and recommendation

systems. Finally, also in WP7, Task 7.1 (demonstrator development and testing) the

multimedia material mined through methods presented here will be integrated.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 6 of 33

2 INTRODUCTION

2.1 Overview

Task 3.5 aims at elaborating methods to extract different kinds of multimedia material from the

web, addressing various Classical music entities, more precisely composer, performer, piece, and

instrument. In this document, we report on the work performed in the first 18 months of

PHENICX towards this goal.

Section 3 describes the methods developed to identify and extract multimedia data

from different web sources. We first provide in Section 3.1 an overview of the state-of-the-

art in the corresponding research task of Music Information Extraction (MIE). Subsequently, we

describe the methods used to acquire material related to the musical entities of interest from

three specific web sources: Wikipedia3, Freebase4, and Last.fm5. We further describe how

semantic information from online catalogues like DBpedia6 or the application of basic heuristics

can be used for entity disambiguation.

Section 4 describes the evaluation of the extracted multimedia material. To this end, we

performed both a quantitative and a qualitative assessment, the latter including manual

inspection by the authors as well as a crowd-sourced questionnaire.

Section 5 eventually summarizes the work performed in this deliverable.

2.2 Methodology

The goal of Task 3.5 is to extract web information about musical entities, such as composer,

performer, piece, and instrument. Implementing and investigating the state-of-the-art

in MIE, we found that current methods are not suited for Classical music. Indeed, it turned out

that instead of crawling arbitrary, music-related web pages, information extraction from

specific sources, such as Wikipedia or Last.fm, provides more accurate and higher quality

material.

Given this insight, we refocused the task on elaborating heuristical and rule-based

methods to accurately extract pieces of information from dedicated web pages on

Classical music entities, addressing different (i) modalities, (ii) entities, and (ii) amount and

detail of information. We further implemented strategies for automated quality assessment and

to identify different versions of the same item (and in turn select the best version). All

developed methods for web crawling and MIE, as related to the deliverable at hand, are

available either as Java programs or Python scripts.

3 http://en.wikipedia.org

4 http://www.freebase.com

5 http://www.last.fm

6 http://wiki.dbpedia.org

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 7 of 33

Based on repertoire information from ESMUC and RCO, we then gathered multimedia material

from the web, using the developed methods. We evaluated the relevance and quality of

the mined material by quantitative and qualitative assessments. Given the absence of a “ground

truth” for the task at hand, we performed manual inspection of samples of the returned

material and a user study to figure out general preferences towards certain categories of

pieces of information.

2.3 Convention

We use the following writing conventions:

• bold for emphasis

• italics for brand and product names

• Courier New for software design, in particular source code

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 8 of 33

3 EXTRACTING MULTIMEDIA MATERIAL FROM GENERAL AND

MUSIC-SPECIFIC WEB SOURCES

Music Information Extraction (MIE), i.e. the automatic identification and extraction of

music-related entities from unstructured or semi-structured data sources, is the central goal of

this deliverable. In this section, we present our investigations of and methods to MIE for

Classical music in the context of the PHENICX project.

We first review the state-of-the-art in MIE applied to arbitrary web pages, then investigate an

extension to a rule-based state-of-the-art approach, at the same time motivating our choice to

focus on web pages dedicated to music entities instead of crawling arbitrary web pages, and

eventually we elaborate on the developed methods to extract relevant and high-quality

multimedia material from Wikipedia, Last.fm, and Freebase.

3.1 State-of-the-art in Music Information Extraction

The current task aims at providing information on general music entities, including composers,

performers, instruments, and pieces. Although the focus of PHENICX is Classical music, some of

the existing methods, which have been developed for Rock and Pop music, may be generalized

and used within the project.

Existing work on (web-based) MIE typically first tries to identify a set of web pages related to

music, the most frequent approach being to query a search engine with music terms and fetch

the resulting pages. Based on the corpus acquired this way, methods to extract a certain

category of information are proposed. For instance, [Schedl and Widmer, 2007] aim at

extracting band members and their roles (instruments) via a set of pre-defined rules. To

this end, n-grams are extracted from the web pages and several filtering techniques are

employed to construct a set of potential members. Subsequently, the authors use several pre-

defined rules (similar to “Hearst patterns”) and count the number of times each rule can be

applied to each potential member and surrounding text. Examples of rules are “[member]

plays [instrument]” or “the [role] [member]”.

Other works, such as [Krenmair, 2010] and [Knees and Schedl, 2011] approach the same

problem using classification techniques, in particular, Support Vector Machines (SVMs), instead

of pre-defined rules. The authors make use of part-of-speech (PoS) tagging, gazetteer

annotations to identify keywords, and named entity detection, to eventually create feature

vectors from web pages. However, the SVM-based approach generally does not outperform the

earlier approach of hand-crafted rules, proposed in [Schedl and Widmer, 2007].

Another category of information addressed by MIE research is country of origin of artists or

bands. State-of-the-art approaches are given by [Govaerts and Duval, 2009] and [Schedl,

Seyerlehner, Schnitzer, Widmer, Schiketanz, 2010]. While the former mines these pieces of

information from specific web sites, the latter distills the country of origin from web pages

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 9 of 33

identified by a search engine. Govaerts and Duval search for occurrences of country names in

biographies from Wikipedia and Last.fm, as well as in properties such as “origin”, nationality”,

“birth place”, and “residence” from Freebase. The authors then apply simple heuristics to

predict the most probable country of origin for the artist or band under consideration, for

instance, predicting the country that most frequently occurs in an artist’s biography. When using

Freebase as data source, the authors again predict the country that most frequently occurs in

the related properties of the artist or band. In contrast, [Schedl, Seyerlehner, Schnitzer, Widmer,

Schiketanz, 2010] propose three different approaches to country of origin detection: (i) a

heuristic which compares the page count estimates returned by Google for queries of the form

“artist/band” “country” and simply predicts the country with highest page count value

for a given artist or band, (ii) computing term weights (tf-idf vectors) from up to 100 web pages

retrieved via Google for each artist and predicting the country with highest tf-idf score, using

the artist name as query, and (iii) predicting the country whose name appears closest to pre-

defined keywords, such as “born” or “founded” in the artist’s set of web pages.

