
P2P-Next D5.2.1d

216217 P2P-Next
D5.2.1d

Content packaging, ingestion, and adaptation

Contractual Date of Delivery to the CEC: 31st December 2011
Actual Date of Delivery to the CEC: 31st December 2011

Author(s): Michael Eberhard (UNIKLU)
Participant(s): Chris Needham (BBC), Dusan Gabrijel (JSI)

Workpackage: 5
Est. person months:

Security: PU
Nature: P

Version: 1.9
Total number of pages: 74

Abstract:
This deliverable contains descriptions of the solutions for content packaging, content ingestion, and
content adaptation utilized within the NextShare system.

Keyword list: Content packaging, content ingestion, content adaptation

Page 1

P2P-Next D5.2.1d

Version History

Version Author Description Date
0.1 Michael Eberhard Initial Draft 09-01-2009

1.0 Michael Eberhard
Added BBC's content ingestion approach, an
alternative for content packaging and more
details to content adaptation

27-02-2009

1.1 Dušan Gabrijel Added JSI content ingestion approach and
more details on its implementation 28-02-2009

1.2 Michael Eberhard Updated content packaging part according to
the architecture for M24 30-10-2009

1.3 Michael Eberhard Updated content adaptation part, various
minor updates 07-12-2009

1.4 Michael Eberhard
Updated content ingestion part, minor
updates according to feedback from internal
review

21-12-2009

1.5 Michael Eberhard Updated content adaptation 09-11-2010
1.6 Michael Eberhard Update of all sections for M36 07-12-2010

1.7 Michael Eberhard Updates according to feedback from internal
review 16-12-2010

1.8 Michael Eberhard Initial version for M48 07-11-2011
1.9 Michael Eberhard Final version 19-12-2011

Page 2

P2P-Next D5.2.1d

Executive Summary

This document describes the content packaging, content ingestion, and content adaptation solutions
utilized within NextShare. A more detailed description of each of the three parts is provided in the
following.
The content packaging provides a solution to packetize the content, the metadata and possibly
additional metadata for the content items. To ensure backwards compatibility to older Bittorrent
clients, the top-level description of every content item is a torrent file. In addition to the usual
torrent attributes, the file contains the core metadata as specified in [1] and possibly references to
optional metadata or other data related to the content item. The additional data referenced can be
provided by either the peer-to-peer system or alternatively by servers. The main reasons for
selecting this packaging solution were to keep the top-level torrent file rather small by only storing
the essential data within the torrent file and to still provide all the necessary metadata attributes
needed for search (which are provided by the core metadata).

The content ingestion part describes tools needed to ingest professional content as well as user-
generated content into the NextShare system. As the first trials of the NextShare system will only
use professional content, this version of this deliverable only provides two ingest mechanisms for
professional content providers, i.e., the content ingestion approach utilized by BBC and JSI.
The content adaptation solution provides a codec-agnostic adaptation framework for scalable video
content. This adaptation solution is developed as the joint work of WP4, WP5, and WP6. In this
deliverable, the piece-picking algorithm, which provides a mechanism to download the pieces of the
highest possible quality while still ensuring that the pieces are downloaded in time for playback, is
described in detail. Additionally, the context-related metadata, which reflect the capabilities of the
user terminals as well as the user preferences, are described.
The main changes to the previous version of this deliverable include:

Section 2 was not updated, as the content packaging solution has not been modified. Only
Section 2.2 has been updated to point out that the software package is not provided with this
deliverable anymore, but has been integrated into NextShare and is part of the NextShare
software package [7].
Section 3.1 was not updated, as BBC's content ingest solution has not been modified.

Section 3.2 was updated to describe the updates of JSI's content ingest solution (in
particular, Sections 3.2.5 and 3.2.6 have been updated). Again, the software package is not
provided with this deliverable anymore, but has been integrated into NextShare and is part of
the NextShare software package [7].
Section 4.3.2 has been updated to document the new work on the piece-picking algorithm.

Page 3

P2P-Next D5.2.1d

Table of Contents

 1 Introduction..7
 2 Content Packaging..8

 2.1 Usage of MPEG-21 Digital Item Declaration..8
 2.2 Packaging API...14

 3 Content Ingestion..16
 3.1 BBC content ingest and publishing solution..16

 3.1.1 Aims and requirements..16
 3.1.1.1 BBC proposed architecture...16

 3.1.1.1.1 Discovery and Metadata Service...17
 3.1.1.1.2 VOD Torrent Control..17
 3.1.1.1.3 VOD Ingest Platform..17
 3.1.1.1.4 Live Torrent Control...18
 3.1.1.1.5 BBC Headend...18

 3.1.2 System in Operation..18
 3.1.2.1 Client Interaction..18
 3.1.2.2 Video on Demand Ingest Example..19
 3.1.2.3 Ingest Data Model..20

 3.1.3 Alternative solutions for ingest and publishing...21
 3.1.3.1 URIPlay...21
 3.1.3.2 ULANC implementation for Living Labs Trial...22

 3.1.4 Implementation Status...23
 3.2 JSI content ingest and publishing solution...23

 3.2.1 Scope of the solution...24
 3.2.1.1 Content acquisition...24
 3.2.1.2 Store content..24
 3.2.1.3 Content adaptation...24
 3.2.1.4 Content injection..24
 3.2.1.5 Monitor content usage..24
 3.2.1.6 Reporting on content distribution and usage...25
 3.2.1.7 Content removal...25
 3.2.1.8 Replace content..25

 3.2.2 Scenario of system usage through basic steps..25
 3.2.3 Content provisioning process design ...27
 3.2.4 Content provisioning process implementation..28
 3.2.5 RichMetadata Python implementation...29

 3.2.5.1 Example of usage ..30
 3.2.5.1.1 The metagen tool ...30

 3.2.5.1.1.1 Generating core metadata ...30
 3.2.5.1.1.2 Generation of optional metadata ...30
 3.2.5.1.1.3 Generation of MPEG 21 DID metadata ..31

 3.2.5.1.2 Programming interface ...32
 3.2.5.1.3 Integration in the core ..33

Page 4

P2P-Next D5.2.1d

 3.2.5.2 Implementation performance ...35
 3.2.6 Provider Toolbox...36

 3.2.6.1 Dependencies ..37
 3.2.6.2 Before using the toolbox..37
 3.2.6.3 Feed lifecycle management ...38

 3.2.6.3.1 Setting up an example web server ..39
 3.2.6.3.2 Adjust default settings ..40
 3.2.6.3.3 Get the feed initially ..40
 3.2.6.3.4 Updating the feed ...40

 3.2.6.3.4.1 Updating the feed from the cron ...41
 3.2.6.3.5 Bring up the torrent server ...41
 3.2.6.3.6 Generating a discovery feed ...41
 3.2.6.3.7 Managing the feed window ..41
 3.2.6.3.8 Listing the feeds ...42
 3.2.6.3.9 Removing the publications or feeds ...42

 3.2.6.4 Tools documentation and examples of usage ...42
 3.2.6.4.1 Getfeed tool ...42

 3.2.6.4.1.1 Command line options and their details ..42
 3.2.6.4.1.1.1 Location option ...43
 3.2.6.4.1.1.2 Publish option ...44
 3.2.6.4.1.1.3 Export url option ...44
 3.2.6.4.1.1.4 Feed uid and image options ...45
 3.2.6.4.1.1.5 Update option ...46
 3.2.6.4.1.1.6 Feed option ...46
 3.2.6.4.1.1.7 Json outputs ..46

 3.2.6.4.1.2 Quick summary ..46
 3.2.6.4.2 Discoveryfeed tool ...47

 3.2.6.4.2.1 Command line options and their details ..47
 3.2.6.4.2.2 Quick summary ..47

 3.2.6.4.3 Managefeed tool ..47
 3.2.6.4.3.1 Create a feed ..49
 3.2.6.4.3.2 Add item to the feed ...50
 3.2.6.4.3.3 Getting the atom feed ...54
 3.2.6.4.3.4 Obtaining the discovery feed ..55
 3.2.6.4.3.5 ClosedSwarm items ..56

 3.2.6.4.4 Publisher ..56
 3.2.6.4.4.1 Controlling the publisher ..57

 3.2.7 Conclusion...57
 4 Content Adaptation...58

 4.1 SVC Architecture..58
 4.1.1 Scalability Layers..58
 4.1.2 Mapping to Bittorrent Pieces...59

 4.2 MPEG-21 DIA Context-related Metadata..60
 4.3 Layered Piece-Picking...62

 4.3.1 Introduction to Piece-Picking...62
 4.3.2 The Piece-Picking Algorithm...64

 5 References..68
Annex A...70

Page 5

P2P-Next D5.2.1d

Index of Figures
Figure 1: Packaging Solution Overview..8
Figure 2: MPEG-21 DID Example..10
Figure 3: BBC content ingest and publishing service..17
Figure 4: Client interaction example...19
Figure 5: VOD ingest example...20
 Figure 6: Ingest data model..21
Figure 7: URIPlay Content Ingestion Architecture..22
Figure 8: ULANC implementation...23
Figure 9: Scenario of the content provisioning process ..26
Figure 10: Content provisioning process design..27
Figure 11: ProviderToolbox process sketch...38
Figure 12: Piece Mapping...60
Figure 13: Sliding Window...63
Figure 14: Piece-Picking States..63
Figure 15: Decision Intervals..64

Index of Tables
Table 1: URN for dii:Type..11
Table 2: DID API Description...15
Table 3: Scalability Layers..58
Table 4: Calculation of Piece Mapping...59

Page 6

P2P-Next D5.2.1d

 1 Introduction
The present document describes the content packaging, content ingestion and content adaptation
mechanisms applied within the NextShare system.
The content packaging part provides a framework for packetizing of all media and metadata files.
Additionally, backwards compatibility to other Bittorrent clients should be assured by still
providing a torrent file compatible with the Bittorrent protocol. Thus, the main file of a content
package is the torrent file, which contains the core metadata, that are required for searching. All
other metadata are referenced from this top-level torrent file. The main reason for utilizing this
mechanism is that the torrent file should be as small as possible, as it needs to be distributed to all
peers, but should still contain sufficient data to be able to discover the desired content based on the
information within the torrent file.
The content ingestion part describes tools needed to ingest professional content as well as user-
generated content into the NextShare system. As the first trials of the NextShare system will only
use professional content, this version of this deliverable only provides two ingest mechanisms for
professional content providers, i.e., the content ingestion approach utilized by BBC and JSI. Based
on these two content ingestion mechanisms, a prosumer tool will be developed that allows third
party content providers to join the NextShare trials. The content ingestion approaches are described
in Section 3.

The content adaptation part describes the integration of scalable content into the NextShare system.
As the users of the NextShare system use heterogeneous terminals and are connected to networks
with different bandwidth capabilities, it is desirable to provide these users with multimedia streams
in different qualities. Additionally, the network conditions in our system are not always stable and
due to changes in the network connections a change in quality of content might be desirable.
However, if one multimedia stream would be distributed in different encodings, it is highly unlikely
that all versions would be equally distributed among the users of the NextShare system and a
switching between the different versions would be rather difficult. A feasible alternative is
providing a scalable bitstream, which provides the bitstream once in best quality but can be easily
adapted to a lower quality. The integration of such a scalable codec into the NextShare system is
described in Section 4.

Page 7

P2P-Next D5.2.1d

 2 Content Packaging
The task 5.2.1, content packaging, provides a framework for packetizing the metadata and media
resources and to reference them from the top-level torrent file to enable easy content ingestion. A
main requirement for this task is that we want to be backwards compatible with other Bittorrent
clients. Thus, a torrent file compatible with the Bittorrent protocol needs to be provided as top-level
description. However, the torrent files contain only a small part of the metadata needed to represent
rich media content. Therefore, a packaging solution for the metadata as defined in [1], the media
resources and possibly additional data like LIMO data [2] needs to be provided.
Based on these considerations, a packaging solution utilizing MPEG-21 Digital Item Declaration
(DID) [3] is proposed. An overview of this packaging solution is illustrated below.

The top-level torrent file contains the references and hash values for the media resources, i.e., for
the MPEG-2 Transport Stream containing the H.264 video and the audio content, and possibly for
the Scalable Video Coding (SVC) enhancement layers [4], if the video content is scalable.
Additionally, the torrent file contains the top levels of the MPEG-21 DID description, which might
be encoded in binary XML (or just provided as plain XML). The DID included in the torrent file
contains the core metadata from the P2P-Next Rich Metadata specification and references to other
metadata and resources. The main reason for storing only the core metadata directly in the torrent
file is that we want to keep the size of the torrent file as small as possible (by referencing the other
data) and still provide sufficient data to base the search on the content of the torrent file. A more
detailed description of the structure of the DID is provided in the next section.

 2.1 Usage of MPEG-21 Digital Item Declaration
This section describes the packaging of an P2P-Next Item utilizing an MPEG-21 DID. The P2P-
Next Item contains all media resources, metadata, and possible additional data related to a single
digital object. The P2P-Next Item is described by an DID which structures content and metadata.
The DID contains relevant metadata and provides references to media resources and distributed

Page 8

Figure 1: Packaging Solution Overview

P2P-Next D5.2.1d

metadata. The core metadata from the P2P-Next Rich Metadata (RM) specification are directly
included in the top levels of the DID. All optional RM such as payment, advertisement, and
scalability is referenced via XML Inclusions (Xinclude), as these metadata are only required for
specific services and might be provided, e.g., on a secure server for payment. The data for LIMO is
also referenced through XInclude. The LIMO data is based on HTML 5 and can contain HTML or
Javascript code, style sheets or media resources. As it is difficult to include media resources into
XML files (base64 encoding is not a feasible solution for large media resource files) the LIMO
content is packetized into the MPEG-21 file format [5], which contains another DID that references
all the LIMO content within the MPEG-21 file. In this way, the part of the DID that is stored
directly in the torrent file is kept as small as possible while retaining a complete DID structure and
conveying the RM core metadata inside the torrent file for increased search performance. Thus,
there are two (or more) DIDL documents.
The main document conveys the overall structure of the P2P-Next Item and core metadata. It is
stored inside the torrent file. The additional document is stored in the XML-Box of an MPEG-21
file and can contain the additional RM as well as data for LIMO. The torrent file references that
MPEG-21 file. The main document references parts of the additional document as described above.
However, the conceptual DID model for the P2P-Next Item should be seen as one entity, only its
physical representation is split into two (or more) documents. Please note that the usage of an
MPEG-21 file is not mandatory. The second DID document does not necessarily need to be stored
within an MPEG-21 file. If it is more advantageous to distribute the LIMO content and the
additional metadata in separate files, the DID just needs to reference these files and the can be
provided separately through the NextShare system or on servers. The MPEG-21 file just provides
one possibility to store all the additional data together, if such a packaging mechanism is desired.
Figure 2 outlines the DID for a P2P-Next Item. The building blocks of a DID are shown on the left
side. On the right side of the figure, shapes with a dotted outline indicate data that is not directly
contained within the main DIDL document in the torrent file, but is rather being referenced for the
concern of decreased size of the torrent file.

Page 9

P2P-Next D5.2.1d

The P2P-Next Item is represented by an Item. The dii:Identifier is an MPEG-21 Digital Item
Identifier (DII) for the entire item, e.g., the Uniform Resource Name (URN) "urn:p2p-
next:item:bbc-bbcone-b00n9p5x". It is enclosed by a Statement inside a Descriptor. Note that
Statements are not shown in this figure for the sake of simplicity. The next Descriptor contains a
Statement with a dii:RelatedIdentifier which allows identifying the underlying work described by a
Digital Item (DI). In this case, the RelatedIdentifier defines an "isAbstractionOf" relation to the
underlying media content, e.g., identified by "urn:bbc-bbcone-b00n9p5x". This underlying media
content is independent of the P2P-Next system. The dii:Type identifies the structure of this DID. It
is set statically to the URN "urn:p2p-next:type:item:2009" and, thus, determining the position
within the DID and which building blocks are allowed. The structure of this DID is defined as part
of this deliverable.
The RM is represented following the Rich Metadata specification [1]. The Descriptor for the RM is
structured as follows. The core metadata is contained within a Statement which is typically the last

Page 10

Figure 2: MPEG-21 DID Example

P2P-Next D5.2.1d

element in this Descriptor. Some nested Descriptors precede that Statement. The first one contains
the dii:Type for the core metadata. This Type is set statically to "urn:p2p-next:type:rm:core:2009"
and identifies the structure of the RM core metadata within a P2P-Next Item as defined by [1].

All additional RM is contained in further nested Descriptors which are referenced via XInclude. For
each Descriptor, an xi:include element points to Descriptor in the additional DIDL document. Each
of these Descriptor has a dii:Type to identify its structure and consequently its purpose. The Types
are listed in Table 1. Each Descriptor contains a Statement which conveys the RM representation of
the appropriate RM part. More details on the URNs utilized within NextShare are provided in
Annex A.

Additional Metadata URN for dii:Type

Payment urn:p2p-next:type:rm:payment:2009

Advertisement urn:p2p-next:type:rm:advertisement:2009

Scalability urn:p2p-next:type:rm:scalability:2009

Table 1: URN for dii:Type
There are two Components in the DID for the P2P-Next Item. The first Component contains all data
for LIMO. It is stored in the additional DIDL document inside the separate MPEG-21 file. It is
included into the main document by means of an xi:include element. The dii:Type in its first
Descriptor is set statically to the URN "urn:p2p-next:type:limo:2009". Further Descriptors contain
resources required by the actual LIMO resource (i.e., the HTML content). These resources may be
JavaScript files, Cascading Style Sheets (CSS) as well as JPEG or PNG images. Each Descriptor
contains an id attribute, uniquely identifying that resource within the P2P-Next Item. It is proposed
to use the original file name of a resource in all lower-case characters for the id value if applicable.
The resources with text content are contained directly in a CDATA section of the Resource. On the
other hand, resources with binary content, such as JPEG images, are bundled in the MPEG-21 file.
The Resource of the Component contains the HTML page representing the LIMO content. As the
required resources are not in actual files but rather in one MPEG-21 wrapper file, all references to
the original files have to be replaced in the HTML document by the corresponding ids. For
example, the reference to the file "script.js" would be replaced by "#script.js", a reference to the
Descriptor with the id "script.js". These replacements could be accomplished by means of an XSL
Transformation (XSLT). The HTML document for LIMO is contained in the CDATA section of the
Resource.

