
Legal Notice

All information included in this document is subject to change without notice. The Members of the TAS3 Consortium make no

warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. The Members of the TAS3 Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this

material.

SEVENTH FRAMEWORK PROGRAMME

Challenge 1

Information and Communication Technologies

Trusted Architecture for Securely Shared Services

Document Type: Software Deliverable

Title: TAS3 Protocols, API, and Concrete Architecture

Work Package: WP2

Deliverable Nr: D2.4

Dissemination: Public

Preparation Date: June 30, 2011

Version: 14

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 2 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

The TAS3 Consortium

 Beneficiary Name Country Short Role

1 KU Leuven BE KUL Coordinator

2 Synergetics NV/SA BE SYN Partner

3 University of Kent UK KENT Partner

4 University of Karlsruhe DE KARL Partner

5 Technische Universiteit Eindhoven NL TUE Partner

6 CNR/ISTI IT CNR Partner

7 University of Koblenz-Landau DE UNIKOL

D

Partner

8 Vrije Universiteit Brussel BE VUB Partner

9 University of Zaragoza ES UNIZAR Partner

10 University of Nottingham UK NOT Partner

11 SAP Research DE SAP Project Mgr

12 EIfEL FR EIF Partner

13 Intalio UK INT Partner

14 Risaris IR RIS Partner

15 Kenteq NL KETQ Partner

16 Oracle UK ORACLE Partner

17 Custodix BE CUS Partner

18 Medisoft NL MEDI Partner

19 Karlsruhe Institute of Technology DE KARL Partner

20 Symlabs PT SYM Partner

Contributors

 Name Organisation

1

2

3

4

5
6
7

Sampo Kellomäki (main contributor)

David Chadwick

Brecht Claerhout

Tom Kirkham

Brendan Van Alsenoy

Gilles Montagnon

Brian Reynolds

RIS

KENT

CUS

NOT

KUL

SAP

RIS

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 3 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Contents
PROTOCOLS AND CONCRETE ARCHITECTURE EXECUTIVE SUMMARY

 ... 9

1 INTRODUCTION ... 11

1.1 STANDARDIZED WIRE PROTOCOL INTERFACES ... 11

1.2 COMPOSITION AND CO-LOCATION OF ARCHITECTURAL COMPONENTS 12

2 PROTOCOLS AND PROFILES .. 14

2.1 SUPPORTED AUTHENTICATION AND LOGIN SYSTEMS 14

2.1.1 System Entity Authentication .. 14

2.1.2 SAML .. 14

2.1.3 Shibboleth ... 16

2.1.4 eID and Other Smart Cards ... 17

2.1.5 One-Time-Password Tokens ... 17

2.1.6 OpenID .. 17

2.1.7 CardSpace / InfoCard and WS-Federation ... 17

2.1.8 Web Local Login ... 17

2.1.9 Desktop Login ... 18

2.1.10 Fat Client Login .. 18

2.1.11 User Not Present or Batch Operations .. 18

2.2 SUPPORTED IDENTITY WEB SERVICES SYSTEMS ... 19

2.2.1 Framework .. 19

2.2.2 Liberty ID-WSF Profile .. 20

2.2.3 Bare WS-Security Header or Simplified ID-WSF 22

2.2.4 WS-Trust ... 22

2.2.5 RESTful Approach .. 22

2.2.6 Message Bus Approach ... 23

2.3 AUTHORIZATION SYSTEMS... 23

2.3.1 Authorization Queries .. 23

2.3.2 Policy Languages .. 23

2.4 TRUST AND SECURITY VOCABULARIES .. 24

2.4.1 Levels of Authentication (LoA) ... 24

2.4.2 Vocabularies for Authorization .. 24

2.4.3 Vocabularies for Basic Attributes (PII) .. 24

2.4.4 Discovery Vocabularies... 25

2.4.5 Security and Trust Vocabularies .. 25

2.4.6 Audit Vocabularies ... 25

2.5 REALIZATION OF THE DISCOVERY FUNCTION .. 25

2.6 REALIZATION OF THE CREDENTIALS AND PRIVACY NEGOTIATOR FUNCTION 26

2.6.1 Discovery in Credentials and Privacy Negotiation 26

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 4 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2.6.2 Frontend Credentials and Privacy Negotiation 27

2.6.3 Components of Credentials and Privacy Negotiator 27

2.6.4 Protocol between Service Requester and the Credentials and Privacy Negotiation

Agent .. 29

2.6.5 Protocol between Credentials and Privacy Negotiation Agent and Attribute

Aggregator ... 29

2.6.6 Protocol between Credentials and Privacy Negotiation Agent and Service 30

2.7 USING TRUST SCORING IN DISCOVERY .. 30

2.8 REALIZATION OF THE AUDIT AND DASHBOARD FUNCTION 30

2.8.1 Audit Event Bus ... 30

2.8.2 Audit Event Ontology ... 31

2.8.3 Dashboard Function ... 31

2.8.4 User Interaction.. 31

2.9 REALIZATION OF DELEGATION FUNCTION ... 31

2.10 ATTRIBUTE AUTHORITIES .. 31

2.11 TAS3 SIMPLE OBLIGATIONS LANGUAGE (SOL) ... 32

2.11.1 SOL1 Query String Attributes ... 33

2.11.2 Matching Pledges to Sticky Policies and Obligations 36

2.11.3 Passing Simple Obligations Dictionaries Around 38

2.12 REALIZATION OF STICKY POLICIES .. 39

2.13 PASSING ADDITIONAL CREDENTIALS IN WEB SERVICE CALL 40

2.14 UNIFORM APPLICATION STATUS AND ERROR REPORTING 40

2.14.1 TAS3 Status Header ... 41

2.14.2 TAS3 Status Codes ... 41

2.14.3 TAS3 Control and Reporting Points ... 42

2.14.4 Registration of Business Process Models ... 42

3 THE OFFICIAL TAS3 API (NORMATIVE, BUT NON-EXCLUSIVE)43

3.1 LANGUAGE INDEPENDENT DESCRIPTION OF THE API 43

3.1.1 Single Sign On (SSO) Alternatives .. 44

3.1.2 SSO: ret = tas3_sso(conf, qs, auto_flags) .. 44

3.1.3 Authorization: decision = tas3_az(conf, qs, ses) 47

3.1.4 Web Service Call: ret_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred,

req_soap) .. 48

3.1.5 Requester out: req_decor_soap = tas3_wsc_prepare_call(cf, ses, svc- type,

az_cred, req_soap) ... 50

3.1.6 Requester in: status = tas3_wsc_valid_resp(cf, ses, az_cred, res_decor_soap)

 ... 50

3.1.7 Responder in: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req) 51

3.1.8 Responder out: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)51

3.1.9 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n) 52

3.1.10 url = tas3_get_epr_url(cf, epr) .. 53

3.1.11 entityid = tas3_get_epr_entid(cf, epr) .. 53

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 5 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

3.1.12 a7n = tas3_get_epr_a7n(cf, epr) ... 53

3.1.13 SOAP Fault and Status Generation and Inspection 53

3.2 JAVA BINDING ... 54

3.2.1 Interface and Initialization .. 54

3.2.2 Initialize: cf = tas3.new_conf_to_cf(conf) .. 55

3.2.3 New session: ses = tas3.new_ses(cf) ... 55

3.2.4 SSO: ret = tas3.sso_cf_ses(cf, qs_len, qs, ses, null, auto_flags) 55

3.2.5 Authorization: decision = tas3.az_cf_ses(cf, qs, ses) 56

3.2.6 WSC: resp_soap = tas3.call(cf, ses, svctype, url, di_opt, az_cred, req_soap) 56

3.2.7 WSP: tgtnid = tas3.wsp_validate(cf, ses, az_cred, soap_req)............... 56

3.2.8 WSP: soap = tas3.wsp_decorate(cf, ses, az_cred, soap_resp) 57

3.2.9 Explicit Discovery: epr = tas3.get_epr(cf, ses, svc, url, di_opt, act, n). 57

3.2.10 url = tas3.get_epr_url(cf, epr) ... 58

3.2.11 entityid = tas3.get_epr_entid(cf, epr) ... 58

3.2.12 a7n = tas3.get_epr_a7n(cf, epr) .. 58

3.2.13 Available Implementations (Non-normative) 58

3.3 PHP BINDING .. 58

3.3.1 Application Level Integration .. 58

3.3.2 cf = tas3_new_conf_to_cf(conf) .. 59

3.3.3 ses = tas3_new_ses(cf) .. 59

3.3.4 SSO: ret = tas3_sso_cf_ses(cf, -1, qs, ses, null, auto_flags) 59

3.3.5 Authorization: decision = tas3_az_cf_ses(cf, qs, ses) 60

3.3.6 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap) 60

3.3.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req) 61

3.3.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp) 61

3.3.9 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n) 61

3.3.10 url = tas3_get_epr_url(cf, epr) .. 62

3.3.11 entityid = tas3_get_epr_entid(cf, epr) .. 62

3.3.12 a7n = tas3_get_epr_a7n(cf, epr) ... 62

3.3.13 Available Implementations (Non-normative) 62

3.4 C AND C++ BINDING .. 63

3.4.1 cf = tas3_new_conf_to_cf(conf) .. 63

3.4.2 ses = tas3_new_ses(cf) .. 63

3.4.3 SSO: ret = tas3_sso_cf_ses(cf, qs_len, qs, ses, &res_len, auto_flags) .. 63

3.4.4 Authorization: decision = tas3_az_cf_ses(cf, qs, ses) 64

3.4.5 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap) 65

3.4.6 resp_soap = tas3_callf(cf, ses, svctype, url, di_opt, az_cred, fmt, ...) ... 65

3.4.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req) 66

3.4.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp) 66

3.4.9 WSP: soap = tas3_wsp_decoratef(cf, ses, az_cred, fmt, ...) 67

3.4.10 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)67

3.4.11 url = tas3_get_epr_url(cf, epr) .. 68

3.4.12 entityid = tas3_get_epr_entid(cf, epr) .. 68

3.4.13 a7n = tas3_get_epr_a7n(cf, epr) ... 68

3.4.14 Available Implementations (Non-normative) 69

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 6 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

3.5 OTHER LANGUAGE BINDINGS .. 69

4 DEPLOYMENT AND INTEGRATION MODELS (NON-NORMATIVE)70

4.1 FRONTEND AND WEB SERVICES CLIENT INTEGRATION MODEL (NON-NORMATIVE)

 .. 71

4.1.1 Integration Using ZXID (Non-normative) .. 72

4.1.2 Integration Using Other Platforms, Frameworks, and Packages (Non-

normative) ... 74

4.2 WEB SERVICES PROVIDER INTEGRATION MODEL (NON-NORMATIVE) 74

5 RESILIENT DEPLOYMENT ARCHITECTURE (NON-NORMATIVE)76

5.1 ZERO DOWNTIME UPDATES ... 78

6 FEASIBILITY AND PERFORMANCE ANALYSIS (NON-NORMATIVE) 79

6.1 SINGLE USE OF SINGLE WEB SERVICE .. 80

6.1.1 Cost without auditing ... 81

6.1.2 Cost without auditing and without authorization 82

6.1.3 Cost without XML .. 82

6.2 SESSION OF 3 FRONTENDS AND FIVE WEB SERVICES 83

7 ANNEX A: EXAMPLES .. 86

7.1 SAML 2.0 ARTIFACT RESPONSE WITH SAML 2.0 SSO ASSERTION AND TWO

BOOTSTRAPS ... 86

7.2 ID-WSF 2.0 CALL WITH X509V3 SEC MECH .. 90

7.3 ID-WSF 2.0 CALL WITH BEARER (BINARY) SEC MECH 90

7.4 ID-WSF 2.0 CALL WITH BEARER (SAML) SEC MECH 91

8 ANNEX B: TECHNICAL SELF ASSESSMENT QUESTIONNAIRE . 94

8.1 OVERVIEW AND SCOPE .. 94

8.2 SYSTEM ENTITY CREDENTIALS AND PRIVATE KEYS 96

8.3 TRUST MANAGEMENT .. 97

8.4 THREAT AND RISK ASSESSMENTS .. 98

8.5 SERVICE PROVIDER QUESTIONS .. 98

8.5.1 Front End (FE) Single Sign-On Questions .. 98

8.5.2 Web Service Provider (WSP) Questions ... 99

8.5.3 Attribute Authority Questions ... 101

8.5.4 Web Service Client (WSC) Questions ... 102

8.6 SINGLE SIGN-ON IDENTITY PROVIDER (IDP), DISCOVERY SERVICE, DISCOVERY

REGISTRY, IDENTITY MAPPER, OR DELEGATION SERVICE QUESTIONS 103

8.6.1 Identity Provider Questions ... 103

8.6.2 Discovery Service Questions .. 104

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 7 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

9 BIBLIOGRAPHY .. 105

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 8 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

List of Figures
Figure 2:1 Liberty Alliance Architecture ..22

Figure 2:2 Hierarchies of policies ..24

Figure 2:3 Credentials and Privacy Negotiation and Discovery steps26

Figure 2:4 a deployment architecture for Credentials and Privacy Negotiation and

Discovery..27

Figure 2:5 Credentials and Privacy Negotiation Components ...28

Figure 2:6 Credentials and Privacy Negotiation optimized flow ...29

Figure 4:1 deployment architecture for SSO and web service call. ..70

Figure 4:2 API and modules for SSO and web service call. ..73

Figure 4:3 ZXID specific API and modules for SSO and web service call74

Figure 5:1 layering of resilience features for Front Channel, Back Channel, and data centre

Back End services. ...76

Figure 5:2 Resiliencies implemented using hardware load balancers77

Figure 5:3 resiliency implemented using software load-balancing-fail-over functionality and

clustering ...78

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 9 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Protocols and Concrete Architecture Executive
Summary

This document specifies a set of protocol level interoperability profiles, usually leveraging

open standards, deployment scenarios, APIs, and other considerations that constitute the

official way to deploy version 1 of TAS3 architecture, see [TAS3ARCH]. The purpose of

defining these specifics is to enable multiple independent implementations of TAS3 to be

wire protocol interoperable (and to limited extent also API interoperable). TAS3 reference

implementation and reference deployment will behave essentially as described in this

document.

The TAS3 architecture is designed to be standards, protocol, data and application agnostic

so that any protocol capable of implementing the flows and satisfying the service

requirements can potentially be used by any application. However, to build practical

systems, different components, possibly from different sources, must speak the same

protocols, hence TAS3 provides this profile that allows interoperability at the level of Single

Sign-On, Web Service Discovery, Web Service Call, and Authorization. The standardized

profile provides the scaffolding where plurality of trust and privacy negotiation

mechanisms, policy languages, obligations and other value added features can exist.

The TAS3 API is designed to allow an application programmer to understand how simple it

is to “TAS3 enable" his application. It is noteworthy that using the API does not require any

in-depth knowledge of the underlying standards, protocols, and profiles, or indeed even of

the TAS3 Architecture itself. All these details are taken care of by the API implementation,

supplied commercially or in open source. The TAS3 Reference Implementation will be one

such API implementation. The APIs will be available in all popular programming

languages and platforms.

The simplicity of the API is due to a coherent integration model that shows how the steps

from SSO and Authorization all the way to the web service calls work together and are able

to pass necessary credentials and tokens "behind the scenes" by the use of session and other

state information. Many design parameters that could have been handled by yet another

argument to the API functions, are in fact handled by configuration file, with sensible

default values, and automated discovery, trust negotiation, and trust network business

processes.

The split between explicit arguments, configurability, and automated processes has been

guided by division of concerns between the application programmer and the systems

administrator. When automatic mechanisms are used, appropriate manual control point

exists elsewhere in the architecture, e.g. automated discovery is kept in check with explicit

authorization.

We provide guidance regarding possible integration and deployment scenarios and

illustrate how TAS3 Architecture can be deployed in a resilient and redundant way.

Neither this document nor the TAS3 Architecture [TAS3ARCH] mandate use of a particular

deployment or software architecture (although the integration scenarios suggest a

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 10 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

recommended one), implementers are free to organize their software and deployment in

other ways as long as the wire protocol compatibility is maintained and all signature

generation and validation steps, as well as trust determinations, and authorizations are

implemented.

The Annex gives some example protocol messages.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 11 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

1 Introduction

This document describes the TAS3 Concrete Architecture and protocol choices in a

normative and prescriptive way. It also describes the official, but not exclusive, TAS3 API

generically and for selected programming language bindings. Any implementation or

deployment claiming “TAS3” compliance MUST abide by this document as well as

[TAS3ARCH], and [TAS3COMPLIANCE]. A deployment usually has to satisfy, as well,

requirements of the Trust Operator’s, see [TAS3GLOS], Governance Agreement and

certification procedures, some of which concern the software implementation and others the

deployment’s organizational properties. Use of TAS3 brand is governed by a separate TAS3

Brand Agreement.

This document uses the keywords (e.g. MUST, SHOULD) of [RFC2119]. All text is

normative unless expressly identified as non-normative. Prose and specification has

precedence over examples. In general the examples should not be assumed normative

unless no normative specification for the subject matter is available.

This architecture and related documents are copyrighted works of TAS3 Consortium, as

dated. All Rights Reserved. This architecture, and related documents, are versioned and

subject to change without notice. No warranty or guarantee is given. This architecture and

related specifications can be implemented on Royalty Free terms by anyone. However, no

warranty regarding IPR infringement is given. For further details, please see

[TAS3CONSOAGMT].

1.1 Standardized Wire Protocol Interfaces

TAS3 emphasizes wire protocol interoperability in following key areas

1. Single Sign-On (SSO) and Single Logout (SLO)

2. Authorization request-response

3. ID Mapping and Discovery

4. Web service call

5. Audit bus reporting and audit trail querying

6. Delegation

7. Metadata, registrations, declarations of attribute needs, declarations of attribute

availability

In some areas TAS3 recognizes interoperability need, but leaves it up to the business

processes, adaptive techniques, and involved parties to agree specific means. These include

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 12 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• Policy and obligations languages and vocabularies (although we suggest XACML

and SOL1, see section 2.11, as one alternative, supported by the reference

implementation)

• Trust and Privacy Negotiation protocol and metrics or scores (although we suggest

TrustBuilder and some XACML extensions)

• Application ("payload") protocols and data formats

• Format of the local audit trail

• Business Process Modelling techniques and languages

TAS3 recognizes the usefulness of a consistent user experience, e.g. in Dashboard, SSO,

consent, trust and privacy negotiation, policy editing, etc., but this document does not

attempt to prescribe these aspects.

1.2 Composition and Co-location of Architectural
Components

This section addresses Req. D1.2-3.8-Separate, D1.2-2.24-NoPanopt, D1.2-6.80-Separate.

When implementing practical systems, it often turns out that many of the architecturally

designed boxes are in fact implementable by one software module. For example, with

reference to Fig-2.3 of [TAS3ARCH], it is clear that a software module called "Service

Requester" may exist, realizing Rq- PEP-Out, Rq-PEP-In, and Stack components all

together without them being necessarily separable. Such composition does not harm

interoperability as those submodules of Service Requester were always meant to be part of

the same process and to communicate via function call interfaces. Indeed, the official TAS3

API, see section 3, lumps all these in one function call: tas3_call(). However all external

interfaces from tas3_call(), such as authorization, discovery, and web service call, do speak

standard protocols as profiled in this document.

It is ok for an implementation to compose, as an optimization, components that were meant

to be wire protocol interfaces (see section 1.1), e.g. reach authorization by function call

interface instead of XACML, as long as the implementation makes the same interface

available over-the-wire by a mere configuration change (no recompile required/allowed).

From protocol perspective co-location of services (having two distinct service processes

running on the same server hardware, or even running as separate processes under the

same web server) does not present any problem, save for the complications of using

nonstandard TCP/IP ports or requirement of configuring multiple IP addresses to same

host.

From risk management and excessive visibility, or fat target, perspective, see T161-

Panopticon threat in [TAS3COMPLIANCE], some services clearly should not be co-located.

Division of responsibilities becomes important here and any two roles played by one system

entity where they are co-located must not have a conflict of interest. In particular, the

following are incompatible for co-location

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 13 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• anything vs. Audit

• SP vs. IdP (some exceptions apply)

• SP vs. ID Mapping and Discovery

• SP vs. Delegation

• IdP vs. Authorization (some exceptions apply)

Some services can be safely co-located, and often are:

• IdP often includes Attribute Authority, ID Mapping, Discovery, and fat client

Authentication Ser- vice. Although an IdP should not pretend to be a Policy

Enforcement Point, it is clear that an IdP can exert such control by refusing to issue

tokens that are necessary for functioning of the rest of the architecture.

• SP and PEP are natural partners, indeed different facets of the same process

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 14 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2 Protocols and Profiles

To complement the specification of protocols here, the reader may want to consult Fig-8.18

in [HafnerBreu09] for an overview of the functionality available in various specifications.

The choice of protocols has been guided by commitment to open standards as recommended

in section 2 of [UNDP07]. This also serves to address Reqs. D1.2-2.4-MultiVendor, D1.2-2.5-

Platform, and D1.2-2.6-Lang.

2.1 Supported Authentication and Login Systems

This section addresses Reqs. D1.2-2.18-AnCredi, D1.2-6.12-Sec, D1.2-7.3-An, D1.2-7.10-

Target, D1.2-9.3-SSO.

2.1.1 System Entity Authentication

TAS3 adopts X.509v3 public key certificates as primary means of authenticating system

entities. This will apply over TLS and ClientTLS connections and may also apply in digital

signatures.