The two categories of information discussed so far are textual ones. The only scientific work on

MIE focusing on other multimedia material, as far as we aware of, is [Schedl, Knees, Pohle,

Widmer, 2006] and [Schedl, Widmer, Knees, Pohle, 2011], which aims at mining album cover

artwork from arbitrary web pages. The authors first use search engine results to crawl web

pages of artists and albums under consideration. Subsequently, both the text and the HTML

tags of the fetched pages are indexed at the word level. The distances at the level of words and

at the level of characters between artist/album names and tags are computed

thereafter. If these distances are below a threshold, the image is considered an album cover

and downloaded. In addition, a content-based filtering step is performed to discard non-square

images as well as images showing scanned compact discs.

In contrast to these very specific techniques forming the state-of-the-art in MIE, the methods

we developed as part of this deliverable should not result in a single piece of information for a

certain query, but should provide a diverse set of multimedia content for all entities of

interest, including, for instance, textual results of different lengths suited for different

audiences, descriptive images as well as images providing extended additional information,

related audio files, videos, etc. In PHENICX, we hence extend earlier work, focusing on

extracting information about composers, performers, pieces, and instruments, and take a

multimodal approach; enriching the presentation by videos and images.

3.2 Limitations of State-of-the-Art Approaches for Classical Music

All of the state-of-the-art methods to MIE are very limited when it comes to Classical music. The

two most important reasons are:

• All approaches were developed for Pop and Rock music, which is reflected by the

entities they are tailored to: bands, instruments (voice, guitar, bass, and percussion),

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 10 of 33

album covers, genre prototypicality, etc. Entities of interest in Classical music are, on

the other hand, not considered.

• Fans of Classical music are relatively reluctant to maintain web pages related

to their preferred genre, but also to use social media to talk about music or share

multimedia material, as we showed in a very recent study, in the context of PHENICX

[Schedl and Tkalčič; 2014]. Also commercial promoters of Classical music are sparse on

the web, compared to their amount for Pop and Rock music. Both yield to a limited

number of available web sites, especially on composers and pieces.

Given the latter reason and the fact that dedicated web sources already provide a high quality

of information and multimedia material, we decided to refrain from web crawling arbitrary

(music-related) web pages and instead tune our algorithms to identifying relevant pieces of

information, considering a fixed set of web sources, namely Wikipedia, Last.fm, and Freebase.

3.3 Existing MIE approaches in an orchestra setting

Nevertheless, we investigated the state-of-the-art approaches to MIE in an orchestra setting, as

demanded by PHENICX. In particular, we extended the rule-based approach for band member

detection [Schedl and Widmer, 2007] to typical orchestra settings, using corresponding

instrument names and roles, and we investigated its performance on web pages crawled for

RCO, using queries “Royal Concertgebouw Orchestra” members and “Royal

Concertgebouw Orchestra” musicians. However, as it turned out, performance was

very low, due to the nature of returned web pages. In particular, this is due to the facts that (i)

many more roles and sub-roles (e.g. first and second violin) exist in an orchestra setting than in

a Rock band setting, (ii) there are temporal changes (e.g. current versus past members or

temporary employments), and (iii) the different web sources frequently disagreed on who is a

member and who is not.

Manual inspection of the crawled web pages showed that dedicated web pages, such as the

official orchestra pages, but also encyclopedias like Wikipedia, provide the most

accurate results; better than those yielded by the extended rule-based member detection

approach. We hence decided to concentrate our efforts on mining a fixed set of data sources,

rather than extending underperforming existing approaches.

First we aimed at extracting information from general web sources that are not explicitly

created for providing information on music. One of the biggest sources for retrieving publicly

available informational material is Wikipedia. Thorough empirical analysis has shown that in

most cases Wikipedia offers more information than comparable sources. However, results are

not necessarily related to the desired musical information, so we have to deal with

disambiguation issues.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 11 of 33

To obtain better structured information, we also tried to use DBpedia, which uses information

from Wikipedia and presents them in a better organized way, i.e. adds structure and ontologies

to the material available. However, this is true only in theory. Our experiments showed that this

information is far too sparse to be used for retrieving valid text or multimedia material.

Nevertheless, the ontologies can be used to gather additional disambiguation patterns and to

derive heuristics for disambiguation.

3.4 Retrieving web information from Wikipedia

As stated in the DoW for Task 3.5, we start with a list of composers and pieces. As seed

composers and pieces we used the repertoire of the RCO planned for the seasons 2014 and

2015, which has also been used to create the standardized corpus of supporting multimedia

material, as part of D3.8.

The names of the seed composers and pieces were used as Wikipedia query. If there is more

than one result, disambiguation information from the DBpedia ontologies and basic

heuristics (such as taking the first page or the first page in which “music” occurs) can be used

to determine the correct Wikipedia page. DBpedia is a project that extracts data from Wikipedia

similar to the approach used for wiki2rdf [Meyer, 2013]. Although this approach only uses the

infoboxes of Wikipedia to draw conclusions, it is well suited for simple tasks like disambiguation.

Disambiguation information for “Bach” on DBpedia:

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_(surname)> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Johann_Sebastian_Bach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_family> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/BACH_motif> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Carl_Philipp_Emanuel_Bach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Johann_Christian_Bach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Vincent_Bach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_(surname)> .

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 12 of 33

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_an_der_Donau> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach,_Austria> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach,_Lot> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_quadrangle> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_(crater)> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Weesener_Bach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Maybach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Brown_Association_for_Cooperative_Housing> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Vincent_Bach_Corporation> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_flower_remedies> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bill_Bachrach> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_(New_Zealand)> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Bach_(surname)> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/Studio_apartment> .

<http://dbpedia.org/resource/Bach_(disambiguation)>

<http://dbpedia.org/ontology/wikiPageDisambiguates>

<http://dbpedia.org/resource/1814_Bach> .

Having found the URLs of the Wikipedia pages matching the given seed entities, the created

methods and scripts download the respective HTML pages automatically. Furthermore, they

extract the text and parse the HTML content to identify images and audio files.

These multimedia files are then automatically downloaded. Although audio files and videos are

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 13 of 33

hardly included in general Wikipedia pages, for pieces and composers, multimedia content is

available more frequently.