The second Component in this Item represents the actual media content. The media content shall
typically be packed into an MPEG-2 TS. The Component contains a Descriptor with a dii:Type
which is set to "urn:p2p-next:type:content:2009". Furthermore, a second Descriptor may be present,
conveying technical metadata about the TS (such as bitrate, size, etc.). The actual binary data of the
TS is referenced through a Resource within the Component.
An example of how such a DID can be composed is illustrated below.
<didl:DIDL xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS"
xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS" xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd
urn:mpeg:mpeg21:2002:01-DII-NS dii.xsd">

<didl:Item>
<didl:Descriptor>

Page 11

P2P-Next D5.2.1d

<didl:Statement mimeType="text/xml">
<dii:Identifier>

urn:p2p-next:item:bbc-bbcone-b00n9p5x
</dii:Identifier>

</didl:Statement>
</didl:Descriptor>
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:RelatedIdentifier relationshipType=
"urn:mpeg:mpeg21:2002:01-RDD-NS:IsAbstractionOf">

urn:bbc-bbcone-b00n9p5x
</dii:RelatedIdentifier>

</didl:Statement>
</didl:Descriptor>
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:Type>urn:p2p-next:type:item:2009</dii:Type>

</didl:Statement>
</didl:Descriptor>
<didl:Descriptor>

<!-- rich metadata -->
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:Type>urn:p2p-next:type:rm:core:2009</dii:Type>

</didl:Statement>
</didl:Descriptor>
<!-- references to additional RM -->
<xi:include href="put_here_URI_of_m21_in_torrent"
xpointer="rm.payment" />
<xi:include href="put_here_URI_of_m21_in_torrent"
xpointer="rm.advertisement" />
<xi:include href="put_here_URI_of_m21_in_torrent"
xpointer="rm.scalability" />
<didl:Statement mimeType="text/xml">

<!-- P2P-Next RM -->
</didl:Statement>

</didl:Descriptor>
<!-- References to LIMO -->
<xi:include href="put_here_URI_of_m21_in_torrent" xpointer="limo" />
<didl:Component>

<didl:Descriptor>
<didl:Statement mimeType="text/xml">

<dii:Type>urn:p2p-next:type:content:2009</dii:Type>
</didl:Statement>

</didl:Descriptor>
<didl:Descriptor>

<didl:Descriptor>
<didl:Statement mimeType="text/xml">

<dii:Type>
urn:p2p-next:type:content:metadata:2009

</dii:Type>
</didl:Statement>

</didl:Descriptor>
</didl:Descriptor>
<didl:Resource mimeType="video/mp2t"
ref="put_here_URI_of_mp2ts_in_torrent"/>

</didl:Component>
</didl:Item>

</didl:DIDL>

The second example shows the additional DIDL document that is included within the MPEG-21 file
for additional metadata and LIMO content. This DIDL document also contains Descriptors for the
dii:RelatedIdentifier and dii:Type. The dii:RelatedIdentifier references the main DIDL document
through a "IsPartOf". The dii:Type is set to "urn:p2p-next:type:item:additional:2009".

Page 12

P2P-Next D5.2.1d

<didl:DIDL xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS"
xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd
urn:mpeg:mpeg21:2002:01-DII-NS dii.xsd">

<didl:Item>
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:RelatedIdentifier relationshipType=
"urn:mpeg:mpeg21:2002:01-RDD-NS:IsPartOf">

urn:p2p-next:item:bbc-bbcone-b00n9p5x
</dii:RelatedIdentifier>

</didl:Statement>
</didl:Descriptor>
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:Type>urn:p2p-next:type:item:additional:2009</dii:Type>

</didl:Statement>
</didl:Descriptor>
<!-- Additional RM -->
<didl:Descriptor id="rm.payment">

<didl:Descriptor>
<didl:Statement mimeType="text/xml">

<dii:Type>urn:p2p-next:type:rm:payment:2009</dii:Type>
</didl:Statement>

</didl:Descriptor>
<didl:Statement mimeType="text/xml">

<!-- P2P-Next RM on payment -->
</didl:Statement>

</didl:Descriptor>
<didl:Descriptor id="rm.advertisement">

<didl:Descriptor>
<didl:Statement mimeType="text/xml">

<dii:Type>urn:p2p-next:type:rm:advertisement:2009</dii:Type>
</didl:Statement>

</didl:Descriptor>
<didl:Statement mimeType="text/xml">

<!-- P2P-Next RM on advertisement -->
</didl:Statement>

</didl:Descriptor>
<didl:Descriptor id="rm.scalability">

<didl:Descriptor>
<didl:Statement mimeType="text/xml">

<dii:Type>urn:p2p-next:type:rm:scalability:2009</dii:Type>
</didl:Statement>

</didl:Descriptor>
<didl:Statement mimeType="text/xml">

<!-- P2P-Next RM on scalability -->
</didl:Statement>

</didl:Descriptor>
<didl:Component id="limo">

<!-- LIMO content -->
<didl:Descriptor>

<didl:Statement mimeType="text/xml">
<dii:Type>urn:p2p-next:type:limo:2009</dii:Type>

</didl:Statement>
</didl:Descriptor>
<didl:Descriptor id="jquery-1.3.2.min.js">

<didl:Component>
<didl:Resource mimeType="text/javascript" >

<![CDATA[
javascript:...

]]>
</didl:Resource>

</didl:Component>

Page 13

P2P-Next D5.2.1d

</didl:Descriptor>
<didl:Descriptor id="jquery.jcarousel.css">

<didl:Component>
<didl:Resource mimeType="text/css">

<![CDATA[
css:...

]]>
</didl:Resource>

</didl:Component>
</didl:Descriptor>
<didl:Descriptor id="logo.jpg">

<didl:Component>
<didl:Resource mimeType="image/jpeg"
ref="urn:p2p-next:item:bbc-bbcone-b00n9p5x:additional:1" />

</didl:Component>
</didl:Descriptor>
<didl:Resource mimeType="text/html">

<![CDATA[
<html>...

]]>
</didl:Resource>

</didl:Component>
</didl:Item>

</didl:DIDL>

 2.2 Packaging API
The Packaging API is used for two major purposes: Firstly, during the creation of the top-level
torrent file, the API is utilized to create the MPEG-21 DID describing the content package.
Secondly, during the distribution of the content in the NextShare system, the API is utilized to
access the different parts of the DID such as the core metadata. The API is implemented in C++
using the CubeWerx BXML library [6] and provides Python bindings for usage with the content
ingestion tools implemented in Python (see Section 3.2.3).
Tha Packaging API has been integrated into NextShare and thus no software package is provided
with this deliverable. Instead, the Packaging API is part of the NextShare deliverable [7].
The Packaging API for NextShare provides two major interfaces. The DIDCreator allows to create
MPEG-21 DIDs containing the core metadata, references to optional metadata and to media
resources, while the DIDParser allows to extract the content from DIDs. The methods of both
interfaces are described in detail below.

Page 14

P2P-Next D5.2.1d

Method Description
DIDCreator

Void addIdentifier(char* id) Adds an identifier with the specified
ID to the DID document. The ID
specified in this method is used to
identify the item described by the DID
in the NextShare system.

void addDescriptorWithUrn(char* urn) Adds a descriptor with the specified
URN as dii:Type to the DID document.
This method is used to specify the type
of content in the subsequent Statement
(e.g., urn:p2p-next:type:rm:core:2009
for P2P-Next core RM).

void addXInclude(char* href, char*
xpointer)

Adds an xi:include element to the DID
document, which is used to reference
external (meta-)data. This method can
be used to add references to optional
external metadata.

void addStatement(char* mimeType, char*
text)

Adds a Statement with the specified
content to the DID document. This
metadata can be used to add the core RM
content to the DID document.

void openDIDL() Creates a new DIDL tag.

void closeDIDL() Closes a DIDL tag.

void openItem() Creates a new Item tag.

void closeItem() Closes an Item tag.

void openDescriptor() Creates a new Descriptor tag.

void closeDescriptor() Closes a Descriptor tag.

DIDParser

const CW_XML_NODE* getContentByDiiType(
CW_XML_SCAN* xmlScan, const char*
diiType)

Extracts the content from the DID
document based on the specified
dii:Type.

const CW_XML_NODE* getContentByID(
CW_XML_SCAN* xmlScan, const char* id)

Extracts the content from the DID based
on the Descriptor's ID. The Descriptor
ID is only utilized for LIMO content.

char* getXIncludeHref(char* xpointer) Extracts the href for an external
resource based on the specified
xpointer.

Table 2: DID API Description

Page 15

P2P-Next D5.2.1d

 3 Content Ingestion
The task 5.2.2, content ingestion, provides the tools needed to ingest content from professional
content producers as well as user-generated content. As the first trials of the NextShare system will
only contain content from professional content producers, the focus of this deliverable is on
professional content ingestion. Thus, the content ingestion solution provided by the BBC is
described in the next section. The content ingest solution provided by the JSI is described in the
section 3.2. The solutions target similar system tasks but are complementary in their design and
implementation. Finally, a prosumer tool that allows also third party content providers to join our
NextShare trials should be developed.

The proposal outlined in sections 3.1.1 and 3.1.2 including related subsections was superseded by
an architecture proposed and implemented by ULANC that transcodes video received from
broadcast, combining this with metadata feeds from the BBC, and seeding this to servers hosted at
ULANC. This is described fully in [8], section 2.2.5, Content Ingest. The original description is
retained in this document for historical interest.

 3.1 BBC content ingest and publishing solution

 3.1.1 Aims and requirements
The aim of the BBC ingest and publishing system proposed here was to make live and on-demand
content available via NextShare.
The system must be capable of large-scale ingest of content, in multiple formats from multiple
sources, with minimal human interaction.
Metadata ingest and publishing must be coordinated with content ingest and publishing: this process
is outlined in section 4 of [1].
Alternative solutions are described in section 3.1.3; the BBC's proposed architecture is described
below.

 3.1.1.1 BBC proposed architecture
The proposed architecture to publish content via NextShare and HTTP for the BBC is summarised
in the following points. This proposal was superseded by an architecture operated by ULANC):
Live and on-demand assets provided via P2P and HTTP.

Automatic creation and HTTP publication of torrents.
BBC-operated P2P supernode to seed BBC content for the duration of the official availability

window (superseded by ULANC-operated supernode).
Torrents to point to appropriate trackers (or DHT-like schemes) as advised by WP4.

Comprehensive content discovery feeds, using an ATOM Discovery Feed Tree (as outlined in
section 4 of [1]).

LIMO applications available via both HTTP, and automatically packaged in the torrents they relate
to (superseded by decision not to package LIMO content in the torrents. NextShare is most effective
as distributing larger items of content and its effectiveness is reduced by adding large quantities of

Page 16

P2P-Next D5.2.1d

smaller files).

Possible future transcode service to create alternative encodings of assets.
Figure 3 shows the high-level architecture of the BBC content ingest and publishing service.

Figure 3: BBC content ingest and publishing service

 3.1.1.1.1 Discovery and Metadata Service
The anticipated BBC solution for discovery and content metadata feeds is described in sections 4.1
and 4.2 of [1].

 3.1.1.1.2 VOD Torrent Control
The VOD Torrent Control service was intended to act as a data store for VOD data, and control the
availability windows for VOD data. This has been superseded by a solution implemented by
ULANC.

 3.1.1.1.3 VOD Ingest Platform
The VOD Ingest Platform was intended to be the interface used to upload VOD data bundles with
associated metadata and set the availability windows. It was anticipated that VOD data bundles may
include multiple assets including LIMO applications and that the VOD Ingest Platform may also
perform transcoding of assets to appropriate formats as required.

Page 17

P2P-Next D5.2.1d

 3.1.1.1.4 Live Torrent Control
The Live Torrent Control service was to generate the Live Torrent Information for BBC services
using the data generated from the discovery service to build appropriate torrents, i.e. including
associated LIMO applications and additional assets as required. The Live Torrent Control could
have performed transcoding of assets to the appropriate formats. This function was superseded by
code developed by ULANC (see D8.1.2)

 3.1.1.1.5 BBC Headend
The BBC Headend was to provide the SuperNode with which to seed the P2P network and also
provide web servers in order to serve some assets via HTTP should they be required.

 3.1.2 System in Operation

 3.1.2.1 Client Interaction
It was anticipated that NextShare client should use the Discovery and Metadata feed tree in order to
obtain the necessary information for the client to find and retrieve the desired content. Figure 4
shows how a client walks the tree to find the desired content (in this case the BBC One live stream)
and begin streaming. Note that this example is simplified and that in practice a client may have
performed operations in parallel on different parts of the discovery feed, in effect caching data for
the user in order to provide a more fluid user experience.

Page 18

P2P-Next D5.2.1d

Figure 4: Client interaction example

 3.1.2.2 Video on Demand Ingest Example
VOD Ingest was to allow the creation of packages which may contain one or more assets. Packages
were to have a window of availability monitored by the VOD Control system. Figure 5 shows the
basic interactions to create a package, upload it and then publish it. Once published the VOD
Control service would then update the discovery service so the content is discoverable, and when
the window closes remove the entry from the discovery service.

Page 19

P2P-Next D5.2.1d

Figure 5: VOD ingest example

 3.1.2.3 Ingest Data Model
Figure 6 shows the data model on which the Ingest Platform was based, providing sufficient
metadata for the Discovery and Metadata service.

Page 20

P2P-Next D5.2.1d

 Figure 6: Ingest data model

Overview of the main classes:
play:List: an ordered list of content, typically presented in reverse chronological order.

play:Item: a single content item.
po:Version: a "bag of frames" representing one version of a specific play:Item. Different edits are

different versions. A version with sign language embedded is a different version from that without
sign language.

play:Encoding: a "bag of bits".
play:Location: a URI.

 3.1.3 Alternative solutions for ingest and publishing

 3.1.3.1 URIPlay
This solution was devised in 2008 based around the OpenSource URIPlay platform [9]. Whilst
URIPlay is a very good metadata aggregation platform, it was decided that implementation would

Page 21

P2P-Next D5.2.1d

require very specific knowledge of URIPlay and its underlying components, and that a simpler
solution which leveraged more of the existing BBC services would be a more practical.

 3.1.3.2 ULANC implementation for Living Labs Trial
The implementation for the Living Labs Trial were of a very similar nature to that of IBC, however,
more channels were seeded and the NextShare Swarm was restricted to within the Living Labs
network. The P2P Metadata and Discovery feeds remained accessible over the internet.

Page 22

Figure 7: URIPlay Content Ingestion Architecture

P2P-Next D5.2.1d

Figure 8: ULANC implementation

 3.1.4 Implementation Status
As at M48:

The discovery and metadata service was implemented in December 2009 and has been running
successfully since. It shall continue to be adapted and expanded as required.

The Live torrent control, VOD torrent control and VOD ingest platform outlined here were
replaced with similar functions implemented by ULANC [8].

 3.2 JSI content ingest and publishing solution
The content injection solution being developed at JSI tends to cover functionality needed to ingest a
professional content provider's content into the NextShare system. The basic idea behind the
solution is to bridge the content provisioning of content providers with a set of tools enabling the
ingestion into a P2P system. However, simple ingestion of the content cannot be the only purpose of
the tools. Handling ingestion of the content into a system like NextShare requires a broader
approach, not only from the professional content provider point of view but from an end user
perspective as well [8]. This view, covering broader system tasks, will be called the content
provisioning process in the rest of this section. To be able to sketch the scope of the process we will
define basic steps that can be performed by the tools in the next section. The steps will be combined
into a single scenario of the content provisioning process in Section 3.2.2. The tools design and

Page 23

P2P-Next D5.2.1d

implementation status is reported in Section 3.2.3. Some conclusions and indications of further
work are presented in Section 3.2.4.

 3.2.1 Scope of the solution
In this section the basic steps that can be performed by an ingest system are collected. The steps
describe elementary functionality required to perform content provisioning tasks. They can be
further extended or split in more detailed sub steps at a later time.

 3.2.1.1 Content acquisition
Prior to injection in the NextShare system the content needs to be acquired. Possible sources of the
content are various, like repositories, feeds of any kind, web pages, etc. Most often the acquisition
will be related to the current content provider's web technologies based publishing process. The
implementation should be uniform and technology independent; its main aim is to acquire content,
regardless of its source, format, etc.

 3.2.1.2 Store content
The acquired content needs to be stored on the local system prior to the injection of the content into
the NextShare system. The content can be of various kinds and can include metadata and related
content. The type of storage has to be suitable for control and management of the storage as well for
further injection into the NextShare system.

 3.2.1.3 Content adaptation
The content provider needs to adapt the content as obtained from a content source prior to
distribution in the system. The adaptation can be related to the content format, packaging, linking to
or combining with other content, etc.

 3.2.1.4 Content injection
The content provider would like to offer the content to the users of the NextShare system but has to
prepare the content for injection. Injected content can take two forms: a content unit and a live
stream. The types of content are different in the way they are handled in the system. For example,
the live content does not require any storage. The content unit intended for provisioning is an
independent unit of information suitable for straightforward use by the users. The unit can consist of
single or multiple content items, for example files, and has its related metadata. The live stream is
content that is constantly delivered. From the content providers perspective, linear broadcast
streams should be injected into the NextShare system as well. From the end user perspective, web
cams and similar devices could be utilized to inject content into the system as live streams. There
can be multiple live streams available for injection.

 3.2.1.5 Monitor content usage
The content provider would like to track the usage of every content unit injected into the system.
Monitoring includes the number and frequency of its usage, distribution paths, geographic

Page 24

P2P-Next D5.2.1d

distribution of the users, sharing statistics, etc. Usage statistics are available on a regular, predefined
basis. The statistics are gathered on one or more system elements in the administration domain of
the content provider.

 3.2.1.6 Reporting on content distribution and usage
The content provider would like to report on the content distribution. The report should include data
like the content's source, the content's form, who, when and how the injection was initiated, where
the content was distributed, who has participated in content distribution, etc.

 3.2.1.7 Content removal
The content is related to a single content unit and can be distributed through the NextShare system.
The content provider wants to remove all content from all elements of the system and remove all
references to the content, if there are any.

 3.2.1.8 Replace content
The old content needs to be removed from any element in the system including replacements of
references to the content, if there are any. The old content is replaced with newly published content.

 3.2.2 Scenario of system usage through basic steps
The basic steps as presented in the previous section can be combined in a single scenario of system
usage related to the content provisioning process as can be seen from the content provider point of
view. The scenario is presented as a sequence diagram in figure 9. Besides all the steps described,
the scenario needs some additional functionality to be really useful. First, an end user is needed as a
receiver of the injected content. He is represented as a user in the diagram. Second, a management
functionality needs to be presented in the system which triggers the content injection. Such role can
be performed either by a manager or a software component. The role is presented by the manage
step in the diagram. Finally, a content distribution takes care that the content is delivered to the end
user. This step is being developed in the context of the project's WP4, as this does not belong to the
basic content injection steps.
On the top of the figure are labels, representing the basic steps of the process. The label names are
abbreviation of a step, for example Acquisition for Content acquisition (3.2.1.1), Store for Store
content (3.2.1.2), etc.

Page 25

P2P-Next D5.2.1d

The scenario starts with triggering content acquisition step (3.2.1.1). The trigger can be manual or
automatic. For this reason the line marking the action is dashed. When the content is acquired it is
stored (3.2.1.2) on the local system. Later, in the figure presumed automatically, the content is
prepared for injection. Depending on the type of target injection the content can be adapted using
the content adaptation use case (3.2.1.3). As is indicated in the figure, the adaptation can be
triggered automatically if the adaptation is required for the type of injection. All actions so far and
after are monitored via the monitoring content usage step (3.2.1.5). When the content is ready for
injection it is published through the content injection step, either on demand or live (3.2.1.4). The
content distribution state is set to ready. When the user accesses the content the content distribution
process starts and the content is delivered to the users. After the content has been consumed and and
the request ends, the delivery process stops (from an end user perspective). After the content has
been used for some time the content provider can decide to remove the content. The content
removal step (3.2.1.7) is used for this purpose. In similar way this step could be replaced or
extended with the replace content step (3.2.1.8). The content provider can build a report through
reporting on content distribution and usage step (3.2.1.6), based on information gathered by
monitoring step. The report can subsequently be used for analysis of the content provisioning
process or just for management purposes.