For bilateral authentication Client TLS MUST be supported. HTTP Basic authentication

MAY be supported.

2.1.2 SAML

Given the already broad adoption of SAML 2.0 by the eGovernment and academic

communities across the world (e.g. Germany, New Zealand, Finland, etc.), this choice is

effectively already made for us. By choosing SAML 2.0 we enable many existing

eGovernment and academic projects easily to become TAS3 compliant in future.

• TAS3 adopts SAML 2.0 Assertions, see [SAML2core], as primary and recommended

token format. Alternatives such as SAML 1.1 or Simple Web Token (SWT) [Hardt09]

were considered either obsolete or not yet mature. In future we may consider supporting

SWT and X509 attribute certificates as token format. This will become especially

relevant when architecture is extended to support RESTful [RESTFUL] services

approaches.

• TAS3 adopts SAML 2.0 as primary and RECOMMENDED SSO system, see

[SAML2core]. (Req.D1.2-3.10-JITPerm)

• TAS3 RECOMMENDS those SAML 2.0 implementations are Liberty Alliance Certified.

• SAML 1.0, 1.1 [SAML11core], 1.2, as well as Liberty ID-FF 1.2 [IDFF12] MAY be

supported

• Redirect - POST SSO profile MUST be supported by all front channel participants, see

[SAML2prof] and [SAML2bind].

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 15 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• Redirect - Artifact - SOAP SSO profile MUST be supported in IdP and SHOULD be

supported in Front End (SP), see [SAML2prof] and [SAML2bind].

• Redirect Single Logout Profile MUST be supported, see [SAML2prof] and [SAML2bind].

• IdP Extended Profile, see [SAML2conf], namely IdP Proxying, MUST be supported

• Other SAML profiles MAY be supported

• SAML metadata MUST be supported, see [SAML2meta]

• Well Known Location (WKL) method of metadata publishing MUST be supported, see

[SAML2meta] section 4.1 "Publication and Resolution via Well-Known Location", p.29,

for normative description of this method. Support for WKL method for metadata

acquisition is RECOMMENDED. N.B. Publishing metadata using WKL at its most

basic form is as simple as placing a hand edited metadata file in the web root at the

place referenced by the EntityID of the site. Many software packages handle this

automatically and may even generate the metadata dynamically, on the fly.

• In redirect binding [RFC1951] deflate compression MUST be used. [RFC1952] format

MUST NOT be used.

2.1.2.1 Authentication Request

1. MUST use NameIDPolicy/@Format of Persistent

("urn:oasis:names:tc:SAML:2.0:nameid-format:persistent") when implementing Pull

Model (Req. D1.2-7.8-NoColl).

2. MUST use NameIDPolicy/@Format of Transient

("urn:oasis:names:tc:SAML:2.0:nameid-format:transient") when implementing Linking

Service model.

3. MUST set NameIDPolicy/@SPNameQualifier

4. MUST set NameIDPolicy/@AllowCreate flag at all times true

5. SHOULD not set IsPassive flag (in some cases there may be justified reasons to do

otherwise)

6. MUST use AssertionConsumerServiceIndex

7. MUST NOT use ProtocolBinding or AssertionConsumerServiceURL

8. Step-up authentication, using Authentication Context Class References MUST be

supported.

9. SHOULD use AttributeConsumingServiceIndex attribute, which refers to a section of

the meta- data, as way of selecting the attributes that are returned in the

authentication response. Reader should be aware that new proposals for solving this

issue more dynamically have been submitted to OASIS Security Services Technical

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 16 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Committee, e.g. [Kellomaki08]. It should also be noted that the returned attributes are

always at discretion of the IdP.

2.1.2.2 Authentication Response

The authentication request will be responded with an assertion that satisfies following:

1. MUST contain <sa:AuthnStatement>

2. MUST specify the Level of Authentication as

AuthnStatement/AuthnContext/AuthnContextClassRef.

3. MUST use the LoA profile [SAML2LOA] to return LoA to the SP.

4. SHOULD have AudienceRestriction/Audience element referencing the SP.

5. MAY contain <AttributeStatement> detailing user’s attributes as relevant to SP and/or

requested using AttributeConsumingServiceIndex.

6. SHOULD have an <AttributeStatement> containing a discovery bootstrap (attribute

named "urn:liberty:disco:2006-08:DiscoveryEPR" whose value is an endpoint reference)

as described in [Disco2] section 4 "Discovery Service ID-WSF EPR conveyed via a

Security Token".

7. MAY have additional Attribute Statements conveying other endpoint references.

Rather than providing additional EPRs at SSO, using discovery is RECOMMENDED.

If additional EPRs are passed, the attributes SHOULD be named

"urn:liberty:disco:2006-08:DiscoveryEPR" even if they do not refer to discovery service.

The SP, when seeing "urn:liberty:disco:2006-08:DiscoveryEPR" attribute MUST look at

the Attribute/AttributeValue/EndpointReference/Metadata/ServiceType element to

determine the type of the end point reference. The SP SHOULD consider any attribute

whose value is an <a:EndpointReference> to be a bootstrap.

2.1.3 Shibboleth

Shibboleth MAY be supported. Shibboleth based on SAML 2.0 is RECOMMENDED.

Supporting Shibboleth enables higher education institutions to adopt TAS3 with minimal

reconfiguration and rein- vestment.

Shibboleth does not currently (2011) support1 Single Logout. As a condition of TAS3

compliance, such support should be added (please contribute any such work to the

Shibboleth open source implementation so that this caveat can be deleted). However, a

TAS3 compliant Trust Network may waive this requirement after analysis of the impact

and a pondered decision (i.e. its easier to implement it than to get lawyers to agree).

1 http://www.oit.uci.edu/idm/Access/Shibboleth/slo.php

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 17 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Shibboleth does not officially support Well Known Location method of metadata

publication, but any Shibboleth deployment can satisfy this requirement by simply hand

crafting a metadata file and making it available on their web server at the EntityID URL.

We have not fully validated all use cases with Shibboleth. Specific points of contention

include lack of full user identification, e.g. statement that User is a student or staff member

of university, without giving out a persistent pseudonym. While a valid approach that

better protects the user’s privacy than the use of a persistent ID, it may not be able to

address all the use cases, especially in the commercial world where service providers wish

to link a user’s requests together.

2.1.4 eID and Other Smart Cards

European eID cards and other smart cards are supported as an authentication method

available at SAML 2.0 IdP.

2.1.5 One-Time-Password Tokens

One-Time-Password Tokens, such as RSA Tokens or Yubikey, are supported as

authentication methods available at SAML 2.0 IdP.

2.1.6 OpenID

OpenID [OpenID] MAY be supported. If supported, OpenID 2.0 MUST be used as earlier

versions have known security flaws.

It should be noted that OpenID’s globally unique identifier model does not provide privacy

protection. We have not validated whether it is possible to implement TAS3 architecture

using OpenID. One specific point of uncertainty is passing the IM bootstrap token at SSO

time. No native OpenID mechanism is known to exist (standardized; ad-hoc approaches are

known). One suggestion, applicable to the RESTful binding would be to use OAUTH.

2.1.7 CardSpace / InfoCard and WS-Federation

Card Space MAY be supported. If supported, at least SAML 2.0 token format MUST be

supported. The token MUST also support passing IM / Discovery bootstrap token.

2.1.8 Web Local Login

We have not validated whether it is possible to implement TAS3 architecture using local

login approach. The local login approach has many problems, including

• Each site has separate login so more burden to the user

• Users are lazy and use same password on many sites, thus allowing the sites to

impersonate (masquerade) their users towards other sites.

• Local logins require local effort to support new better authentication methods.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 18 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• Local logins necessitate local user database maintenance

• Local logins require password resets to be handled locally

If local login is required, it is recommended to use one-time-passwords and the

Authentication Service Protocol [SOAPAuthn2] to validate the authentication centrally

using an IdP.

2.1.9 Desktop Login

We have not validated whether it is possible to implement TAS3 architecture using desktop

login approach. We recommend using one-time-passwords and the Authentication Service

Protocol [SOAPAuthn2] to validate the authentication centrally using an IdP.

• Terminal servers: Mind-The-Box, Citrix, Windows TS, etc.

• Active Directory PDC

A backup plan would be to capture the authentication at LDAP or Active Directory level

and make the Authentication Service call from this middleware.

The Desktop login approach suffers from similar security problems as the Fat Client Login,

see below.

2.1.10 Fat Client Login

"Fat Client" refers to any non web browser client, e.g. email reading program (as opposed to

web mail) or GUI form filling application (as opposed to web GUI). Fat Client scenario often

arises with embedded systems, such as medical devices that need to talk to TAS3 network.

The main security problem in Fat Client Login is that the fat client itself becomes an

intermediary to the authentication process, handling sensitive credentials. Some notion of

Trusted Computing Path may help to address verifying that the fat client is not

compromised.

We recommend using one-time-passwords and the Authentication Service Protocol

[SOAPAuthn2] to validate the authentication centrally using an IdP. One-time-passwords

effectively solve the intermediary problem.

If Fat Client Login is a requirement, Liberty Advanced Client approach, see [AdvClient]

and [SOAPAuthn2], SHOULD be used.

2.1.11 User Not Present or Batch Operations

TAS3 specifies some approaches for doing this, see [TAS3D41ID], mainly based on using

advanced authorization to obtain discovery token without authenticating the User. Liberty

Advanced Client approach, see [AdvClient] and [SOAPAuthn2], SHOULD be used.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 19 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2.2 Supported Identity Web Services Systems

The web services must satisfy some technical requirements

• Messages MUST be correlated, so each response is bound to request in an auditable

way

o Message ID correlation

o Business Process Model and Instance IDs (or context or instance) to allow

overarching correlation of several request-response pairs (e.g. to avoid actors who

would have conflicts of interest overall that might not be identified when only

working at level of individual request-response pairs)

� PDP can receive this easy enough as an environment parameter and this is

needed to support dynamic separation of duties

� Gap: business process modelling does not express this?

� Consider URL format hierarchical ID

� Better typed, like LDAP DN format, or query string

• Requester and Responder MUST be identified (Req 10.4)

• Synchronous web service calls MUST be supported

• Asynchronous calls SHOULD be supported where needed. Business Process Engines

will handle asynchrony.

• Subscribe - Notify mechanism SHOULD be supported where needed

o subscription for events will be vital to pick up errors and notify of events like

break the glass

o subscribe and publish ws-eventing

o Event bus as a subscribe and publish mechanism

• Maximum availability and use digital signature and encryption technologies, i.e.

technical solutions to security and trust problems.

2.2.1 Framework

• MUST support SOAP 1.2

• MUST support XML-DSIG [XMLDSIG], a.k.a. RFC3275. In future we may introduce

simpler schemes like Simple Web Token [Hardt09]. Using TLS connection stream as

an audit trail element is impractical due to volume and inability of implementations to

capture it. TLS stream as audit trail may also lead to inadvertent collateral disclosure.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 20 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• MUST support Exclusive XML Canonicalization [XML-EXC-C14N] for purposed of

[XMLDSIG].

• MAY support simple sign [SAML2SimpleSign]. In future we will support Simple Web

Token [Hardt09] which is very similar to simple sign.

• MUST support XML-Enc [XMLENC] for protection of NameIDs and attributes,

including bootstraps, as well as assertions, against an active intermediary. The

common case in question is a SP that is about to make a web service call. To make such

call, the SP must obtain from the discovery service a token that is passed to the web

service provider. XML-Enc support allows the discovery service to pass in the encrypted

token the pseudonym, and potentially some sensitive attributes, to the web service

provider without the intermediary, SP in this case, being able to snoop on this

confidential information. This case cannot be solved using TLS alone as TLS is point-to-

point and for this case TAS3 architecture necessarily specifies an active intermediary.

2.2.2 Liberty ID-WSF Profile

1. MUST support ID-WSF 2.0 SOAP Binding [SOAPBinding2] (this document is highly

recommended reading).

2. MAY support ID-WSF 1.2

3. An implementation MUST support the following sec mechs, see [SecMech2]:

• "urn:liberty:security:2005-02:TLS:Bearer"

• "urn:liberty:security:2006-08:TLS:SAMLV2" (Holder-of-Key, HoK)

A deployment MAY, as a configuration option, choose either.

4. MAY support following sec mechs for testing, but MUST NOT permit their use in

production environments:

• "urn:liberty:security:2005-02:null:Bearer"

• "urn:liberty:security:2006-08:null:SAMLV2" (Holder-of-Key, HoK)

5. MAY support other TLS [RFC2246] based sec mechs, including ClientTLS.

6. MUST NOT permit non-TLS sec mechs in production environments

7. Implementations SHOULD be Liberty Alliance certified, see [IDWSF2SCR].

8. Implementations MUST support <ProcessingContext> "urn:liberty:sb:2003-

08:ProcessingContext:Simulate" SOAP header and implement a "dry-run" feature

using it. A deployment MAY, as a configuration option, enable this feature. Partially

satisfies Reqs. D1.2-12.13-Vfy and D1.2-12.16-OnlineTst.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 21 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

9. An implementation MUST support a health check feature. We RECOMMEND that

the health check uses the "dry-run" feature mentioned in the previous item.

10. <sbf:Framework> SOAP header MUST be supplied and MUST have version XML

attribute with value "2.0"

11. <wsse:Security> SOAP header MUST be supplied

12. <wsu:TimeStamp> MUST be included in the <wsse:Security> SOAP header.

13. <a:MessageID> SOAP header MUST be included in all messages.

14. <a:RelatesTo> SOAP header MUST be included in all responses, unless response is

an unsolicited (spontaneous, without request) response. Including <a:RelatesTo> is

especially important from audit trail perspective so that pledges in the request can

be linked to the data and obligations delivered in the response. This rule satisfies

message correlation requirement. This rule upgrades the SHOULD of

[SOAPBinding2], p.23, ll.818-822, to MUST.

15. <a:ReplyTo> SOAP header MUST be included in all requests and MUST have value

http://www.w3.org/2005/03/a

16. <a:FaultTo> SOAP header MUST NOT be supplied. All faults are sent to

<a:ReplyTo> address, i.e. in the same HTTP request-response pair.

17. <b:Sender> SOAP header MUST be included in each web service message.

[SOAPBinding2] section 5.9, pp.21-22, is vague about when this is needed. To

simplify matters we make it always mandatory2.

18. Request-Response message exchange pattern MUST be supported.

2 If HoK sec mech is used, the sender can generally be inferred even without this header and some

implementations of ID-WSF 2.0 actually do this. However, this has caused interoperability problems,

hence TAS3 tightens the rule.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 22 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 2:1 Liberty Alliance Architecture

2.2.3 Bare WS-Security Header or Simplified ID-WSF

1. SHOULD NOT use, as many important security features such as message
correlation, replay detection, and identification of endpoints are not supported by

this mechanism.

2. Document resultant limitations if not implementing full ID-WSF.

2.2.4 WS-Trust

• MAY support [WSTrust] in general, but MUST support if deploying the particular

case of accessing external Credential Validation Service, per [ChadwickSu09]

We have not validated whether it is possible to implement TAS3 architecture using WS-

Trust. Clearly WS-Trust can be used as a token exchange protocol, but for this to be

interoperable heavy profiling is needed. Users and advocates of WS-Trust should undertake

to write such profile.

2.2.5 RESTful Approach

MAY support. We RECOMMEND support on basis of OAuth 2.0 [OAUTH]. The OAuth

WRAP [Tom09], has been deprecated in favour of OAuth 2.0 from December 2009, and is

not recommended for production use. Implementers should take in account security

advisories published on oauth.net web site.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 23 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

We have not validated whether it is possible to implement TAS3 architecture using RESTful

approach.

RESTful enablement is nice to have, but should not compromise elegance of the SOAP

solution and may be less capable (i.e. it is enough that the RESTful approach solves front

channel use cases). RESTful approach may support more economical token formats such as

Simple Web Token (SWT) [Hardt09].

TAS3 project plans to address RESTful binding in future work during 2010.

2.2.6 Message Bus Approach

We see deploying TAS3 services on message bus architecture as feasible. This will be

investigated in a future iteration of this deliverable.

2.3 Authorization Systems

This section addresses Reqs. D1.2-2.19-AzCredi and D1.2-2.20-Az. Authorization systems

are extensively covered in [TAS3D71IdMAnAz].

2.3.1 Authorization Queries

1. MUST support XACML 2.0 [XACML2] request-response contexts for authorization

queries

2. MAY support other versions of XACML

3. MAY support XACML policy language

4. MUST support XACML SAML Authorization Query extension [XACML2SAML] in

order to allow policies to be dynamically passed to the PDP

All communication between the PEP and PDP will be using SOAP based XACML SAML

profile. This profile is mostly independent of rules language. Thus the PERMIS and trust

and reputation language specificity will be mostly contained within the PDPs themselves.

The only exception is the obligation vocabulary which must be understood by the

distributed Obligations Services and therefore needs to be standardised. This is a major

effort that has already been started in the TAS3 project. On the other hand, the sticky

policies, which will be passed over the wire in the protocol exchange, will be engineered

such that they transparently pass from the data store to the appropriate field of the

XACML request without the PEP proper really having to understand them.

2.3.2 Policy Languages

TAS3 does not mandate any specific policy language. However, consider following

possibilities:

1. PDP SHOULD support XACML 2.0 policy language [XACML2]

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 24 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2. PDP MAY support PERMIS 5.0 policy language

3. PDP MAY support P3P policy language

4. PDP MAY support PrimeLife privacy policies

5. PEP, PDP, and Obligations Service MAY support SOL1, see section 2.11, for

obligations

6. CVS MAY support PERMIS Policy CVS Schema (cf. [TAS3D71IdMAnAz] Appendix

2)

2.4 Trust and Security Vocabularies

Usage of ontologies in TAS3 is thoroughly addressed in [TAS3D22UPONTO], which will

map some of these vocabularies.

Figure 2:2 Hierarchies of policies

2.4.1 Levels of Authentication (LoA)

TAS3 recommends the use of the NIST 4 levels of assurance as described in [NIST-SP800-

63] and profiled in [SAML2LOA].

TAS3 is working on determining whether and how to support LoA schemes of various

European countries.

2.4.2 Vocabularies for Authorization

Some work has been done in RADIUS [RFC2138] and Diameter [RFC3588].

[SAML2context] is mainly about authentication, but authorization is also touched. This

section will be expanded in a future version of this document.

2.4.3 Vocabularies for Basic Attributes (PII)

Use of following vocabularies of PII is RECOMMENDED:

• LDAP inetOrgPerson [RFC2798]

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 25 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

• Liberty Personal Profile specification [IDPP]

• X.500 standards, such as [X520] and [X521]. See also [RFC2256]. This section will be

expanded in a future version of this document.

2.4.4 Discovery Vocabularies

Main vocabulary for discovery is the Service Type taxonomy described in [Disco2]. This

taxonomy is complemented by discovery options that further describe the service. This

vocabulary SHOULD be used when applicable.

Each Liberty service specifies its own Service Type value as well as a number discovery

options. For example, see [IDDAP], [IDPP], or [DST21].

This section will be expanded in a future version of this document.

2.4.5 Security and Trust Vocabularies

See [SAML2context] and [SecMech2] for a vocabulary of security mechanisms that MUST

be used when applicable.

This section will be expanded in a future version of this document.

2.4.6 Audit Vocabularies

Audit events from RADIUS [RFC2139] and Diameter [RFC3588] are RECOMMENDED for

use where applicable.

This section will be expanded in a future version of this document. As audit is active

research topic, we benefit from the research during the TAS3 project to specify this section

in detail in the final version of the document.

2.5 Realization of the Discovery Function

• MUST support Liberty ID-WSF 2.0 Discovery Service specification [Disco2]

• MAY support [Disco12]

• MAY support UDDI, however this may require significant extensions to UDDI. Such

extensions would need to be profiled.

See [NexofRA09], section 5.4 "The Overview-Model", fig 18, for a view of the interaction

between service registration and service discovery. Unfortunately the referred document

fails to recognize the need for per-identity service registrations, unless the oblique

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 26 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

reference, where no difference is made between service requester entity and the data

subject, in section 5.4.4 "Service Discovery", counts.

2.6 Realization of the Credentials and Privacy Negotiator
Function

Figure 2:3 Credentials and Privacy Negotiation and Discovery steps

Credentials and Policy Negotiation generally takes authentication and identification of all

parties for granted, but then computes a trust score which typically governs the access

control decisions.

2.6.1 Discovery in Credentials and Privacy Negotiation

In this model both "Credentials and Privacy Negotiator" and "ID Mapper" are implemented

as parts of Discovery Service.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 27 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 2:4 a deployment architecture for Credentials and Privacy Negotiation and

Discovery

2.6.2 Frontend Credentials and Privacy Negotiation

In future work we will address user giving input to Credentials and Privacy Negotiation.

2.6.3 Components of Credentials and Privacy Negotiator

1. Service Requestor (SR) discovers the location of the User’s Credentials and Privacy
Negotiator Agent (U-CPNA) and a candidate list of Web Service Providers (WSPs).

2. SR passes the candidate list to the U-CPNA.
3. U-CPNA discovers the location of user’s attribute aggregator.
4. U-CPNA obtains a token with user’s pseudonym at the Attribute Aggregator.
5. U-CPNA obtains necessary credentials for the user from the Attribute Aggregator.