For audio files, this automatic multimedia retrieval can be performed as shown in the following

example from a Python script:

Sample code for retrieving URLs of audio files from within a web page:

def store_AudioFromHTML(content, description, output_dir_root):

 if content in "":

 return []

 # ensure that output directory structure exists

 if not os.path.exists(output_dir_root):

 os.makedirs(output_dir_root)

 # parse HTML content, looking at audio links

 audio_urls = []

 tokens = content.split("<audio ")

 for tok in tokens:

 audio_tag = tok.split("</audio>")

 # get index of important attributes within tag

 idx_src = audio_tag[0].find("src=\"")

 idx_type = audio_tag[0].find("type=\"")

 # extract corresponding attributes

 # src

 src_attribute = audio_tag[0][idx_src+len("src=\""):]

 src_attribute = src_attribute[:src_attribute.find("\"")]

 # validity check and dimension check

 if src_attribute[0:1] in "//" and src_attribute[-4:] in ".ogg":

 audio_urls.append(src_attribute)

 url = "http:" + src_attribute

 print "Retrieving " + url + ": " + src_attribute

 before, separator, file_name = urlparse(url).path.rpartition('/')

 try:

 urllib.urlretrieve(url, output_dir_root + file_name)

 except IOError:

 print "Error retrieving " + url

 return audio_urls

For images, we applied two different approaches, taking into account the structure of

Wikipedia. Sometimes, only smaller versions of the images are directly integrated into the web

page, but larger ones are linked to. In a first step, we hence automatically analyze the size of

such integrated images. If the image under consideration is sufficiently large, it is downloaded

and stored in the multimedia repository. In addition to this (faster) method, we make use of the

specific structure of Wikipedia pages to obtain the original sources in full size and typically

much better quality.

We considered three different ways to retrieve the original image:

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 14 of 33

• Using the srcset attribute of the image. This attribute is part of a HTML5 W3C

working draft7 and used by Wikipedia. It lists a set of different image sources with

different resolutions and consequently allows to retrieve images with higher quality.

• The img tag may be surrounded by a link leading to a URL. Usually the link has the

format href="/wiki/File:someFile.png". This URL leads to a page with all

different versions of the given file. The list includes information on image sizes and on

which image is the original one.

• In most cases, the description includes a tag: <div class="magnify">. This

element also contains the link href="/wiki/File:someFile.png" and can be

used if the image is not surrounded by a link. Usually, applying the first two approaches

already leads to the original file.

For retrieving textual information, we parse the HTML file and remove all links, references,

content tables, etc., as well as everything outside <div id="content">, i.e. the Wikipedia

navigation and layout, etc. As the structure of the sections is stored, headlines provide a means

of additional segmentation.

3.5 Retrieving web information from Last.fm

Wikipedia, as described in the last section, offers unstructured or semi-structured material with

long texts for different purposes. As it provides information on a theoretically unlimited number

of topics, it is hard to develop an overall structure that allows to retrieve topic-specific

information, especially if the content is user-generated.

Contrastingly, Last.fm explicitly offers music-related material. This leads to some interesting

new aspects. In addition to traditional web mining techniques like information extraction from

tags, cf. [Hariri, Mobasher, Burke, 2013], focusing on a certain topic allows Last.fm to pre-

define entities (e.g. the properties and relations of entities like songs and artists). This results in

the possibility to provide music-specific APIs. Of course, restricting properties of music entities

to the ones manually defined reduces the amount of available data. However, this approach

results in a better structure. The structure itself contains valuable information and eases the

semantic processing of data.

The following excerpt from our code shows how this structural information and the music-

tailored API can be used to retrieve specific information on an artist, like the biography, tags

added by users, pieces created by this artist and the fans on Last.fm:

Code excerpt for gathering artist information from Last.fm:

 # retrieve various requested info via Last.fm API

 # artist info

 if RETRIEVE_LASTFM_ARTIST_INFO:

7 http://www.w3.org/html/wg/drafts/srcset/w3c-srcset/

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 15 of 33

 json_data_info = lastfm_artist_api_call("artist.getInfo", item, output_dir_root

+ output_dir_raw_data)

 data_info = json.loads(json_data_info) # perform JSON processing

 # artist tags

 if RETRIEVE_LASTFM_ARTIST_TAGS:

 json_data_tags = lastfm_artist_api_call("artist.getTopTags", item,

output_dir_root + output_dir_raw_data)

 data_tags= json.loads(json_data_tags) # perform JSON processing

 # process tags and write output

 tags_str = [] # list to hold tags and weights (to use a generic function

for writing to output file)

 tags_str.append("tag" + "\t" + "weight")

 try:

 no_tags = len(data_tags["toptags"]["tag"])

 for tag_no in xrange(0,no_tags):

 tag = data_tags["toptags"]["tag"][tag_no]["name"]

 weight = data_tags["toptags"]["tag"][tag_no]["count"]

 tags_str.append(tag + "\t" + weight)

 except KeyError:

 tags = {}

 tags_str = []

 writeToFile_info("tags", tags_str, item, output_dir_root +

output_dir_structured_data + "/" + composer_quoted + "/Last.fm/tags/")

 # artist biographies

 if RETRIEVE_LASTFM_ARTIST_BIO:

 try:

 json_data_info = lastfm_artist_api_call("artist.getInfo", item,

output_dir_root + output_dir_raw_data)

 data_info = json.loads(json_data_info) # perform JSON processing

 # extract biographies

 bio = data_info["artist"]["bio"]["content"]

 bio = bio.split("\n\n")[0].strip() # get rid of link to main Last.fm

artist page and trim whitespace

 # unescape (get rid of unicode HTML stuff

 parser = HTMLParser.HTMLParser()

 bio_unescaped = parser.unescape(bio)

 writeToFile_info("bio", bio_unescaped, item, output_dir_root +

output_dir_structured_data + "/" + composer_quoted + "/Last.fm/bio/")

 except KeyError, e:

 print 'KeyError while parsing JSON file - reason "%s"' % str(e)