Page 26

Figure 9: Scenario of the content provisioning process

P2P-Next D5.2.1d

 3.2.3 Content provisioning process design
The content provisioning process was designed from the start as a flexible, content provider
oriented tool for acquisition and publishing of the content. Though being content provider oriented,
it should be usable for ordinary users as well, for publishing their own long tail content. The content
provisioning process design is presented in the Figure 10. It shows basic design concepts and their
interrelations. The design is split in four parts, content, software, hardware/OS and monitor.

The content part includes currently foreseen content sources. The core source of content are
channels that provide one more more items of content. An example of a channel is a RSS feed. The
feeds need to be read regularly so new content items can be fetched and made available on the node.

Page 27

Figure 10: Content provisioning process design

P2P-Next D5.2.1d

Channels can provide both content essence and metadata. The metadata should be obtained and
stored on the node together with the essence. The content can be obtained from other sources as
well, like from local file, web location, linear broadcast or locally attached devices like a web cam.
The metadata of such content items can be obtained either automatically with the essence
processing or can be provided manually.

The software part presents basic software concepts used to implement the process. The concepts are
content sources, content items, storage items, publisher, server and publication. The content sources
model the content abstractions as discussed in the previous paragraph. They are producers of
content items. A content item can be a content essence and/or content metadata. The item stores all
content related information.
Content items are stored locally on the node as storage items. The storage item is a concept that
handles all content item storage functionality. An example of the storage item is a directory that
holds the content essence, related metadata and other software artifacts needed for implementation
operations. The storage item then provides all needed functions for storing, deleting, moving or
archiving of the content items. Beside an implementation based on a filesystem the process
implementation could support storage items implemented on top of a database as well.
The publisher is a core concept of the content provisioning process. It provides needed functionality
to guide the entire process, from acquiring the content, storing it and publishing it through one or
more servers. It starts, controls and manages various types of servers. An example of a server is a
torrent server which enables seeding of the content and keeping track of the content distribution
through a local node tracker. When the content item is published through the publisher it becomes a
publication. The publication exports needed functionality to manage publishing aspects of one or
more content items. The publisher can be related to the “Manage” concept as presented in the
scenario of content provisioning process in the figure 9. It provides needed interfaces to control the
process and functionality to trigger and guide the process automatically.

The hardware part represents hardware and operating system abstractions and resources used to
implement the toolbox. These abstractions are used as a basis for the monitoring part and relate
similar concepts together. During the publication process the publisher could use multiple
implementation devices with their own resources, like CPU, storage, network, memory, etc. Each
device can manage its own set of publications. Processes running on a device really implement the
process, using its own share of device resources. In the end publications are related to a single
torrent file which hides all content distribution related resources that need to be monitored, like
storage, swarm statistics, protocols used, metadata used and exchanged, if any, etc.

 3.2.4 Content provisioning process implementation
The implementation has been significantly changed and improved since the last reporting period.
The main issues addressed were related to integration of the rich metadata specification in the
publishing process, P2P-Next compliant feeds generation (VoD, Live and discovery feeds) and
simplification of the existing content ingest implementation. The implementation, named
ProviderToolbox, was quite complex and a number of concurrency issues were foreseen for further
integration with metadata and feed generation implementations. For this reason the
ProviderToolbox implementation was split in several, more manageable components. To ease the
integration of rich metadata and to provide rich programmable API interfaces for metadata
manipulation a Python based RichMetadata implementation was developed. Existing programmable
tools were adapted and extended for provisioning of P2P-Next compliant feeds.

Page 28

P2P-Next D5.2.1d

The described tools will be further detailed in next two sections, the first addressing the
RichMetadata Python API implementation and the second presenting details on the
ProviderToolbox implementation. The sections provide some insights on the implementation of the
tools, their usage and performance measurements.

 3.2.5 RichMetadata Python implementation
This description is a shortened, but additionally annotated version of the tool documentation. The
implementation has the following features:

• parses core, advertising, payment and scalability metadata set

• build core, advertising, payment and scalability metadata set
• supports TVA and Mpeg7 metadata types

• parses and builds MPEG 21 DID metadata
• provides metagen tool to generate supported metadata

• provides dynamic RichMetadata APIs according to the metadata set for programmable
manipulation

• integrates core metadata set with the Next-Share core via torrent creation and show tool
• supports both ElementTree and cElementTree. Since results are better, of course, using the

native C library is the default choice for the implementation
The implementation has the following drawbacks:

• it has very naive XML parsing/building implementation, based on the python ElementTree -
but basic mechanisms are there so it is easily extensible. The consequence is that the tool
can generate only as much metadata as has been learned from samples.

• doesn't support URIPlay metadata

The implementation is based on the python native ElementTree module. It is centered around P2P-
Next defined tags and TVA tags, as defined in conf/RichMetadataSettings.py, that map to single
RichMetadata class for any other format supported (like MPEG7). The implementation then allows
mapping between various formats.

The core interface for the implementation is the RichMetadataGenerator: a singleton class that
learns during initialization from the supplied XML samples in the conf directory. Since the
implementation depends on samples be careful when modifying them.
The RichMetadataGenerator provides the following methods:

• RichMetadataGenerator.getInstance: returns the RichMetadataGenerator singleton instance
• RichMetadataGenerator.getRichMetadata: method is a factory for RichMetadata instances,

either from scratch or from input source
• RichMetadataGenerator.build: builds target metadata XML representation

• RichMetadataGenerator.prettyPrint: prints XML representation in human readable fashion -
for debugging purposes only

The methods, parameters, and results are further describe via standard Python documentation in the
code.

Page 29

P2P-Next D5.2.1d

The RichMetadata instance provides its API dynamically, based on the type of metadata set,
learning and settings. Please note that since the methods are provided dynamically they depend on
the samples provided and the settings in RichMetadataSettings.py.

Since the getters and setters names provided are straightforward no other documentation of the API
is provided. If in doubt while programming consult RichMetadata instance metadataType and use
getAPIMethods to get the list of API methods of the current instance. For scalability metadata
attributes SPS and PPS consult the metagen tool help. An examples of usage of the dynamic APIs is
provided in RichMetadataTest.py.

 3.2.5.1 Example of usage

 3.2.5.1.1 The metagen tool
First, export the PYTHONPATH:

xyz:~/src/Next-Share:{1}> export PYTHONPATH=$(pwd):.

Use the metagen.py tool to generate XML metadata, consult the tool help for various options:
xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -h

In the following, command line examples are provided. The copied examples can be used to
generate desired output if the Python settings are set and the tools installed properly.

 3.2.5.1.1.1 Generating core metadata

The metagen tool can generate core metadata of type TVA and MPEG7. For example, the following
command will generate core metadata of type TVA:

python JSI/RichMetadata/tools/metagen.py --aspectRatio=4:3 --audioCoding="MPEG-1 Audio Layer
III" --bitRate=524288 --captionLanguage=English --copyrightNotice="Copyright 2010 BBC"
--duration=P0Y0M0DT0H0M35S --entityIdentifier="1" --fileFormat=mp4 --fileSize=83191350
--frameRate=30 --genre=Infotainment --horizontalSize=640 --howRelated="Content Package"
--language=English --mediaLocator="http://p2p-next.org/images/example1.jpg" --minimumAge=12
--numOfChannels=2 --originator=p2p-next --productionDate="2008-07-10T10:00:00+01:00"
--productionLocation=AT --programId="crid://p2p-next/example1" --publisher=p2p-next
--relatedMaterial="related" --releaseDate=2008-07-14 --signLanguage=English --synopsis="John
and Jane Doe visit a car dealer to buy a new car for John" --titleEpisodeTitle="John Doe buys
a car" --titleMain="Next-Share Test Stream 1" --titleSeriesTitle="The Doe Family"
--verticalSize=480 --videoCoding="MPEG-2 Video Main Profile @ Main Level" --region=UK
--content=audiovisual

Corresponding MPEG7 metadata could be generated by adding an "-f Mpeg7" option to the
previous command line. The result should be, after running the command, an MPEG7 compliant
metadata.

 3.2.5.1.1.2 Generation of optional metadata

Optional metadata could be created for the advertising and payments, for example the following
command will generate advertising metadata of type TVA, where the "-a" option specifies the
metadata type.

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -a --businessModel=BM2
--isLiveContent=false --allowAdvertising=true --circularContent="Allow Superdistribution"
--adType="Web" --streamingType="In-stream" --adFormat="banner" --age=25 --gender=F
--country=SI --aspectRatio="16:9" --verticalSize=405 --horizontalSize=720 --frameRate=30
--publisher="p2p-next"

Similarly, payment metadata is created using the "-p" option:
xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -p --acceptDonations=true
--advancedInfos="http://www.p2p-next.org/paymentInformation.html" --currency=EUR
--paymentId=xyz --paymentRecipient=me --price=1500 --publisher="JSI"

Page 30

P2P-Next D5.2.1d

Invoking the tool with the following command will generate scalability data as specified in the
samples. Please note the "-s" switch. For specifying the SPS and PPS values, please consult the
metagen tool help.

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -s
--adaptationOperatorDependencyId="0 1 2 3" --adaptationOperatorQualityLevel="0 0 0 0"
--utilityFramerate="25 25 25 25" --utilityHeight="240 240 480 480" --utilityWidth="320 320
640 640" --constraintBitrate="400 800 1200 240" --adaptationOperatorTemporalLevel="0 0 0 0"
--pPS="spsId=1,value=23:spsId=2,value=24"
--sPS="spsId=1,width=a,height=b,value=cde:spsId=2,width=a,height=b,value=cde"

 3.2.5.1.1.3 Generation of MPEG 21 DID metadata

The metagen tool can generate the MPEG 21 DID metadata. In the following two examples the first
invocation of the tool generates the core metadata for type TVA in a compact form ("-c" option) and
the command redirects the standard output to file core-meta.xml. The second invocation of the tool
the generated file is included into the DID with the option "–metaCore=core-meta.xml". The second
command demonstrates the options of the DID base document generation as well. Please note that
the DID base document gets generated if the option "-b" is provided. The second command
generates the compact version of the XML ("-c") and redirects the output to did-base.xml. This file
is now ready to be included in the torrent file. An example of this will be presented in the next
section.

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py --aspectRatio=16:9
--audioCoding="MPEG-1 Audio Layer III" --bitRate=80000 --captionLanguage=si
--duration=P0Y0M15DT2H1M12S --fileFormat=mp4 --fileSize=12345432 --frameRate=30
--genre=Codatainment --horizontalSize=720 --language=si --minimumAge=3 --numOfChannels=2
--originator=JSI --productionDate=2010-08-16 --productionLocation=SI --publisher=p2p-next
--releaseDate=2010-08-17 --signLanguage=si --synopsis="Fine metadata tools"
--titleEpisodeTitle="RichMetadata v0.1" --titleMain="P2P-Next code"
--titleSeriesTitle="RichMetadata tools" --verticalSize=405 --videoCoding="MPEG-2 Video Main
Profile @ Main Level" -c > core-meta.xml

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -b --identifier="urn:p2p-
next:item:rtv-slo-slo1-xyz" --relatedIdentifier="urn:rtv-slo:slo1-xyz"
--contentType="video/ts" --contentReference="URI to video included in the torrent"
--advertisementReference="URI to additional MPEG_21 data (advertising)" --limoReference="URI
to additional MPEG_21 data (limo)" --paymentReference="URI to additional MPEG_21 data
(payment)" --scalabilityReference="URI to additional MPEG_21 data (scalability)"
--metaCore=core-meta.xml -c > did-base.xml

Additional MPEG 21 DID metadata, the metadata that is distributed in the torrent itself, can be
generated in similar fashion as the base metadata. Since it can include multiple files first the files
need to be provided or generated. Metadata file such as payments, advertising and scalability can be
generated as presented in the previous section while redirecting the output of the command to a
properly named file.

Additional files, like logo and limo files (html, javascript and css) can to be provided as well. For
the purpose of this example we will generate them on the fly, as simple strings:

xyz:~/src/Next-Share:{1}> echo "Limo CSS content, should be included as XML CDATA" > limo.css
xyz:~/src/Next-Share:{1}> echo "Limo HTML content, should be included as XML CDATA" >
limo.html
xyz:~/src/Next-Share:{1}> echo "Limo Javascript content, should be included as XML CDATA" >
limo.js
xyz:~/src/Next-Share:{1}> echo "Logo graphics" > logo.png

When all files are available in proper format the additional MPEG 21 DID metadata can be
generated by running the command as presented in the next example:

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py -d
--relatedIdentifier="urn:rtv-slo:slo1-xyz" --cSSName="Name of the CSS file in Limo"
--css=limo.css --html=limo.html --javascript=limo.js --javascriptName="Name of Javascript
file in Limo" --logo=logo.png --logoName="Name of the logo file" --logoReference="URI
reference to the logo (Needed indeed?)" --logoType="image/png"
--metaAdvertisement=advertising-meta.xml --metaPayment=payment-meta.xml
--metaScalability=scalability-meta.xml -c > did-additional.xml

Page 31

P2P-Next D5.2.1d

It should be noted that the options that are related to files expect the files to be provided. If not the
tool will exit with a meaningful message and help output.

 3.2.5.1.2 Programming interface
The same examples as presented in the previous section for the metagen tool can be easily
programmed as well. To get some insights and inspiration how the RichMetadata APIs can be used,
see RichMetadataTest.py. For a start some hints are provided for a python run from the command
line, please not the additional comments (#) in the example text:

 xyz:~/src/Next-Share:{1}> export PYTHONPATH=$(pwd):.
 xyz:~/Next-Share:{746}> python
 Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)
 [GCC 4.4.3] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> from JSI.RichMetadata.RichMetadata import RichMetadataGenerator
 >>> rmg = RichMetadataGenerator.getInstance()
 # Default metadata type is core
 >>> rm = rmg.getRichMetadata()
 >>> rm.getAPIMethods() # Lists all instance methods
 ['getAspectRatio', 'getAudioCoding', 'getBitRate', 'getCaptionLanguage',
 'getContent', 'getCopyrightNotice', 'getDuration', 'getEntityIdentifier',
 'getFileFormat', 'getFileSize', 'getFrameRate', 'getGenre',
 'getHorizontalSize', 'getHowRelated', 'getLanguage', 'getMediaLocator',
 'getMinimumAge', 'getNumOfChannels', 'getOriginator', 'getProductionDate',
 'getProductionLocation', 'getProgramId', 'getPublisher', 'getRegion',
 'getReleaseDate', 'getSignLanguage', 'getSynopsis', 'getTitleEpisodeTitle',
 'getTitleMain', 'getTitleSeriesTitle', 'getVerticalSize', 'getVideoCoding',
 'setAspectRatio', 'setAudioCoding', 'setBitRate', 'setCaptionLanguage',
 'setContent', 'setCopyrightNotice', 'setDuration', 'setEntityIdentifier',
 'setFileFormat', 'setFileSize', 'setFrameRate', 'setGenre',
 'setHorizontalSize', 'setHowRelated', 'setLanguage', 'setMediaLocator',
 'setMinimumAge', 'setNumOfChannels', 'setOriginator', 'setProductionDate',
 'setProductionLocation', 'setProgramId', 'setPublisher', 'setRegion',
 'setReleaseDate', 'setSignLanguage', 'setSynopsis', 'setTitleEpisodeTitle',
 'setTitleMain', 'setTitleSeriesTitle', 'setVerticalSize', 'setVideoCoding']
 >>> rm.setTitleMain("My main title")
 # setters return instance of metadata, avoided in next example calls
 <JSI.RichMetadata.RichMetadata.RichMetadata object at 0xb773e5ec>
 >>> rm.setTitleSeriesTitle("My series title")
 >>> rm.setTitleEpisodeTitle("Experiment with rich metadata")
 # The supplied values should be all strings
 >>> rm.setFrameRate("30").setBitRate("203010")
 >>> rm.setHorizontalSize("640").setVerticalSize("480").setAspectRatio("4:3")
 # Default presentation is TVA
 >>> rm_xml_tva = rmg.build(rm)
 # Load the settings to get access to proper variables
 >>> from JSI.RichMetadata.conf import metadata
 # Request MPEG7 representation of the same metadata
 >>> rm_xml_mpeg7 = rmg.build(rm, metadata.TAG_MPEG7)
 # Print the TVA representation to stdout
 >>> print rmg.prettyPrint(rm_xml_tva)
 <?xml version="1.0" ?>
 <TVAMain xmlns="urn:tva:metadata:2007" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001
" xmlns:mpeg7_tva="urn:tva:mpeg7:2005" xmlns:p2pnext="urn:p2pnext:metadata:2008"
xmlns:tva="urn:tva:metadata:2007" xmlns:xsi="http://www.w3.org/2001/XMLSchema-i
nstance" xsi:schemaLocation="urn:tva:metadata:2007 tva_metadata_3-1_v141_p2p.xsd
">
 <ProgramDescription>
 <ProgramInformationTable>
 <ProgramInformation>
 <BasicDescription type="p2pnext:BasicP2PDataDescriptionType">
 <Title type="main">
 My main title
 </Title>
 <Title type="seriesTitle">
 My series title
 </Title>
 <Title type="episodeTitle">
 Experiment with rich metadata

Page 32

P2P-Next D5.2.1d

 </Title>
 </BasicDescription>
 <AVAttributes>
 <BitRate>
 203010
 </BitRate>
 <VideoAttributes>
 <HorizontalSize>
 640
 </HorizontalSize>
 <VerticalSize>
 480
 </VerticalSize>
 <AspectRatio>
 4:3
 </AspectRatio>
 <FrameRate>
 30
 </FrameRate>
 </VideoAttributes>
 </AVAttributes>
 </ProgramInformation>
 </ProgramInformationTable>
 </ProgramDescription>
 </TVAMain>
 # And similar example for payments data
 # And similar example for payments data
 >>> rmp = rmg.getRichMetadata(None, metadata.METADATA_PAYMENT)
 >>> rmp.getAPIMethods()
 ['getAcceptDonations', 'getAdvancedInfos', 'getCurrency', 'getPaymentId',
 'getPaymentRecipient', 'getPrice', 'getProgramId', 'getPublisher',
 'setAcceptDonations', 'setAdvancedInfos', 'setCurrency', 'setPaymentId',
 'setPaymentRecipient', 'setPrice', 'setProgramId', 'setPublisher']
 >>> rmp.setAcceptDonations("True")
 >>> rmp.setCurrency("Euro")
 >>> rmp.setPaymentRecipient("me@home")
 >>> rmp.setPrice("A lot")
 >>> rmp_xml_mpeg7 = rmg.build(rmp, metadata.TAG_MPEG7)
 >>> print rmg.prettyPrint(rmp_xml_mpeg7)
 <?xml version="1.0" ?>
 <Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
xmlns:p2pnext="urn:p2pnext:metadata:2008" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:mpeg:mpeg7:schema:2001 mpeg7-v1_p2p.xsd">
 <Description type="p2pnext:P2POptionalDescriptionType">
 <p2pnext:PaymentData type="p2pnext:P2PPaymentDataType">
 <p2pnext:Price currency="Euro">
 A lot
 </p2pnext:Price>
 <p2pnext:PaymentRecipient>
 me@home
 </p2pnext:PaymentRecipient>
 <p2pnext:AcceptDonations>
 True
 </p2pnext:AcceptDonations>
 </p2pnext:PaymentData>
 </Description>
 </Mpeg7>