Attribute Aggregator, in turn may contact Attribute Authorities to obtain the

credentials. Each such contact involves its own web service call, with discovery,

IDMap, and actual web service calls, each with appropriate authorization steps. This

complexity is not shown in the diagram.

6. U-CPNA engages in credentials and privacy negotiation with the WSP’s Credentials

and Privacy Negotiation service.

7. Once U-CPNA returns the chosen WSP, the SR obtains a token for calling the WSP.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 28 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

8. Finally the actual web service call is realized (with appropriate authorization steps,
not shown in the diagram).

Figure 2:5 Credentials and Privacy Negotiation Components

Some variants and optimizations to this basic flow are possible. One obvious variant is to

merge the calls to Discovery Registry and IDMapper. Liberty Alliance Discovery Service

[Disco2] effectively uses this optimization.

Another, perhaps more significant, optimization is to integrate the credentials and privacy

negotiation under the Discovery Service. In this scenario, the U-CPNA is called from the

midst of the discovery process. This reduces steps and may allow the discovery process to

use criteria from the credentials and privacy negotiation.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 29 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 2:6 Credentials and Privacy Negotiation optimized flow

1. Service Requestor (SR) discovers Web Service Provider (WSP).

2. Discovery passes the candidate list to the U-CPNA. Discovery can also pass the End

Point Reference (EPR), which includes a token with pseudonym for the call, to the Attribute

Aggregator.

5. U-CPNA obtains necessary credentials for the user from the Attribute Aggregator in

same way as in unoptimized case.

6. U-CPNA engages in credentials and privacy negotiation with the WSP’s Credentials and

Privacy Negotiation service.

8. The discovery service returns to SR the EPR of the WSP. Finally the actual web service

call is realized.

2.6.4 Protocol between Service Requester and the Credentials and
Privacy Negotiation Agent

Service Requester invokes the User’s Credentials and Privacy Negotiation Agent as a

regular web service.

2.6.5 Protocol between Credentials and Privacy Negotiation Agent and
Attribute Aggregator

User’s Credentials and Privacy Negotiation Agent invokes user’s Attribute Aggregator as a

regular web service. The body of the call needs to express what credentials are desired and

the body of the response must be able to pass multiple credentials.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 30 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2.6.6 Protocol between Credentials and Privacy Negotiation Agent and
Service

The protocol to realise the credentials and privacy negotiation functionality has yet to be

finalised. Candidate protocols are:

1. the one used by TrustBuilder 2 [TrustBuilder2]
2. one based on the Web Service Profile of XACML [Anderson07] as enhanced by

[Mbanaso09]

3. one based on an enhanced Liberty Discovery Service [Disco2]

Whichever protocol is finally chosen it must be able to support a ceremony to gaining

incremental levels of mutual trust. The Web GUI of the Front End MUST support the

ceremony.

2.7 Using Trust Scoring in Discovery

The Trust Scoring is available from the Trust PDP component. As PDPs use XACML

protocol, which natively does not have ability to convey anything else than Permit or Deny

decision and associated obligations, we profile the second level XACML <StatusCode> to

carry the ranking information: the Value XML attribute holds a URN prefix, identifying the

trust ranking scheme, followed by actual rating in the syntax specified by the scheme.

Example

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok">

<StatusCode

value="urn:eu.tas3.trustranking:eu.tas3.trustpdp.centralityrtm.RTMEngine:CENT

RA

</StatusCode>

2.8 Realization of the Audit and Dashboard Function

2.8.1 Audit Event Bus

Satisfies Req. D1.2-9.5-Trail. Tentative protocol choice (in order of preference):

1. AMQP [AMQP06]

2. Liberty Accounting Service [AcctSvc] with subscriptions and notifications [SUBS2]
and [DesignPat].

3. Diameter [RFC3588]
4. RADIUS [RFC2138]
5. Apache Muse

Whichever transport is chosen, the actual audit records are packaged as OpenXDAS

messages (see: openxdas.sourceforge.net).

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 31 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2.8.2 Audit Event Ontology

• Enumeration of mandatory edit events according to some standard

o RADIUS and Diameter communities have defined at least some messages

• ZXID logging documentation [ZXIDREADME] provides an idea, at least applicable

to SSO

2.8.3 Dashboard Function

• Dashboard should also realize the "PII Consent Service" or "Privacy Manager" at

large.

• SHOULD support Liberty Interaction service [Interact2]

2.8.4 User Interaction

User interaction is needed for consent questions and possibly even soliciting additional data

during back channel web service calls. Interaction can be realized using two different

mechanisms

• Liberty Interaction service [Interact2] where a web services call is made to the

interaction service. This service is often co-located with the Dashboard.

• The web service returns special SOAP fault requesting redirection to interaction

URL.

2.9 Realization of Delegation Function

The Delegation Service functionality is described in section 6 of D7.1. The protocols that

this will use will be described in the next version of the current deliverable.

2.10 Attribute Authorities

TAS3 network may contain various attribute authorities. Every Identity Provider may act

as an attribute authority by including <AttributeStatement>, see [SAML2core], in the

single sign-on assertions that it emits. This constitutes an attribute push mechanism.

The problem with a push mechanism is knowing which attributes to push. A possible

solution is for the Front End to express its attribute needs using a SAML extension, such as

[Kellomaki08]. However, usually a better solution is to implement pull model Attribute

Authority, i.e. the attribute authority is simply a web service.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 32 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

There are several ways of implementing a data web service. [SAML2prof] specifies

AttributeQuery protocol, but does not adequately specify the transport binding and peer

authentication. TAS3 attribute au- thority SHOULD support [SAML2prof] AttributeQuery

protocol using TAS3 SOAP binding, see section 2.2.2.

Other data web services, such as ID-DAP [IDDAP] over TAS3 SOAP binding, MAY be

supported. A deployment may also make local or proprietary arrangements for accessing a

non TAS3 attribute authority, e.g. using LDAP [RFC2251] or WebDAV with file containing

attribute certificate or SAML attribute assertion.

2.11 TAS3 Simple Obligations Language (SOL)

TAS3 Architecture foresees that a Service Requester needs to express obligations and

policies that it is willing and able to respect, and on the other hand the personal data will

have associated with its obligations and policies ("sticky policies") under which the data can

be or is released.

In general the obligations and sticky policies can be expressed in any convenient language.

Unfortunately no standard language has emerged in the industry for this type of

application despite many being proposed. TAS3 is committed to supporting multiple such

languages, but for purposes of pilots and other simple applications we define " TAS3 Simple

Obligations Language no1" (SOL1) with potential future versions to follow.

SOL obligations MAY be used in XACML obligations as described in [TAS3D71IdMAnAz].

In particular, D7.1 Appendix A1.2 provides an example. In short, they MUST appear in an

Obligation/AttributeAssignment element. When passed in <b:UsageDirective>,

<xa:Obligation> element MUST be used as a wrap- per. Use of <xa:Obligation> element as

a wrapper in other XML contexts is RECOMMENDED.

N.B. Since SOAP headers in TAS3 are generally signed, the <b:UsageDirective> header

constitutes signed pledge to honour the obligations. This is similar to Signed Acceptance of

Obligations (SAO) concept of Obligation of Trust (OoT) protocol described in [Mbanaso09] et

al. Put another way, the pledge expresses the Capabilities. We effectively optimize the OoT

Protocol Scheme (sec 3.2) by avoiding iterative discovery of capabilities and moving directly

to the signed pledge phase (5 in fig. 5).

The ObligationId XML attribute of <xa:Obligation> element is used to specify the

obligations processor (module that the PDP should invoke to evaluate the obligation). Some

processors may be simple in which case the ObligationId completely identifies the nature of

the obligation.

When using SOL, however, the semantics of the obligation depend on the actual SOL

expressions passed in the <xa:AttributeAssignment> child element of <xa:Obligation>. In

this case the ObligationId merely identifies the obligations processing engine. The SOL1

obligations processor is identified by ObligationId value "urn:tas3:sol1". The actual SOL1

expressions are held in <xa:AttributeAssignment> elements with following AttributeId

XML-attributes:

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 33 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:sol1:pledge Obligations that WSC pledges to honour if it receives them in any

response data.

urn:tas3:sol1:require Obligations that the emitting party requires to be honoured.

Typically this is used to attach obligations to the data that is returned.

There MUST only be one <xa:AttributeAssignment> with each AttributeId, i.e. there can

only be zero, one, or two <xa:AttributeAssignment> elements in <xa:Obligation> element.

There MUST only be one <xa:Obligation> element with ObligationId "urn:tas3:sol1" and

there MUST only be one <b:UsageDirective> in the SOAP message.

The DataType XML attsibute of the <xa:AttributeAssignment> MUST always have value

"http://www.w3.org/2001/XMLSchema#string". The FulfillOn XML attribute of

<xa:Obligation> element SHOULD, in absence of more specific guidance, be set to "Permit".

The urn:tas3:sol:vers Query String parameter allows for versioning of the obligations

language. The actual obligations are expressed using URL Query String Syntax with

attribute value pairs expressing the obligations. Newline (0x0a) MAY be used as separator

instead of an ampersand. Should escaping be needed, the URL encoding MAY be used.

Example

<b:UsageDirective id="USE">

<xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">

<xa:AttributeAssignment

AttributeId="urn:tas3:sol1:pledge"

DataType="http://www.w3.org/2001/XMLSchema#string">

urn:tas3:sol:vers=1

urn:tas3:sol1:delon=1255555377 urn:tas3:sol1:use=urn:tas3:sol1:use:purpose

urn:tas3:sol1:share=urn:tas3:sol1:share:group

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper

</xa:AttributeAssignment>

</xa:Obligation>

</b:UsageDirective>

As can be seen from the example, the attributes are actually URNs and each attribute

tends to express an obligation that is required by data or that the Requester promises to

honour.

2.11.1 SOL1 Query String Attributes

urn:tas3:sol:vers Identifies the version of SOL. Always "1" for SOL1.

urn:tas3:sol1 Special value reserved to be used as ObligationId or in general to identify

this dialect of SOL.

urn:tas3:sol1:pledge Special value reserved to be used as AttributeId

urn:tas3:sol1:require Special value reserved to be used as AttributeId

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 34 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:sol1:use How information can or will be used and shared. A comma separated list

of enumerators in the order of principally intended use (ordered here, in our opinion, from

least aggressive to more aggressive as indicated; however this ordering is subjective and

other opinions may exist). The urn:tas3:sol1:use:purpose should be favoured over

urn:tas3:sol1:use, unless the vague meaning of urn:tas3:sol1:use is desired.

urn:tas3:sol1:use:transaction (0) Information will only be used for the transaction

for which it was collected

urn:tas3:sol1:use:session (1) Information will only be used within the current

session

urn:tas3:sol1:use:user (2) Information can be used in the user’s other sessions in

the same app

urn:tas3:sol1:use:forpurpose (3) Information will be used only for the purpose it

was collected, in abstract. This usage is discouraged. Instead the specific purpose

should be specified using format urn:tas3:sol1:use:purpose=business-process-model-

id; or urn:tas3:sol1:use:purpose=business-process-instance-id

These two forms allow the obligation to be tied into the model in abstract, or to the

specific business process instance in particular, e.g. for exceptional processing such

as Break-the- Glass.

urn:tas3:sol1:use:serveranon (4) Information can be used by other processes on

same server as long as user is not explicitly identified

urn:tas3:sol1:use:serverident (5) Information can be used by other processes on

same server (user may be identified)

urn:tas3:sol1:use:appanon (6) Information can be used by the application towards

other purposes as long as the user is not explicitly identified

urn:tas3:sol1:use:appident (7) Information can be used by the application towards

other purposes (user may be identified)

urn:tas3:sol1:use:organon (8) Information can be used by the organization for

other non-marketing purposes as long as the user is not explicitly identified

urn:tas3:sol1:use:orgident (9) Information can be used by the organization for

other non-marketing purposes (user may be identified)

urn:tas3:sol1:use:mktanon (10) Information can be used by the organization for

marketing purposes as long as the user is not explicitly identified

urn:tas3:sol1:use:mktident (11) Information can be used by the organization for

marketing purposes (user may be identified)

urn:tas3:sol1:use:grpanon (12) Information can be used within the business group

for other non-marketing purposes as long as the user is not explicitly identified

urn:tas3:sol1:use:grpident (13) Information can be used within the business

group for other non-marketing purposes (user may be identified)

urn:tas3:sol1:use:grpmktanon (14) Information can be used within the business

group for marketing purposes as long as user is not explicitly identified

urn:tas3:sol1:use:grpmktident (15) Information can be used within the business

group for marketing purposes (user may be identified)

urn:tas3:sol1:use:shareanon (16) Information can be shared with anyone for

other non- marketing purposes as long as the user is not explicitly identified

urn:tas3:sol1:use:shareident (17) Information can be shared with anyone for

other non-marketing purposes (user may be identified)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 35 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:sol1:use:sharemktanon (18) Information can be shared with anyone for

mar- keting purposes as long as user is not explicitly identified

urn:tas3:sol1:use:sharemktident (19) Information can be shared with anyone for

mar- keting purposes (user may be identified)

urn:tas3:sol1:use:anyall (20) Information can be used for any and all purposes

without restriction.

urn:tas3:sol1:use:purpose Specific business process that is allowed to use the data. This

can be specified either as abstract business-process-model-id or as business-process-

instance-id. For example:

urn:tas3:sol1:use:purpose=business-process-model-id;

urn:tas3:sol1:use:purpose=business-process-instance-id

These two forms allow the obligation to be tied into the model in abstract, or to the specific

business process instance in particular, e.g. for exceptional processing such as Break-the-

Glass.

urn:tas3:sol1:delon Delete data on as Unix seconds since epoch. This obligation

effectively allows control of data retention, but instead of being expressed in relative terms,

it is expressed in absolute terms that are legally easier to interpret.

urn:tas3:sol1:retention Maximum data retention period as Unix seconds. This obligation

is meant for database storage. Upon act of data access, retention should be converted to

delon using current wall clock time.

urn:tas3:sol1:certdel Certify deletion by legally binding report to the audit bus.

urn:tas3:sol1:preauth Before each use of the data, user’s explicit consent -

preauthorization - has to be obtained. Value specifies where to obtain preauthorization.

urn:tas3:sol1:callback When about to use data, call back to the user for opportunity to

modify the data, or deny it. Value specifies where to call back.

urn:tas3:sol1:repouse Report use to the audit bus. Comma separated list of enumerators:

urn:tas3:sol1:repouse:never No need to report use (seldom appears)

urn:tas3:sol1:repouse:all Report any and all use

urn:tas3:sol1:repouse:oper Report operational use, but not statistical or

administrative use.

urn:tas3:sol1:repouse:stat:immed Report use in near real time for day need to be

reported, if there was any use.

urn:tas3:sol1:repouse:stat:daily No need to report individual use, but summary

statistics for day need to be reported, if there was any use.

urn:tas3:sol1:repouse:stat:weekly No need to report individual use, but summary

statistics for week need to be reported, if there was any use.

urn:tas3:sol1:repouse:stat:monthly No need to report individual use, but

summary statistics for month need to be reported, if there was any use.

urn:tas3:sol1:repouse:stat:quarterly No need to report individual use, but sum-

mary statistics for quarter (last 3 months) need to be reported, if there was any use.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 36 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:sol1:repouse:stat:semestral No need to report individual use, but sum-

mary statistics for semester (last 6 months) need to be reported, if there was any

use.

urn:tas3:sol1:repouse:stat:yearly No need to report individual use, but summary

statistics for year need to be reported, if there was any use.

If no urn:tas3:sol1:repouse:stat is specified, default is

urn:tas3:sol1:repouse:stat:immed. If conflicting enumerators are specified, the most

strict one applies.

urn:tas3:sol1:xborder Enumerator describing what sort of cross border data sharing can

occur:

urn:tas3:sol1:xdom:eu Only within EU common market.

urn:tas3:sol1:xdom:safeharbour Common market and safe harbour participants

urn:tas3:sol1:license Use of information is subject to license specified in the value part.

The value part should be either URL to online accessible license text, or it should be a URN

pointing to a well known license.

The general assumption is that the license terms are either well known to the system (and

programmed in) or machine readable. While the user may have to consent to the license at

some level, it is not meant that this license reference be displayed to user and he required

to read and consent on the spot.

urn:tas3:sol1:contract-fwk Framework or governance contract identifier.

urn:tas3:sol1:contract Contract identifier. urn:tas3:sol1:contract-sub Subcontract or

amendment identifier urn:tas3:sol1:contract-part Part, exhibit, annex, or clause identifier.

2.11.2 Matching Pledges to Sticky Policies and Obligations

When delivering response to data request, the Responder outbound PEP compares the

pledges that were received in the request and checks that the sticky policies and obligations

that are attached to the data coming from the backend repository can be satisfied given the

pledges. This ensures that the Responder will never ship out data unless the Requester has

clearly committed itself to respect the sticky policies and obligations.

Consider the following request

<e:Envelope>

<e:Header>

<!-- WS-Addressing headers and wsse:Security with DSIG not shown -->

 <b:UsageDirective id="USE">

 <xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">

<xa:AttributeAssignment AttributeId="urn:tas3:sol1:pledge"

DataType="http://www.w3.org/2001/XMLSchema#string">

urn:tas3:sol:vers=1

urn:tas3:sol1:delon=1255555377

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 37 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose

urn:tas3:sol1:share=urn:tas3:sol1:share:group

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper

</>

</>

 </>

</>

<e:Body id="BDY">

<idhrxml:Query>...</></></>

Now, backend returns the following data

<dataItem id="1">

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">

urn:tas3:sol:vers=1

urn:tas3:sol:delon=1255555378 urn:tas3:sol1:use=urn:tas3:sol1:use:transaction

</>

<data>value</>

</>

<dataItem id="2">

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">

urn:tas3:sol:vers=1

urn:tas3:sol:delon=1255555376 urn:tas3:sol1:use=urn:tas3:sol1:use:purpose

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:all

</>

<data>value</>

</>

<dataItem id="3">

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">

urn:tas3:sol:vers=1

urn:tas3:sol:delon=1255555378 urn:tas3:sol1:use=urn:tas3:sol1:use:purpose

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper,repouse=urn:tas3:sol1:repous

e:stat:weekl

</>

<data>value</>

</>

The first data item would have to be filtered out because its usage policy is "transaction"

while requester pledged usage for intended "purpose". Intended purpose can span many

transactions, therefore its broader that the allowed use. Note that the delon constraint

would be compatible with the request.

The second data item has to be filtered out for two reasons: (i) its delon is stricter that what

requester pledged, and (ii) the repouse constraint is more onerous than requester is willing

to perform.

The third data item’s obligations are compatible with the requester’s pledges. It is returned

to the requester.

N.B. This is just an example. The way in which the obligations are attached to the data can

be quite different from the illustrated, e.g. internal C data structure rather than XML. It is

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 38 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

also possible that obligations are not stored with the data, but rather generated by a PDP

based on data dependent sticky-policies.

Once the Responder Outbound PEP has filtered the data, it is sent, with the obligations, to

Requester which MAY pass the obligations to Obligations Service for enforcement.

2.11.3 Passing Simple Obligations Dictionaries Around

While in SOL1 the set of enumerators is fixed and with fixed meaning which is hardwired

to the simplest PEP implementations, we foresee users inventing additional attributes and

enumerators. This raises the need for the PEP implementations to be configurable or

somehow understand the new enumerators on basis of their semantics.

Such configurations and online semantics passing can be achieved with Simple Obligations

Dictionaries (SODs), which effectively allow the semantics to be declared. The dictionary

can be stored in a configuration file, and we provide SOL1 standard dictionary as sol1.sod

(which you should not modify) and you may be able to provide additional dictionary

fragments in user editable configuration files. Alternatively, the nonstandard dictionary

fragments can be passed inline in the protocol by means of <tas3sol:Dict> element.

Example

<e:Envelope>

<e:Header>

<!-- WS-Addressing headers and wsse:Security with DSIG not shown -->

<b:UsageDirective id="USE">

<xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">

<xa:AttributeAssignment AttributeId="urn:tas3:sol1:pledge"

DataType="http://www.w3.org/2001/XMLSchema#string">

urn:tas3:sol:vers=1

urn:tas3:sol1:delon=1255555377

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose

urn:tas3:sol1:share=urn:tas3:sol1:share:group

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper

</>

</>

<tas3sol:Dict xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">

 Entities:

Data Subject (Agent the Data describes)

Data Processor (Agent that processes the Data)

Data (Information which is a resource under protection)

Organisation (a Data Processor)

Marketing (an Action)

Process (an Action of manipulating Data)

 Relations:

Identify

Retain

 Property

May (property of an action)

Must (property of an action)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 39 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 urn:tas3:sol1:use:mktident is an enumerator of urn:tas3:sol1:use

 urn:tas3:sol1:use:mktident means

Organization (who) - Process (action) - Data (what) - Marketing (why)

Organization (who) - Identify (action) - Data Subject (What)

</>

</>

</>

<e:Body id="BDY">

<idhrxml:Query>...</></></>

This example uses <tas3sol:Dict> element to define a new enumerator for urn:tas3:sol1:use

by spelling out its semantic meaning in terms of the dictionary items (example is somewhat

unrealistic because you should not repeat or redefine dictionary entries from the standard

sol1.sod). In particular the mktident really is a combination of two consequences: you will

receive spam and you will be identified. Thus the "means" declaration has two lines.