 # artist pieces

 if RETRIEVE_LASTFM_ARTIST_PIECES:

 json_data_tags = lastfm_artist_api_call("artist.getTopTracks", item,

output_dir_root + output_dir_raw_data)

 data_pieces = json.loads(json_data_tags) # perform JSON processing

 # process pieces and write output

 pieces_str = [] # list to hold pieces, playcount, listeners

 pieces_str.append("track" + "\t" + "duration" + "\t" + "playcount" + "\t" +

"listeners")

 try:

 no_tracks = len(data_pieces["toptracks"]["track"])

 for track_no in xrange(0,no_tracks):

 track = data_pieces["toptracks"]["track"][track_no]["name"]

 duration = data_pieces["toptracks"]["track"][track_no]["duration"]

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 16 of 33

 playcount = data_pieces["toptracks"]["track"][track_no]["playcount"]

 listeners = data_pieces["toptracks"]["track"][track_no]["listeners"]

 pieces_str.append(track + "\t" + duration + "\t" + playcount + "\t" +

listeners)

 except KeyError:

 pieces_str = []

 writeToFile_info("pieces", pieces_str, item, output_dir_root +

output_dir_structured_data + "/" + composer_quoted + "/Last.fm/pieces/")

 # fans

 if RETRIEVE_LASTFM_ARTIST_FANS:

 json_data_tags = lastfm_artist_api_call("artist.getTopFans", item,

output_dir_root + output_dir_raw_data)

 data_fans = json.loads(json_data_tags) # perform JSON processing

 # process pieces and write output

 fans_str = [] # list to hold pieces, playcount, listeners

 fans_str.append("name" + "\t" + "realname" + "\t" + "url" + "\t" + "weight")

 try:

 no_fans = len(data_fans["topfans"]["user"])

 for fan_no in xrange(0,no_fans):

 name = data_fans["topfans"]["user"][fan_no]["name"]

 realname = data_fans["topfans"]["user"][fan_no]["realname"]

 url = data_fans["topfans"]["user"][fan_no]["url"]

 weight = data_fans["topfans"]["user"][fan_no]["weight"]

 fans_str.append(name + "\t" + realname + "\t" + url + "\t" + weight)

 except KeyError:

 fans_str = []

 writeToFile_info("fans", fans_str, item, output_dir_root +

output_dir_structured_data + "/" + composer_quoted + "/Last.fm/fans/")

The information returned by the Last.fm API is not a web page that needs to be parsed and

analyzed, but a JSON file including already structured information:

JSON file returned by Last.fm when querying for “Carl Maria von Weber”:

{"artist":{"name":"Carl Maria von Weber","mbid":"c2d17829-1424-435b-9386-

c77d3a920abe","url":"http:\/\/www.last.fm\/music\/Carl+Maria+von+Weber","image":[{"#text

":"http:\/\/userserve-

ak.last.fm\/serve\/34\/71369818.png","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/71369818.png","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/71369818.png","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/71369818.png","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/500\/71369818\/Carl+Maria+von+Weber.png","size":"mega"}],"streamable"

:"0","ontour":"0","stats":{"listeners":"123083","playcount":"543827"},"similar":{"artist

":[{"name":"Antonio

Salieri","url":"http:\/\/www.last.fm\/music\/Antonio+Salieri","image":[{"#text":"http:\/

\/userserve-

ak.last.fm\/serve\/34\/70896890.png","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/70896890.png","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/70896890.png","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/70896890.png","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/500\/70896890\/Antonio+Salieri++1750++1825.png","size":"mega"}]},{"na

me":"Jules

Massenet","url":"http:\/\/www.last.fm\/music\/Jules+Massenet","image":[{"#text":"http:\/

\/userserve-

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 17 of 33

ak.last.fm\/serve\/34\/83465931.jpg","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/83465931.jpg","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/83465931.jpg","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/83465931.jpg","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/500\/83465931\/Jules+Massenet+jules_massenet2.jpg","size":"mega"}]},{

"name":"Carl

Stamitz","url":"http:\/\/www.last.fm\/music\/Carl+Stamitz","image":[{"#text":"http:\/\/u

serserve-

ak.last.fm\/serve\/34\/46513657.jpg","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/46513657.jpg","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/46513657.jpg","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/46513657.jpg","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/_\/46513657\/Carl+Stamitz+Stamitz.jpg","size":"mega"}]},{"name":"C\u0

0e9sar

Franck","url":"http:\/\/www.last.fm\/music\/C%C3%A9sar+Franck","image":[{"#text":"http:\

/\/userserve-

ak.last.fm\/serve\/34\/98867213.png","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/98867213.png","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/98867213.png","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/98867213.png","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/_\/98867213\/Csar+Franck.png","size":"mega"}]},{"name":"Johann

Nepomuk

Hummel","url":"http:\/\/www.last.fm\/music\/Johann+Nepomuk+Hummel","image":[{"#text":"ht

tp:\/\/userserve-

ak.last.fm\/serve\/34\/11151669.jpg","size":"small"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/64\/11151669.jpg","size":"medium"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/126\/11151669.jpg","size":"large"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/252\/11151669.jpg","size":"extralarge"},{"#text":"http:\/\/userserve-

ak.last.fm\/serve\/_\/11151669\/Johann+Nepomuk+Hummel+Hummel.jpg","size":"mega"}]}]},"ta

gs":{"tag":[{"name":"classical","url":"http:\/\/www.last.fm\/tag\/classical"},{"name":"r

omantic","url":"http:\/\/www.last.fm\/tag\/romantic"},{"name":"opera","url":"http:\/\/ww

w.last.fm\/tag\/opera"},{"name":"german","url":"http:\/\/www.last.fm\/tag\/german"},{"na

me":"classic","url":"http:\/\/www.last.fm\/tag\/classic"}]},"bio":{"links":{"link":{"#te

xt":"","rel":"original","href":"http:\/\/www.last.fm\/music\/Carl+Maria+von+Weber\/+wiki

"}},"published":"Fri, 19 Nov 2010 04:26:58 +0000","summary":"\n Carl

Maria Friedrich Ernst, Freiherr von Weber (18th November 1786\u20135th June 1826) was a

German composer, conductor, pianist, and critic, one of the first significant composers

of the Romantic school. Weber's works, especially his operas Der Freisch\u00fctz,

Euryanthe, and Oberon, greatly influenced the development of the Romantic opera in

Germany. He was also an innovative composer of instrumental music.\n\n Read more about Carl Maria

von Weber on Last.fm<\/a>.\n \n ","content":"\n Carl Maria

Friedrich Ernst, Freiherr von Weber (18th November 1786\u20135th June 1826) was a German

composer, conductor, pianist, and critic, one of the first significant composers of the

Romantic school. Weber's works, especially his operas Der Freisch\u00fctz, Euryanthe,

and Oberon, greatly influenced the development of the Romantic opera in Germany. He was

also an innovative composer of instrumental music.\n\n Read more about Carl Maria

von Weber on Last.fm<\/a>.\n \n \nUser-contributed text is available under the

Creative Commons By-SA License and may also be available under the GNU FDL.\n "}}}

Some pieces of information, like the biography of the artist, can directly be extracted from the

JSON file. In addition to this textual information, linked multimedia material can be

downloaded. For many images, different versions with different quality and resolution exist.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 18 of 33

Heuristics like evaluating the size attribute of the respective JSON object, or analyzing the file

URLs for contained size information, allows us to select the best image even before

downloading it, which makes the method efficient.