 3.2.5.1.3 Integration in the core
The RichMetadata prototype implementation provides a modified createtorrent.py and
btshowmetainfo.py. The modifications are minimal to allow to include the metadata into the torrent
file via methods provided in the Next-Share core API.
First, appropriate metadata is generated using the metagen tool. During generation the compact
option (-c) provides a compact representation of the metadata for inclusion into torrent file. The
commands suitable for this purpose were presented in Section 3.2.5.1.1.3 in the case of generating
base DID data.
The torrent file can subsequently be created as follows:

Page 33

P2P-Next D5.2.1d

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/createtorrent.py
--source README.txt --meta did-base.xml

The torrent file now includes the base DID metadata.
After running the btshowmetainfo.py its output should show the output similar to the following,
some debugging information omitted:

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/btshowmetainfo.py README.txt.tstream
...
Publisher = Tribler
Description =
Progressive = 1
Title = README.txt
Creation Date = 1282075652
Content Hash = PT3GQCPW4NPT6WRKKT25IQD4MU5HM4UY
Speed Bps = 0.688611090183
Revision Date = 1282075652
metainfo file.: README.txt.tstream
info hash.....: 729c70cf6d03749ea89aec1b07a6bf903b305099
info hash.....: 'r\x9cp\xcfm\x03t\x9e\xa8\x9a\xec\x1b\x07\xa6\xbf\x90;0P\x99'
file name.....: README.txt
file size.....: 2479 (0 * 32768 + 2479)
announce url..: http://127.0.0.1:6969/announce
ns-metadata...:
Publisher = Tribler
Description =
Progressive = 1
Title = README.txt
Creation Date = 1282918421
Content Hash = PT3GQCPW4NPT6WRKKT25IQD4MU5HM4UY
Speed Bps = 0.688611090183
Revision Date = 1282918421
metainfo file.: README.txt.tstream
info hash.....: 642d0dccd811a60505dfa9cce8687e074739da22
info hash.....: 'd-\r\xcc\xd8\x11\xa6\x05\x05\xdf\xa9\xcc\xe8h~\x07G9\xda"'
file name.....: README.txt
file size.....: 2479 (0 * 32768 + 2479)
announce url..: http://127.0.0.1:6969/announce
ns-metadata...:
<?xml version="1.0" ?>
<DIDL xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd
urn:mpeg:mpeg21:2002:01-DII-NS dii.xsd">
 <Item>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Identifier>
 urn:p2p-next:item:rtv-slo-slo1-xyz
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier relationshipType="urn:mpeg:mpeg21:2002:01-RDD-
NS:IsAbstractionOf">
 urn:rtv-slo:slo1-xyz
 </dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Type>
 urn:p2p-next:type:item:2009
 </dii:Type>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Type>
 urn:p2p-next:type:rm:core:2009
 </dii:Type>

Page 34

P2P-Next D5.2.1d

 </Statement>
 </Descriptor>
 <xi:include href="URI to additional MPEG_21 data (payment)" xpointer="rm.payment"/>
 <xi:include href="URI to additional MPEG_21 data (advertising)"
xpointer="rm.advertisement"/>
 <xi:include href="URI to additional MPEG_21 data (scalability)"
xpointer="rm.scalability"/>
 <Statement mimeType="text/xml">
 <TVAMain publisher="p2p-next"
xmlns="urn:tva:metadata:2007" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
xmlns:mpeg7_tva="urn:tva:mpeg7:2005"
xmlns:p2pnext="urn:p2pnext:metadata:2008"
xmlns:tva="urn:tva:metadata:2007" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:tva:metadata:2007 tva_metadata_3-
1_v141_p2p.xsd"><ProgramDescription><ProgramInformationTable><ProgramI
nformation><BasicDescription
type="p2pnext:BasicP2PDataDescriptionType"><Title
type="main">P2P-Next code</Title><Title
type="seriesTitle">RichMetadata tools</Title><Title
type="episodeTitle">RichMetadata v0.1</Title><Synopsis>Fine metadata
tools</Synopsis><Genre
href="urn:mpeg:mpeg7:cs:GenreCS:2001"><Name>Codatainment</Name></
Genre><ParentalGuidance><mpeg7_tva:MinimumAge>3</mpeg7_tva:MinimumAge>&l
t;/ParentalGuidance><Language>si</Language><CaptionLanguage>si</Capti
onLanguage><SignLanguage>si</SignLanguage><ProductionDate><TimePoint&
gt;2010-08-
16</TimePoint></ProductionDate><ProductionLocation>SI</ProductionLocatio
n><ReleaseInformation><ReleaseDate><DayAndYear>2010-08-
17</DayAndYear></ReleaseDate></ReleaseInformation><Duration>P0Y0M15DT
2H1M12S</Duration><p2pnext:Originator>JSI</p2pnext:Originator></BasicDes
cription><AVAttributes><FileFormat
href="urn:mpeg:mpeg7:cs:FileFormatCS:2001"><Name>mp4</Name></File
Format><FileSize>12345432</FileSize><BitRate>80000</BitRate><Au
dioAttributes><Coding
href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001"><Name>MPEG-1 Audio Layer
III</Name></Coding><NumOfChannels>2</NumOfChannels></AudioAttribut
es><VideoAttributes><Coding
href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001"><Name>MPEG-2 Video Main
Profile @ Main
Level</Name></Coding><HorizontalSize>720</HorizontalSize><Vertical
Size>405</VerticalSize><AspectRatio>16:9</AspectRatio><FrameRate>3
0</FrameRate></VideoAttributes></AVAttributes></ProgramInformation>&l
t;/ProgramInformationTable></ProgramDescription></TVAMain>

 </Statement>
 </Descriptor>
 <xi:include href="URI to additional MPEG_21 data (limo)" xpointer="limo"/>
 <Component>
 <Resource mimeType="video/ts" ref="URI to video included in the torrent"/>
 </Component>
 </Item>
</DIDL>

 3.2.5.2 Implementation performance
The implementation performance can be estimated by running the RichMetadataTest.py on your
own machine. For this purpose you need to set the variable "runspeed" to true in
RichMetadataTest.py. Most of the parsing and building tests are based on samples provided in the
conf directory. The example values, obtained on quite capable machine, run as tests on 10 batches,
each with 100 iterations of stated test:

Test Time value*100+-std. Oper/s

Parsing XML TVA 0.10501+-1.35% 952.3

Parsing XML MPEG7 0.12632+-0.75% 791.6

Building XML TVA 0.14411+-0.72% 693.9

Building XML MPEG7 0.20205+-0.77% 494.9

Sparse build TVA 0.16697+-0.64% 598.9

Page 35

P2P-Next D5.2.1d

Sparse build MPEG7 0.16653+-0.37% 600.5

Cross build TVA 0.3101+-0.6% 322.5

Cross build MPEG7 0.2731+-0.59% 366.2

TVA from scratch 0.18575+-1.0% 538.4

MPEG7 from scratch 0.24513+-0.71% 407.9

Parsing payments TVA 0.03978+-1.15% 2513.7

Parsing advert. TVA 0.06527+-1.46% 1532.2

Parsing scalab. TVA 0.09416+-0.71% 1062.0

Parsing paym. MPEG7 0.033+-2.5% 3030.2

Parsing advert. MPEG7 0.05911+-0.39% 1691.8

Parsing scalab. MPEG7 0.08799+-1.51% 1136.5

Build payments TVA 0.05275+-0.51% 1895.7

Build advert. TVA 0.08734+-1.17% 1145.0

Build scalab. TVA 0.1544+-1.05% 647.7

Build paym. MPEG7 0.03841+-2.54% 2603.5

Build advert. MPEG7 0.08176+-0.76% 1223.1

Build scalab. MPEG7 0.14322+-0.85% 698.2

Parse DID base 0.06628+-2.14% 1508.8

Parse DID addit. 0.09898+-0.29% 1010.3

Build DID base 0.11977+-0.76% 834.9

Build DID addit. 0.15257+-0.49% 655,4

The default implementation that the tools use is cElementTree. Though it is included in the Python
core (v2.5 and up) some distributions could choose that the package holding cElementTree is
distributed separately. In such case install the missing package or use the ElementTree implemented
in pure Python (see the import statement in RichMetadata.py).

 3.2.6 Provider Toolbox
The ProviderToolbox provides a set of tools that ease ingest of content into the P2P-Next enabled
cloud. In this document the second version of the tool is described. The goal for the second version
was to simplify the implementation of the original toolbox.

Currently the toolbox provides the following features:
• can read RSS and Atom feeds

• can generate rich metadata from the feeds and embodied media
• provides programmable tools for generating P2P-Next compliant Atom feeds (VoD, Live

streams, discovery):
• for live streams provides parsers for RTV Slovenia and BBC programme schedule

• can fetch the content from a feed and store it locally
• can generate torrent files for fetched content according to the P2P-Next specification

• can generate P2P-Next VoD feeds from external VoD feeds
• can create a feed from scratch from local content

• for stored feeds can generate discovery feeds
• a tool for continuous publishing (ingest, seeding) of generated VoD torrent files, automated

Page 36

P2P-Next D5.2.1d

updates, additions and removals are supported

• rudimentary ClosedSwarm support: closed swarm keys and corresponding torrent files are
generated for manually added items

• Json output: meaningful commands now provide Json output on stdout for integration with
other systems (portal, etc.)

Though the second version of the toolbox aims to simplify the implementation, the implementation
is still complex. The reason for the complexity are diverse feed sources and a need to consider the
requirements of multiple content providers.
The ProviderToolbox was developed on Linux platform (Ubuntu) and it should work on Mac OSX.

At the moment the ProviderToolbox still does not support on the fly generation of P2P-Next Live
feeds.

 3.2.6.1 Dependencies
The ProviderToolbox depends on JSI's RichMetadata implementation and the existence of ffmpeg .
Consult the tool's README for installation. If you have already the RichMetadata implementation
installed please update the installation to the latest release version.
Obtain and install ffmpeg tool according to instructions for your target platform. The ffmpeg
program should be in your shell path.
Please ensure that all other Next-Share dependencies for your platform are fulfilled, see Next-
Share/README.txt for details.

 3.2.6.2 Before using the toolbox
Before using the toolbox some adjustments and decisions need to be made to the default settings.
The settings are defined in file JSI/ProviderToolbox/conf/default_settings.py.

• decide where fetched and added content to the feeds will be stored using the variable
MEDIA_ROOT (default '/media/external'). The directory needs to be writeable and readable
by the user running the toolbox.

• decide where the fetched and added content torrent files will be stored using the variable
TORRENT_DIR (default /media/external/torrents). If the torrent files will be served via web
server the directory should reside in (or it is linked to) the web server's root directory. The
directory needs to be writeable and readable by the user running the toolbox.

• decide the internal tracker port and IP using the INTERNAL_TRACKER_PORT and
INTERNAL_TRACKER_IP variables. The variables need to be defined before creating any
torrents (and fetching or adding any content).

There are a number of other variables set in default_settings.py, the most important are the
following:

• the CONTENT_PUBLISHING_LINK variable defines an absolute link for the feed
publications (items). The link will be prepend to all your publications in your exported feeds
if not defined per feed via the command line.

• the SHADOW_DIR variable controls where the rich metadata in Mpeg7 format of the
content is stored. The metadata will appear either as a link or as a content in the feeds

Page 37

P2P-Next D5.2.1d

exported. To export it as a link (only automated option) the shadow directory should be
accessible through the publishing web server (in web server space, copied, linked, etc.). The
shadow inner directory structure is directly appended to CONTENT_PUBLISHING_LINK.

• the EXPORT_FEED_LINK variable defines an absolute link for publishing the feed's xml
files. The link will be prepend to all exported feed's xml files, including the discovery feed,
if the link is not defined per feed via command line.

• the UPDATE_INTERVAL variable tunes the torrent server update interval. In general, don't
set it too low.

To understand how the variables are used please read about the feed life cycle management in the
next section.

 3.2.6.3 Feed lifecycle management
All the content managed via ProviderToolbox is related to one or more feeds. The feeds and their
content could be acquired with the getfeed tool or created with the managefeed tool. Alternatively
the feeds can be crafted by hand as well, and placed in the corresponding directories.

The tools briefly described in this section are more broadly discussed in Section 3.2.6.4.

If the variables discussed in the previous section are set up properly the system should works as
presented in the picture.

The getfeed and managefeed tools (upper left corner) are used to fill the feeds storage. While
getting the feed information and feed content the torrent files are generated on the fly containing

Page 38

Figure 11: ProviderToolbox process sketch

P2P-Next D5.2.1d

P2P-Next compliant rich metadata including with automatically obtained media (content) metadata.
The torrent files are stored in the torrents storage. The getfeed tool generates on the standard output
the P2P-Next compliant Atom feed for each obtained feed. The generated feeds should be stored in
the file system as a file, suitable to be served through web server for user consumption. When the
feeds are obtained the discoveryfeed tool can be used to generate a discovery feed from the stored
feeds; the tool again outputs the feed on standard output, which should be stored in a file system
accessible and served by web server.

The feeds accessed through the web server should be available at an url as defined in getfeed's or
discoveryfeed's export option (-e) or as combination of the feed name appended to the variable
EXPORT_FEED_LINK as discussed in the previous section.
The publications (content, rich metadata) should be available at an url defined as combination of the
absolute publishing link specified via command line and default or via a customized ContentUnit
instance specified relative link. Alternatively, a common absolute link can be specified using the
CONTENT_PUBLISHING_LINK variable, as discussed in the previous section.
When the feeds are created or acquired they can be published using the publisher tool. The
publisher tool acts as a simple seeder and tracker for the content specified in the torrent files. After
being started the tool checks the torrent directory (set by the EXPORT_TORRENT_DIR variable)
regularly and adds or removes the publications which have been added or removed by getfeed or
managefeed.

The only tool not provided at the moment in the toolbox is a web server, at the bottom right in the
figure. For serving the feeds and publication links, together with related HTML/Javascript
information, a normal web server as provided with your distribution/operating system can be used.
On Ubuntu and similar Linux systems, this means that the links to the feeds and publications should
point to web server root in '/var/www' or similar. When the feeds are created they should be stored
in a suitable place according to theweb server configuration.

 3.2.6.3.1 Setting up an example web server
First prepare an example web server for serving the feed xml files and links to the publications. In
this example we assume that a Linux system similar to Ubuntu is used and has a similar directory
structure as shown:

• /var/www

• feeds (directory from where the feeds will be served)
• publish (directory for publications)

Make sure that the user running the ProviderToolbox has write and read permissions to both
directories. A series of commands similar to these should prepare the web server, assuming that the
web server is already running and operational:

sudo mkdir /var/www/feeds
sudo mkdir /var/www/publish
sudo addgroup www
sudo addgroup dusan www
sudo chgrp www /var/www/feeds
sudo chgrp www /var/www/publish
sudo chmod g+rw /var/www/publish
sudo chmod g+rw /var/www/feeds

and test the setup, note that you need to log out and log in the system to actually get the www group
rights:

touch /var/www/publish/lala

Page 39

P2P-Next D5.2.1d

rm /var/www/publish/lala

In this section we will refer to this two directories by their names and links as well:

• /var/www/publish: http://stream.e5.ijs.si/publish
• /var/www/feeds: http://stream.e5.ijs.si/feeds

 3.2.6.3.2 Adjust default settings
If we would like to serve direct links to torrent files the EXPORT_TORRENT_DIR would need to
be changed so it is directly accessible to the user, change the variable in the default_settings.py to:

EXPORT_TORRENT_DIR = /var/www/publish

After this change the torrents while getting the feed will be written to the specified directory.

 3.2.6.3.3 Get the feed initially
Before any publishing the feeds need to be acquired or created. To acquire the feeds use the getfeed
tool, for example:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
http://downloads.bbc.co.uk/podcasts/radio4/today/rss.xml

The feed can be generated by hand as well, for a lengthy example consult Section 3.2.6.4.3, which
shows how the FAB channel content feed could be created.
The result of running the getfeed tool as presented will obtain the content, generate rich metadata
for the feed and content and create initial P2P-Next compliant torrent files in the directory as
defined in settings.EXPORT_TORRENT_DIR.

Check the results and correct the wrong parameters if any. Consult the tools documentation section
if needed.

 3.2.6.3.4 Updating the feed
Any feed obtained from the network can be manually updated if needed. In the simplest form, run
something like:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -u
/media/external/Best_of_Today/

The directory media/external/Best_of_Today is a directory where the initial getfeed run has stored
the feed. The feed will be updated, new content acquired, metadata generated and torrents file
created.

If the feeds need to be updated automatically some shell script could be helpful, like:
#!/bin/sh
NEXT_SHARE_HOME=/home/dusan/delo/src/M32/Next-Share
cd $NEXT_SHARE_HOME
export PYTHONPATH=$(pwd):.
python JSI/ProviderToolbox/tools/getfeed.py -u $1

The example script will update the feed specified via the command line parameter, which specifies
the directory of the feed. The script can be found in JSI/ProviderToolbox/bin/getfeed. Please note
that the variable NEXT_SHARE_HOME needs to be adjusted to your needs.
Run it as:

JSI/ProviderToolbox/bin/getfeed /media/external/Best_of_Today

and the tool will collect new content, matadata, create the torrent files in the specified directory and
output the P2P-Next compliant feed on the standard output.

Page 40

P2P-Next D5.2.1d

If you add the path to the bin directory to your PATH in the shell environment the command can be
called from wherever you want.

 3.2.6.3.4.1 Updating the feed from the cron

After putting the getfeed command in the user PATH the feeds can be added to the users crontab to
be run regularly. For example the following line will collect the Best of Today BBC feed every day
five minutes after five in the morning:

m h dom mon dow command
5 5 * * * getfeed /media/external/Best_of_Today > /var/www/feeds/Best_of_Today.xml

Of course as many feeds as needed can be added for collection in the crontab.

 3.2.6.3.5 Bring up the torrent server
The torrent server (seeder) can be brought up with the publisher.py tool. Run it from a command
line like:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/publisher.py

or use the provided shell script in JSI/ProviderToolbox/bin/publisher. If the bin directory is in your
path run it like:

xyz:~/:{1}> publisher&

To run it really independently the scripts need to be detached from the terminal (disown) so that it
won't get killed when the terminal is closed.