2.12 Realization of Sticky Policies

As discussed in [TAS3ARCH] section 4.1 "Protocol Support for Conveyance of Sticky

Policies", Encapsulating Security Layer (ESL) is one approach for implementing sticky

policies. While total encapsulation is possible, for already established applications protocols

something lighter weight is desired. Most properties of ESL can also be implemented by a

special SOAP header that references all the elements that would have been referenced by

the ESL approach. The subtle, but salient, difference is that instead of the intrusive

encapsulation layer, all the relevant policy data is carried in the <tas3:ESLPolicy> header.

The reference is either by XML id attribute (preferred) or a simplified absolute XPath

[XPATH99].

Example

<e:Envelope>

 <e:Header>

 <wsse:Security>...</>

 <tas3:ESLPolicies mustUnderstand="1">

 <tas3:ESLApply>

 <tas3:ESLRef ref="#data1"/>

 <tas3:ESLRef xpath="container/subcontainer"/>

 <xa:Obligation ObligationId="urn:tas3:sol1">

 <xa:AttributeAssignment AttributeId="urn:tas3:sol1:require"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 urn:tas3:sol:vers=1 urn:tas3:sol1:delon=1255555377

 </xa:AttributeAssignment>

 </xa:Obligation>

 </tas3:ESLApply>

 <tas3:ESLApply>

 <tas3:ESLRef ref="#data2"/>

 <xa:Obligation ObligationId="urn:tas3:sol1">

 <xa:AttributeAssignment AttributeId="urn:tas3:sol1:require"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 urn:tas3:sol:vers=1 urn:tas3:sol1:delon=1255566666

 </xa:AttributeAssignment>

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 40 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 </xa:Obligation>

 </tas3:ESLApply>

 </tas3:ESLPolicies>

</e:Header>

<e:Body>

 <data id="data1" value="foo">

 <data id="data2" value="bar">

 <container>

 <subdata value="goo"/>

 </container>

</e:Body>

</e:Envelope>

In the above example both id based references to <data> and XPath based reference for the

<subdata> are illustrated. It also illustrates how to apply different sticky policies (n.b.

Obligation is a particularly common type of sticky policy) to different data.

2.13 Passing Additional Credentials in Web Service Call

The usual way to pass credentials is using an attribute assertion inside <wsse:Security>

header. Such attribute assertion identifies the calling user. Sometimes additional

credentials identifying the actual re- source are passed in <TargetIdentity> SOAP header.

However, both of these methods basically admit single credential (which can contain other

credentials as attributes) typically not signed by the Requester. If Requester needs to add

additional credentials, it can use <tas3:Credentials> element.

<e:Envelope>

<e:Header>

 <wsse:Security>...</>

 <tas3:Credentials xmlns:tas3="http://tas3.eu/tas3/200911/">

 ... reuse XACML or SAML attribute schema

 </tas3:Credentials>

</e:Header>

<e:Body>...</>

</e:Envelope>

2.14 Uniform Application Status and Error Reporting

Traditionally Web Service application protocols have defined their own error and status

reporting mechanisms. TAS3 standardizes the status reporting by adding a standardized

SOAP header that the application SHOULD insert if it wishes to enable some automatic

TAS3 processing. This is especially important for automation of Online Compliance Testing.

Some ways the errors can be reported

1. Network or socket layer, e.g. drop the connection in case of a security violation. This
is very extreme response and SHOULD NOT be used normally, unless there is a

genuine threat, such as suspected Denial-of-Service (DoS) attack.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 41 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

2. HTTP layer error codes. In normal operation, 200 should be used. In particular 4xx
and 5xx codes SHOULD NOT be used to indicate authorization errors deep in the

application or application errors. The HTTP error codes SHOULD generally be used

for errors that are detected at web server level.

3. Application platform errors, such as stack back traces, SHOULD NOT happen. All
errors SHOULD be trapped and appropriately reported by the application. Despite

this rule, the reality of application development means that stack traces will be

output by buggy or immature software.

4. SOAP faults. Generally SOAP faults should only be used to indicate SOAP transport
level errors, as defined by SOAP and ID-WSF specifications.

5. The API, such as tas3_get_fault(), for creating and inspecting TAS3 related SOAP

faults is described in section 3.1.13 "SOAP Fault and Status Generation and

Inspection".

6. ID-WSF special headers. Some ID-WSF level errors cause ID-WSF specific SOAP

headers to be emitted in the response.

7. TAS3 error header SHOULD be used to report all TAS3 and application level errors.

8. Application level error mechanisms MAY be used to report application level errors.

It is RECOMMENDED that the application level protocols be designed to use the

TAS3 error headers or at least the Liberty Utility schema defined <Status> element

[DesignPat].

2.14.1 TAS3 Status Header

The TAS3 Status Header is based on the <Status> element defined in Liberty Utility

Schema, see [DesignPat].

<e:Envelope>

<e:Header>

<tas3:Status xmlns:tas3="http://tas3.eu/tas3/200911/"

 ctlpt="urn:tas3:ctlpt:app"

 code="OK"/>

</e:Header>

<e:Body>...</>

</e:Envelope>

The API, such as tas3_get_tas3_status() for creating and inspecting TAS3 Status Header is

described in section 3.1.13 "SOAP Fault and Status Generation and Inspection".

2.14.2 TAS3 Status Codes

The code XML attribute may contain any of the ID-WSF defined status codes; see

[SOAPBinding2] Table 2 on pp.12-13, including the special value "OK" to indicate success.

It may also contain any application specific status indications, provided that they are

qualified to their own namespace using URN or URL constructs. Finally it may contain any

of the following TAS3 defined status codes:

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 42 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

urn:tas3:status:deny Operation denied by authorization layer

urn:tas3:status:notapplicable Operation not applicable from authorization perspective

urn:tas3:status:indeterminate Operation’s status cannot be determined by the

authorization layer

urn:tas3:status:nosig Operation denied due to required signature missing.

urn:tas3:status:badsig Operation denied due to signature validation problem.

urn:tas3:status:badcond Expiry time or audience restriction did not validate.

2.14.3 TAS3 Control and Reporting Points

The status messages can emanate from several parts in TAS3 security layer, or even from

points inside the application. To assist in determining where errors originate, the

<tas3:Status> element carries a ctlpt XML attribute, whose value is a URI identifying the

origin of the error. While application can define a number of additional URIs, the TAS3

architecture defines the following:

urn:tas3:ctlpt:pep:rq:out Request Out PEP (callout 1)

urn:tas3:ctlpt:pep:rq:in Request In PEP (callout 2)

urn:tas3:ctlpt:pep:rs:out Response Out PEP (callout 3)

urn:tas3:ctlpt:pep:rs:in Response In PEP (callout 4)

urn:tas3:ctlpt:app Application. In this case application can also define its own URIs.

2.14.4 Registration of Business Process Models

The attribute needs and participants of the business process model are declared using

CARML declaration. Each business process model is assigned a service type URI, which is

used by the SPs that implement the business process model to register themselves in the

discovery.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 43 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

3 The Official TAS3 API (normative, but non-
exclusive)

Although wire-interoperability is the main goal of the TAS3 project, we recognize that

interoperability at software interface level, i.e. interchangeable implementations of an API,

is valuable as well. Standardization of APIs, in addition to wire protocols, helps to promote

building a culture and community of programmers catering for the TAS3 platform. Such

community fosters adoption through mutual self help and shared knowledge base.

Supporting full constellation of APIs for all programming languages and platforms is fairly

expensive business, but is necessary to address the present fragmented market.

The TAS3 API described herein is meant to have multiple implementations. Each

implementation provides

• The interface files described herein, such as tas3.h

• Libraries or implementation files that provide the symbols described by the interface

files. In as far as possible, these will be called libtas3.so, libtas3.dll, or other

appropriate and similar name. However a concrete implementation may choose to

incorporate the TAS3 API interface in its own library, or may require its own library

to be included in addition to the libtas3.* library. Such additional requirements

shall be conspicuously described in the implementation documentation.

The official TAS3 API is not meant to exclude other wire-protocol compatible

implementations of TAS3. Thus, while there is only one official API, other APIs can be

equally TAS3 compatible on the wire.

The particular API in use is chosen by the programmer by including the appropriate header

file or interface description. The particular API implementation in use is chosen by the

system administrator or the programmer by linking against a particular library providing

the TAS3 binary interface, or by dynamically loading a module implementing the said

binary interface. This leaves great implementation flexibility while accurately describing

the TAS3 interface and implementation at source code (API) and binary (ABI) level.

3.1 Language Independent Description of the API

Since all language specific bindings, by-and-large, share the same semantics, the functions

and methods are first described generically, using pseudocode if needed. Each language

binding takes the same parameters and behaves in the way that API would naturally work,

mutantis mudandis, for that language3.

The five essential APIs are

3 Some procedural bias is evident, even in "object oriented" language bindings. This is due to least-

common-denominator syndrome, i.e. desire to have same API for all programming languages.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 44 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

tas3_sso() SSO (with optional application independent authorization)

tas3_az() Application Dependent Authorization

tas3_call() Web Services Client: call a web service and validate response

tas3_wsp_validate() Validate that web service request can be processed

tas3_wsp_decorate() Create a web service response

3.1.1 Single Sign On (SSO) Alternatives

The TAS3 SSO API’s primary aim is supporting SAML 2.0 SSO (and SLO) with attribute

and bootstrap passing. Not all SAML 2.0 SP APIs (or IdPs) are capable of this out of the

box. Thus being SAML 2.0 compatible is a prerequisite, but additional properties, such as

specific functions, session level attribute pool, and bootstrap cache, must be satisfied as well

to be TAS3 API compliant.

Some alternatives for supporting SSO:

• mod_auth_saml and (Apache) subprocess environment provides a complete solution

for SSO layer if using Apache httpd or compatible web server. In such case the SSO

is handled without any programming simply by editing httpd.conf (and in some

cases zxid.conf). The mod_auth_saml configuration directives are the same as in

zxid.org and they are introduced to httpd.conf using ZXIDConf directives.

• tas3_sso() API as complete solution. tas3_sso() API implements a state machine that

the calling application must crank by making repeated calls (one per HTTP request

until SSO completes). This approach has a benefit of isolating the calling application

from protocol flow specifics and allows the API to support multiple SSO protocols in

a transparent manner.

• tas3_sso_servlet.class: Java servlet that can be configured to Tomcat or other servlet

container to implement SSO for payload servlets. Internally the SSO servlet calls

tas3_simple();

• Deprecated Alternative: by steps approach using medium level APIs (deprecated

because the logic of the specific SSO protocol flow would be hardwired into the

calling application)

3.1.2 SSO: ret = tas3_sso(conf, qs, auto_flags)

The tas3_sso() API is essentially a Single Sign-On protocol state machine. Unless the

application already has a valid active session established, it should call tas3_sso() upon

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 45 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

every HTTP request, passing in the query string or form submission part as the qs

argument. The argument is a string and must be formatted as a query string. The

tas3_sso() then returns a string which the calling application needs to interpret to decide

what to do next. Possible actions include performing HTTP redirect, sending the returned

string as HTTP response, or completing a successful single sign on.

When Single Sign-On is completed, the tas3_sso() establishes a session object for holding

received attributes and bootstrap EPRs. These can be accessed from the session either by

the calling application, or by other TAS3 API functions such as tas3_az() and tas3_call().

The tas3_sso() may incorporate a configurable frontend policy enforcement point. Such

configuration is implementation dependent.

There are many options. Most of these have sensible default values or can be specified in a

configuration file. The first parameter either is a configuration object, or a configuration

string that modifies or adds to the default configuration. Some aspects of operation of

tas3_sso() are affected by the auto_flags parameter.

Table 1 tas3_sso() configuration options that all implementations MUST support

Option Description

PATH Path of configuration directory, which contains the

configuration file and may contain other implemen-

tation dependent information.

URL Base URL from which the EntityID is formed.

Table 2 tas3_sso() AUTO flags

Dec Hex Symbol Description

1 0x01 TAS3_AUTO_EXIT Call exit(2), 0=return "n", even if auto CGI

2 0x02 TAS3_AUTO_REDIR Automatic. handle redirects, assume CGI (calls

exit(2))

4 0x04 TAS3_AUTO_SOAPC SOAP response handling, content gen

8 0x08 TAS3_AUTO_SOAPH SOAP response handling, header gen

16 0x10 TAS3_AUTO_METAC Metadata response handling, content gen

32 0x20 TAS3_AUTO_METAH Metadata response handling, header gen

64 0x40 TAS3_AUTO_LOGINC IdP select / Login page handling, content gen

128 0x80 TAS3_AUTO_LOGINH IdP select / Login page handling, header gen

256 0x100 TAS3_AUTO_MGMTC Management page handling, content gen

512 0x200 TAS3_AUTO_MGMTH Management page handling, header gen

1024 0x400 TAS3_AUTO_FORMF In IdP list and mgmt screen, generate form fields

2048 0x800 TAS3_AUTO_FORMT In IdP list & mgmt screen, wrap in <form> tag.

4095 0xfff TAS3_AUTO_ALL Enable all automatic CGI behaviour.

4096 0x1000 TAS3_AUTO_DEBUG Enable debugging output to stderr.

8192 0x2000 TAS3_AUTO_OFMTQ Output Format Query String

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 46 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

16384 0x4000 TAS3_AUTO_OFMTJ Output Format JSON

Example Usage

01 res = tas3_sso(conf, request[’QUERY_STRING’], 0x1800);

02 switch (substr(res, 0, 1)) {

03 case ’L’: header(res); return 0; # Redirect

04 case ’n’: return 0; # already handled

05 case ’b’: return my_send_metadata();

06 case ’e’: return my_render_idp_selection_screen();

07 case ’d’: return my_start_session_and_render_protected_content();

08 default:

09 error_log("Unknown tas3_sso() res(%s)", res); return 0;

10 }

Return values

The return value starts by an action letter and may be followed by data that is relevant for

the action.

L Redirection request (L as in Location header). The full contents of the res is the

redirection request, ready to be printed to stdout of a CGI. If you want to handle the

redirection some other way, you can parse the string to extract the URL and do your thing.

This res is only returned if you did not set TAS3_AUTO_REDIR.

Example:

Location: https://sp1.zxidsp.org:8443/zxid?o=C

C Content with Content-type header. The res is ready to be printed to the stdout of a CGI,

but if you want to handle it some other way, you can parse the res to extract the header and

the actual body.

Example:

CONTENT-TYPE: text/html

<title>Login page</title>

...

Example (metadata):

CONTENT-TYPE: text/xml

<m:EntityDescriptor>

...

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 47 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Less than ("<") Content without headers. This could be HTML content for login page or

metadata XML. To know which (and set content type correctly), you would have to parse

the content. This res format is only applicable if you did not specify TAS3_AUTO_CTYPE

(but did specify TAS3_AUTO_CONTENT).

n Do nothing. The operation was somehow handled internally but the exit(2) was not called

(e.g. TAS3_AUTO_SOAP was NOT specified). The application should NOT attempt

generating any output.

b Indication that the application should send SP metadata to the client. This res is only

returned if you did not set TAS3_AUTO_META.

c Indication that the application should send SP CARML declaration to the client. This res

is only re- turned if you did not set TAS3_AUTO_META.

e Indication that the application should display the IdP selection page. This res is only

returned if you did not set TAS3_AUTO_CONTENT.

d Indication that SSO has been completed or that there was an existing valid session in

place. The res is an LDIF entry containing attributes that describe the SSO or session.

dn: idpnid=Pa45XAs2332SDS2asFs,affid=https://idp.demo.com/idp.xml

objectclass: zxidsession

affid: https://idp.demo.com/idp.xml

idpnid: Pa45XAs2332SDS2asFs

authnctxlevel: password

sesid: S12aF3Xi4A

cn: Joe Doe

Usually your application would parse the attributes and then render its application specific

content.

z Authorization failure. Application MUST NOT display protected content. Instead, it

should offer user interface where the user can understand what happened and possibly gain

the extra credentials needed.

Asterisk ("*") Although any unknown letter should be interpreted as an error, we follow

convention of prefixing errors with an asterisk ("*").

3.1.3 Authorization: decision = tas3_az(conf, qs, ses)

Implicit application independent authorization steps are performed in tas3_sso() SSO,

tas3_call() Ser- vice Requester, tas3_wsp_validate(), and tas3_wsp_decorate() APIs. To

activate them, you need to supply appropriate configuration options. Specifics of this

configuration are implementation dependent.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 48 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

The tas3_az() function is the main work horse for requesting authorization decisions from

the PDPs. It allows programmer to make Application Dependent authorization calls,

supplying some or all of the attributes needed in a XACML request. tas3_az() can also use

attributes from the session, if configured. Specifics of this configuration are implementation

dependent.

conf the configuration string or object

qs if supplied, any CGI variables are imported to session environment as attributes

according to configuration. Format is CGI Query String.

ses attributes are obtained from the session, if supplied (see also CGI). Session ID can be

supplied as a string or a session object can be passed.

return 0 if deny (for any reason, e.g. indeterminate), or string if permit

Example Pseudocode

cf = tas3_new_conf();

ses = tas3_alloc_ses(cf);

ret = tas3_simple_cf_ses(cf, 0, $QUERY_STRING, ses, 0, 0x1800);

if (ret =~ /^d/) {

 perr "SSO ok, now checking authorization";

if (tas3_az_cf_ses(cf, "Action=SHOW&BusinessProcess=register:emp", ses))

 perr "Permit, add code to deliver application content";

else

 perr "Deny, send back an error";

}

3.1.4 Web Service Call: ret_soap = tas3_call(cf, ses, svctype, url,
di_opt, az_cred, req_soap)

tas3_call() first checks if req_soap string is already a SOAP envelope. If not, it will supply

miss- ing <Envelope>, <Header>, and <Body> elements. You still need to pass something

in req_soap as tas3_call() can not guess the contents of the <Body> - it can only add the

wrapping. The idea is that the programmer can concentrate on application layer and the

tas3_call() will supply the rest automatically. If, however, the programmer wishes to pass

some SOAP headers, he can do so by passing the entire envelope. Even if entire envelope is

passed, tas3_call() will add TAS3 specific headers and signatures to this envelope.

Similarly on return, tas3_call() will check all TAS3 relevant SOAP headers and signatures,

but will still return the entire SOAP envelope as a string so that the application layer can,

if it wants, look at the headers.

Next, tas3_call() will attempt to locate an EPR for the service type. This may already be in

the session cache, or a discovery step may be performed. If discovery is needed it will be

automatically made. The discovery can be constrained using url and di_opt parameters. For

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 49 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

example, if there is a predetermined (list of) service provider(s), the url parameter can be

used to force the choice. Discovery may still be done to obtain credentials needed for the

call, but the discovery result will be constrained to match the supplied url. See section

tas3_get_epr() for description of explicit discovery.

Before actual SOAP call, tas3_call() may contact a PDP to authorize the outbound call.

This corresponds to application independent Requester Out PEP and is configurable: you

can disable it if you prefer to make an explicit application dependent call to tas3_az(). The

attributes for the XACML request are mainly derived from the session, but additional

attributes can be supplied with az_cred parameter, which has query string format.

Functioning of the authorization step can be controlled using configuration, which is

implementation dependent.

Then tas3_call() augments the XML data structure with Liberty ID-WSF mandated

headers. It will look at the security mechanism and token specified in the EPR and perform

appropriate steps to create WS-Security header and apply signature as needed.

Next tas3_call(), using its built-in http client, opens TCP connection to the web service

provider and sends the SOAP envelope using HTTP protocol. It then waits for the HTTP

response, blocking until the response is received.

After executing the SOAP call and verifying any returned TAS3 relevant headers and

signatures, tas3_call() may contact a PDP to authorize receiving data, and to pass on any

obligations that were received. This corresponds to application independent Requester In

PEP and is configurable: you can disable it if you prefer to make explicit application

dependent call to tas3_az(). The contents of the XACML request are determined based on

the response, session, az_cred parameter, which is shared for both Responder Out and

Responder In PDP calls, and configuration, which is implementation dependent.

cf Configuration object, see tas3_new_conf_to_cf()

ses Session object, used to locate EPRs, see tas3_new_ses()

svctype Service type and namespace URN that is applicable to the body. Passed as a

string.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

az_cred (Optional) Additional authorization credentials or attributes, query string format.

These credentials will be populated to the session’s attribute pool in addition to the ones

obtained from SSO and other sources. Then a PDP is called to get an authorization

decision (as well as obligations we pledge to support). This implements generalized

(application independent) Requester Out and Requester In PEPs. To implement

application dependent PEP features you should call tas3_az() directly.

req_soap string used as SOAP body or as SOAP envelope template.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 50 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

return SOAP envelope as a string.

Example

01 env = tas3_callf(cf, ses, 0,0,0, "urn:hrxml:idhrxml",

02 "<idhrxml:Modify>"

03 "<idhrxml:ModifyItem>"

04 "<idhrxml:Select>%s</idhrxml:Select>"

05 "<idhrxml:NewData>%s</idhrxml:NewData>"

06 "</idhrxml:ModifyItem>"

07 "</idhrxml:Modify>", cgi.select, cgi.data);

08 if (env) {

09 xml = xml_parse(env);

10 if (xml->Status->code == "OK") {

11 INFO("Data is " + xml->Data);

12 } else {

13 ERR("Web service error " + xml->Status->code);

14 }

15 } else {

16 ERR("HTTP failure");

17 }

As can be seen, the paradigm is to supply the payload data as a string. Although it could be

supplied as a data structure, constructed with many constructors, our experience has

shown that string representation is most intuitive and self documenting for most

programmers. Despite abandoning the constructor approach, all relevant syntax and

schema checks are internally done by simply parsing the string and then reserializing it

before sending to the wire. This tends to be necessary anyway due to signature generation.