3.6 Retrieving web information from Freebase

Among the selected sources, Freebase offers the most structured information. Freebase relies

on a very strong, generic, and sophisticated ontology, which links all pieces of information

semantically. Every item within their database is part of a semantic net and has semantic

relations to other concepts, categories, and items.

As a matter of fact, our methods to retrieve web information from Freebase make use of this

additional information. Contrary to the previously introduced methods, we do not need an

initial set of seed entities like composers, pieces, or instruments, because e.g. “composer”

exists as a concept within the Freebase ontology, which increases the precision of queries.

The Freebase API provides a query language called MQL, which allows to search for items

matching a certain topic/category. Therefore, the scripts we developed to acquire pieces of

information from Freebase can easily be used for any entity, returning all results from Freebase

without having to deal with disambiguation problems.

It is sufficient to provide an entity type as input parameter, and all items of this type are

automatically processed. The following code example shows how this information is

downloaded and analyzed for additional images, which are then automatically and separately

downloaded as well. By default, Freebase offers only thumbnail images and shrinks the original

files. However, the thumbnail size can be overridden and if the requested size is at least as big

as the original file, the original file is returned in full size and resolution.

Code snippet for retrieving data from Freebase:

query = [{PROPERTY_ID: None, 'name': None, 'type': TYPE_OF_OBJECTS_TO_RETRIEVE, 'limit':

MAX_ITEMS}]

params = {

 'query': json.dumps(query),

 'key': api_key

}

url = service_url + '?' + urllib.urlencode(params)

print url

response = json.loads(urllib.urlopen(url).read())

if not os.path.exists(PATH_FOR_CRAWLS):

 os.makedirs(PATH_FOR_CRAWLS)

if not os.path.exists(PATH_FOR_IMAGES):

 os.makedirs(PATH_FOR_IMAGES)

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 19 of 33

count = 0

service_url2 = 'https://www.googleapis.com/freebase/v1/topic'

flst_out = open("./"+NAME_OF_OBJECTS_TO_RETRIEVE+".txt","a")

flst_out_img = open("./"+NAME_OF_OBJECTS_TO_RETRIEVE+"_images.txt","a")

for res_object in response['result']:

 if res_object['name'] is None:

 continue

 count += 1

 str_count = str(count)

 line = str_count + '\t' + res_object[PROPERTY_ID] + '\t' + res_object['name'] + '\n'

 line = line.encode('utf-8')

 flst_out.write(line)

 topic_id = res_object[PROPERTY_ID]

 print str_count+ ': ' + res_object['name'] + ' - ' + res_object[PROPERTY_ID]

 params = {

 'key': api_key,

 'filter': 'all'

 }

 url = service_url2 + topic_id + '?' + urllib.urlencode(params)

 data = urllib.urlopen(url).read()

 fobj_out = open(PATH_FOR_CRAWLS + "/" + str_count + ".json","w")

 fobj_out.write(data)

 fobj_out.close()

 objectdata = json.loads(data)["property"]

 str_img_count = "0"

 if "/common/topic/image" in objectdata:

 images = objectdata["/common/topic/image"]["values"]

 img_count = 0

 for img in images:

 img_count += 1

 str_img_count = str(img_count)

 url = "https://www.googleapis.com/freebase/v1/image" + img["id"] + "?maxwidth=" +

MAXIMUM_IMAGE_WIDTH + "&key=" + api_key

 try:

 urllib.urlretrieve(url, PATH_FOR_IMAGES + "/img_" + str_count + "_" +

str_img_count + ".jpg")

 line = str_count + '\t' + str_img_count + '\t' + img['id'] + '\t' + img['text']

+ '\n'

 line = line.encode('utf-8')

 flst_out_img.write(line)

 except IOError:

 print "Error retrieving " + url

 print str_count + ": " + str_img_count + " images"

flst_out.close()

flst_out_img.close()

As this method uses the entity as the input parameter, it no longer relies on a given set of

composers, pieces, performers, or instruments. This is especially useful as it helps to detect

new entities that might not have been included in the original input files of music entities. If

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 20 of 33

the results should be restricted to match certain conditions, this can easily be done using the

information provided by the semantic net. In any case, the exploitation of semantic information

helps to retrieve and detect entities that are maybe not commonly known or included in

predefined lists. For instance, searching for instruments, we could retrieve results for 1455

items. Our scripts retrieve JSON files as shown in the example below – in this case for the

instrument Chitravina, an instrument that is probably not well known in the Western world.