 3.2.6.3.6 Generating a discovery feed
A discovery feed is build based on information of stored feeds. While running the tool you need to
specify certain parameters on the command line for proper feed generation, note that the defaults
won't work. For example the following command:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/discoveryfeed.py -t "Discovery
feed" -e http://stream.e5.ijs.si/feeds/discovery.xml -p "P2P-Next JSI/RTV Slovenia
(livinglab@e5.ijs.si)" > /var/www/feeds/discovery.xml

will generate the discovery feed for collected feeds and redirects the tool standard output to the
specified directory accessible by web server.
To automate the process a similar script as was presented in the section on updating the feed should
be prepared. In this way updates via cron are possible. It has to be noted that the discoveryfeed tool
really needs to be run only when a new feed is added to the feed storage.

 3.2.6.3.7 Managing the feed window
The feed window parameter controls how many content items will be kept in the feed while
updating.
Each feed window can be managed independently. The default mode of operation is collect, the
defined window is None. You can manage the window via specifying the right parameter at the feed
creation time with the getfeed tool (-w), on any further run of the same command, or via manually
changing the window attribute by editing the feed '.properties' file in the feed storage directory. If
the attribute is not specified there add a line like:

window = 20

to the properties file and the number of the content items published through the feed should be 20.

As said, the default value is None, and the feed is in the collect mode. When the window is 0, the

Page 41

P2P-Next D5.2.1d

number of items in incoming feed dictates the length of the exported feed. Specifying a negative
value for the window on the command line enables reverting to the default collect mode.

 3.2.6.3.8 Listing the feeds
The managefeed tool can be used to list the feed content:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -l
/media/external/Best_of_Today

A short listing will provide feed items listed in feed order together with related files and an
identifier. The identifier of an item can be used later to remove the item from the feed, if needed.

 3.2.6.3.9 Removing the publications or feeds
The publications are removed from the feed by the managefeed tool, specifying the publication
(item) identifier:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -d
/media/external/Best_of_Today -r 625353e5d4000ece34d291c5329ef2a378fdf85c

The command removes the content, the content-related rich metadata and the content-related torrent
file from the storage.

The feed can be removed by simply removing or moving the feed storage from MEDIA_ROOT e.g,
'rm -rf /media/external/Best_of_Today' or 'mv /media/external/Best_of_Today wherever' will
remove the feed. The discovery feed needs to be created again to reflect the change and the feed
torrents files need to be removed manually from the torrents storage so the publisher will catch up
the change. The files of course won't be shared any more but the publisher will complain in logs
about the missing file(s). This information could be helpful if some files torrent files have been
forgotten to be deleted.

 3.2.6.4 Tools documentation and examples of usage
For documentation consult this description, the README file, the standard python documentation,
and the code itself.

 3.2.6.4.1 Getfeed tool
The getfeed tool reads single input feed, gets the feed and the embodied media metadata, stores the
feed content, generates P2P-Next compliant torrent files and outputs on stdout the P2P-Next
compliant VoD feed.

 3.2.6.4.1.1 Command line options and their details

The getfeed tool command line help provides the following instructions:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -h
Usage: getfeed.py [options]

 Gets a feed content and metadata, creates torrent files and outputs P2P-Next
 compliant feed on std out. Consult tool help (-h) for more options.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v, --verbose Be verbose
 -l LOCATION, --location=LOCATION
 Location of the input feed
 -p PUBLISH, --publish=PUBLISH

Page 42

P2P-Next D5.2.1d

 Location of the absolute publishing link, default
 http://stream.e5.ijs.si/publish
 -t TEMPLATE, --content-template=TEMPLATE
 Name of the content template (class) to use in
 exporting feed content, for example 'RTVVoDContent'
 -e FEEDEXPORT, --export-link=FEEDEXPORT
 Location of the exported feed, default
 http://stream.e5.ijs.si/feeds appended with the name
 of the feed (directory) with xml extension
 -g GUID, --feed-id=GUID
 Feed identifier
 -i IMAGE, --feed-image=IMAGE
 Feed image
 -d DIDBASEFILE, --did-base-file=DIDBASEFILE
 Common feed DID base file
 -w WINDOW, --window=WINDOW
 A number of content units to keep, None (default)
 collect, 0 same as source
 -u DIRECTORY, --update=DIRECTORY
 Update the feed in specified directory and print fresh
 feed on std out
 -f FEEDDIR, --feed=FEEDDIR
 Print the feed of the specified feed directory. Feed
 guid (-g) or image (-i) can be specified on the
 command line as well
 -s FEED_EXPORT_STORE, --feed-export-store=FEED_EXPORT_STORE
 Store the resulting feed in specified directory
 instead outputing it to stdout. The name of the file
 will be the same as the name of the feed. Feed export
 file gets overwritten. Feed guid (-g) or image (-i)
 can be specified on the command line as well. Useful
 for command line processing of multiple feeds.
 -r, --fresh Return instead of the feed the identifiers of the
 fresh content units are returned, requires update
 option (-u). The feed can be then obtained with feed
 option (-f).
 -c, --fresh-content Return instead of the feed the content files of the
 fresh content units, requires update option (-u). The
 feed can be then obtained with feed option (-f).
 -j, --json Returns a feed data in json format. Used only with
 location (-l), update (-u) and feed (-f) option.

 3.2.6.4.1.1.1 Location option

The '-l' option specifies the location of input feed that will be read and from which metadata
and content will be obtained.

Both matadata and content will be stored under a directory of your choice, specified using
the settings.MEDIA_ROOT variable. See conf/default_settings.py for more details.

Example layout of such storage, MEDIA_ROOT points to '/media/external':
 xyz:~/src/Next-Share:{1}> ls /media/external/*

/media/external/Best_of_Today:
Best_of_Today.xml today_20101111-0652a.mp3 today_20101112-0923a.xml
today_20101109-0641a.mp3 today_20101111-0652a.xml today_20101113-0840a.mp3
today_20101109-0641a.xml today_20101111-0915a.mp3 today_20101113-0840a.xml
today_20101109-0921a.mp3 today_20101111-0915a.xml today_20101113-1057a.mp3
today_20101109-0921a.xml today_20101111-0918a.mp3 today_20101113-1057a.xml
today_20101109-0926a.mp3 today_20101111-0918a.xml today_20101115-0757a.mp3
today_20101109-0926a.xml today_20101111-0923a.mp3 today_20101115-0757a.xml
today_20101110-0643a.mp3 today_20101111-0923a.xml today_20101115-0804a.mp3
today_20101110-0643a.xml today_20101112-0645a.mp3 today_20101115-0804a.xml
today_20101110-0946a.mp3 today_20101112-0645a.xml today_20101115-0954a.mp3
today_20101110-0946a.xml today_20101112-0917a.mp3 today_20101115-0954a.xml
today_20101110-0955a.mp3 today_20101112-0917a.xml
today_20101110-0955a.xml today_20101112-0923a.mp3

/media/external/RTV_-_Zapisi_iz_Mocvirja:
RTV_-_Zapisi_iz_Mocvirja.xml zapisi_iz_mocvirja_09-11-2010_1629.xml
zapisi_iz_mocvirja_02-11-2010_1629.mp3 zapisi_iz_mocvirja_26-10-2010_1628.mp3

Page 43

P2P-Next D5.2.1d

zapisi_iz_mocvirja_02-11-2010_1629.xml zapisi_iz_mocvirja_26-10-2010_1628.xml
zapisi_iz_mocvirja_09-11-2010_1629.mp3

The storage contains two feeds stored in directories derived from the feed names. Each unit
of content is present with two files, a content file and metadata file. It is needles to say that
the user invoking the getfeed script should have a write permission to the MEDIA_ROOT or
feed directory. The feed directories are created on fly, if not existent, and read, and content
and metadata information restored, if present. Restored information is used in updates of the
feed to obtain only fresh content (but the whole feed is read from the network).

 3.2.6.4.1.1.2 Publish option

The publish option '-p' specifies an absolute path of the location where the publications
could be read as obtained from the exported P2P-Next feed. If you plan to publish, for
example, torrent files of the input feed content through a web server like
http://web.server.of.your.choice/publications, this is the absolute path that will appear in the
feed as a link to the publication. The path could be not specified as well. To get the final link
to the publication while generating the feed the absolute path is concatenated with the
content's (feed item) relative path as explained in the next section.

For simpler managing of this option you can specify a default value in default_settings.py
using the variable CONTENT_PUBLISHINGLINK. Note that if you are not specifying this
variable for every feed, it will be used for all your feeds.

 3.2.6.4.1.1.3 Export url option

The export url option (-e) defines where the resulting feed will be obtainable from. Usually
it will be obtained from a web server, therefore the link should point to there.

For simpler managing of the feeds you can specify a default value in default_settings.py
using the variable EXPORT_FEEDLINK. In this case the the variable will be appended with
the feed name and the xml extension by default. Be sure that the file is stored with the right
name in your web server. Note that if you are not specifying a location for every feed, this
variable will be used for all your feeds.

• Template option

By default the absolute path is concatenated with the content's relative path while building
the final path for the content. The relative path is a name of the content's torrent file. The
default behavior can be changed by providing your customized ContentUnit inherited class
in the ContentSource.py module. There are three methods that were intended for
customization in the ContentUnit class, presented here together with their help:
def getImage(self):
 """
 Per content unit settable image. Define any mapping on content
 unit attributes ta return the image location as a string. If
 the method returns None content unit image will equal to feed
 image.

 @return string String or None if not defined.
 """
 return None

def getId(self):
 """
 Per content unit settable id. Define any mapping on content
 unit attributes ta return the content id as a string. If the
 method returns None content unit id will be equal to its link.

Page 44

P2P-Next D5.2.1d

 @return string String or None if not defined.
 """
 return None

def getPublish(self):
 """
 Per content unit settable relative publishing link. Define any
 mapping on content unit attributes ta return the content
 relative publishing link as a string. If the method returns
 None content unit relative publishing link will be equal to
 its torrent publication.

 @return string String or None if not defined.
 """
 return None

They allow programmable manipulation of the content related parameters. See
RTVVoDContent class in ContentSource.py for a very simple implementation of such a
template.

 3.2.6.4.1.1.4 Feed uid and image options

The getfeed tool options '-g' and '-i' allow specifying the feed's unique id and image. If '-g' is
not defined as unique feed id, the feed's exported link is used (see next section). If '-i' is not
specified, the original output feed image is used.

• DIDBase option

The DIDbase option '-d' enables providing a path to the MPEG-21 DID base file as input
parameter. The DIDbase provided in this way defines the same DIDbase information for all
content units in the feed. To specify the DIDbase for each content unit separately one should
overload the setDIDBase method in a class inheriting from ContentUnit class (similarly as
explained in the section on Template option, example not provided). The DIDbase file can
be generated with a help of the metagen tool provided by the RichMetadata implementation.
Not all options need to be specified, for example the following command will provide
enough information for generating a complete DIDbase for a torrent file:

python JSI/RichMetadata/tools/metagen.py -b –identifier="urn:p2p-next:item:rtv-slo-slo1-
xyz" –relatedIdentifier="urn:rtv-slo:slo1-xyz" –advertisementReference="URI to additional
MPEG21 data (advertising)" –limoReference="URI to additional MPEG21 data (limo)" –
paymentReference="URI to additional MPEG21 data (payment)" –
scalabilityReference="URI to additional MPEG21 data (scalability)" -c > did-base.xml
Other missing parameters like metadata core, etc,. are already available after getting the
original feed metadata information.
Without providing the DIDbase option, the only available elements based on original feed
are packed in the DID base and included in the torrent file.
The torrent files as created are stored as specified by settings.EXPORT_TORRENT_DIR in
default_settings.py. Per default this directory is '/media/external/torrents', for example
torrent files for the feeds as were presented above are collected in a single directory:
/media/external/torrents:
today_20101109-0641a.tstream today_20101112-0917a.tstream
today_20101109-0921a.tstream today_20101112-0923a.tstream
today_20101109-0926a.tstream today_20101113-0840a.tstream
today_20101110-0643a.tstream today_20101113-1057a.tstream
today_20101110-0946a.tstream today_20101115-0757a.tstream
today_20101110-0955a.tstream today_20101115-0804a.tstream
today_20101111-0652a.tstream today_20101115-0954a.tstream
today_20101111-0915a.tstream zapisi_iz_mocvirja_02-11-2010_1629.tstream
today_20101111-0918a.tstream zapisi_iz_mocvirja_09-11-2010_1629.tstream

Page 45

P2P-Next D5.2.1d

today_20101111-0923a.tstream zapisi_iz_mocvirja_26-10-2010_1628.tstream
today_20101112-0645a.tstream

It has to be noted that currently no resolving mechanism exists if there are two content units
with the same name published through one or more feeds - the resulting torrent file will be
overwritten by the torrent file of the content with the same name acquired latter.

 3.2.6.4.1.1.5 Update option

For easier updating of the feeds when already created you can specify just the update option
(-u), followed by the storage directory of the feed. The feed will be updated, using the same
parameters or defaults, as when they were created. The resulting feed will be directed to the
standard output. If the fresh option (-r) or fresh content option (-c) are specified the output
will consist of fresh content units item identifiers or content files. Use the feed option (-f) to
get the atom feed or specify the update with the Json option (-j) and get all the specified data
on standard output. See the Json option section for details.

 3.2.6.4.1.1.6 Feed option

The feed option outputs the feed as atom feed on standard output.

 3.2.6.4.1.1.7 Json outputs

Json output can ease using the getfeed tool wrapped as a shell script. The Json output
provides the following data, when used with update (-u), location (-l) or feed option (-f):
{"feed": atom feed,
"fresh": fresh items,
"maps": { metadata_file_name: { "content": content,
 "torrent": torrent file,
 "id": id of the item in atom feed,
 "identifier": identifier of the item,
 "cskeys": ClosedSwarm keys}

The maps value is a dictionary of metadata file names as keys and dictionaries about the
item details, as specified above as a value. Fresh items will be available only when Json
output is used with the update or location option. ClosedSwarm keys will be listed in the
output if the content distribution is protected with ClosedSwarm technology. Similar Json
outputs could be provided by the managefeed tool as well.

 3.2.6.4.1.2 Quick summary

To obtain a feed from a location and publish it on a web server of your choice:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
http://www.rtvslo.si/podcasts/zapisi_iz_mocvirja.xml -p
http://web.server.of.your.choice/publications

To modify as well the location of the exported feed, e.g. where the exported feed can be obtained
from (link that appears in the feed itself):

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
http://www.rtvslo.si/podcasts/zapisi_iz_mocvirja.xml -p
http://web.server.of.your.choice/publications -e
http://web.server.of.your.choice/feeds/myfeed.xml

To use a customize template is enough to specify the right ContentUnit class:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
http://www.rtvslo.si/podcasts/zapisi_iz_mocvirja.xml -p
http://web.server.of.your.choice/publications -e
http://web.server.of.your.choice/feeds/myfeed.xml -t RTVVoDContent

To update the feed:

Page 46

P2P-Next D5.2.1d

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
http://www.rtvslo.si/podcasts/zapisi_iz_mocvirja.xml

or even simpler:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -u
/media/external/RTV_-_Zapisi_iz_Mocvirja

 3.2.6.4.2 Discoveryfeed tool
The discoveryfeed tool creates a P2P-Next compliant discovery feed from the stored feeds and
outputs it on stdout.

 3.2.6.4.2.1 Command line options and their details

The discoveryfeed tool command line help provides the following instructions:
 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py

Usage: discoveryfeed.py [options]

 Create discoveryfeed from scratch. Consult tool help (-h) for more options.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v, --verbose Be verbose
 -m MEDIA_ROOT, --media-root=MEDIA_ROOT
 Location of feeds storage, other then media root
 (settings.MEDIA_ROOT)
 -t TITLE, --feed-title=TITLE
 Feed title
 -e EXPORTURL, --feed-export-url=EXPORTURL
 URL where the feed will be accessible
 -p PUBLISHER, --author=PUBLISHER
 Publisher of the feed
 -u ID, --id=ID Feed unique identifier
 -i IMAGE, --image=IMAGE
 Feed image

Please note that the output depends on the stored feeds. the Discovery feed items' information is
based on the stored feed information. If there are no feeds stored the tool will return only the feed
header.

 3.2.6.4.2.2 Quick summary

An example of usage:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/discoveryfeed.py -t "Discovery
feed" -e http://stream.e5.ijs.si/discovery.xml -p "P2P-Next JSI/RTV Slovenia
(livinglab@e5.ijs.si)"

 3.2.6.4.3 Managefeed tool
The managefeed tool enables creating a feed from scratch. While the getfeed tool creates the feed
from a source in a network, managefeed needs proper inputs for feed creation. Both type of feeds
are stored in a same manner in the file system with the same or similar properties.
The managefeed tool main operations supported are creation of a feed, adding to and removing
items from the feed and list the feed. Since the information about the feed and its items is not
obtained from an external source the number of parameters supported (and needed for meaningful
management) by the tool is significantly increased. The command line help for the tool returns:

 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -h

Reason for failure: None of the main options -c, -a, -r, -l, -f or --identifier specified!

Page 47

P2P-Next D5.2.1d

Usage: managefeed.py [options]

 Creates a feed from scratch or manages the feed. Consult tool help (-h)
 for more options.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v, --verbose Be verbose

 Main options:
 One of this options needs to be specified

 -c, --create-feed Create or modify feed metadata or parameters, the feed
 directory should be specified as option argument
 -a, --add-item Add feed item. The feed should be specified with feed
 dir option (-d)
 -r REMOVEITEM, --remove-item=REMOVEITEM
 Remove feed item by identifier (use list to find the
 right one and specify the feed directory with -d)
 -l LIST, --list=LIST
 List the feed storage directory as specified in option
 -f FEED, --feed=FEED
 Get the feed specified by the feed storage directory.
 Feed guid (-u) or image (-i) can be specified on the
 command line as well
 -d FEEDDIR, --feed-storage=FEEDDIR
 Feed storage. Not usable on its own but needs to be
 specified together with other options (-r, -a,
 --identifier, ---find-cs-key)

 Metadata options:
 Options used for specifying the feed or item metadata

 -t TITLE, --title-name=TITLE
 Name of the title, feed or item
 -k DESCRIPTION, --series-title=DESCRIPTION
 Feed series title (description)
 -n LANGUAGE, --language=LANGUAGE
 Feed language
 -g ORIGINATOR, --originator=ORIGINATOR
 Feed originator
 -j PUBLISHER, --author=PUBLISHER
 Publisher of the feed
 -x COREMETAFILE, --core-metadata=COREMETAFILE
 Core metadata file used as template for the feed or an
 item. Caution: if used with the item the channel
 metadata gets overwritten by this metadata. In this
 case the item metadata should specify the channel
 metadata as well.
 -s SYNOPSIS, --synopsis=SYNOPSIS
 Item synopsis

 Publishing options:
 Options used for publishing the content

 -e EXPORTURL, --feed-export-url=EXPORTURL
 URL where the feed will be accessible, default
 http://stream.e5.ijs.si/feeds appended with the name
 of the feed (directory) with xml extension
 -u ID, --id=ID Unique identifier of the feed
 -i IMAGE, --image=IMAGE
 Image of the feed
 -p PUBLISH, --publish-link=PUBLISH
 Publish link of the feed (absolute), default
 http://stream.e5.ijs.si/publish
 -o CUCI, --cu-class-instance=CUCI
 Content unit class instance used in an export of the
 feed. Enables custumization of the export per unit
 -b DIDBASE, --did-base=DIDBASE
 Feed DID base file
 -y MIMETYPE, --mime-type=MIMETYPE
 Item mime type

Page 48

P2P-Next D5.2.1d

 -z CONTENT, --content=CONTENT
 Content file pointed to in an item

 ClosedSwarm options:
 --cs Protect the item with the closed swarm. Used only with
 add item (-a)
 --cs-keys=CSKEYS Specify a comma separated list of keys to be used with
 closed swarm. Used only with add item (-a). Not tested
 yet.
 --find-cs-key=IDENTIFIER
 Find CS key file for specified content unit
 identifyer, if any. Use with feed directory (-d)

 Miscellaneous options:
 --long List the feed storage in detail
 -m MEDIA_ROOT, --media-root=MEDIA_ROOT
 Location of feeds storage, other then media root
 (settings.MEDIA_ROOT)
 --identifier=FILENAME
 Return an identifier list (comma separated) according
 to specified file name, either content, metadata or
 torrent file. Requires an option feed storage (-d) as
 well.
 --json Output feed data in json format. Makes sense only in
 combination with list feed (-l), feed (-f),
 --identifier and --find-cs-key.