3.1.5 Requester out: req_decor_soap = tas3_wsc_prepare_call(cf, ses,
svc- type, az_cred, req_soap)

This API function decorates a request envelope with necessary ID-WSF SOAP headers and

signs it, but does not send the envelope. This API is used as a building block in tas3_call(),

which see. Usually you should use tas3_call() instead of this API function.

3.1.6 Requester in: status = tas3_wsc_valid_resp(cf, ses, az_cred,
res_decor_soap)

This API function validates response envelope checking necessary ID-WSF SOAP headers

and signa- ture. This API is used as a building block in tas3_call(), which see. Usually you

should use tas3_call() instead of this API function.

tas3_wsc_prepare_call() and tas3_wsc_valid_resp() work together as follows:

01 req_soap = tas3_wsc_prepare_call(cf , ses, svctype,

02 url, di_opt, az_cred,

03 "<idhrxml:Modify>...</>");

04 resp_soap = your_http_post_client(url, req_soap);

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 51 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

05 if (tas3_wsc_valid_resp(cf, ses, az_cred, resp_soap)) {

06 xml = xml_parse(resp_soap);

07 INFO("Data is " + xml->Data);

08 } else

09 ERR("HTTP failure");

3.1.7 Responder in: tgtnid = tas3_wsp_validate(cf, ses, az_cred,
soap_req)

Validate SOAP request (envelope), specified by the string soap_req. Service Responder

should call this function to validate an inbound, received, TAS3 request. This will

• verify signatures

• determine trust

• populate to WSP’s session any credentials found in the request

• possibly perform an application independent Responder In PEP authorization,

calling a PDP behind the scenes using tas3_az().

After tas3_wsp_validate(), the application needs to, in application dependent way, extract

from the response the application payload and process it. However, this is much simplified

as there is no need to perform any further verification.

If the string soap_req starts by "<e:Envelope", then it should be a complete SOAP envelope

including <e:Header> (and <e:Body>) parts.

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache, see tas3_new_ses()

az_cred (Optional) Additional authorization credentials or attributes, query string format.

These credentials will be populated to the attribute pool in addition to the ones obtained

from token and other sources. Then a PDP is called to get an authorization decision

(matching obligations we support to those in the request, and obligations pledged by caller

to those we insist on). This implements generalized (application independent) Responder In

PEP. To implement application dependent PEP features you should call tas3_az() directly.

soap_req Entire SOAP envelope as a string

return idpnid, as a string, of the target identity of the request (rest of the information is

populated to the session object, from where it can be retrieved).

3.1.8 Responder out: soap = tas3_wsp_decorate(cf, ses, az_cred,
soap_resp)

Add ID-WSF (and TAS3) specific headers and signatures to web service response. Simple

and intuitive specification of XML as string: no need to build complex data structures.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 52 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Service responder should prepare application layer of the response and then call this

function to decorate the response with TAS3 specifics, and to wrap it in SOAP envelope.

This will

• add correlation headers

• possibly perform an application independent Responder Out PEP authorization step,

calling a PDP behind the scenes using tas3_az().

• apply signature

If the string starts by "<e:Envelope", then string should be a complete SOAP envelope

including <e:Header> and <e:Body> parts. This allows caller to specify custom SOAP

headers, in addition to the ones that the underlying zxid_wsc_call() will add. Usually the

payload service will be passed as the contents of the body. If the string starts by "<e:Body",

then the <e:Envelope> and <e:Header> are automatically added. If the string does not start

by "<e:Envelope" or "<e:Body"4, then it is assumed to be the payload content of the

<e:Body> and the rest of the SOAP envelope is added.

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache

az_cred (Optional) Additional authorization credentials or attributes, query string format.

These credentials will be populated to the attribute pool in addition to the ones obtained

from token and other sources. Then a PDP is called to get an authorization decision

(generating obligations). This implements generalized (application independent) Responder

Out PEP. To implement application dependent PEP features you should call tas3_az()

directly.

soap_resp XML payload as a string

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.

3.1.9 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt,
act, n)

N.B. This function is automatically called by tas3_call() so making an explicit call is seldom

needed. You may consider making such call if you need to know which EPR is actually

found and you want to query some properties of the EPR. You can then pass the URL, as

found using tas3_get_epr_url(), as an argument to tas3_call() to constrain the call to use a

specific EPR.

First search the epr cache, and if there is a cache miss, go discover an EPR over the net.

This is the main work horse for WSCs wishing to call WSPs via EPR.

cf TAS3 configuration object, also used for memory allocation

4 Be careful to use the "e:" as namespace prefix if you want e:Envelope or e:Body to be detected.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 53 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

ses Session object in whose EPR cache the file will be searched

svc Service type (usually a URN). String.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL. String.

di_opt (Optional) Additional discovery options for selecting the service, query string

format.

act (Optional) The action, or method, that must be invokable on the service. String.

n Which matching instance is returned. 1 means first. Integer.

return EPR data structure on success, null on failure (no discovery EPR in cache, or not

found by the discovery service).

3.1.10 url = tas3_get_epr_url(cf, epr)

Returns the <a:Address> field of an EPR as a string. This is the endpoint URL.

3.1.11 entityid = tas3_get_epr_entid(cf, epr)

Returns the <di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.

3.1.12 a7n = tas3_get_epr_a7n(cf, epr)

Returns assertion from EPR <sec:Token> field as a string.

3.1.13 SOAP Fault and Status Generation and Inspection

Error reporting using SOAP faults and TAS3 status header is discussed in section 2.13

"Uniform Appli- cation Status and Error Reporting"

tas3_status* tas3_mk_tas3_status(tas3_conf* cf, const char* ctlpt, const char* sc1, const

char* sc2, const char* msg, const char* ref);

struct zx_e_Fault_s* tas3_mk_fault(tas3_conf* cf, const char* fa, const char* fc, const char*

fs, const char* sc1, const char* sc2, const char* msg, const char* ref);

void tas3_set_fault(tas3_conf* cf, tas3_ses* ses, struct zx_e_Fault_s* flt);

struct zx_e_Fault_s* tas3_get_fault(tas3_conf cf, tas3_ses* ses);

char* tas3_get_tas3_fault_sc1(tas3_conf* cf, struct zx_e_Fault_s* flt);

char* tas3_get_tas3_fault_sc2(tas3_conf* cf, struct zx_e_Fault_s* flt);

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 54 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

char* tas3_get_tas3_fault_comment(tas3_conf* cf, struct zx_e_Fault_s* flt);

char* tas3_get_tas3_fault_ref(tas3_conf* cf, struct zx_e_Fault_s* flt);

char* tas3_get_tas3_fault_actor(tas3_conf* cf, struct zx_e_Fault_s* flt);

void tas3_set_tas3_status(tas3_conf* cf, tas3_ses* ses, tas3_status* status);

tas3_status* tas3_get_tas3_status(tas3_conf cf, tas3_ses* ses);

char* tas3_get_tas3_status_sc1(tas3_conf* cf, tas3_status* st);

char* tas3_get_tas3_status_sc2(tas3_conf* cf, tas3_status* st);

char* tas3_get_tas3_status_comment(tas3_conf* cf, tas3_status* st);

char* tas3_get_tas3_status_ref(ta cf, tas3_status* st);

char* tas3_get_tas3_status_ctlpt(tas3_conf* cf, tas3_status* st);

3.2 Java Binding

Before you start using the SSO API, you should consider using the TAS3 SSO servlet.

tas3_sso_servlet.class can be configured to Tomcat or other servlet container to implement

SSO for payload servlets. Internally the SSO servlet calls tas3_sso().

Similar module is planned (as of 2009) for Responder implementation. The pushable filter

module for servlet environments (e.g. Tomcat) will wrap tas3.wsp_validate() and

tas3.wsp_decorate(). The filter module allows some web services to be TAS3 enabled without

modification to the application code.

3.2.1 Interface and Initialization

This binding is implemented as tas3java.class and libtas3jni.so (libtas3jni.jnilib on MacOS

X, libtas3jni.dll on Windows) module.

Typically you need to include in your Java servlet or program something like

01 import tas3java.*;

02 static tas3.tas3_conf cf;

03 static {

04 System.loadLibrary("tas3jni");

05 cf = tas3.new_conf_to_cf("PATH=/var/tas3/");

06 }

This will bring in the functionality of the TAS3 Java binding and cause the JNI library

implementing this functionality to be loaded. It will also create a configuration object that

the other parts of a servlet can share.

The Java binding replaces the "tas3_" prefix in function names with the class prefix "tas3.",

for example tas3_sso() becomes tas3.sso() and tas3_az() becomes tas3.az().

The TAS3 Java interface is defined as follows

package tas3;

public interface tas3 {

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 55 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

public static tas3_conf new_conf_to_cf(String conf);

public static tas3_ses new_ses(tas3_conf cf);

public static tas3_ses fetch_ses(tas3_conf cf, String sid);

public static String sso_cf(tas3_conf cf, int qs_len, String qs,

p_int res_len, int auto_flags);

public static int get_ses(tas3_conf cf, tas3_ses ses, String sid);

public static int az_cf_ses(tas3_conf cf, String qs, tas3_ses ses);

public static int az_cf(tas3_conf cf, String qs, String sid);

public static int az(String conf, String qs, String sid);

public static String wsp_validate(tas3_conf cf, tas3_ses ses, String

az_cred, String enve);

public static String wsp_decorate(tas3_conf cf, tas3_ses ses, String

az_cred, String enve);

public static String call(tas3_conf cf, tas3_ses ses, String svctype,

String url, String di_opt,

String az_cred, String enve);

public static tas3_epr get_epr(tas3_conf cf, tas3_ses ses, String svc,

String url, String di_opt,

String action, int n);

public static String get_epr_url(tas3_conf cf, tas3_epr epr); public

static String get_epr_entid(tas3_conf cf, tas3_epr epr);

public static String get_epr_a7n(tas3_conf cf, tas3_epr epr);

}

3.2.2 Initialize: cf = tas3.new_conf_to_cf(conf)

Create a new TAS3 configuration object given configuration string and possibly

configuration file. Usually a configuration object is generated and passed around to

different API calls to avoid reparsing the configuration at each API call.

conf Configuration string

return Configuration object

3.2.3 New session: ses = tas3.new_ses(cf)

Create a new TAS3 session object. Usually a session object is created just before calling

zxidjni.wsp_validate().

cf Configuration object, see tas3.new_conf_to_cf()

return Session object

3.2.4 SSO: ret = tas3.sso_cf_ses(cf, qs_len, qs, ses, null, auto_flags)

cf Configuration object, see tas3.new_conf_to_cf()

qs_len Length of the query string. -1 = use strlen()

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 56 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

qs Query string (or POST content)

ses Session object, see tas3.new_ses(). Session object is modified.

res_len Result parameter. Must always pass null as result parameters are not supported

in the Java binding.

auto_flags Automation flags

return String representing protocol action or SSO attributes

3.2.5 Authorization: decision = tas3.az_cf_ses(cf, qs, ses)

cf the configuration object, see tas3.new_conf_to_cf()

qs additional attributes that are passed to PDP

ses session object, from which most attributes come

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.

3.2.6 WSC: resp_soap = tas3.call(cf, ses, svctype, url, di_opt, az_cred,
req_soap)

cf Configuration object, see tas3.new_conf_to_cf()

ses Session object, used to locate EPRs, see tas3.new_ses()

svctype Service type and namespace URN that is applicable to the body. Passed as a

string.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

az_cred (Optional) Additional authorization credentials or attributes, query string format.

req_soap string used as SOAP body or as SOAP envelope template.

return SOAP envelope as a string

3.2.7 WSP: tgtnid = tas3.wsp_validate(cf, ses, az_cred, soap_req)

cf TAS3 configuration object, see tas3.new_conf_to_cf()

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 57 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

ses Session object that contains the EPR cache, see tas3.new_ses()

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_req Entire SOAP envelope as a string

return idpnid, as a string, of the target identity of the request (rest of the information is

populated to the session object, from where it can be retrieved).

3.2.8 WSP: soap = tas3.wsp_decorate(cf, ses, az_cred, soap_resp)

cf TAS3 configuration object, see tas3.new_conf_to_cf()

ses Session object that contains the EPR cache

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_resp XML payload, as a string

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.

3.2.9 Explicit Discovery: epr = tas3.get_epr(cf, ses, svc, url, di_opt,
act, n)

First search epr cache, and if miss, go discover an EPR over the net. This is the main work

horse for WSCs wishing to call WSPs via EPR.

cf TAS3 configuration object, also used for memory allocation

ses Session object in whose EPR cache the file will be searched

svc Service type (usually a URN)

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

act (Optional) The action, or method, that must be invokable on the service

n Which matching instance is returned. 1 means first

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not

found by the discovery service).

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 58 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

3.2.10 url = tas3.get_epr_url(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <a:Address> field of an EPR as a string. This is the endpoint URL.

3.2.11 entityid = tas3.get_epr_entid(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.

3.2.12 a7n = tas3.get_epr_a7n(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return Assertion from EPR <sec:Token> field as a string.

3.2.13 Available Implementations (Non-normative)

This binding is implemented using Java Native Interface calls to zxid.org C library by

zxidjni module. Other implementations are welcome.

3.3 PHP Binding

Using TAS3 PHP APIs requires first loading the TAS3 module and creating a configuration

object. These are typically accomplished from PHP initialization. You may consider creating

tas3.ini file:

dl("php_tas3.so");

$cf = tas3_new_conf_to_cf("PATH=/var/tas3/");

3.3.1 Application Level Integration

It should be noted that many PHP applications run inside Apache httpd and therefore can

accomplish SSO using mod_auth_saml approach without any programming. Especially

useful is mod_auth_saml’s ability to "fake" REMOTE_USER subprocess environment

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 59 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

variable, effectively enabling any application that supports HTTP basic authentication to

also support SAML SSO.

3.3.2 cf = tas3_new_conf_to_cf(conf)

conf Configuration string

return Configuration object

3.3.3 ses = tas3_new_ses(cf)

Create a new TAS3 session object. Usually a session object is created just before calling

cf Configuration object

return Session object

3.3.4 SSO: ret = tas3_sso_cf_ses(cf, -1, qs, ses, null, auto_flags)

cf Configuration object, see tas3_new_conf_to_cf()

qs_len Length of the query string. -1 = use strlen()

qs Query string (or POST content)

ses Session object, see tas3_new_ses(). Session object is modified.

res_len Should always be passed as null (result parameter is not supported for PHP).

auto_flags Automation flags

return String representing protocol action or SSO attributes

Example

01 <?

02 $qs = $_SERVER[’REQUEST_METHOD’] == ’GET’

03 ? $_SERVER[’QUERY_STRING’]

04 : file_get_contents(’php://input’);

05 $ses = tas3_new_ses($cf);

06 $res = tas3_sso_cf_ses($cf, -1, $qs, $ses, null, 0x1814);

07 switch (substr($res, 0, 1)) {

08 case ’L’: header($res); exit; # Redirect (Location header)

09 case ’<’: header(’Content-type: text/xml’); echo $res; exit;

10 case ’n’: exit; # Already handled

11 case ’e’: my_render_idp_select();

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 60 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

12 case ’d’: break; # Logged in case

13 default: die("Unknown res($res)");

14 }

15

16 if (tas3_az_cf_ses($cf, "Action=Show", $ses)) {

17 echo "Permit.\n";

18 # Render protected content here

19 } else {

20 echo "Deny.";

21 }

22 ?>

3.3.5 Authorization: decision = tas3_az_cf_ses(cf, qs, ses)

cf the configuration object

qs additional attributes that are passed to PDP

ses session object, from which most attributes come

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.

3.3.6 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt,
az_cred, req_soap)

cf Configuration object, see tas3_new_conf_to_cf()

ses Session object, used to locate EPRs, see tas3_new_ses()

svctype Service type and namespace URN that is applicable to the body. Passed as a

string.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

az_cred (Optional) Additional authorization credentials or attributes, query string format.

req_soap string used as SOAP body or as SOAP envelope template.

return SOAP envelope as a string

Example

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 61 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

01 $ret = tas3_call($cf, $ses, "urn:id-sis-idhrxml:2007-06:dst-2.1",

02 null, null, null,

03 "<idhrxml:Query>" .

04 "<idhrxml:QueryItem>" .

05 "<idhrxml:Select>$criteria</idhrxml:Select>" .

06 "</idhrxml:QueryItem>" .

07 "</idhrxml:Query>");

3.3.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache, see tas3_new_ses()

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_req Entire SOAP envelope as a string

return target name id (tgtnid), as a string, of the target identity of the request (rest of the

information is populated to the session object, from where it can be retrieved).

3.3.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_resp XML payload, as a string

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.

3.3.9 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt,
act, n)

First search epr cache, and if miss, go discover an EPR over the net. This is the main work

horse for WSCs wishing to call WSPs via EPR.

cf TAS3 configuration object, also used for memory allocation

ses Session object in whose EPR cache the file will be searched

svc Service type (usually a URN)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 62 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

act (Optional) The action, or method, that must be invokable on the service

n Which matching instance is returned. 1 means first

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not

found by the discovery service).

3.3.10 url = tas3_get_epr_url(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <a:Address> field of an EPR as a string. This is the endpoint URL.

3.3.11 entityid = tas3_get_epr_entid(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.

3.3.12 a7n = tas3_get_epr_a7n(cf, epr)

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return Assertion from EPR <sec:Token> field as a string.

3.3.13 Available Implementations (Non-normative)

This binding is implemented by php_zxid module, available as part of the zxid.org

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 63 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

3.4 C and C++ Binding

Essentially this is a procedural C binding that is also usable from C++. In fact, the C

binding can be used as a base for many other language bindings generated using SWIG

[SWIG] interface generator.

The binding is declared in tas3.h and implemented in libtas3.a, libtas3.so, or libtas3.dll,

depending on the platform. Typical source code file will pull in the TAS3 API by including

#include <tas3.h>

3.4.1 cf = tas3_new_conf_to_cf(conf)

Prototype

tas3_conf* tas3_new_conf_to_cf(const char* conf);

Create a new TAS3 configuration object given configuration string and possibly

configuration file. Usually a configuration object is generated and passed around to

different API calls to avoid reparsing the configuration at each API call.

conf Configuration string

return Configuration object

3.4.2 ses = tas3_new_ses(cf)

Prototype

tas3_ses* tas3_new_conf_to_cf(const char* conf);

Create a new TAS3 session object. Usually a session object is created just before calling

cf Configuration object

return Session object

3.4.3 SSO: ret = tas3_sso_cf_ses(cf, qs_len, qs, ses, &res_len,
auto_flags)

Prototype

char* tas3_sso_cf_ses(tas3_conf* cf, int qs_len, char* qs,

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 64 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

tas3_ses* ses, int* res_len, int auto_flags);

Strings are length + pointer (no C string nul termination needed).

cf Configuration object, see tas3_new_conf_to_cf()

qs_len Length of the query string. -1 = use strlen()

qs Query string (or POST content)

ses Session object, see tas3_new_ses(). Session object is modified.

res_len Result parameter. If non-null, will be set to the length of the returned string

auto_flags Automation flags

return String representing protocol action or SSO attributes

Example

01 {

02 tas3_conf* cf = tas3_new_conf_to_cf("PATH=/var/tas3/");

03 tas3_ses* ses = tas3_new_ses(cf);

04 char* ret = tas3_sso_cf_ses(cf, -1, env("QUERY_STRING"), ses, 0,

0x1800);

05 switch (ret[0]) {

06 case ’d’: break; /* Successful login */

07 ... /* Processing other outcomes omitted for brevity. */

08 }

09 if (tas3_az_cf_ses(cf, "", ses)) {

10 /* SSO successful and authorization permit. Do some work. */

11 } else {

12 /* SSO successful but authorization denied */

13 }

14 }

3.4.4 Authorization: decision = tas3_az_cf_ses(cf, qs, ses)

Prototype

char* tas3_az_cf_ses(tas3_conf* cf, const char* qs, tas3_ses* ses);

Call Policy Decision Point (PDP) to obtain an authorization decision about a contemplated

action on a resource.

cf the configuration object

qs additional attributes that are passed to PDP

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 65 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

ses session object, from which most attributes come

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.

3.4.5 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt,
az_cred, req_soap)

Prototype

struct zx_str* tas3_call(tas3_conf* cf, tas3_ses* ses, const char*

svctype, const char* url, const char* di_opt, const char* az_cred,

const char* req_soap);

cf Configuration object, see tas3_new_conf_to_cf()

ses Session object, used to locate EPRs, see tas3_new_ses()

svctype Service type and namespace URN that is applicable to the body. Passed as a

string.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

az_cred (Optional) Additional authorization credentials or attributes, query string format.

req_soap string used as SOAP body or as SOAP envelope template.

return SOAP envelope as a string

3.4.6 resp_soap = tas3_callf(cf, ses, svctype, url, di_opt, az_cred, fmt,
...)

Prototype

tas3_str* tas3_callf(tas3_conf* cf, tas3_ses* ses, const char*

svctype, const char* url, const char* di_opt, const char* az_cred,

const char* fmt, ...);

The tas3_callf() variant, which allows printf(3) style formatting, is highly convenient for C

programmers. Others will probably use the plan tas3_call() and rely on language’s native

abilities to construct the string.

cf Configuration object, see tas3_new_conf_to_cf()

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 66 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

ses Session object, used to locate EPRs, see tas3_new_ses()

svctype Service type and namespace URN that is applicable to the body. Passed as a

string.