Code excerpt of the JSON file for the instrument “Chitravina”:

{

 "id": "/m/0546g0",

 "property": {

 "/common/topic/article": {

 "valuetype": "compound",

 "values": [

 {

 "text": "The chitravina (also known as chitra veena, chitraveena, chitra vina,

hanumad vina, or...",

 "lang": "en",

 "id": "/m/0546g5",

 "creator": "/user/mwcl_wikipedia_en",

 "timestamp": "2006-10-23T02:00:05.007Z",

 "property": {

 "/common/document/source_uri": {

 "valuetype": "uri",

 "values": [

 {

 "text": "http://wp/en/1472231",

 "lang": "",

 "value": "http://wp/en/1472231",

 "creator": "/user/mwcl_wikipedia_en",

 "timestamp": "2006-10-23T02:00:05.007Z"

 }

],

 "count": 1.0

 },

 "/common/document/text": {

 "valuetype": "string",

 "values": [

 {

 "text": "The chitravina (also known as chitra veena, chitraveena, chitra vina,

hanumad vina, or...",

 "lang": "en",

 "value": "The chitravina (also known as chitra veena, chitraveena, chitra vina,

hanumad vina, or mahanataka vina, is a 20 or 21-string fretless lute for Carnatic music

played mainly in South India today, though its origins can be traced back to Bharata's

Natya Shastra, where it is mentioned as a 7 string fretless instrument. It has undergone

numerous developments and is today among the more prominent solo instruments in Carnatic

music. It is also often seen in collaborative world music concerts and north-south

Indian jugalbandis.\nAround late 1800s and early 1900s, it had been bestowed another

name - "Gotuvadyam", Tamil: � � � � � � � � � � � � � �) (often misspelt as gottuvadyam,

gottuvadhyam, kottuvadyam etc.) by Sakha Rama Rao, who was responsible for bringing it

back to the concert scene. The fretless nature of the instrument makes it the closest

instrument to vocal standards. There are six main strings used for melody that pass over

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 21 of 33

the top of the instrument, three drone strings, and about twelve sympathetic strings

running parallel and below the main strings.\nThe approach to tuning is in some ways

similar to the sitar; in other ways it is similar to the Saraswati veena, but in many

ways it is",

 "creator": "/user/mwcl_wikipedia_en",

 "timestamp": "2006-10-23T02:00:05.007Z"

 }

],

 "count": 1.0

 },

 "/type/object/attribution": {

 "valuetype": "object",

 "values": [

 {

 "text": "Freebase Data Team",

 "lang": "",

 "id": "/m/0gs8",

 "creator": "/user/mwcl_wikipedia_en",

 "timestamp": "2006-10-23T02:00:05.007Z"

 }

],

 "count": 1.0

 },

 "/type/object/type": {

 "valuetype": "object",

 "values": [

 {

 "text": "Document",

 "lang": "",

 "id": "/common/document",

 "creator": "/user/mwcl_wikipedia_en",

 "timestamp": "2006-10-23T02:00:05.007Z"

 }

],

 "count": 1.0

 }

 }

 }

],

 "count": 1.0

 },

 "/common/topic/description": {

 "valuetype": "string",

 "values": [

 {

 "text": "The chitravina often spelt as gottuvadyam, gottuvadhyam, kottuvadyam

etc.), which was bestowed...",

 "lang": "en",

 "value": "The chitravina often spelt as gottuvadyam, gottuvadhyam, kottuvadyam

etc.), which was bestowed upon it by Sakha Rama Rao from Thanjavur, who was responsible

for bringing it back to the concert scene. Today it is played mainly in South India,

though its origins can be traced back to Bharata's Natya Shastra, where it is mentioned

as a seven string fretless instrument.",

 "creator": "/user/wikirecon_bot",

 "project": "wikirecon",

 "dataset": "/m/0kj4zz_",

 "citation": {

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 22 of 33

 "provider": "Wikipedia",

 "statement": "Description licensed under the Creative Commons Attribution-

ShareAlike License

(http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-

ShareAlike_3.0_Unported_License).",

 "uri": "http://en.wikipedia.org/wiki/Gottuvadhyam"

 }

 }

],

 "count": 3.0

 },

 "/common/topic/image": {

 "valuetype": "object",

 "values": [

 {

 "text": "Ravikiran 25 A",

 "lang": "en",

 "id": "/m/0bn3y85",

 "creator": "/user/mwcl_images",

 "timestamp": "2011-07-31T13:28:49.001Z"

 },

 {

 "text": "Ch2",

 "lang": "en",

 "id": "/m/0h5dhbq",

 "creator": "/user/mwcl_images",

 "timestamp": "2011-09-22T03:03:36.000Z"

 }

],

 "count": 2.0

 },

 "/common/topic/notable_for": {

 "valuetype": "object",

 "values": [

 {

 "text": "Musical instrument",

 "lang": "en",

 "id": "/music/instrument"

 }

],

 "count": 1.0

 },

 "/common/topic/notable_types": {

 "valuetype": "object",

 "values": [

 {

 "text": "Musical instrument",

 "lang": "en",

 "id": "/music/instrument"

 }

],

 "count": 1.0

 },

 "/common/topic/topic_equivalent_webpage": {

 "valuetype": "uri",

 "values": [

 {

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 23 of 33

 "text": "http://es.wikipedia.org/wiki/Chitra_vina",

 "lang": "",

 "value": "http://es.wikipedia.org/wiki/Chitra_vina",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-03-16T00:53:11.001Z"

 },

 {

 "text": "http://sv.wikipedia.org/wiki/Gottuvadhyam",

 "lang": "",

 "value": "http://sv.wikipedia.org/wiki/Gottuvadhyam",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-03-16T00:53:30.003Z"

 },

 {

 "text": "http://es.wikipedia.org/wiki/index.html?curid=4650603",

 "lang": "",

 "value": "http://es.wikipedia.org/wiki/index.html?curid=4650603",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-03-16T00:53:41.000Z"

 },

 {

 "text": "http://sv.wikipedia.org/wiki/index.html?curid=357207",

 "lang": "",

 "value": "http://sv.wikipedia.org/wiki/index.html?curid=357207",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-03-16T00:53:44.003Z"

 },

 {

 "text": "http://en.wikipedia.org/wiki/index.html?curid=1472231",

 "lang": "",

 "value": "http://en.wikipedia.org/wiki/index.html?curid=1472231",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-05-25T19:39:28.008Z"

 },

 {

 "text": "http://en.wikipedia.org/wiki/Gottuvadhyam",

 "lang": "",

 "value": "http://en.wikipedia.org/wiki/Gottuvadhyam",

 "creator": "/user/wikirecon_bot",

 "timestamp": "2013-05-25T19:40:01.003Z"

 }

],

 "count": 6.0

 },

 "/freebase/object_profile/object_generation_time": {

 "valuetype": "datetime",

 "values": [

 {

 "text": "2014-05-19T18:50:21.000Z",

 "lang": "",

 "value": "2014-05-19T18:50:21.000Z"

 }

],

 "count": 1.0

 },

 "/music/instrument/family": {

 "valuetype": "object",

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 24 of 33

 "values": [

 {

 "text": "Plucked string instruments",

 "lang": "en",

 "id": "/m/0fx80y",

 "creator": "/user/carmenmfenn1",

 "timestamp": "2009-03-05T09:41:32.012Z"

 }

],

 "count": 1.0

 },

…

[File truncated for this deliverable.]