The first line warns us why the failure has occurred and then the tool help is returned. One of the
main modes of the tool needs to be specified:

• '-c': create the feed from scratch
• '-a': add a new item to the feed

• '-r': remove the item from the feed, or
• '-l': list the feed information

• '-f': gets the feed atom feed without an update
• '–identifier': utility option

The other parameters' usage will be explained through examples.

 3.2.6.4.3.1 Create a feed

The feed can be created as presented in the following example. The content feed for FAB channel is
created with a suitable title and description. RichMetadata-wise they get mapped to the main and
the series title. A feed image is assigned, an url where the feed could be obtained from (-e), and an
absolute publishing link for the feed items (-p):

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -c -t "FAB Channel
feed" -k "Concerts in Paradiso, Amsterdam" -g "FAB channel" -j "P2P-Next (www.p2p-next.org)"
-n "en" -i "http://stream.e5.ijs.si/images/p2p-next-logo.jpg" -e
"http://stream.e5.ijs.si/feeds/fab.xml" -p "http://stream.e5.ijs.si/torrents"

The result of the command is a new feed storage directory at settings.MEDIA_ROOT, in this case
'media/external':

 xyz:~/src/Next-Share:{1}> ls -a /media/external/FAB_Channel_feed
. .. FAB_Channel_feed.xml .properties

The xml file holds the feed's RichMetadata information and the .properties file's feed properties:
 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/printxml.py -f
/media/external/FAB_Channel_feed/FAB_Channel_feed.xml
<?xml version="1.0" encoding="utf-8"?>
<TVAMain publisher="P2P-Next (www.p2p-next.org)" xmlns="urn:tva:metadata:2007"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:mpeg7_tva="urn:tva:mpeg7:2005"
xmlns:p2pnext="urn:p2pnext:metadata:2008" xmlns:tva="urn:tva:metadata:2007"

Page 49

P2P-Next D5.2.1d

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:tva:metadata:2007 tva_metadata_3-1_v141_p2p.xsd">
 <ProgramDescription>
 <ProgramInformationTable>
 <ProgramInformation>
 <BasicDescription type="p2pnext:BasicP2PDataDescriptionType">
 <Title type="main">
 FAB Channel feed
 </Title>
 <Title type="seriesTitle">
 Concerts in Paradiso, Amsterdam
 </Title>
 <Language>
 en
 </Language>
 <p2pnext:Originator>
 FAB channel
 </p2pnext:Originator>
 </BasicDescription>
 </ProgramInformation>
 </ProgramInformationTable>
 </ProgramDescription>
</TVAMain>
 xyz:~/src/Next-Share:{1}> cat /media/external/FAB_Channel_feed/.properties
location = file:///media/external/FAB_Channel_feed
name = FAB Channel feed
cstype = channel
publish = http://stream.e5.ijs.si/torrents
image = http://stream.e5.ijs.si/images/p2p-next-logo.jpg
contentUnitClassInstance = ContentUnit
exportFeedLink = http://stream.e5.ijs.si/feeds/fab.xml

If the same feed with the same name is created with another '-c' command, the feed information is
simply overwritten.

 3.2.6.4.3.2 Add item to the feed

Subsequently, the items of the feed can be added to the feed. Lets say that we would like to add the
FAB channel content as available in the directory
'/media/external/content/20050526_monokino.m4v'. The following command will add an item to
the feed and create the item's RichMetadata from the feed metadata, the information supplied on the
command line and the technical metadata of the content:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -a -d
/media/external/FAB_Channel_feed -z /media/external/content/20081213_gpnl_missippi_hdv.m4v -s
"Missippi whatever synopsis" -t "Misippi live performance in Paradiso, Amsterdam, 2008"

The result will show up in the feed storage:
 xyz:~/src/Next-Share:{1}> ls -al /media/external/FAB_Channel_feed
lrwxrwxrwx 1 dusan dusan 54 2010-11-22 11:43 20081213_gpnl_missippi_hdv.m4v ->
/media/external/content/20081213_gpnl_missippi_hdv.m4v
-rw-r--r-- 1 dusan dusan 1476 2010-11-22 11:43 20081213_gpnl_missippi_hdv.xml
-rw-r--r-- 1 dusan dusan 766 2010-11-22 11:30 FAB_Channel_feed.xml
-rw-r--r-- 1 dusan dusan 286 2010-11-22 11:30 .properties

As can be seen the content is simply a link to the content specified on the command line (the item
can be easily removed without loosing the content itself) and the content metadata:

 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/printxml.py -f
/media/external/FAB_Channel_feed/20081213_gpnl_missippi_hdv.xml

<?xml version="1.0" encoding="utf-8"?>
<TVAMain publisher="P2P-Next (www.p2p-next.org)" xmlns="urn:tva:metadata:2007"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:mpeg7_tva="urn:tva:mpeg7:2005"
xmlns:p2pnext="urn:p2pnext:metadata:2008" xmlns:tva="urn:tva:metadata:2007"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:tva:metadata:2007 tva_metadata_3-1_v141_p2p.xsd">
 <ProgramDescription>
 <ProgramInformationTable>
 <ProgramInformation>
 <BasicDescription type="p2pnext:BasicP2PDataDescriptionType">

Page 50

P2P-Next D5.2.1d

 <Title type="main">
 FAB Channel feed
 </Title>
 <Title type="seriesTitle">
 Concerts in Paradiso, Amsterdam
 </Title>
 <Title type="episodeTitle">
 Misippi live performance in Paradiso, Amsterdam, 2008
 </Title>
 <Synopsis>
 Missippi whatever synopsis
 </Synopsis>
 <Language>
 en
 </Language>
 <Duration>
 00:16:40.17
 </Duration>
 <p2pnext:Originator>
 FAB channel
 </p2pnext:Originator>
 </BasicDescription>
 <AVAttributes>
 <FileFormat href="urn:mpeg:mpeg7:cs:FileFormatCS:2001">
 <Name>
 mov
 </Name>
 </FileFormat>
 <FileSize>
 1564901380
 </FileSize>
 <BitRate>
 12517 kb/s
 </BitRate>
 <AudioAttributes>
 <Coding href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001">
 <Name>
 aac
 </Name>
 </Coding>
 <NumOfChannels>
 2
 </NumOfChannels>
 </AudioAttributes>
 <VideoAttributes>
 <Coding href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001">
 <Name>
 h264
 </Name>
 </Coding>
 <HorizontalSize>
 1280
 </HorizontalSize>
 <VerticalSize>
 720
 </VerticalSize>
 <AspectRatio>
 16:9
 </AspectRatio>
 </VideoAttributes>
 </AVAttributes>
 </ProgramInformation>
 </ProgramInformationTable>
 </ProgramDescription>
</TVAMain>

As can be seen from the provided example the feed metadata gets mapped to main and series title
and the item title to the episode title. The technical metadata gets extracted from the content
automatically.

At the same time the torrent file was created for the item. It is located at the location specified with
the settings.EXPORT_TORRENT_DIR variable (default '/media/external/torrents'). We can take a
look at the torrent file created with the RichMetadata tool btshowmetainfo:

Page 51

P2P-Next D5.2.1d

 xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/btshowmetainfo.py
/media/external/torrents/20081213_gpnl_missippi_hdv.tstream

metainfo: ['creation date', 'announce', 'info', 'azureus_properties', 'encoding']
azprop: ['Content']
content: ['Publisher', 'Description', 'Progressive', 'Title', 'Creation Date', 'Content
Hash', 'Speed Bps', 'Revision Date']
Publisher = Tribler
Description =
Progressive = 1
Title = 20081213_gpnl_missippi_hdv.m4v
Creation Date = 1290422609
Content Hash = PT3GQCPW4NPT6WRKKT25IQD4MU5HM4UY
Speed Bps = 1564901
Revision Date = 1290422609
metainfo file.: 20081213_gpnl_missippi_hdv.tstream
info hash.....: d1ed1996375d63de38074e9e1f835973105323c2
info hash.....: '\xd1\xed\x19\x967]c\xde8\x07N\x9e\x1f\x83Ys\x10S#\xc2'
file name.....: 20081213_gpnl_missippi_hdv.m4v
file size.....: 1564901380 (47757 * 32768 + 4)
announce url..: http://127.0.0.1:6969/announce
ns-metadata...:
<?xml version="1.0" ?>
<DIDL xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd
urn:mpeg:mpeg21:2002:01-DII-NS dii.xsd">
 <Item>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Type>
 urn:p2p-next:type:item:2009
 </dii:Type>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Type>
 urn:p2p-next:type:rm:core:2009
 </dii:Type>
 </Statement>
 </Descriptor>
 <Statement mimeType="text/xml">
 <TVAMain publisher="P2P-Next (www.p2p-next.org)"
xmlns="urn:tva:metadata:2007" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
xmlns:mpeg7_tva="urn:tva:mpeg7:2005"
xmlns:p2pnext="urn:p2pnext:metadata:2008"
xmlns:tva="urn:tva:metadata:2007" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:tva:metadata:2007 tva_metadata_3-
1_v141_p2p.xsd"><ProgramDescription><ProgramInformationTable><ProgramI
nformation><BasicDescription
type="p2pnext:BasicP2PDataDescriptionType"><Title
type="main">FAB Channel feed</Title><Title
type="seriesTitle">Concerts in Paradiso, Amsterdam</Title><Title
type="episodeTitle">Misippi live performance in Paradiso, Amsterdam,
2008</Title><Synopsis>Missippi whatever
synopsis</Synopsis><Language>en</Language><Duration>00:16:40.17</D
uration><p2pnext:Originator>FAB
channel</p2pnext:Originator></BasicDescription><AVAttributes><FileFormat
href="urn:mpeg:mpeg7:cs:FileFormatCS:2001"><Name>mov</Name></File
Format><FileSize>1564901380</FileSize><BitRate>12517
kb/s</BitRate><AudioAttributes><Coding
href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001"><Name>aac</Name>&l
t;/Coding><NumOfChannels>2</NumOfChannels></AudioAttributes><VideoAtt
ributes><Coding
href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001"><Name>h264</Name>
</Coding><HorizontalSize>1280</HorizontalSize><VerticalSize>720</V
erticalSize><AspectRatio>16:9</AspectRatio></VideoAttributes></AVAttr
ibutes></ProgramInformation></ProgramInformationTable></ProgramDescription&
gt;</TVAMain>
 </Statement>
 </Descriptor>
 <Component>

Page 52

P2P-Next D5.2.1d

 <Resource mimeType="video/x-m4v" ref="20081213_gpnl_missippi_hdv.m4v"/>
 </Component>
 </Item>
</DIDL>

Another item could be added with a similar command:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -a -d
/media/external/FAB_Channel_feed -z /media/external/content/20050526_monokino.m4v -s
"Monokino whatever synopsis" -t "Monokino live performance in Paradiso, Amsterdam, 2005"

The managefeed tool command line parameters allow specifying only parameters essential for the
feed creation. If there is a need for additional information in the RichMetadata of the content, like
genre, minimum age, etc., one can create the necessary metadata before creating a feed and adding
an item to the feed. For example, the feed metadata could be defined with the RichMetadata
metagen tool:

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py --captionLanguage=en
--genre="Live concert" --language=en --minimumAge=3 --originator="FAB Channel"
--productionDate=2010-08-16 --productionLocation=NL --publisher=p2p-next --releaseDate=2010-
08-17 --signLanguage=en --titleMain="FAB Channel feed" --titleSeriesTitle="Concerts in
Paradiso, Amsterdam" > fab.xml

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -c -i
"http://stream.e5.ijs.si/images/p2p-next-logo.jpg" -e "http://stream.e5.ijs.si/feeds/fab.xml"
-p "http://stream.e5.ijs.si/torrents" -x fab.xml

and provided as an template while creating the feed ('-x' option). The metadata can be replaced
directly by copying the metadata to the feed store (in this case replacing the file
FAB_Channel_Feed.xml). All items added to the feed later will inherit the same data as stored in
this file, except if you use the template while adding the item as well. In this case the item metadata
should include the feed metadata as well:

xyz:~/src/Next-Share:{1}> python JSI/RichMetadata/tools/metagen.py --captionLanguage=en
--genre="Live concert" --language=en --minimumAge=3 --originator="FAB Channel"
--productionDate=2010-08-16 --productionLocation=NL --publisher=p2p-next --releaseDate=2010-
08-17 --signLanguage=en --synopsis="Monokino whatever synopsis" --titleEpisodeTitle="Monokino
live performance in Paradiso, Amsterdam, 2005" --titleMain="FAB Channel feed"
--titleSeriesTitle="Concerts in Paradiso, Amsterdam" > fab-monokino.xml

and the template can be used while creating an item:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -a -d
/media/external/FAB_Channel_feed -z /media/external/content/20081213_gpnl_missippi_hdv.m4v -x
fab-monokino.xml

If the resulted feed is now listed, we see two items in the feed:
 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -l
/media/external/FAB_Channel_feed

'FAB Channel feed', stored in /media/external/FAB_Channel_feed
Location: file:///media/external/FAB_Channel_feed
 1) Monokino live performance in Paradiso, Amsterdam, 2005
 Identifier: 42d63e76f63c979a5d63458a2867606358e229a1
 Content: 20050526_monokino.m4v
 Metadata: 20050526_monokino.xml
 Torrent: 20050526_monokino.tstream
 2) Misippi live performance in Paradiso, Amsterdam, 2008
 Identifier: 8a9640c940c4958d863797802d50d3ff5029b8bb
 Content: 20081213_gpnl_missippi_hdv.m4v
 Metadata: 20081213_gpnl_missippi_hdv.xml
 Torrent: 20081213_gpnl_missippi_hdv.tstream

We can see in the list output the item identifiers as well. They can be used for removing the items
from the feed:

xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/managefeed.py -d
/media/external/FAB_Channel_feed -r 8a9640c940c4958d863797802d50d3ff5029b8bb

would remove the Missippi item from the feed.

Page 53

P2P-Next D5.2.1d

 3.2.6.4.3.3 Getting the atom feed

The P2P-Next compliant feed could then be obtained from the created feed with the getfeed or the
managefeed tool:

 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/getfeed.py -l
/media/external/FAB_Channel_feed
<?xml version="1.0" encoding="utf-8"?>
<feed xml:lang="en" xmlns="http://www.w3.org/2005/Atom"
xmlns:p2pnext="urn:p2pnext:contentfeed:2009">
 <title>
 FAB Channel feed
 </title>
 <link href="http://stream.e5.ijs.si/feeds/FAB_Channel_feed.xml" rel="self"/>
 <id>
 http://stream.e5.ijs.si/feeds/FAB_Channel_feed.xml
 </id>
 <updated>
 2011-04-04T16:37:40Z
 </updated>
 <author>
 <name>
 P2P-Next (www.p2p-next.org)
 </name>
 </author>
 <p2pnext:image src="http://stream.e5.ijs.si/images/p2p-next-logo.jpg"/>
 <entry>
 <title>
 Misippi live performance in Paradiso, Amsterdam, 2008
 </title>
 <link
href="http://stream.e5.ijs.si/publish/FAB_Channel_feed/20081213_gpnl_missippi_hdv"
rel="alternate" type="application/xml"/>
 <updated>
 2011-04-04T16:37:40Z
 </updated>
 <id>
 urn:p2p-
next:item:tag:stream.e5.ijs.si:/publish/FAB_Channel_feed/20081213_gpnl_missippi_hdv/
 </id>
 <summary>
 Mississipi concert
 </summary>
 <p2pnext:image src="http://stream.e5.ijs.si/images/p2p-next-logo.jpg"/>
 <p2pnext:broadcastType>
 vod
 </p2pnext:broadcastType>
 <p2pnext:mediaUri>
 http://stream.e5.ijs.si/publish/torrents/20081213_gpnl_missippi_hdv.tstream
 </p2pnext:mediaUri>
 <p2pnext:mediaDuration>
 PT00H16M40S
 </p2pnext:mediaDuration>
 </entry>
 <entry>
 <title>
 Monokino live performance in Paradiso, Amsterdam, 2005
 </title>
 <link href="http://stream.e5.ijs.si/publish/FAB_Channel_feed/20050526_monokino"
rel="alternate" type="application/xml"/>
 <updated>
 2011-04-04T16:37:40Z
 </updated>
 <id>
 urn:p2p-next:item:tag:stream.e5.ijs.si:/publish/FAB_Channel_feed/20050526_monokino/
 </id>
 <summary>
 Monokino whatever synopsis
 </summary>
 <p2pnext:image src="http://stream.e5.ijs.si/images/p2p-next-logo.jpg"/>
 <p2pnext:broadcastType>
 vod
 </p2pnext:broadcastType>
 <p2pnext:mediaUri>

Page 54

P2P-Next D5.2.1d

 http://stream.e5.ijs.si/publish/torrents/20050526_monokino.tstream
 </p2pnext:mediaUri>
 <p2pnext:mediaDuration>
 PT00H22M03S
 </p2pnext:mediaDuration>
 </entry>
</feed>

From the feed output it can be seen how the export url parameter (-e) and absolute publishing link (-
p), defined while creating the feed, are used. The feed id, item id and item images get the default
treatment as is explained in the getfeed tool description.