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

di_opt (Optional) Additional discovery options for selecting the service, query string format

az_cred (Optional) Additional authorization credentials or attributes, query string format.

fmt printf style format string that is used to describe the body of the call as a string. If fmt

contains format specifiers, then additional arguments are used to expand these.

return SOAP envelope as a string

3.4.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)

Prototype

char* tas3_wsp_validate(tas3_conf* cf, tas3_ses* ses,

const char* az_cred, const char* soap_req);

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache, see tas3_new_ses()

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_req Entire SOAP envelope as a string

return idpnid, as a string, of the target identity of the request (rest of the information is

populated to the session object, from where it can be retrieved).

3.4.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)

Prototype

tas3_str* tas3_wsp_decorate(tas3_conf* cf, tas3_ses* ses,

const char* az_cred, const char* soap_resp);

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 67 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

az_cred (Optional) Additional authorization credentials or attributes, query string format.

soap_resp XML payload as a string

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.

3.4.9 WSP: soap = tas3_wsp_decoratef(cf, ses, az_cred, fmt, ...)

Prototype

tas3_str* tas3_wsp_decorate(tas3_conf* cf, tas3_ses* ses,

const char* az_cred, const char* fmt, ...);

cf TAS3 configuration object, see tas3_new_conf()

ses Session object that contains the EPR cache

az_cred (Optional) Additional authorization credentials or attributes, query string format.

fmt printf style format string that is used to describe the body of the response as a string. If

fmt contains format specifiers, then additional arguments are used to expand these.

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.

3.4.10 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt,
act, n)

Prototype

tas3_epr* tas3_get_epr(tas3_conf* cf, tas3_ses* ses,

const char* svc, const char* url, const char* di_opt, const char*

action, int n);

First search epr cache, and if miss, go discover an EPR over the net. This is the main work

horse for WSCs wishing to call WSPs via EPR.

cf TAS3 configuration object, also used for memory allocation

ses Session object in whose EPR cache the file will be searched

svc Service type (usually a URN)

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or

actual service endpoint URL.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 68 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

di_opt (Optional) Additional discovery options for selecting the service, query string format

act (Optional) The action, or method, that must be invokable on the service

n Which matching instance is returned. 1 means first

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not

found by the discovery service).

3.4.11 url = tas3_get_epr_url(cf, epr)

Prototype

tas3_str* tas3_get_epr_url(tas3_conf* cf, tas3_epr* epr);

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <a:Address> field of an EPR as a string. This is the endpoint URL.

3.4.12 entityid = tas3_get_epr_entid(cf, epr)

Prototype

tas3_str* tas3_get_epr_entid(tas3_conf* cf, tas3_epr* epr);

cf TAS3 configuration object, also used for memory allocation

epr An EPR object, such as obtained from tas3_get_epr()

return The <di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.

3.4.13 a7n = tas3_get_epr_a7n(cf, epr)

Prototype

tas3_str* tas3_get_epr_a7n(tas3_conf* cf, tas3_epr* epr);

cf TAS3 configuration object, also used for memory allocation

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 69 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

epr An EPR object, such as obtained from tas3_get_epr()

return Assertion from EPR <sec:Token> field as a string.

3.4.14 Available Implementations (Non-normative)

This binding is implemented, at least, by zxid.org open source implementation, which

serves as the reference implementation of the TAS3 core security architecture.

N.B. The tas3_sso() API is implemented by zxid’s zxid_simple() API.

3.5 Other Language Bindings

At present stage of the TAS3 project (2009) we only offer Java, PHP, and C/C++ bindings,

but in future we aim supporting also at least the following

• C# / .Net / Mono

• Perl (currently zxid.org derived Net::SAML perl module, available from cpan.org,

supports most functionality of TAS3 API, but this is unofficial)

• Python

• Ruby

We welcome external contribution and language specialist help in making all these

bindings available. Please contact Brian Reynolds (brian.reynolds@risaris.com)x if you are

interested.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 70 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

4 Deployment and Integration Models (Non-
normative)

Figure 4:1 deployment architecture for SSO and web service call.

The above diagram illustrates a typical frontend-backend integration situation.

The TAS3 integration can be accomplished in several ways, from least intrusive to the

original (legacy) application to more intrusive, but also more granular:

Proxy or mediation box approach See also [TAS3D71IdMAnAz] Fig-8.2 "Using a

Gateway for Legacy Applications". This approach is completely application independent and

simply TAS3 wraps existing protocol. Limitation tends to be that TAS3 authorization and

obligations have to be applied at granularity of a protocol message rather than the data in

it.

Application server filter approach Either web server module, like mod_auth_saml, or

an application server module, like Servlet Filter or AXIS2 Interceptor, is inserted to the

processing stack. While software realization is quite different, this is still similar to the

mediation box model.

Application class dependent filter approach Similar to the above filter approach, but

the filter has some ability to "drill in" to the application protocol. For example, if all data in

the application is represented in uniform format, such as Java Objects, then a generic filter

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 71 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

can be supplied that applies authorization and obligations to all data represented in such

way.

API approach This approach relies on the application programmer to instrument his

application with necessary authorization and other calls. We are simply trying to make his

job easier by providing readily available, TAS3 certified, APIs that make the instrumenting

job easy.

4.1 Frontend and Web Services Client Integration Model
(Non-normative)

The tasks to be accomplished on the Frontend, in the direct line of call, include

1. Detect need for login (done by payload servlet)
2. Perform SSO (SP side)
3. Perform SSO, IdP side including authenticating user and shipping attributes
4. Gather additional attributes, if needed ("Attr")
5. Authorize access to FE (PEP-Rs-In of FE) ("PEP")
6. Populate session of the payload servlet ("ses")
7. Redirect user to protected resource he was trying to access on the protected resource.
8. Application dependent PEP calls PDP if needed. ("PEP")
9. Call web service, including

a. Application dependent processing steps ("etc")

b. Authorize the call (PEP-Rq-Out) ("PEP")

c. Discover suitable service, performing Trust and Privacy Negotiation (may need

interaction at fron- tend web gui) if needed. ("DIC")

d. Decorate request with TAS3specific SOAP headers and sign. ("WSC")

10. Perform network I/O ("HTTP"). This also includes TLS certificate authentication of
the Responder and may include Client-TLS certificate authentication of the

Requester.

The SSO integration is expected to be a single module, appearing as a servlet in Java

realization and as an authentication module in web server realization that handles steps 2-

7 automatically. The integration is accomplished by configuring the web server without

modifying the application except to add the initial detection and redirect (1) and to make

use of the attributes that were populated to the session5. The TAS3 binary modules for SSO

are generically called T3-SSO-*.

The WSC integration is expected to be a single module. It will appear as AXIS2 module in

Java realization so that it can be just hooked in by configuration without any modification

5 In mod_auth_saml realization even step (1) can be accomplished by configuring the web server.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 72 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

to the existing web service (the "etc" module illustrates that even other modules than TAS3

can be hooked in without interference6).

The API realization of WSC is a function, tas3_call() (see TAS3 API), that the application

can call directly. If this approach is chosen, the entire web services call is handled by the

API without any regard to servlet environment’s or framework’s hooking or modules. This

is the most common approach in PHP, Perl, C#, C++, and C worlds.

A possible variant of WSC integration is to call tas3_call_prepare() to obtain the serialized

SOAP envelope, then do the I/O part in application dependent way, and pass the response

to tas3_response_validate(). Effectively tas3_call() does these steps with a built-in HTTP

client performing the I/O part7.

4.1.1 Integration Using ZXID (Non-normative)

Further information about using ZXID for TAS3 is available in README.zxid-tas3, zxid-

tas3.pd, and zxid-java.pd

The official TAS3 API is provided by tas3.h which maps the TAS3 API definitions to the

underlying zxid ones.

The Java realization of SSO is provided by zxidsrvlet class and servlet. This is packaged as

TAS3 binary module T3-SSO-ZXID-JAVA.

The web server realization of SSO is provided by mod_auth_saml Apache module

(mod_auth_saml.so). It is packaged as TAS3 binary module T3-SSO-ZXID-

MODAUTHSAML.

6 Non-interference depends on other modules following certain common sense conventions,

such as not signing SOAP <e:Headers> element and not trying to create SOAP headers that
TAS3 creates (e.g. <wsse:Security>)
7 In ZXID realization the HTTP client is libcurl from curl.haxx.se

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 73 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 4:2 API and modules for SSO and web service call.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 74 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 4:3 ZXID specific API and modules for SSO and web service call

API realization of SSO is provided by zxid_simple() in libzxid.a. This is packaged as TAS3

binary module T3-SSO-ZXID-PHP8. Other language binding specific modules are expected

in the future.

4.1.2 Integration Using Other Platforms, Frameworks, and Packages
(Non- normative)

Other mainstream packages are invited to submit integration descriptions similar to

previous section (ZXID). The details of the integration should be in package’s own

documentation.

4.2 Web Services Provider Integration Model (Non-normative)

The tasks to be accomplished on the Service Responder, in the direct line of call, include

A. Listen for HTTP requests (typically done by platform)

B. Parse and validate a web services request, e.g. call tas3_wsp_validate(). This involves

checking for valid signature from trusted authority.

8 Although not TAS3 packaged, Net::SAML perl module provides the same functionality

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 75 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

C. Authorize the request, extracting from the request the pledges (in <b:UsageDirective>)

("PEP-Rs- In").

D. Apply other filters and post processing steps ("etc")

E. Authorize each data item separately using input interceptor. For queries this is usually a

no-op, but for creates or updates this is meaningful. When data is accepted for the

repository, the authorization step can result in obligations or sticky-policies being written

into the database alongside the data itself.

The authorization is configurable according to Application Independent PEP configuration,

described elsewhere, or Application Dependent PEP approach can be taken, calling the PDP

directly ("PEP").

F. Authorize each returned data item separately using input interceptor. Usually

applicable to query results. The per item authorization will apply system wide and item

specific policies (sticky policies) and obligations and produce a deny or permit-with-

obligations response.

The authorization is configurable according to Application Independent PEP configuration,

described elsewhere, or Application Dependent PEP approach can be taken, calling the PDP

directly ("PEP").

G. Authorize the response in aggregate ("PEP-Rs-Out"). At this stage one of the most

important verifications is to compare the pledges collected in step C ("PEP-Rs-In") and filter

out any data whose obligations are stricter.

Optimization. It is possible to combine the pledges to obligations matching (in G) to

the per result item authorization (F) by simply feeding the pledges as inputs to the

PDP in (F). Such optimization cannot, however, achieve all functionality of the G

("PEP-Rs-Out") as it is unable to see the bigger picture, i.e. consider all data

together as a set. A typical example would be a rule against leaking simultaneously

day and month of birth and year of birth.

H. Decorate the response with TAS3 specific SOAP headers. This is typically done by calling

tas3_wsp_decorate().

I. Send the response. This is typically done by platform dependent means.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 76 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

5 Resilient Deployment Architecture (Non-
normative)

This section addresses Req. D1.2-2.8-Avail.

For TAS3 services to be dependable, they need to be deployed so that they are resilient to

system and network failure. Resiliency and efficiency are the first lines of defence against

Denial of Service attacks that try to attack simple catastrophic vulnerabilities or

overwhelm the system on the point where it is most inefficient. Resiliency needs to be

considered at several layers, namely on the Front Channel and on the Back Channel.

Figure 5:1 layering of resilience features for Front Channel, Back Channel, and data

centre Back End services.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 77 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 5:2 Resiliencies implemented using hardware load balancers

Note that the virtual IP address is hosted either in hardware load balancer, or one member

of a cluster. Fail-over of the virtual IP is arranged using Virtual Router Redundancy

Protocol (VRRP) [RFC3768].

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 78 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Figure 5:3 resiliency implemented using software load-balancing-fail-over functionality

and clustering

5.1 Zero Downtime Updates

This section addresses Req. D1.2-7.19-DynaUpd.

For continued availability of the system, Zero-Downtime-Update (ZDTU) technology

SHOULD be implemented throughout. If horizontal scaling path and failure recovery have

been implemented, then ZDTU can be implemented easily by taking out of farm one server

at a time and updating it. Downside of this approach is that the farm will temporarily be in

an inconsistent state.

If consistency of the farm is at all times a requirement, no easy ZDTU approach exists. One

approach is to bring up new "hot standbys" along side of the old configuration and then do

instantaneous switch. As the switch over is less than 1 second, this could be considered

ZDTU.

Never-the-less, as TAS3 is business process driven and as business processes can take long

time to complete (if human interaction is required, this could easily mean days or weeks),

thus consistent ZDTU is infeasible in practise and the business process modelling should

explicitly foresee handling of upgrade situations, i.e. how old processes are handled after

the general upgrade.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 79 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

6 Feasibility and Performance Analysis (Non-
normative)

TAS3 Architecture is rather complex so we need to analyze the runtime cost of

implementing it. The cost can be divided in six categories

T Connection overhead, including TCP handshake and TLS handshake. The latter involves

one public key operation on both sides, unless TLS connection cache hit is achieved. Except

for the cache hit case, connection overhead is mostly unavoidable given TAS3 Architecture’s

division of components. Sometimes co-locating several components in same host may allow

use of localhost connection to avoid handshake overhead. The TLS overhead may be

avoidable in localhost and secure internal network cases. The TCP overhead is very

sensitive to latency: usually a precondition for a connection is to resolve a domain name:

this means one round trip latency cost. Then actual threeway TCP handshake needs to be

performed, causing three round trip latencies. Finally TLS handshake causes at least one

more round trip. Therefore the time cost of a connection tends to be minimum of 5 round

trip latencies. Higher the latency, more time it takes to process a call and more

simultaneous calls are needed to keep up the same through put.

C Communication overhead: this consists of compression, encryption (symmetric stream

cipher), and transfer of the actual data. Mostly unavoidable. As communication cost and

stream cipher tend to be negligible compared to TCP + TLS handshake and digital

signatures, we will not consider communication cost in our calculations.

S Digital signature overhead: usually at least one public key operation is involved on each

side. Often responder side needs to verify several digital signatures: one for the message

and one for each token or credential it receives. The signature overhead is mostly

unavoidable, though some caching and session techniques may reduce it in case of often

repeated actions.

X XML overhead: the arcane and poorly designed features, such as namespaces and

canonicalization, of XML cause significant processing overhead (not to mention bugs). In

some Java implementations of digital signature processing the XML formatting consumes

as much CPU as the public key operation. Even in the best of breed implementations XML

formatting has significant cost and this could be eliminated by choosing a more rational

data format.

Z Authorization cost. Evaluation of rule set will depend heavily on the particular rule set

and its implementation technology. Some rule sets are known to take exponential time to

evaluate. Authorization cost is exclusively borne by the PDP components. While a PDP may

incur additional cost in validating credentials, this is not taken in account here (but can be

accounted as digital signature overhead).

P Payload cost. This is the cost of running the actual application and is unavoidable. Since

we are trying to measure the overhead cost of TAS3 Architecture, the payload is assumed to

be free.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 80 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

In cost calculations we will use units with overall cost computed as show in following table:

Table 3 Units of cost computation and their RSA equivalence

Unit RSA Eq. Definition

T 1.5 One TLS connection establishment. Not entirely RSA com-

parable as latency component is involved.

t 0.5 One TLS connection establishment, with connection cache

hit (avoids public key operation)

S 1 One digital signature generation or validation

X 1 One XML document parse or canonicalization

Z 0.5 One ruleset evaluation.

The cost is unevenly divided among the entities in the TAS3 trust network, but the division

depends heavily on whether caching can be utilized. If the usage pattern is isolated single

operations, the IdP, discovery, and credential issuance tend to become bottlenecks because

these functions are relied on by many other players in the network. For single operations

the TLS cache misses will penalize the system overall.

If the usage pattern is repeat operations, then the bottleneck tends to shift towards

responder processing: credentials can be cached, but they still need to be validated every

time (some checksum based validation cache may be feasible, but has not been explored

yet).

Overall bottlenecks in both cases include audit bus logging, local audit trail (especially if

digitally signed), and authorization. In this analysis audit bus is assumed to work by

exchanging digitally signed SOAP messages and each exchange to be authorized separately.

To explore the cost we will consider two scenarios.

6.1 Single use of single web service

This scenario consists of user making Single Sign-On to a frontend and invoking an

operation that requires calling a web service. The sequence of events and the cost is

indicated in the table.

Table 4 Cost of TAS3 single use scenario

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 81 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

The grand total is 34T+55S+154X+23Z=271.5 RSA operation equivalents.

For a fair comparison, a simple web service call without any authorization or auditing,

using HTTP Basic authentication and TLS, the cost is shown in the following table. The

total cost of such unsecure call is estimated as 8.5 RSA operation equivalents. The cost of a

fully secure platform appears to be about 31 times that of unsecure platform.

Table 5 Cost of unsecure single use scenario

6.1.1 Cost without auditing

Above calculation shows that the Audit Bus substantially adds to the cost. Here’s the same

calculation without Audit Bus.

Table 6 Cost of TAS3 single use scenario without auditing

The grand total without auditing is 23T+19S+45X+5Z=101 RSA operation equivalents. As

can be seen, the Audit Bus represents 63% of the total cost. Most of the Audit Bus cost is

actually caused by requirement to contact the bus and authorize the sending of messages. A

future revision of the architecture will explore the possibility of persistent connection to the

Audit Bus. This would significantly reduce the T, t, S, and Z aspects of the Audit Bus

processing, though at least one signature overhead will be needed at the message source to

ensure untamperability of the audit trail.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 82 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Another optimization would be to improve the authorization step of the Audit Bus, perhaps

co-locating the Audit Bus PDP with the Audit Bus itself.

6.1.2 Cost without auditing and without authorization

Another recurring activity are the frequent calls to the PDPs. Following table explores how

much could be saved by optimising these calls.

Table 7 Cost of TAS3 single use scenario without auditing and without authorization

The grand total without audit and without authorization is 12T+14S+19X+0Z=51 RSA

operation equivalents. The authorization steps (excluding Audit Bus related authorization)

seem to be adding about as much over head as the entire rest of the web service call.

The bare ID-WSF 2.0 web service call compares relatively favourably with bare unsecure

web service call: 51 vs. 8.5 - only 6 times heavier.

6.1.3 Cost without XML

Since XML processing is needlessly expensive, lets analyze what the cost could be with non-

XML protocols like RESTful approach using Simple Web Tokens [Hardt09].

Table 8 Cost of TAS3 single use scenario without XML

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 83 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Without the XML, but otherwise fully featureful architecture leads to grand total of

94T+55S+0X+23Z=207.5 RSA equivalents. Thus eliminating XML can lead to over 40% of

savings.

6.2 Session of 3 frontends and five web services

This session is meant to illustrate the types of savings available from caching discovery

results.

The three frontends are all accessed in the same single sign-on session, leading to savings

at IdP. Each frontend then calls two web services. One (A) is common, shared web service.

Other (B) is new web service (new for each frontend), but the service is called 4 times,

which leads to EPR cache hits. The pattern also encourages TLS cache hits. We also

assume repeated calls to PDP and audit bus lead to TLS cache hits.

Table 9 Cost of TAS3 multi use scenario

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 84 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 85 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

This sequence of 15 web service calls has grand total of 116T+522S+1531X+239Z=2346.5

RSA equivalents, which works out to about 156 RSA equivalents per web service call. As

can be seen the cache effects and amortization of the SSO and discovery over several calls

makes a significant impact. The amortized cost is 58% of the single call cost. Effectively

the amortized calls are 18 times heavier than plain web service calls.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 86 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

7 Annex A: Examples

These XML blobs, taken from [ZXIDREADME], are for reference only. They are not

normative. They have been pretty printed. Indentation indicates nesting level and closing

tags have been abbreviated as "</>". The actual XML on the wire generally does not have

any whitespace.

7.1 SAML 2.0 Artifact Response with SAML 2.0 SSO Assertion
and Two Bootstraps

Both bootstraps illustrate SAML assertion as bearer token.