The tools we developed automatically parse the returned JSON files. They extract the

textual descriptions as well as references to additional multimedia material. Having extracted

the IDs (and consequently the URLs) of the linked images, the crawlers fetch the original files

for the respective multimedia items. They are automatically downloaded and the meta-

information (e.g. the description of the images) is extracted and stored in the database. For the

example of the Chitravina, the following two images were found:

In several cases, as in the given example, Freebase links to Wikipedia content. In these cases,

the actual retrievable material is the same as for the Wikipedia crawls, but as it is better

structured than the Wikipedia data, it still offers additional information, which makes this

method an extraordinary valuable source of information.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 25 of 33

3.7 Storage and use of the web information

All pieces of information and multimedia items we retrieved applying the described methods

allowed us to set up different corpora of music-related multimedia content including

descriptions of different lengths, images, and audio files for the various musical entities

mentioned in the description of Task 3.5, i.e. composers, performers, pieces, and instruments.

The resulting multimedia database provides the material required for the user study that was

conducted as a joint endeavor for the D3.5 at hand and for D5.4. The acquired data is available

to all partners upon request.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 26 of 33

4 EVALUATION OF RELEVANCE AND QUALITY OF THE RETRIEVED

MATERIAL

Having retrieved the multimedia contents from different

web sources, as elaborated on in the previous section, the

questions arose, whether the developed methods work,

whether the automatically gathered pieces of information

are correct, and which of these materials are suited to be

presented to users, in terms of quality.

At this point, it is important to note that there is obviously

no “ground truth” for the task at hand. Addressing the

questions mentioned above, we hence performed two

types of assessments: a quantitative investigation

using simple heuristics, and a qualitative assessment;

the latter including (i) manual inspection by the authors

and (ii) a crowd-sourced questionnaire.

The first, quantitative investigation included a set of rules

and ensured, for instance, that images likely to be in bad

quality are removed. To this end, we implemented several

heuristics, tailored to the different data sources.

We could either retrieve actual image sizes (in pixels), categories of image sizes (small,

medium, large, extra-large) or make sure that no thumbnail is returned. Especially for cases

with several versions of the same picture, these assessments are important to retrieve the best

version (i.e. the one with the highest resolution).

For the qualitative assessment, we manually

inspected the retrieved contents, i.e. the

extracted pieces of text as well as the

multimedia files. All materials we manually

checked were related to the given queries.

However, the nature of the retrieved

materials was quite different for the different

sources. For instance, biographies and

descriptions retrieved from Last.fm and

Freebase are concise and of comparable

length for most composers. Wikipedia instead

provides textual descriptions of strongly

varying lengths, depending on popularity and

other factors.

Freebase: image returned for “Cello”.

Wikipedia: one of the 16 images for cello. The image

caption reads “Rosin is applied to bow hairs to

increase the "bite" of the bow on the strings.”

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 27 of 33

The same is true for images. Freebase usually offers up to 3 images per entity, which are very

closely related to the given query. Wikipedia, in contrast, offers strongly varying amounts of

images, which in some cases might not be as closely connected to the topic. For instance, for

“cello” there is only a single image provided by Freebase. However, this image shows quite well

what we expect from a picture of a cello. Wikipedia instead provides 16 different images,

including images of different types of cellos, chords, informational graphics on the parts of a

cello, cellists, or even images related to the usage of a cello and the materials required for

maintaining it, as shown in the second picture of the current section. This photograph, standing

on its own, is probably not the best one to describe a cello, but in addition to the text and other

images, it may provide interesting additional information.

As for the text modality, a short and concise description gives the reader a good first impression

of a music entity, whereas a long text provides additional information, likely of high value

someone interested in details. We assume that different users prefer different types of

information with different levels of granularity and detail.

To verify this assumption, we performed a second qualitative assessment, a crowd-sourced

questionnaire. This questionnaire, implemented via Mechanical Turk,8 was a joint endeavor,

relating to both the deliverable at hand D3.5 and D5.4.

For D3.5, the aim of the study was to determine whether there exist general preferences

towards the following information categories:

1. length or amount of information (e.g. text), or number of items (e.g. images)

2. modality of material: text, image, and audio

3. entity of the item: composer, piece, performer, and instrument

For D5.4, the questionnaire aimed at providing the data necessary to cluster users according to

specific, individual preferences, given the categories mentioned above.

In total, 167 users participated in the questionnaire, which yielded statistically significant

results. Users were asked for feedback on whether they regarded the presented material (i.e.

the material gained through the methods described in the current deliverable) as (i)

interesting and (ii) providing novel information. Furthermore, they could provide free-

form feedback, a function used surprisingly frequently to indicate positive feelings towards the

experiment and the music in general.

The material, grouped based on the length or amount (long/short or few/many items), modality

(text/image/audio) and entity (composer/piece/orchestra), was rated by the subjects relating

the statement »I find the content interesting« a Likert rating from 1 to 5 (stemming from »I

strongly disagree to »I strongly agree«). Analyzing the results of the study showed no

8 https://www.mturk.com

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 28 of 33

substantial differences in the distribution of the ratings among different groups. Most of the

users gave a rating of 4 (i.e. »I agree«), as shown in the following histograms of the results:

1 2 3 4 5
0

100

200

300

400

500

600
Long content

rating

o
c
c
u
r
r
e
n
c
e
s

1 2 3 4 5
0

100

200

300

400

500
Short content

rating

o
c
c
u
r
r
e
n
c
e
s

Histograms of ratings (from 1 to 5) to the question how interesting the presented material is, analyzed for short

vs. long content.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 29 of 33

1 2 3 4 5
0

200

400

600

Text content

rating

o
c
c
u
r
r
e
n
c
e
s

1 2 3 4 5
0

200

400

600
Image content

rating

o
c
c
u
r
r
e
n
c
e
s

1 2 3 4 5
0

50

100

150
Audio content

rating

o
c
c
u
r
r
e
n
c
e
s

Histograms of ratings (from 1 to 5) to the question how interesting the presented material is, analyzed for

various categories of multimedia (text, image, audio).