 3.2.6.4.3.4 Obtaining the discovery feed

The discovery feed, when created, will include the FAB channel feed as well, besides three other
feeds:

 xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/discoveryfeed.py -t "Discovery
feed" -e http://stream.e5.ijs.si/discovery.xml -p "P2P-Next JSI/RTV Slovenia
(livinglab@e5.ijs.si)"

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:p2pnext="urn:p2pnext:contentfeed:2009">
 <title>
 Discovery feed
 </title>
 <link href="http://stream.e5.ijs.si/discovery.xml" rel="self"/>
 <id>
 http://stream.e5.ijs.si/discovery.xml
 </id>
 <updated>
 2010-11-22T12:47:02Z
 </updated>
 <author>
 <name>
 P2P-Next JSI/RTV Slovenia Living Lab (livinglab@e5.ijs.si)
 </name>
 </author>
 <p2pnext:image src="http://stream.e5.ijs.si/images/p2p-next-logo.jpg"/>
 <entry>
 <title>
 RTV - Studio city
 </title>
 <link href="http://stream.e5.ijs.si/feeds/studio_city.xml" rel="alternate"
type="application/atom+xml"/>
 <updated>
 2010-11-22T12:47:02Z
 </updated>
 <id>
 http://stream.e5.ijs.si/feeds/studio_city.xml
 </id>
 <summary>
 Tedenska enourna oddaja magazinsko-informativnega formata, ki ob ponedeljkih zve er
ob 21.uri v živo te e na drugem programu TV Slovenija, je postala kultna zaradi svojega
alternativnega in drznega pristopa k obdelavi razli nih tem in dogodkov. Studio City se
za enja z zgoš enim in u inkovitim pregledom dogodkov preteklega tedna, nato se dotakne
notranjepoliti nih in svetovnih dogodkov, sodobne kulture, ne izogiba se niti družbeno
pere ih tematik. Provokativno anketno vprašanje obdrži gledalce pred zasloni do konca oddaje,
ko se izpišejo rezultati t.i. ''mini referenduma''.
 </summary>
 <category schema="urn:service-type" term="tv"/>
 <p2pnext:image src="http://www.rtvslo.si/podcasts/mmc.png"/>
 </entry>
 <entry>
 <title>
 FAB Channel feed
 </title>
 <link href="http://stream.e5.ijs.si/feeds/fab.xml" rel="alternate"
type="application/atom+xml"/>
 <updated>
 2010-11-22T12:47:02Z
 </updated>

Page 55

P2P-Next D5.2.1d

 <id>
 http://stream.e5.ijs.si/feeds/fab.xml
 </id>
 <summary>
 Concerts in Paradiso, Amsterdam
 </summary>
 <category schema="urn:service-type" term="tv"/>
 <p2pnext:image src="http://stream.e5.ijs.si/images/p2p-next-logo.jpg"/>
 </entry>
 <entry>
 <title>
 RTV - Zapisi iz Mo virja
 </title>
 <link href="http://stream.e5.ijs.si/feeds/zapisi_iz_mocvirja.xml" rel="alternate"
type="application/atom+xml"/>
 <updated>
 2010-11-22T12:47:02Z
 </updated>
 <id>
 http://stream.e5.ijs.si/feeds/zapisi_iz_mocvirja.xml
 </id>
 <summary>
 Glosa Marka Radmilovi a, za injena s prefinjenim smislom za humor, ki je enostavno
ne smete preslišati!
 </summary>
 <category schema="urn:service-type" term="radio"/>
 <p2pnext:image src="http://www.rtvslo.si/podcasts/mmc.png"/>
 </entry>
 <entry>
 <title>
 Best of Today
 </title>
 <link href="http://stream.e5.ijs.si/feeds/best_of_today.xml" rel="alternate"
type="application/atom+xml"/>
 <updated>
 2010-11-22T12:47:02Z
 </updated>
 <id>
 http://stream.e5.ijs.si/feeds/best_of_today.xml
 </id>
 <summary>
 Insight, analysis and expert debate as key policy makers are challenged on the
latest news stories.
 </summary>
 <category schema="urn:service-type" term="radio"/>
 <p2pnext:image src="http://www.bbc.co.uk/radio/podcasts/today/assets/_300x300.jpg"/>
 </entry>
</feed>

 3.2.6.4.3.5 ClosedSwarm items

The current implementation (v3.0) can generate ClosedSwarm (CS) keys and corresponding torrent
files if the closed swarm option (–cs) is specified on the command line when creating (adding) the
item. The CS key is generated automatically. If the item is protected with CS the listing of the feed
(-l option) or Json exports will specify the item's corresponding CS key file in its output. A
miscellaneous option '–find-cs-key' with an argument of an item identifier can be used to find the
CS keys of the item directly (the feed directory option '-d' needs to be specified for this).

 3.2.6.4.4 Publisher
The publisher wraps the Next-Share core and publishes all the torrent files found in the torrent
storage (specified using the EXPORT_TORRENT_DIR variable in default_settings.py) and shares
the torrent files' related content.
The publisher updates itself regularly. The interval used can be tuned using the
UPDATE_INTERVAL variable as specified in the settings. The default update interval of 60
seconds is intended for testing, for production the value should be longer, around a few minutes.

Page 56

P2P-Next D5.2.1d

During updates the publisher finds new or removed content and reacts accordingly.

To run the publisher from the command line for testing, use:
xyz:~/src/Next-Share:{1}> python JSI/ProviderToolbox/tools/publisher.py

The publisher log threshold is set to DEBUG, so you can follow the debugging messages. The
ProviderToolbox otherwise logs the messages through the operating system's syslog; the logging
level there is set to INFO, so it is possible to follow the working of the toolbox.

For production usage, one could use for now the publisher script in the
JSI/ProviderToolbox/bin/publisher directory. After running the process should be detached
(disown?) from the terminal so the terminal closure wouldn't affect the running process.

 3.2.6.4.4.1 Controlling the publisher

The publisher can be controlled through process signals, send to the publisher proces:
• kill -TERM 'pid of the publisher' will terminate the publisher

• kill -HUP 'pid of the publisher' will force a publisher update
• kill -USR1 'pid of the publisher' will cycle the log level of the publisher (but only the

logging to the terminal)
When running in the terminal, CTR-C will shutdown the publisher gracefully.

 3.2.7 Conclusion
The content provisioning process implementation covers most of the basic steps as discussed in the
section 3.2.1. The covered steps are content acquisition (3.2.1.1), content storage (3.2.1.2), content
injection (3.2.1.4) and content removal(3.2.1.7). The processes were extended in the last period
with ingest process monitoring, but currently only supporting live streams. This work is covered in
more depth in deliverable D8.1.2 [8]. Major improvements regarding the previous version of the
ingest solution are the integration with the rich metadata tools and the provision of a complete
metadata ingest chain. The toolbox implementation covers at the moment mostly the features
required for straightforward implementations. The implementation design is fairly extensible as
needed for integration and implementation of various existing and emerging NextShare
requirements.

Page 57

P2P-Next D5.2.1d

 4 Content Adaptation
The task 5.2.3, content adaptation, aims to provide adaptation of scalable multimedia data within
the NextShare system. To fully support scalable codecs, the scalability awareness needs to be
integrated into the core of the NextShare system. This integration approach ensures that only those
parts of the scalable bitstream which are needed for the desired quality are transmitted through the
NextShare system. Although the integration of scalability into the NextShare systems aims to be
codec-agnostic and to support a variety of scalable codecs, the main codec to be integrated is the
Scalable Video Coding (SVC) [4] extension of the H.264/MPEG-4 Advanced Video Coding (AVC)
standard. Thus, this chapter describes the SVC-integration into the NextShare system. However, all
integration steps are performed in a codec-agnostic way, which enables the integration of other
scalable codecs without needing to perform further changes to the NextShare core.

An important part of the SVC-integration process is the piece-picking algorithm. The algorithm
decides which pieces to download from which peers at which time instance and tries to find the best
trade-off between downloading all pieces in time and displaying the best-possible quality at each
time instance.

The remainder of this chapter is organized as follows: First, a short summary of the SVC
architecture from [11] is provided, as the architecture provides the basis for the piece-picking
algorithm. Next, a description of the context-related metadata is provided, as these metadata are
required to reflect the capabilities of the end-user terminals and the user's preferences. This ensures
that the piece-picking algorithm does not try to download layers that cannot be processed by the
end-user terminals. Finally, the piece-picking algorithm is described in detail. The piece-picking
algorithm will be integrated into the NextShare system as joint work of WP4, WP5 and WP6 in the
future.

 4.1 SVC Architecture
This section summarizes the SVC architecture from [11], which has been jointly developed by
WP4, WP5, and WP6. In the first part the selection of the scalability layers is described. Based on
these layers, the mapping to the Bittorrent pieces is described in detail.

 4.1.1 Scalability Layers
As a first step for the integration of SVC into the NextShare system, it was decided to provide four
different SVC layers. The following layer strucuture is suggested for the first integration step:

Bitrate Resolution Quality frmps
512 Kbps 320x240 low 25

1024 Kbps 320x240 high 25
1536 Kbps 640x480 low 25
3072 Kbps 640x480 high 25

Table 3: Scalability Layers
The decision for this layer structure has been taken based on several criteria. Firstly, these layers
represent the commonly used bitrates for the videos distributed through the Internet today.
Secondly, the bitrate between the layers increases smoothly, which enables good predictions for the

Page 58

P2P-Next D5.2.1d

SVC encoding and ensures a low overhead in terms of bitrate for the scalability support. Thirdly, no
HD layers are utilized for the first integration, as the upload bandwidth of the average P2P user is
not high enough to provide support for streaming of such high bitrates. It should be noted that the
base layer bitrate contains the bitrate for audio bitstream additionally to the video bitrate, as the
audio is muxed to the base layer. Thus, from the 512 Kbps of the base layer 128 Kbps are utilized
for audio content and the remaining bitrate is utilized for the video content. To ensure backwards
compatibility with existing players, the SVC layers are provided in separate files. Thus, also a player
without SVC support could still display the H.264/AVC-compatible base layer. The files could be
named as follows:

SWARMNAME.ts
SWARMNAME_1024Kbps.dat

SWARMNAME_1536Kbps.dat
SWARMNAME_3072Kbps.dat

Based on these files, the user could decide to only download the base layer, if SVC is not supported
or only a low quality bitstream is desired. If a higher quality bitstream is desired, one or more
enhancement layers are downloaded in addition.

 4.1.2 Mapping to Bittorrent Pieces
The second step of the integration process is the mapping of the scalable layers to Bittorrent's
pieces. The mapping of the scalability layers to pieces has to be performed based on two major
criteria. Firstly, the number of frames contained in one unit should be not too large; this ensures that
if the network conditions change the switching to a lower or higher quality can be performed within
a few seconds. Secondly, the number of frames mapped to one unit should be not too low, to ensure
that the number of pieces and the corresponding overhead for the piece management does not get
too high. Based on these criteria, a mapping of 64 frames, which represent 2.56 seconds of content
at a framerate of 25 frmps, to one unit for the base layer has been chosen. Based on measurements
to find the optimal piece size, we have decided that such a unit is mapped to three pieces in the
NextShare system. The resulting mappings are presented below:

Layer Kb/time slot Kbyte/time slot pieces/time slot
BL 512 Kbps * 2.56 1.310 / 8 164 KByte 3 pieces à 55 KByte/time slot
EL1 1024 Kbps * 2.56 2.621 / 8 328 KByte 6 pieces à 55 KByte/time slot

(3 pieces in previous layers, 3 new pieces)
EL2 1536 Kbps * 2.56 3.932 / 8 492 KByte 9 pieces à 55 KByte/time slot

(6 pieces in previous layers, 3 new pieces)
EL3 3072 Kbps * 2.56 7.864 / 8 983 KByte 18 pieces à 55 KByte/time slot

(9 pieces in previous layers, 9 new pieces)

Table 4: Calculation of Piece Mapping

Please note that the small overhead in the piece mapping is utilized to compensate the small drifts
of the constant bitrate encoding [12] of the SVC bitstreams. Based on the calculation illustrated
above, a mapping to Bittorrent's pieces could be performed as shown in the following figure:

Page 59

P2P-Next D5.2.1d

For the mapping shown above, the base layer is mapped to three pieces, the first enhancement layer
to three pieces, the second enhancement layer to three pieces and the third enhancement layer to
nine pieces. While the base layer is downloaded everytime, the decision which enhancement layers
need to be downloaded is taken based on the available bandwidth provided by the other peers, the
user preferences and the capabilites of the user's terminal as well as on the network capabilites and
conditions. More details on this piece-picking are provided in Section 4.3.
Although a fixed piece size of 55 KByte has been suggested in this section, such a piece size might
not always be the optimal choice, e.g., a lower or higher piece size might be preferable for better
trading between peers. If another piece size is chosen, the piece mapping can still be used similar,
i.e., by using n pieces for the base layer and 3n pieces for the third enhancement layer.

 4.2 MPEG-21 DIA Context-related Metadata
Within the NextShare system the adaptation of the content is not only based on the network
conditions but also on the user's environment. If the user is accessing the system with a mobile
device that cannot display video content in high resolutions, it does not make sense to transfer the
video in high quality to the user, even if the bandwidth is available. Thus, context-related metadata
are utilized to ensure that the user only downloads those layers which can actually be displayed at
the user's device. As context-related metadata, two tools from MPEG-21 Part 7, Digital Item
Adaptation (DIA) [13], are utilized: The Usage Environment Description and the Universal
Constraint Description.
The MPEG-21 DIA Usage Environment Description (UED) allows the descriptions of the usage
environment. This includes the description of terminal characteristics, network characteristics, user
characteristics and the characteristics of the natural environment. An example for such a UED is
given below:
<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">

<Description xsi:type="UsageEnvironmentType">
<UsageEnvironmentProperty xsi:type="TerminalsType">

<Terminal>
<TerminalCapability xsi:type="CodecCapabilitiesType">

<Decoding xsi:type="VideoCapabilitiesType">
<Format href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:3.1"/>
<CodecParameter xsi:type="CodecParameterBitRateType">

Page 60

Figure 12: Piece Mapping

P2P-Next D5.2.1d

<BitRate average="2000000" maximum="3000000"/>
</CodecParameter>

</Decoding>
<Decoding xsi:type="AudioCapabilitiesType">

<Format href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:5.4.1"/>
<CodecParameter xsi:type="CodecParameterBitRateType">

<BitRate average="1280000" maximum="1560000" />
</CodecParameter>

</Decoding>
</TerminalCapability>
<TerminalCapability xsi:type="DisplaysType">

<Display xsi:type="DisplayType">
<DisplayCapability xsi:type="DisplayCapabilityType" colorCapable="true">

<Mode refreshRate="80">
<Resolution horizontal="1024" vertical="768"
activeResolution="true"/>

</Mode>
<ScreenSize horizontal="1024" vertical="768"/>
<ColorBitDepth blue="8" red="8" green="8"/>

</DisplayCapability>
</Display>

</TerminalCapability>
</Terminal>

</UsageEnvironmentProperty>
<UsageEnvironmentProperty xsi:type="NetworksType">

<Network xsi:type="NetworkType">
<NetworkCharacteristic xsi:type="NetworkCapabilityType" maxCapacity="64000"/>
<NetworkCharacteristic xsi:type="NetworkConditionType">

<AvailableBandwidth minimum="1200" average="1200" maximum="1200"/>
<Delay packetOneWay="50" packetTwoWay="100"/>
<Error bitErrorRate="9" packetLossRate="0.0001"/>

</NetworkCharacteristic>
</Network>

</UsageEnvironmentProperty>
</Description>

</DIA>

The example UED shown above contains a description of the terminal and a description of the
network. For the terminal, the codec capabilities for video and audio as well as the as the
capabitilies of the display are described. For the network, the capabilities as well as the current
conditions are described. More details on the the properties of the UED are provided in [13].

The MPEG-21 DIA Universal Constraint Description (UCD) can be utilized to further constrain the
usage of a Digital Item. Such constraints can be either defined by referencing values from the UED
or by specifying numeric values for the constraints. An example for such a UCD is given below:
<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">

<DescriptionMetadata>
<ClassificationSchemeAlias alias="SFO"
href="urn:mpeg:mpeg21:2003:01-DIA-StackFunctionOperatorCS-NS"/>
<ClassificationSchemeAlias alias="AQoS"
href="urn:mpeg:mpeg21:2003:01-DIA-AdaptationQoSCS-NS"/>
<ClassificationSchemeAlias alias="MEI"
href="urn:mpeg:mpeg21:2003:01-DIA-MediaInformationCS-NS"/>

</DescriptionMetadata>
<Description xsi:type="UCDType">

<AdaptationUnitConstraints>
<LimitConstraint>

<Argument xsi:type="SemanticalRefType" semantics=":MEI:17"/>
<Argument xsi:type="ConstantDataType">

<Constant xsi:type="IntegerType">
<Value>352</Value>

Page 61

P2P-Next D5.2.1d

</Constant>
</Argument>
<Operation operator=":SFO:38"/>

</LimitConstraint>
<LimitConstraint>

<Argument xsi:type="SemanticalRefType" semantics=":MEI:18"/>
<Argument xsi:type="ConstantDataType">

<Constant xsi:type="IntegerType">
<Value>288</Value>

</Constant>
</Argument>
<Operation operator=":SFO:38"/>

</LimitConstraint>
<LimitConstraint>

<Argument xsi:type="SemanticalRefType" semantics=":MEI:9"/>
<Argument xsi:type="SemanticalDataRefType" semantics=":AQoS:6.6.5.3"/>
<Operation operator=":SFO:38"/>

</LimitConstraint>
</AdaptationUnitConstraints>

</Description>
</DIA>

The UCD shown above contains three different limit constraints. Each limit constraint consists of
two arguments and one operator. The first argument specifies the property that gets constrained, the
second argument specifies the constraining value and the operator specifys the relationship between
the two arguments, e.g., the first argument has to be lower than or equal to the second argument.
The semantics of the arguments are speficied by utilizing the classification schemes defined in [13].
While the first two limit constraints use numeric values to constrain the resolution of the desired
video to a width of 352 and a height of 288, the third limit constraint defines that the bitrate of the
video may not be larger than the average available bandwidth in the network, which is defined in
the UED.

Utilizing the UED as well as the UCD, the capabilities of the user's terminal as well as the user
preferences can be provided to piece-picking algorithm, which can subsequently select the
maximum layer that is targeted for download based on this input.

 4.3 Layered Piece-Picking
In the context of streaming layered video content over P2P networks, the piece-picking algorithm
decides which pieces are downloaded at which time instance. The main goal of the algorithm is to
find the best trade-off between displaying the best possible quality at every time instance and
ensuring that all pieces are downloaded in time. When trying to download the best possible quality,
the algorithm should not only ensure that the available bandwidth is utilized as extensively as
possible, but should also avoid frequent switches in quality, as experimental measurements have
shown that frequent quality switches are more disturbing for users than the constant playback of the
video at lower quality [14]. Additionally, all pieces need to be downloaded before their display time,
to avoid frame skipping or freezing of the video playback.

 4.3.1 Introduction to Piece-Picking

The piece-picking decision has to be taken for all layers at all time instance. An illustration of such
a decision process is provided below.