<soap:Envelope

 xmlns:lib="urn:liberty:iff:2003-08"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <soap:Body>

 <sp:ArtifactResponse

 xmlns:sp="urn:oasis:names:tc:SAML:2.0:protocol"

 ID="REvgoIIlkzTmk-aIX6tKE"

 InResponseTo="RfAsltVf2"

 IssueInstant="2007-02-10T05:38:15Z"

 Version="2.0">

 <sa:Issuer

 xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"

 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

 https://a-idp.liberty-iop.org:8881/idp.xml</>

 <sp:Status>

 <sp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/></>

 <sp:Response

 xmlns:sp="urn:oasis:names:tc:SAML:2.0:protocol"

 ID="RCCzu13z77SiSXqsFp1u1"

 InResponseTo="NojFIIhxw"

 IssueInstant="2007-02-10T05:37:42Z"

 Version="2.0">

 <sa:Issuer

 xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"

 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

 https://a-idp.liberty-iop.org:8881/idp.xml</>

 <sp:Status>

 <sp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/></>

 <sa:Assertion

 xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"

 ID="ASSE6bgfaV-sapQsAilXOvBu"

 IssueInstant="2007-02-10T05:37:42Z"

 Version="2.0">

 <sa:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

 https://a-idp.liberty-iop.org:8881/idp.xml</>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 87 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/>

 <ds:Reference URI="#ASSE6bgfaV-sapQsAilXOvBu">

 <ds:Transforms>

 <ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/></>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>r8OvtNmq5LkYwCNg6bsRZAdT4NE=</></></>

 <ds:SignatureValue>GtWVZzHYW54ioHk/C7zjDRThohrpwC4=</></>

 <sa:Subject>

 <sa:NameID

 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"

 NameQualifier="https://a-idp.liberty-

iop.org:8881/idp.xml">PB5fLIA4lRU2bH4HkQsn9</>

 <sa:SubjectConfirmation

 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

 <sa:SubjectConfirmationData

 NotOnOrAfter="2007-02-10T06:37:41Z"

 Recipient="https://sp1.zxidsp.org:8443/zxidhlo?o=B"/></></>

 <sa:Conditions

 NotBefore="2007-02-10T05:32:42Z"

 NotOnOrAfter="2007-02-10T06:37:42Z">

 <sa:AudienceRestriction>

 <sa:Audience>https://sp1.zxidsp.org:8443/zxidhlo?o=B</></></>

 <sa:Advice>

 <!-- This assertion is the credential for the ID-WSF 1.1 bootstrap

(below). -->

 <sa:Assertion

 ID="CREDOTGAkvhNoP1aiTq4bXBg"

 IssueInstant="2007-02-10T05:37:42Z"

 Version="2.0">

 <sa:Issuer

 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

 https://a-idp.liberty-iop.org:8881/idp.xml</>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-

exc-c14n#"/>

 <ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#CREDOTGAkvhNoP1aiTq4bXBg">

 <ds:Transforms>

 <ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"/></>

 <ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>dqq/28hw5eEv+ceFyiLImeJ1P8w=</></></>

 <ds:SignatureValue>UKlEgHKQwuoCE=</></>

 <sa:Subject>

 <sa:NameID/> <!-- *** Bug here!!! -->

 <sa:SubjectConfirmation

 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 88 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 <sa:Conditions

 NotBefore="2007-02-10T05:32:42Z"

 NotOnOrAfter="2007-02-10T06:37:42Z">

 <sa:AudienceRestriction>

 <sa:Audience>https://sp1.zxidsp.org:8443/zxidhlo?o=B</></></></></>

 <sa:AuthnStatement

 AuthnInstant="2007-02-10T05:37:42Z"

 SessionIndex="1171085858-4">

 <sa:AuthnContext>

 <sa:AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password</></></>

 <sa:AttributeStatement>

 <!-- Regular attribute -->

 <sa:Attribute

 Name="cn"

 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

 <sa:AttributeValue>Sue</></>

 <!-- ID-WSF 1.1 Bootstrap for discovery. See also the Advice, above. -->

 <sa:Attribute

 Name="DiscoveryResourceOffering"

 NameFormat="urn:liberty:disco:2003-08">

 <sa:AttributeValue>

 <di12:ResourceOffering

 xmlns:di12="urn:liberty:disco:2003-08"

 entryID="2">

 <di12:ResourceID>

 https://a-idp.liberty-iop.org/profiles/WSF1.1/RID-DISCO-sue</>

 <di12:ServiceInstance>

 <di12:ServiceType>urn:liberty:disco:2003-08</>

 <di12:ProviderID>https://a-idp.liberty-iop.org:8881/idp.xml</>

 <di12:Description>

 <di12:SecurityMechID>urn:liberty:security:2005-02:TLS:Bearer</>

 <di12:CredentialRef>CREDOTGAkvhNoP1aiTq4bXBg</>

 <di12:Endpoint>https://a-idp.liberty-iop.org:8881/DISCO-

S</></></>

 <di12:Abstract>Symlabs Discovery Service Team G</></></></>

 <!-- ID-WSF 2.0 Bootstrap for Discovery. The credential (bearer token) is

inline. -->

 <sa:Attribute

 Name="urn:liberty:disco:2006-08:DiscoveryEPR"

 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

 <sa:AttributeValue>

 <wsa:EndpointReference

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd"

 notOnOrAfter="2007-02-10T07:37:42Z"

 wsu:Id="EPRIDcjP8ObO9In47SDjO9b37">

 <wsa:Address>https://a-idp.liberty-iop.org:8881/DISCO-S</>

 <wsa:Metadata xmlns:di="urn:liberty:disco:2006-08">

 <di:Abstract>SYMfiam Discovery Service</>

 <sbf:Framework xmlns:sbf="urn:liberty:sb" version="2.0"/>

 <di:ProviderID>https://a-idp.liberty-iop.org:8881/idp.xml</>

 <di:ServiceType>urn:liberty:disco:2006-08</>

 <di:SecurityContext>

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 89 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 <di:SecurityMechID>urn:liberty:security:2005-02:TLS:Bearer</>

 <sec:Token

 xmlns:sec="urn:liberty:security:2006-08"

 usage="urn:liberty:security:tokenusage:2006-

08:SecurityToken">

 <sa:Assertion

 ID="CREDV6ZBMyicmyvDq9pLIoSR"

 IssueInstant="2007-02-10T05:37:42Z"

 Version="2.0">

 <sa:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity">

 https://a-idp.liberty-iop.org:8881/idp.xml</>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#CREDV6ZBMyicmyvDq9pLIoSR">

 <ds:Transforms>

 <ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 <ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/></>

 <ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>o2SgbuKIBzl4e0dQoTwiyqXr/8Y=</></></>

 <ds:SignatureValue>hHdUKaZ//cZ8UYJxvTReNU=</></>

 <sa:Subject>

 <sa:NameID

 Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent"

 NameQualifier="https://a-idp.liberty-

iop.org:8881/idp.xml">

 9my93VkP3tSxEOIb3ckvjLpn0pa6aV3yFXioWX-TzZI=</>

 <sa:SubjectConfirmation

 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>

 <sa:Conditions

 NotBefore="2007-02-10T05:32:42Z"

 NotOnOrAfter="2007-02-10T06:37:42Z">

 <sa:AudienceRestriction>

 <sa:Audience>https://a-idp.liberty-

iop.org:8881/idp.xml</></></>

 <sa:AuthnStatement AuthnInstant="2007-02-10T05:37:42Z">

 <sa:AuthnContext>

 <sa:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:Password</></></></></></></></></></></></></>

</></></>

N.B. The AttributeStatement/Attribute/AttributeValue/EndpointReference/Metadata/

SecurityContext/Token/Assertion/Conditions/AudienceRestriction/Audience is the same as

the IdP because in many products the IdP and Discovery Service roles are implemented by

the same entity. Note also that the audience of the inner assertion is the discovery service

where as the audience of the outer assertion is the SP that will eventually call the

Discovery Service.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 90 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

7.2 ID-WSF 2.0 Call with X509v3 Sec Mech

<e:Envelope

 xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:b="urn:liberty:sb:2005-11"

 xmlns:sec="urn:liberty:security:2005-11"

 xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-

secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"

 xmlns:wsa="http://www.w3.org/2005/08/ addressing">

 <e:Header>

 <wsa:MessageID wsu:Id="MID">123</>

 <wsa:To wsu:Id="TO">...</>

 <wsa:Action wsu:Id="ACT">urn:xx:Query</>

 <wsse:Security mustUnderstand="1">

 <wsu:Timestamp wsu:Id="TS"><wsu:Created>2005-06-17T04:49:17Z</></>

 <wsse:BinarySecurityToken

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-

token-profile-1.0#X509v3"

 wsu:Id="X509Token"

 EncodingType="http://docs.oas is-open.org/wss/2004/01/oasis-200401-wss-soap-

message-security-1.0#Base64Binary">

 MIIB9zCCAWSgAwIBAgIQ...</>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:Reference URI="#MID">...</>

 <ds:Reference URI="#TO">...</>

 <ds:Reference URI="#ACT">...</>

 <ds:Reference URI="#TS">...</>

 <ds:Reference URI="#X509">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>Ru4cAfeBAB</></>

 <ds:Reference URI="#BDY">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>YgGfS0pi56p</></></>

 <ds:KeyInfo><wsse:SecurityTokenReference><wsse:Reference URI="#X509"/></></>

 <ds:SignatureValue>HJJWbvqW9E84vJVQkjDElgscSXZ5Ekw==</></></></>

 <e:Body wsu:Id="BDY">

 <xx:Query/></></>

The salient features of the above XML blob are

• Signature that covers relevant SOAP headers and Body

• Absence of any explicit identity token.

Absence of identity token means that from the headers it is not possible to identify the

target identity. The signature generally coveys the Invoker identity (the WSC that is calling

the service). Since one WSC typically serves many principals, knowing which principal is

impossible. For this reason X509 security mechanism is seldom used in ID-WSF 2.0 world

(with ID-WSF 1.1 the ResourceID provides an alternative way of identifying the principal,

thus making X509 a viable option).

7.3 ID-WSF 2.0 Call with Bearer (Binary) Sec Mech

<e:Envelope

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 91 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:b="urn:liberty:sb:2005-11"

 xmlns:sec="urn:liberty:security:2005-11"

 xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-

secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"

 xmlns:wsa="http://www.w3.org/2005/03/ addressing">

 <e:Header>

 <wsa:MessageID wsu:Id="MID">...</>

 <wsa:To wsu:Id="TO">...</>

 <wsa:Action wsu:Id="ACT">urn:xx:Query</>

 <wsse:Security mustUnderstand="1">

 <wsu:Timestamp wsu:Id="TS">

 <wsu:Created>2005-06-17T04:49:17Z</></>

 <wsse:BinarySecurityToken

 ValueType="anyNSPrefix:ServiceSess ionContext"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-

message-security-1.0#Base64 Binary"

 wsu:Id="BST">

 mQEMAzRniWkAAAEH9RWir0eKDkyFAB7PoFazx3ftp0vWwbbzqXdgcX8fpEqSr1v4

 YqUc7OMiJcBtKBp3+jlD4HPUaurIqHA0vrdmMpM+sF2BnpND118f/mXCv3XbWhiL

 VT4r9ytfpXBluelOV93X8RUz4ecZcDm9e+IEG+pQjnvgrSgac1NrW5K/CJEOUUjh

 oGTrym0Ziutezhrw/gOeLVtkywsMgDr77gWZxRvw01w1ogtUdTceuRBIDANj+KVZ

 vLKlTCaGAUNIjkiDDgti=</>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig #">

 <ds:SignedInfo>

 <ds:Reference URI="#MID">...</>

 <ds:Reference URI="#TO">...</>

 <ds:Reference URI="#ACT">...</>

 <ds:Reference URI="#TS">...</>

 <ds:Reference URI="#BST">...</>

 <ds:Reference URI="#BDY">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1 "/>

 <ds:DigestValue>YgGfS0pi56pu</></></>

 ...</></></>

 <e:Body wsu:Id="BDY">

 <xx:Query/></></>

7.4 ID-WSF 2.0 Call with Bearer (SAML) Sec Mech

<e:Envelope

 xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:sb="urn:liberty:sb:2005-11"

 xmlns:sec="urn:liberty:security:2005-11"

 xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-

secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <e:Header>

 <sbf:Framework version="2.0-simple" e:mustUnderstand="1"

 e:actor="http://schemas.../next"

 wsu:Id="SBF"/>

 <wsa:MessageID wsu:Id="MID">...</>

 <wsa:To wsu:Id="TO">...</>

 <wsa:Action wsu:Id="ACT">urn:xx:Query</>

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 92 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 <wsse:Security mustUnderstand="1">

 <wsu:Timestamp wsu:Id="TS">

 <wsu:Created>2005-06-17T04:49:17Z</></>

 <sa:Assertion

 xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"

 Version="2.0"

 ID="A7N123"

 IssueInstant="2005-04-01T16:58:33.173Z">

 <sa:Issuer>http://idp.symdemo.com/idp.xml</>

 <ds:Signature>...</>

 <sa:Subject>

 <sa:EncryptedID>

 <xenc:EncryptedData>U2XTCNvRX7Bl1NK182nmY00TEk==</>

 <xenc:EncryptedKey>...</></>

 <sa:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>

 <sa:Conditions

 NotBefore="2005-04-01T16:57:20Z"

 NotOnOrAfter="2005-04-01T21:42:4 3Z">

 <sa:AudienceRestrictionCondition>

 <sa:Audience>http://wsp.zxidsp.org</></></>

 <sa:AuthnStatement

 AuthnInstant="2005-04-01T16:57:30.000Z"

 SessionIndex="6345789">

 <sa:AuthnContext>

 <sa:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</></></>

 <sa:AttributeStatement>

 <sa:EncryptedAttribute>

 <xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">

 mQEMAzRniWkAAAEH9RbzqXdgcX8fpEqSr1v4=</>

 <xenc:EncryptedKey>...</></></></>

 <wsse:SecurityTokenReference

 xmlns:wsse11="..."

 wsu:Id="STR1"

 wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-

profile-1.1#SAMLV2.0">

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

1.1#SAMLID">

 A7N123</></>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:Reference URI="#MID">...</>

 <ds:Reference URI="#TO">...</>

 <ds:Reference URI="#ACT">...</>

 <ds:Reference URI="#TS">...</>

 <ds:Reference URI="#STR1">

 <ds:Transform Algorithm="...#STR-Transform">

 <wsse:TransformationParameters>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-

xml-c14n-20010315"/></></></>

 <ds:Reference URI="#BDY"/></>

 ...</></></>

 <e:Body wsu:Id="BDY">

 <xx:Query/></></>

(*** is the reference above to wsse11:TokenType really correct?)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 93 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Note how the <Subject> and the attributes are encrypted such that only the WSP can open

them. This protects against WSC gaining knowledge of the NameID at the WSP.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 94 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

8 Annex B: Technical Self Assessment
Questionnaire

This questionnaire is to be used in partner intake process of a TAS3 compliant Trust

Network. Effectively this is a template that the trust network can adjust corresponding to

its own policies. Typically this questionnaire is used alongside the legal questionnaire, see

[TAS3D62Contract], 11.6 Annex IV "Self Assessment Questionnaire".

8.1 Overview and Scope

1. Please give your installation a unique name or reference that can be used in future
communications.

Installation Name: ___________________________

2. Please supply your organizational and contact details

___________________\\

___________________\\

Technical contact for clarifications: ____________

Who filled this questionnaire: _____________

Date when filled or amended: ________

3. What architectural roles do you plan to play in Trust Network? (tick all that apply)

a. (__) Service Provider (SP), such as Frontend Web Site (FE), Web Services Client

(WSC),

Web Services Provider (WSP) (other than WSP acting as Attribute Authority, see

below).

b. (__) Attribute or Credentials Authority as a web service (some people call attribute

authorities also "identity providers", but see next item if you are performing SSO)

c. (__) Single Sign-On Identity Provider, Discovery Service, Discovery Registry,

Identity Mapper, or Delegation Service.

d. (__) Identity Aggregator or Linking Service

e. (__) Authorization Supplier (e.g. PDP) or Ontology Mapper towards external parties

(if you merely operate PDP internally, you do not need to tick this)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 95 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

f. (__) Trust and Reputation provider towards external parties

g. (__) User Audit Dashboard or Interaction Service provider; or Credentials and

Privacy Negotiation agent for the user

h. (__) Online Compliance Testing Provider

i. (__) Trust Network configuration, management, oversight, or audit services; or

certification authority.

j. (__) Other, please specify: _________________________________

4. For each of the service instances you plan to run, please provide domain names and

EntityIDs. If not known yet, specify "not yet assigned" or "NYA".

Extend the table as needed or provide annex (e.g. spreadsheet with the information).

This table is just an initial survey and it is understood that it can be amended from time

to time.

Table 10 Basic information about entities

N Domain Name EntityID Roles Remarks

1. sp.example.com https://sp.example.com/svc?o=B FE, WSC Example SP entry

2.
3.

5. How do you plan to implement the service instances?

a. (__) Complete outsource to a partner, which: ____________________\\

If you tick this box you should have the partner fill the technical details of this

questionnaire, or provide a reference to a questionnaire they have filled separately.

b. (__) Software as a Service (SaaS), operated by you.

Which software or partner: _____________________, version: ___

Your SaaS provider should help you answer the technical questions.

c. (__) Operate commercial software on servers administered by you (e.g. own server,

hosted root server, server on Amazon Elastic Cloud, etc.)

Which software: _____________________, version: ___

d. (__) Operate open source software on servers administered by you (e.g. own server,

hosted root server, server on Amazon Elastic Cloud, etc.)

Which software: _____________________, version: ___

e. (__) Operate software developed by you or for you

Which software: _____________________, version: ___

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 96 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

6. Please provide volumetrics about your installation. We realize some of this

information may not be public or may not be available or accurate. Any information

you can provide is helpful.

Number of potential users: _______________

Number of regular or frequent users: _______________

Number of tasks performed by a regular user on typical working day on your service:

Any performance targets you expect from the system, such as maximum latency or

required throughput: ______________________

7. Do you plan to implement any load balancing, scaling, or redundant resiliency
measures? Please specify: __________________

8.2 System Entity Credentials and Private Keys

In TAS3, services and other system entities are identified using X509 digital certificates.

They are used in TLS connections for authentication using Client TLS and they are used for

digital signatures.

Responsible management of the private keys associated with the digital certificates is the

corner stone of TAS3 accountability and liability framework. Your organization will be held

responsible for all actions performed using your private keys.

1. Which certification authority do you use for issuance of certificates? (if selfissued,

indicate who in your organization is responsible)

2. How do you generate private key and certification request?

3. What measures are in place to ensure that the private key remains confidential

during generation, certificate issuance, and installation process? How do you know

that no copy is left on any device (e.g. USB stick of a consultant) used to handle the

private key?

4. What backup arrangements do you have for the private key and how are they kept

confidential?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 97 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

5. Once installed on a server, how do you ensure confidentiality of the private key?
(tick all that apply)

a. (__) Private key protected by hardware token

b. (__) Password required for each use of private key

c. (__) Password required for first use after reboot

d. (__) Filesystem permissions

e. (__) No root or administration access over the network. For example if you have

configured sudo(8) so that no user is unlimited root and only appropriate process has

access to the private key.

f. (__) All system administrators are authorized to access the private key

g. Other: _________________________________

6. If private key could be stored in a jump start, kick start, or backup image, what
confidentiality measures are in place to protect such images? _________________

7. Do you track or register who is authorized to access private keys?

How: _____________________________

Are there written records? ____________

8. Do you track or register who has system administration access to servers, especially
if not all sysadms are authorized to access private keys?

9. Do all those who are authorized to access private keys or who could have access to
the private keys (e.g. sysadms) go through training on private keys and sign a

confidentiality undertaking regarding them? __________

8.3 Trust Management

1. What is your organization's policy regarding which entities to trust:

 a. (__) Trust anyone

 b. (__) Trust all members of the Trust Network

 c. (__) Trust all members of the Trust Network that also pass local check (e.g. black

list)

 d. (__) Explicit local check (e.g. white list)

 e. (__) Other, please describe: _______________

2. What administrative and system administration procedures do you have in place to

check that your software is configured to trust only the entities that your

organization has decided to trust?

3. What techniques and procedures do you use to ensure that the trust settings are not

tampered with and that if tampered, you detect the alterations in a timely manner?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 98 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

8.4 Threat and Risk Assessments

1. Have you reviewed TAS3 Threat Analysis document [TAS3THREAT]?

2. Have you reviewed TAS3 Risk Assessment document [TAS3RISK]?

3. With respect to the services you plan to deploy, which of the mitigation techniques

discussed in [TAS3RISK] do you plan to implement?

8.5 Service Provider Questions

1. What is your Entity ID? _________________

 Entity ID is decided by you, the organization operating the service. It should be a URL

pointing to your SAML metadata. Typically it consists of your domain name, some local

path, and possibly of software package dependent part. For example, in

 https://sp.example.com/svc?o=B

the domain name is "sp.example.com", the local path is "/svc" and the product dependent

part is "?o=B". The local path depends on how your web server is configured. Consult

product documentation for the product dependent part, if any.

2. Does your site support Well Known Location method of SAML metadata exchange (i.e.

the metadata is available in the Entity ID URL, consult product documentation if in

doubt)?

 (__) Yes, (__) No

 If not, what alternative arrangements do you have for metadata exchange?

3. How do you provide audit drilldown? (check all that apply)

 a. (__) Stand alone web GUI. URL: ________________

 b. (__) iFrame widget Web GUI. URL: ________________

 c. (__) Audit drill down web service (ServiceType "urn:tas3:audit:2010-06")

4. Have you successfully tested sending messages to the Audit Event Bus?

8.5.1 Front End (FE) Single Sign-On Questions

1. Is your software SAML 2.0 compliant? Is it certified? When, by whom: ____

2. Can your software handle ID-WSF 2.0 discovery bootstrap?

3. Which IdPs do you plan to use?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 99 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

4. Have you exchanged metadata with the IdP?

5. Have you successfully tested SSO with the IdP?

8.5.2 Web Service Provider (WSP) Questions

1. Is your software TAS3 or ID-WSF 2.0 compliant?

 Is it certified? When, by whom: ____

2. Have you determined

 a. SOAP endpoint URL: ___________________

 b. Human friendly name for your service: _______________

 c. Entity ID of your service (usually different from SOAP

 endpoint): __________________________

 d. Service Type URI of your service: _______________________

The Service Type URI designates the type of service you provide. If you are providing a

standardized service, the relevant standard should specify what the Service Type URI

is for services of that type. All instances of the service use the same Service Type URI.