1 2 3 4 5
0

200

400
Composer content

rating

o
c
c
u
r
r
e
n
c
e
s

1 2 3 4 5
0

200

400
Piece content

rating

o
c
c
u
r
r
e
n
c
e
s

1 2 3 4 5
0

100

200

300
Orchestra content

rating

o
c
c
u
r
r
e
n
c
e
s

Histograms of ratings (from 1 to 5) to the question how interesting the presented material is, analyzed for

various entities (composer, piece, performer).

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 30 of 33

The means and standard deviations of the ratings for each group are as follows, and show no

statistically significant differences in the ratings. Solely, and surprisingly, users generally tend to

prefer textual information over audio and image. However, we hypothesize that users anyways

expect to hear music in a user study about Classical music; so this category of information

becomes less important.

Length/Amount:

Long: 3.41 +- 1.16

Short: 3.53 +- 1.07

Modality:

Text: 3.65 +- 1.09

Image: 3.38 +- 1.10

Audio: 3.14 +- 1.17

Entity:

Composer: 3.51 +- 1.11

Piece: 3.46 +- 1.12

Performer: 3.41 +- 1.14

These results show that there are no general preferences towards any of the categories

of information, which in turn means that different users prefer different types of material. It is

hence necessary to store all kinds of information (on various entities, in various

lengths/amounts, and in various modalities) in order to provide each user with the desired

information, offering a personalized experience.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 31 of 33

5 CONCLUSION

For the task addressed in the deliverable D3.5 at hand, i.e. Task 3.5., we developed a set of

methods to automatically retrieve multimedia items (text, image, and audio) on

music entities, such as piece, composer, performer, and instrument. Contrary to state-

of-the-art approaches to Music Information Extraction (MIE), which are tailored exclusively to

identifying textual pieces of information, we presented methods and heuristics to gather

multimedia data from generic web pages as well as from specifically music-related sources and

online catalogues, making use of ontologies, structures, and semantic information

contained. Hence, our methods are not limited to textual information, such as composer’s

biographies; in addition, multimedia material is automatically identified, downloaded,

tagged, and categorized. This material is used for the corpus of musical multimedia content

that is continuously being extended as a part of WP3, and will eventually form D3.9 (“final

corpus of supporting multimedia material”).

To summarize the work conducted for this deliverable, we list the main tasks performed:

- Investigating the state-of-the-art in Music Information Extraction (MIE)

- Implementing and adapting state-of-the-art methods to detect members of a

performing body (e.g. violin players of RCO), and evaluation thereof

- Identifying various web resources that provide multimedia material on composers,

performers, pieces, and instruments

- Developing methods to automatically acquire pieces of information on the musical

entities, from the general sources represented by Wikipedia/DBpedia, Last.fm, and

Freebase. This includes elaborating disambiguation techniques and quality assessment

techniques in order to identify relevant and high-quality material.

- Running the methods on input data from RCO and ESMUC (partially reported in

deliverables D3.7 and D3.8) as well as on the level of music entities, when using

Freebase.

- Conducting several quantitative and qualitative validation experiments: statistical

figures of the gathered pieces of information (cf. D3.7 and D3.8), manual inspection,

and crowd-sourced questionnaire.

Summing up we conclude that web resources can be categorized according to the amount of

data available, the level of detail, the type of multimedia material (text, audio, image), and the

semantic information provided. We presented methods that make use of different sources in

order to set up a musical database providing different multimedia content for pieces,

composers, performers, and instruments. We applied these methods to gather a diverse set of

material, enabling user-adaptive information provision, which is one central goal of WP5. We

further showed that our methods are able to extract semantically relevant information of

different kinds.

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 32 of 33

6 REFERENCES

6.1 Written references

[Govaerts and Duval, 2009]: A Web-based Approach to Determine the Origin of an Artist.
Proceedings of the 10th International Society for Music Information Retrieval Conference
(ISMIR), Kobe, Japan, October 2009.

[Hariri, Mobasher, Burke, 2013]: Personalized Text-Based Music Retrieval. Workshops at the
Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[Knees and Schedl, 2011]: Towards Semantic Music Information Extraction from the Web Using

Rule Patterns and Supervised Learning. Proceedings of the 2nd Workshop on Music
Recommendation and Discovery (WOMRAD), Chicago, IL, USA, October 2011.

[Krenmair, 2010]: Musikspezifische Informationsextraktion aus Webdokumenten, MSc thesis,
Johannes Kepler University Linz, Austria, 2010.

[Meyer, 2013]: wiki2rdf: Automatische Extraktion von RDF-Tripeln aus Artikelvolltexten der

Wikipedia. Information - Wissenschaft & Praxis. 64(2-3): 69-172, 2013.

[Schedl, Knees, Pohle, Widmer, 2006]: Towards Automatic Retrieval of Album Covers.
Proceedings of the 28th European Conference on Information Retrieval (ECIR), London, UK,
April 2006.

[Schedl and Widmer, 2007]: Automatically Detecting Members and Instrumentation of Music

Bands via Web Content Mining. Proceedings of the 5th Workshop on Adaptive Multimedia
Retrieval (AMR), Paris, France, July 2007.

[Schedl, Seyerlehner, Schnitzer, Widmer, Schiketanz, 2010]: Three Web-based Heuristics to

Determine a Person’s or Institution’s Country of Origin. Proceedings of the 33th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), Geneva, Switzerland, July 2010.

[Schedl, Widmer, Knees, Pohle, 2011]: A music information system automatically generated via

web content mining techniques. Information Processing & Management, 47, 2011.

[Schedl and Tkalčič; 2014]: Genre-based Analysis of Social Media Data on Music Listening

Behavior: Are Fans of Classical Music Really Averse to Social Media?. First International
Workshop on Internet-Scale Multimedia Management (ISMM 2014) @ ACM Multimedia
(submitted), November 2014, Orlando, FL, USA.

6.2 Acronyms and abbreviations

DoW Description of Work
MIE Music Information Extraction
PoS Part-of-Speech (tagging)
SVM Support Vector Machine

PHENICX-WD-WP3-JKU-140731-Webinfo_Methods-1.1 Page 33 of 33