Page 62

P2P-Next D5.2.1d

The piece-picking algorithm works on the sliding window illustrated above. In the sliding window,
the value in each cell describes the download status for a piece which needs to be displayed at a
specific time and belongs to a specific layer. At the actual time instance t, the algorithm has to
decide which pieces to download for time points t+4 to t+5. In this situation, the algorithm might
decide to download the enhancement layers for t+1 and t+2 to improve the quality for the near
future or might decide to download the base layer for t+4 and t+5 to ensure that the playback will
not stop, even if the network conditions become worse.
Although the sliding window only illustrates the download progress for each piece, there are five
different piece states which are relevant for the piece-picking algorithm:

The initial status for each piece is undecided. If the deadline of a piece expires, the status of the
piece changes to deadline expired. On the other hand, if the piece-picking algorithm decides to start
downloading a piece, its status changes to downloading. If the download of a piece is finalized, the
status changes to received. Additionally, during downloading the status of a piece might be changed
to stalled (and later deadline expired), if other pieces with higher priority require the available
bandwidth. In case of suddenly improved network conditions an already expired piece might still be
downloaded in order to provide them to other peers (but only if their is a huge amount of excessive
bandwidth).

The piece-picking algorithm needs to decide on the pieces within the sliding window in frequent

Page 63

Figure 13: Sliding Window

Figure 14: Piece-Picking States

P2P-Next D5.2.1d

intervals. The frequency of these decision points is influenced by the size of the time slots as well as
the arrival time of fully downloaded pieces. The possible intervals for the decision points are
illustrated below:

The decision points are separated by at least the minimum decision interval and at most the
maximum decision interval. Thus, the decision can be taken based on one of the three possible
situations:

1. If downloads are finalized during the minimum interval, the decision is taken as soon as the
minimum interval is over.

2. If downloads are finalized between the minimum and the maximum interval, the decision is
taken as soon as the download is finalized.

3. If no downloads are finalized during the maximum interval, a new decision is taken after the
interval is over.

The three possibilities should ensure that not too many decision points are selected when downloads
are finalized within very small gaps, but should also make sure that the decision is taken again if the
downloads take longer than expected to be finalized.
In the following section, a description of the optimisation algorithm utilized to find the optimal
piece selection is provided.

 4.3.2 The Piece-Picking Algorithm
The piece-picking algorithm should provide the following output at every decision point:

Which pieces to download or not to download.

Page 64

Figure 15: Decision Intervals

P2P-Next D5.2.1d

At which point in time to request the piece.

From which neighbor peer to request a piece.
To find an optimal piece-picking algorithm, which maximizes the playback quality, ensures
continuous playback, and avoids frequent switching of the playback quality, a number of algorithms
have been developed and tested. The results have been published in papers [16][17][18]. A
summary of the main findings is provided in the following.

The greedy piece-picking algorithm [16] was developed with the main goal to provide an algorithm
which can adapt its behavior according to the current network conditions. The piece-picking
decision of the greedy algorithm is taken with the following goals.

Maximize the total utility of the bit stream, i.e., make sure that the best possible quality is
downloaded while ensuring that the pieces are displayed in time.
Minimize the changes in quality during the streaming process to provide a better experience
for the user (see [14]).

Minimize the number of bits transmitted to achieve a specific quality.
To achieve the desired output while following the optimization goals, the following three steps need
to be performed: the piece utility calculation, the piece selection, and the peer selection. All three
steps are described in detail in the following sections.
Piece Utility Calculation

During the piece utility calculation process, every piece within the sliding window is assigned a
utility that is used to specify a order on the pieces. The utility is defined as

where di describes the distortion reduction of the piece, wi j k describes the probability to receive the
piece in time, and the denominator describes the urgency of the piece (i.e., the difference between
the time of the decision point, tk, and the time when the piece needs to be displayed, tj).
The weighted download probability is defined as

where pi j k describes the propability to receive the current piece in time, wi-1 j k describes the
weighted download probability for the piece of the lower layer (if there is one), and w i j-1 k describes
the weighted download propability for the same layer's piece of the previous time stamp, which
should avoid frequent quality switches.
After the utility calculations, the pieces are ordered in two queues. First the pieces which are not
being downloaded so far (status undecided or stalled) are ordered in a queue according to their
utility and cost (i.e., the size of the piece), starting with the highest utility:

Additionally, the pieces that are currently being downloaded are ordered in a second queue,
according to their weighted download probability, starting with the lowest download probability:

Page 65

=
di × wi j k

(t j tk)

wi j k = pi j k × wi 1 j k × wi j 1 k

q1 :
U1

C1
>

U2

C2
>

U3

C3
…

P2P-Next D5.2.1d

The two queues are subsequently provided as input to the piece selection process.
Piece Selection
After the piece utility calculation, the pieces with the best utility need to be selected for download.
The piece selection algorithm is specified as follows:

1. Select the y pieces with the lowest weighted download probability w'1, w'2, ..., w'y from the
beginning of queue 2 and add them to queue 1.

2. Select the pieces with utility U1, U2, ..., Uz from the beginning of queue 1, so that
a) C1 + C2 + ... + Cz – (C'1 + C'2 ... + C'y) Bk

b) C1 + C2 + ... + Cz + Cz+1 – (C'1 + C'2 ... + C'y) > Bk

where Bk specifies the available free bandwidth at decision point tk.
3. The utility U1 + U2 ... + Uz – (U'1 + U'2 ... + U'y) is the gain for this decision point.

The piece selection algorithm takes care of two problems: First, it should ensure that the most
important pieces, i.e., those with the best distortion reduction, the highest probability to be
downloaded in time, and which are needed most urgently, are downloaded first. Additionally, the
download of pieces which are improbable to be received in time (e.g., because their deadline is very
close and their is not sufficient bandwidth to download higher layer pieces) should be stopped and
the gained bandwidth should be used to download more important pieces.
Peer Selection
After the pieces are selected for download, the peers from which the pieces should be downloaded
need to be selected.
The peer selection algorithm is specified as follows:

1. Select a piece from the beginning of the list of selected pieces.
2. For each peer nl in the list of neighbor peers, calculate the weighted download probability

for the selected piece as well as the pieces being downloaded already from n l to arrive in
time if the selected piece is downloaded additionally from nl. Select the peer with the highest
average download probability as the best peer.

3. Repeat step 2 for the next piece in the list of selected pieces until the best peer for each piece
has been selected.

4. If a peer has been selected as best peer by only one piece, the peer is assigned for download
of the piece.

5. For the remaining pieces, the piece with the highest utility is assigned the selected peer for
download, although it has been pre-selected by other pieces as well.

6. Remove the pieces with assigned download peers from the list and restart the algorithm at
step 1.

The right choice of parameters for the piece-picking algorithm under various network conditions.
have been evaluated through simulations using the Omnet++ [15] framework. Additionally, the
greedy piece-picking algorithm has been compared to well-known mathematical algorithms which
can be applied to the piece-picking problem and it has been shown that the greedy piece-picking

Page 66

q2: 1 < 2 < 3 …

P2P-Next D5.2.1d

algorithm can very well compete with the other algorithms, at clearly lower complexity [16].

To verify the results from the simulations using the greedy piece-picking algorithm, the algorithm
has been integrated into NextShare and compared to other piece-picking algorithms for layered
content [17]. The different piece-picking algorithms have been evaluated in a test lab with Linux
machines. The server machines run P2P clients seeding the content and the client machines run P2P
clients which are consuming the content. Between the machines running P2P clients, router
machines are utilized to ensure the desired network conditions. The router machines use the Netem
kernel component to emulate the network characteristics [19].
The overall results of these evaluations using NextShare confirm the results previously gathered by
simulations. The greedy piece-picking algorithm provides a good performance at low complexity.
Compared to previously published algorithms, the parameters of the greedy algorithm allow to
adapt the algorithm's behavior to varying network conditions, which ensures that the performance
over all tested scenarios is superior to the other evaluated algorithms. For detailed results of all test
scenarios please refer to [17].

A further development of the greedy piece-picking algorithm, the deftpack algorithm, is presented
in [18]. The deftpack algorithm uses the greedy piece-picking algorithm for the download of
enhancement layer pieces, but always prioritizes base layer pieces over enhancement layer pieces.
Furthermore, deftpack uses a dynamic sliding window size. The sliding window size is increased
for peers with a slow network connection and decreased for peers with a fast network connection.
The increase of the sliding window size for slow peers ensures that sufficient pieces of the base
layer are buffered before switching to a higher quality. This is especially important in the case when
neighbor peers leave the swarm and the download bandwidth of the peer is decreased for some
time, as the buffered base layer pieces for multiple time slots ensure a continuous playback. For
peers with a fast download bandwidth, the shorter sliding window ensures that the switch to the
desired high playback quality occurs faster, as less base layer pieces are buffered.
This additional prioritization of the base layer and the dynamic sliding window size has shown to
enhance the performance of the piece-picking algorithm in large-scale swarms (please refer to [18]
for detailed evaluation results).

Page 67

P2P-Next D5.2.1d

 5 References

[1] D5.3.1, Michael Eberhard. Tools for rich metadata and signposts, P2P-Next project
deliverable. December 2011.

[2] D5.4.1, Dominic Tinley. The LIMO tools for interactivity, P2P-Next project deliverable.
December 2011.

[3] ISO/IEC 21000-2:2005, “Information Technology – Multimedia Framework – Part 2:
Digital Item Declaration”, 2005.

[4] H. Schwarz, D. Marpe, T. Wiegand, "Overview of the Scalable Video Coding Extension of
the H.264/AVC Standard", IEEE Trans. on CSVT, vol. 17, no. 9, September 2007, pp. 1103-
1120.

[5] ISO/IEC FDIS 21000-9:2005: "MPEG-21 Part 9: File Format", January 2005.
[6] Cubewerx Binary XML library, http://www.cubewerx.com/bxml.
[7] D4.0.6, NextShare Platform M48, P2P-Next project deliverable, A. Bakker.

 December 2011.
[8] D8.1.2, Initial Analysis of the Initial live prototype implementation, P2P-Next project

deliverable. June 2010.
[9] URIPlay, http://uriplay.org/.
[10]Wikipedia contributors, "Adobe Flash," Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Adobe_Flash&oldid=330714006.
[11] D6.5.5, N. Capovilla et al., NextShare Intermediate Integration v.6, P2P-Next project

deliverable. September 2011.
[12] D.6.1.4, N. Capovilla. H.264/SVC codec v.4, P2P-Next project deliverable. December

2009.
[13] ISO/IEC 21000-7:2007, “Information Technology - Multimedia Framework - Part 7:

Digital Item Adaptation”, 2007.
[14] M. Zink, O. Kuenzel, J. Schmitt, R. Steinmetz, „Subjective impression of variations in

layer encoded videos“. IWQoS 2003, pp. 137-154.
[15] Omnet++, http://www.omnetpp.org/.
[16] Michael Eberhard, Tibor Szkaliczki, Hermann Hellwagner, László Szobonya, and Christian

Timmerer. Knapsack problem-based piece-picking algorithms for layered content in peer-to-
peer networks. In Proceedings of the 2010 ACM workshop on Advanced Video Streaming
Techniques for Peer-to-Peer Networks and Social Net-working, AVSTP2P '10, pages 71#76,
New York, NY, USA, 2010. ACM.

[17] Michael Eberhard, Riccardo Petrocco, Hermann Hellwagner, and Christian Timmerer.
Comparison of piece-picking algorithms for layered video content in peer-to-peer networks.
In Proceedings of the Consumer Communication & Networking Conference 2012,
CCNC'12, to be published.

[18] Riccardo Petrocco, Michael Eberhard, Johan Pouwelse, and Dick Epema. Deftpack: A
robust piece-picking algorithm for scalable video coding in P2P systems. In Proceedings of

Page 68

P2P-Next D5.2.1d

the International Symposium on Multimedia 2011, ISM'11, to be published.
[19] Netem network emulation.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

Page 69

P2P-Next D5.2.1d

Annex A
A Uniform Resource Name (URN) Scheme for P2P-Next and its Digital Items

Status of this Memo

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on April 29, 2010.
Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF
Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights and restrictions with respect
to this document.

Abstract
This document describes a Uniform Resource Name (URN) scheme some resources it produces or
manages.

1. Introduction
The P2P-Next integrated project will build a next generation Peer-to-Peer (P2P) content delivery
platform, to be designed, developed, and applied jointly by a consortium consisting of high-profile
academic and industrial players with proven track records in innovation and commercial success.

For the content assets distributed using P2P-Next technology, P2P-Next would like to assign
unique, permanent, and location-independent names based on URNs for some resources it produces
or manages.
This URN scheme specification is a formal URN scheme.

2. Specification template
2.1. Introduction
This section specifies a template for an URN scheme to be used for resources produced and
managed by P2P-Next. It comprises the following assets:

1. Base template
2. Namespace

3. Item for usage within dii:Identifier [M21DIIa][M21DIIb]
4. Type for usage within dii:Type [M21DIIa][M21DIIb]

Note: "dii" is a namespace prefix and resolves to urn:mpeg:mpeg21:2002:01-DII-NS as defined in
[M21DIIa].

2.2. Base template

Page 70

P2P-Next D5.2.1d

All other URNs derived from this base template inherit the properties as defined in this section.

URN ID:
 "p2p-next"

Registration Information:
Version: 1
Date: 2001-11-20
Declared registrant of the URN scheme:

Name: Christian Timmerer
Title: Ass.-Prof. Dipl.-Ing. Dr.
Affiliation: Klagenfurt University
Address: Universitätsstrasse 65-67, A-9020 Klagenfurt
Phone: +43 (463) 2700-3621
Email: christian.timmerer@itec.uni-klu.c.at

Declaration of structure:
URNs used to distribute content using P2P-Next technology will have the following hierarchical
structure
urn:p2p-next:{usage name}:{assigned US-ASCII string}

where "{usage name}" is a US-ASCII string that conforms to URN Syntax requirements
([RFC2141]) and corresponds to the usage (such as "item", "ns", "type", etc.) as defined in
subsequent sections and "{assigned US-ASCII string}" is a US-ASCII string that conforms to URN
Syntax requirements ([RFC2141]).

The individual URNs shall be assigned by P2P-Next through the process of development of P2P-
Next deliverables.

Relevant ancillary documentation:
None

Identifier uniqueness considerations:
P2P-Next shall establish unique identifiers as appropriate.

Uniqueness is guaranteed as long as the assigned string is never reassigned for a given usage name
and that the usage name is never reassigned.

Identifier persistence considerations:
P2P-Next is committed to maintaining the accessibility and persistence of all resources that are
officially assigned URNs by the organization.
Persistence of identifiers is dependent upon suitable delegation of resolution at the level of "usage
name"(s), and persistence of usage name assignment.
Process of identifier assignment:

Assignment is limited to the owner and those authorities that are specifically designated by the
owner. P2P-Next may designate portions of its URN for assignment by other parties.

Process of identifier resolution:
The owner will develop and maintain "URN catalogs" that map all assigned URNs to Uniform

Page 71

P2P-Next D5.2.1d

Resource Locators (URLs) specifically to enable Web-based resolution of named resources. In the
future an interactive online resolution system may be developed to automate this process.
The owner will authorize additional resolution services as appropriate.

Rules for Lexical Equivalence:
The "usage name" is case-insensitive. Thus, the portion of the URN:

urn:p2p-next:{usage name}:
is case-insensitive for matches. The remainder of the identifier must be considered case-sensitive.

Conformance with URN Syntax:
No special considerations.

Validation mechanism:
None specified. The owner will develop and maintain URN catalogs.

The presence of a URN in a catalog indicates that it is valid.
Scope:

Global
2.3. Namespace
Usage ID:
"ns"

Declaration of structure:
Namespace definitions such as used within XML Schemas or other programming languages will
have the following hierarchical structure
urn:p2p-next:ns:{assigned US-ASCII string}

where "{assigned US-ASCII string}" is a US-ASCII string that conforms to URN Syntax
requirements ([RFC2141]) and corresponds to the actual namespace assigned.

The individual URNs shall be assigned by P2P-Next through the process of development of P2P-
Next deliverables.

2.4. Item for usage within dii:Identifier
Usage ID:

"item"
Declaration of structure:

Item definitions for unique identification of Digital Items distributed using P2P-Next technology.
This URN shall be used within MPEG-21 dii:Identifier elements and will have the following
hierarchical structure
urn:p2p-next:item:{assigned US-ASCII string}

where "{assigned US-ASCII string}" is a US-ASCII string that conforms to URN Syntax
requirements ([RFC2141]) and corresponds to the identifier of the actual resource.

The individual URNs shall be assigned by P2P-Next through the process of development of P2P-
Next deliverables.

Page 72

P2P-Next D5.2.1d

2.5. Type for usage within dii:Type
Usage ID:
"type"

Declaration of structure:
Type definitions for unique type identification of Digital Items distributed using P2P-Next
technology (such as "item", "rm:core", "limo", "rm:payment", "signposts", etc.). This URN shall be
used within MPEG-21 dii:Type elements and will have the following hierarchical structure

urn:p2p-next:type:{assigned US-ASCII string}
where "{assigned US-ASCII string}" is a US-ASCII string that conforms to URN Syntax
requirements ([RFC2141]) and corresponds to the identifier of the actual resource.
The individual URNs shall be assigned by P2P-Next through the process of development of P2P-
Next deliverables.

3. Examples
The following examples are not guaranteed to be real. They are presented for pedagogical reasons
only.
 urn:p2p-next:ns:metadata:2008
 urn:p2p-next:item:bbc-bbcone-b00n9p5x
 urn:p2p-next:type:item:2009
 urn:p2p-next:type:rm:core:2009
 urn:p2p-next:type:rm:payment:2009
 urn:p2p-next:type:rm:scalability:2009
 urn:p2p-next:type:limo:2009

4. Namespace considerations
TBD

5. Community considerations
TBD

6. Security considerations
There are no additional security considerations other than those normally associated with the use
and resolution of URNs in general.

7. IANA considerations
The IANA has registered formal URN XX, to P2P-Next within the IANA registry of URN NIDs.

8. Normative references
[M21DIIa] ISO/IEC 21000-3:2003, Information technology -- Multimedia framework (MPEG-21)
-- Part 3: Digital Item Identification, March 2003.

[M21DIIb] ISO/IEC 21000-3:2003/Amd 1:2007, Information technology -- Multimedia framework
(MPEG-21) -- Part 3: Digital Item Identification, January 2007.

[RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

9. Author’s Address
Christian Timmerer
Klagenfurt University, Dept. of Information Technology

Page 73

P2P-Next D5.2.1d

Universitätsstrasse 65-67
A-9020 Klagenfurt
Phone: +43 (463) 2700 3621
EMail: christian.timmerer@itec.uni-klu.ac.at
Michael Eberhard
Klagenfurt University, Dept. of Information Technology
Universitätsstrasse 65-67
A-9020 Klagenfurt
Phone: +43 (463) 2700 3627
EMail: michael.eberhard@itec.uni-klu.ac.at
Michael Grafl
Klagenfurt University, Dept. of Information Technology
Universitätsstrasse 65-67
A-9020 Klagenfurt
Phone: +43 (463) 2700 3600
EMail: mgrafl@edu.uni-klu.ac.at

10. Full Copyright Statement
Copyright (c) 2009 IETF Trust and the persons identified as authors of the code. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This code was derived from IETF RFC 3614. Please reproduce this note if possible.

Page 74