Some well known Service Types:

• "urn:ios:pds:2010-05:dst-2.1" - Internet of Subjects Personal Data Store

• "urn:liberty:id-sis-dap:2006-08:dst-2.1" - Liberty ID Directory Access Protocol

• "urn:liberty:id-sis-cb:2004-10" - Liberty Contact Book Service

• "urn:liberty:id-sis-gl:2005-07" - Liberty Geolocation Service

• "http://www.3gpp.org/ftp/Specs/archive/23_series/23.140/schema/REL-6-MM7-1-4"

- ID-MM7 messaging service

If you created the service yourself, you can pick the URI as you please, provided that it

is globally unique. The usual convention is to use the namespace URI of the top level

XML element of the service payload, i.e. the namespace of the first child element of

SOAP Envelope Body element.

2. Have you registered your service end point with a Discovery Service?

Often the Discovery Service Provider or IdP provides a registration interface on the web.

For example the TAS3 IdP provides "Circle of Trust Manager" at URL

https://idp.tas3.eu/cot/

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 100 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

If you do not plan to use discovery, what arrangements do you plan to use to locate your

service? What arrangements do you plan to make for issuing security tokens for accessing

your service?

3. Have you successfully tested calling your web service from a third party web service

client?

4. Is your service an identity service, i.e. does it need to know something about the user?

5. Does your service need persistent handle to user, e.g. to track something about the user

(this question aims to establish whether your service needs to see persistent or transient

NameID)?

6. What types of credentials need to be presented upon web service call to authorize the

call?

 This question aims at determining what credentials your callers will need to gather and

present. We do not need full description of your policy.

7. Do you need user to consent to anything and how do you arrange to obtain consent when

needed? Do you plan to use the Interaction Service facility and/or handle Interaction

Redirect?

8. Are you capable to act as a Credentials and Privacy Negotiation server? If yes, please

provide end point URL: ________________

9. What security mechanisms are you willing and able to support

 a. (__) Bearer Token

 b. (__) Holder of Key Token

 c. (__) X509 signature without token

 d. (__) None

10. Which Policy Enforcement Points do you implement?

 a. (__) Request Out PEP

 b. (__) Response In PEP

 c. (__) Other, please describe: _______________

11. Which Policy Decision Point do you use?

 a. (__) Internal or built in

 b. (__) External XACML PDP

 c. (__) Other: _______________

12. Which obligations or policy languages do you use or support? (tick all that apply)

 a. (__) SOL1

 b. (__) Permis

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 101 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 c. (__) XACML2

 d. (__) Other, please specify: _____________

8.5.3 Attribute Authority Questions

These questions are in addition to the WSP questions of the previous section. You should

answer these questions if you are authority for, store, or broker user data, such as

Personally Identifiable Information (PII).

1. What is the nature and sensitivity of the user data you handle?

2. What obligations do you pledge to honour with respect to

 user data trusted in your possession?

Either describe in prose or provide specific policies using Simple Obligations Language 1

(SOL1) or other obligations language you plan to use.

3. What obligations do you require other party to honour with respect to user data you

release?

 Either describe in prose or provide specific policies using Simple Obligations Language 1

(SOL1) or other obligations language you plan to use.

4. Do you have automatic mechanism for satisfying the obligations you pledged? Please

describe: ______________________

5. Do you have automatic mechanism for verifying that the requesting party pledges to

respect the obligations you issue?

6. What mechanisms do you provide to user and trust network operator to verify that you

have complied with your pledges?

7. What mechanisms do you have or require from others to verify that they have complied

with their pledges?

8. How do you protect the confidentiality of the stored user data? Describe any filesystem

and cryptographic protections you employ.

9. How do you provide Right of Access, Rectification, and Deletion?

 a. (__) Stand alone web GUI. URL: ________________

 b. (__) iFrame widget Web GUI. URL: ________________

 c. (__) Other method: ____________________________

10. In the eventuality of Rectification or Deletion, are you able to notify the parties to whom

you have released the data in past?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 102 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

11. What is your policy towards data requestors who refuse to subscribe to notifications?

What about recipients that subscribed, but refuse the actual notification?

8.5.4 Web Service Client (WSC) Questions

A FE or WSP may act in secondary role of Web Service Client (WSC). If you call other web

services you should answer these questions.

1. Is your software TAS3 or ID-WSF 2.0 compliant?

 Is it certified? When, by whom: ____

2. Are you able to use Credentials and Privacy Negotiation agent?

3. Are you able to handle Interaction Redirect if requested by WSP?

4. What security mechanisms are you willing and able to support

 a. (__) Bearer Token

 b. (__) Holder of Key Token

 c. (__) X509 signature without token

 d. (__) None

5. Which Policy Enforcement Points do you implement?

 a. (__) Request Out PEP

 b. (__) Response In PEP

 c. (__) Other, please describe: _______________

6. Which Policy Decision Point do you use?

 a. (__) Internal or built in

 b. (__) External XACML PDP

 c. (__) Other: _______________

7. Which obligations or policy languages do you use or support? (tick all that apply)

 a. (__) SOL1

 b. (__) Permis

 c. (__) XACML2

 d. (__) Other, please specify: _____________

8. What obligations do you pledge to honour with respect to user data returned to you?

 Either describe in prose or provide specific policies using Simple Obligations Language 1

(SOL1) or other obligations language you plan to use.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 103 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

9. What obligations do you require other party to honour with respect to user data you

send?

 Either describe in prose or provide specific policies using Simple Obligations Language 1

(SOL1) or other obligations language you plan to use.

10. Do you have automatic mechanism for satisfying the obligations you pledged? Please

describe: ______________________

11. What mechanisms do you provide to user and trust network operator to verify that you

have complied with your pledges?

12. What mechanisms do you have or require from others to verify that they have complied

with their pledges?

8.6 Single Sign-On Identity Provider (IdP), Discovery Service,
Discovery Registry, Identity Mapper, or Delegation
Service Questions

1. Is your software SAML 2.0 and TAS3 or ID-WSF 2.0 compliant?

 Is it certified? When, by whom: ____

2. If your IdP or Discovery Service provides attributes, also answer questions in the

Attribute Authority section, above.

8.6.1 Identity Provider Questions

1. What authentication methods do you support (tick all that apply)

 a. (__) One Time Password Token, such as Yubikey, RSA token, or similar

 b. (__) Client certificate at user level or eID card

 c. (__) Mobile phone based authentication

 d. (__) Desktop Login based authentication

 e. (__) Username and password

 f. (__) Other, please specify: _____________________

2. What user intake or vetting procedures do you have?

3. What authentication context classes do you support and how do they map to the intake

and authentication methods you support? Please specify the URIs that will be used to

indicate these in various protocol transactions.

4. What types of NameIDs are you willing and able to support (tick all that apply)?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 104 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

 a. (__) Persistent per entity pseudonyms

 b. (__) Transient per entity

 c. (__) Persistent shared unique id (e.g. globally unique id or "national id")

 d. (__) Transient shared (e.g. random ID shared across many entities)

5. Can you push attributes (if you can, you are also an Attribute Authority, see above)?

6. Do you support ID-WSF 2.0 discovery bootstrap attribute?

8.6.2 Discovery Service Questions

1. What registration mechanisms do you provide for WSPs?

 URL of the registration interface: _______________________

2. What security mechanisms are you willing and able to support

 a. (__) Bearer Token

 b. (__) Holder of Key Token

 c. (__) X509 signature without token

 d. (__) None

3. What types of NameIDs are you willing and able to support (tick all that apply)?

 a. (__) Persistent per entity pseudonyms

 b. (__) Transient per entity

 c. (__) Persistent shared unique id (e.g. globally unique id or "national id")

 d. (__) Transient shared (e.g. random ID shared across many entities)

4. Can you push attributes? (if you can you are also an Attribute Authority)

5. Do you support pruning discovery results by trust scoring?

6. Do you support pruning discovery results based on Credentials and Privacy Negotiation?

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 105 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

9 Bibliography

[AAPML] Prateek Mishra, ed.: "AAPML: Attribute Authority Policy Markup Language",

Working Draft 08, Nov. 28, 2006, Liberty Alliance / Oracle.

http://www.oracle.com/technology/tech/standards/idm/igf/pdf/IGF-AAPML-spec-

08.pdf

 [AcctSvc] "Liberty ID-WSF Accounting Service Specification"

[AdvClient] "Liberty ID-WSF Advanced Client Technologies Overview", liberty-idwsf-adv-

client-v1.0.pdf

[AeGArch07] "D3.1 Access-eGov Platform Architecture", Access-eGov consortium, Feb 12,

2007.

http://www.accessegov.org/acegov/uploadedFiles/webfiles/cffile_4_3_07_3_25_17_P

M.pdf, also http://www.accessegov.org/acegov/web/uk/index.jsp?id=50268

[Alberts01] Alberts, C. J., & Dorofee, A. J. (2001). OCTAVE Criteria Version 2.0. Tech.

report CMU/SEI-2001-TR-016. ESC-TR-2001-016.

[AMQP06] "AMQP: A General-PurposeMiddleware Standard" (a.k.a AdvancedMessage

Queueing Protocol), 2006.

[Anderson07] Anne Anderson: "Web Services Profile of XACML (WS-XACML) Version 1.0",

Working Draft 10, OASIS XACML Technical Committee, 10 August 2007,

available at http://www.oasis-open.org/committees/download.php/24950/xacml-

3.0-profile-webservices-v1-wd-10.zip

[BraberEA07] Den Braber, F., Hogganvik, I., Lund, M. S., Stølen, K., & Vraalsen, F. (2007).

Model-based security analysis in seven steps - a guided tour to the CORAS

method. BT Technology Journal, 25(1), pp. 101-117.

[CardSpace] InfoCard protocol (aka CardSpace) from Microsoft

[CARML] Phil Hunt and Prateek Mishra, eds.: "Liberty IGF Client Attribute Requirements

Markup Language (CARML) Specification", Draft 1.0-12, Liberty Alliance, 2008.

http://www.projectliberty.org/liberty/resource_center/specifications/igf_1_0_specs

[Castano07] Castano, S., Ferrara, A., Montanelli, S., Hess, G. N., and Bruno, S. (2007).

State of the art on ontology coordination and matching. Report FP6-027538,

BOEMIE.

[Chadwick08] David Chadwick: "Functional Components of Grid Service Provider

Authorisation Service Middleware", Open Grid Forum, 17 September, 2008. (***

AuthzFunc0.7.doc)

[Chadwick09] David Chadwick: "FileSpace - An Alternative to CardSpace that supports

Multiple Token Authorisation and Portability Between Device". Presented at

IDtrust 2009, the 8th Symposium on Identity and Trust on the Internet, NIST,

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 106 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Gaithersberg, April 2009. Available from

http://middleware.internet2.edu/idtrust/2009/papers/08-chadwick-filespace.pdf

[ChadwickEA09] David W Chadwick, Sassa Otenko and Tuan Anh Nguyen. "Adding

Support to XACML for Multi-Domain User to User Dynamic Delegation of

Authority". International Journal of Information Security. Volume 8, Number 2 /

April, 2009 pp 137-152. DOI 10.1007/s10207-008-0073-y

[ChadwickEA09b] DavidWChadwick, Linying Su, Romain Laborde: "Use of XACML

Request Context to Obtain an Authorisation Decision". GFD.159. 13 November

2009. Available from http://www.ogf.org/documents/GFD.159.pdf

TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page 88 of 95TAS3

Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[ChadwickSu09] David Chadwick, Linying Su: "Use of WS-TRUST and SAML to access a

Credential Validation Service". GFD.157. 13 November 2009. Available from

http://www.ogf.org/documents/GFD.157.pdf

[CogWalkthruWeb] http://www.cc.gatech.edu/classes/cs3302/documents/cog.walk.html

[CVS-SAML-WS-Trust] David Chadwick and Linying Su: "Use of WS-TRUST and SAML to

access a Credential Validation Service", Open Grid Forum, 2008. (*** WS-

TrustProfile0.8.doc)

[DahlEA07] Dahl, H., Hogganvik, I., & Stølen, K. (2007). Structured semantics for the

CORAS security risk modelling language. Pre-proceedings of the 2nd

InternationalWorkshop on Interoperability Solutions on Trust, Security, Policies

and QoS for Enhanced Enterprise Systems (IS-TSPQ’07), (pp. 79-92).

[DesignPat] "Liberty ID-WSF Design Patterns", liberty-idwsf-dp-v1.0.pdf

[Dieng98] Dieng, R. and Hug, S. (1998). Comparison of "personal ontologies" represented

through conceptual graphs. In Proceedings of the 13th European Conference on

Artificial Intelligence (ECAI 98), pages 341-345, Brighton, UK.

[Disco2] Cahill, ed.: "Liberty ID-WSF Discovery service 2.0", liberty-idwsf-disco-svc-2.0-

errata-v1.0.pdf from http://projectliberty.org/resource_center/

[Disco12] Liberty ID-WSF Discovery service 1.2 (liberty-idwsf-disco-svc-v1.2.pdf)

[DST11] Liberty DST v1.1

[DST21] Sampo Kellomäki and Jukka Kainulainen, eds.: "Liberty Data Services Template

2.1", Liberty Alliance, 2007. liberty-idwsf-dst-v2.1.pdf from

http://projectliberty.org/resource_center/specifications/

[DST20] Sampo Kellomäki and Jukka Kainulainen, eds.: "Liberty DST v2.0", Liberty

Alliance, 2006.

[Enisa10] Inventory of Risk Management / Risk Assessment Methods. http://rm-

inv.enisa.europa.eu/rm_ra_methods.html (fethced 25.6.2010)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 107 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[FF12] Liberty ID Federation Framework 1.2, Protocols and Schemas

[FMC03] Frank Keller, Siegfried Wendt: "FMC: An Approach Towards Architecture-Centric

System Development", Hasso Plattner Institute for Software Systems

Engineering, 2003.

[FMCWeb] "Fundamental Modeling Concepts" http://fmc-modeling.org/

[GiraoSarma10] João Girão and Amardeo Sarma: "IDentity Engineered Architecture

(IDEA)", in Towards the Future Internet, G. Tselentis et al. (Eds.), IOS Press,

2010. (STAL9781607505396-0085.pdf)

[HafnerBreu09] Hafner & Breu: "Security Engineering for Service-Oriented Architectures",

Springer, 2009.

[Hardt09] Dick Hardt and Yaron Goland: "Simple Web Token (SWT)", Version 0.9.5.1,

Microsoft, Nov. 4, 2009 (SWT-v0.9.5.1.pdf)

[IAF] Russ Cutler, ed.: "Identity Assurance Framework", Liberty Alliance, 2007. File:

liberty-identity-assurance-framework-v1.0.pdf (from

http://projectliberty.org/liberty/resource_center/papers)

TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page 89 of 95TAS3

Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[ICAMSAML2] Terry McBride and Dave Silver, eds.: "Federal Identity, Credentialing, and

Access Management Security AssertionsMarkup Language (SAML) 2.0 Profile",

version 0.1.0 draft, Feb 17, 2010, Federal-ICAMSC-SAML-20-Profile-Draftv010-

36529.pdf

[IDDAP] Sampo Kellomäki, ed.: "Liberty Identity based Directory Access Protocol", Liberty

Alliance, 2007.

[IDFF12] http://www.projectliberty.org/resources/specifications.php

[IDFF12meta] Peted Davis, ed., "Liberty Metadata Description and Discovery

Specification", version 1.1, Liberty Alliance Project, 2004. (liberty-metadata-

v1.1.pdf)

[IDPP] Sampo Kellomäki, ed.: "Liberty Personal Profile specification", Liberty Alliance,

2003.

[IDWSF08] Conor Cahill et al.: "Liberty Alliance Web Services Framework: A Technical

Overview", Liberty Alliance, 2008. File: idwsf-intro-v1.0.pdf (from

http://projectliberty.org/liberty/resource_center/papers)

[IDWSF2IOP] Eric Tiffany, ed.:"Liberty ID-WSF 2.0 Interoperability Testing Procedures",

Version Draft 1.0-01, 16. Aug. 2006. File: ID-WSF-2-0-TestProcedures-v1-01.pdf,

from http://projectliberty.org/

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 108 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[IDWSF2MRD] "Liberty ID-WSF 2.0 Marketing Requirements Document", Liberty

Alliance, 2006. File: liberty-idwsf-2.0-mrd-v1.0.pdf (from

http://projectliberty.org/liberty/strategic_initiatives/requirements/)

[IDWSF2Overview] "Liberty ID-WSF Architecture Overview", liberty-idwsf-overview-

v2.0.pdf from http://projectliberty.org/resource_center/specifications

[IDWSF2SCR] "Liberty ID-WSF 2.0 Static Conformance Requirements", liberty-idwsf-2.0-

scr-1.0-errata-v1.0.pdf

[IDWSFSecPriv] "Liberty ID-WSF Security & Privacy Overview", liberty-idwsf-security-

privacy-overview-v1.0.pdf from

http://projectliberty.org/resource_center/specifications/

[IGF] "An Overview of the Identity Governance Framework", Liberty Alliance, 2007. File:

overview-id-governance-framework-v1.0.pdf (from

http://projectliberty.org/liberty/resource_center/papers)

[Interact2] "Liberty ID-WSF Interaction Service", liberty-idwsf-interaction-svc-2.0-errata-

v1.0.pdf from http://projectliberty.org/resource_center/specifications/

[ISO27001] ISO standard 27001: http://www.iso.org

[Kellomaki08] Sampo Kellomäki: "Query Extension for SAML AuthnRequest", feature

request to OASIS Security Services Technical Committee (SSTC), 2008. See

OASIS SSTC mailing list archive.

[Levenshtein66] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,

insertions and reversals. Soviet Physics Doklady, 10:707+.

[LibertyInterFed] Carolina Canales Valenzuela, Sampo Kellomäki, eds.: "Access to Identity-

Enabled Web Services in Cross-Border, Inter-Federation Scenarios", Liberty

Alliance, 2007. File: access-to-identity-enabled-services-in-inter-cot-scenarios-

v1.0.pdf (from http://projectliberty.org/liberty/resource_center/papers)

[LibertyLegal] Victoria Sheckler, ed.: "Contractual Framework Outline for Circles of Trust",

Liberty Alliance, 2007. File: Liberty Legal Frameworks.pdf (from

http://projectliberty.org/liberty/resource_center/papers)

TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page 90 of 95TAS3

Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[LibertyXF] Sampo Kellomäki, ed.: "Cross Operation of Single Sign-On, Federation, and

Identity Web Services Frameworks", Liberty Alliance, 2006.

[Madsen03] Paul Madsen: "WS-Trust: Interoperable Security for Web Services" Available

from http://www.xml.com/pub/a/ws/2003/06/24/ws-trust.html

[Mbanaso09] U.M. Mbanaso, G.S. Cooper, David Chadwick, Anne Anderson: "Obligations of

Trust for Privacy and Confidentiality in Distributed Transactions", Internet

Research. Vol 19 No 2, 2009, pp. 153-173.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 109 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[Meier08] J.D. Meier: "Threats, Attacks, Vulnerabilities, and Countermeasures", 30.3.2008.

http://shapingsoftware.com/2008/03/30/threats-attacks-vulnerabilities-and-

countermeasures/

[Meier09] J.D.Meier: "Security Hot Spots", 9.3.2009.

http://shapingsoftware.com/2009/03/09/security-hot-spots/

[Microsoft06] Microsoft Centre of Excellence. (2006). The Security Risk Management

Guideline. Microsoft Solutions for Security and Compliance.

[MS-MWBF] Microsoft Web Browser Federated Sign-On Protocol Specification, 20080207,

http://msdn2.microsoft.com/en-us/library/cc236471.aspx

[Nagios] "System, Network, and Application Monitor", the latest incarnation of the Satan

and Net Saint saga, http://www.nagios.org/

[NexofRA09] "Deliverable D6.2 RA Model V2.0", All NEXOF-RA Partners, NESSI Strategic

Project and External Contributors, 2009.

[NIST-SP800-30] Gary Stoneburner, Alice Goguen, and Alexis Feringa: "Risk Management

Guide for Information Technology Systems", Recommendations of the National

Institute of Standards and Technology, NIST, 2002.

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

[NIST-SP800-42] John Wack, Miles Tracy and Murugiah Souppaya: "Guideline Network

Security", Recommendations of the National Institute of Standards and

Technology, NIST, 2002. http://csrc.nist.gov/publications/nistpubs/800-30-

42/sp800-42.pdf

[NIST-SP800-63] William E. Burr, Donna F. Dodson, Ray A. Perlner, W. Timothy Polk,

Sarbari Gupta, Emad A. Nabbus: "Electronic Authentication Guideline",

Recommendations of the National Institute of Standards and Technology, NIST

Special Publication 800-63-1, Feb 2008. http://csrc.nist.gov/publications/nistpubs/

[OAUTH] http://oauth.net/

[OpenID] http://openid.net/

[OWL-S-Web] David Martin, ed.: "OWL-S: Semantic Markup forWeb Services",W3C, 22.

Nov, 2004. http://www.w3.org/Submission/OWL-S/

[PCI08] "Payment Card Industry Data Security Standard", Version 1.2, Oct 2008, PCI

Security Standards Council. Document pci_dss_v1-2.pdf from

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

[Peeters09] Roel Peeters, Koen Simoens, Danny De Cock, and Bart Preneel: "Cross-Context

Delegation through Identity Federation", KUL 2009 (To be published?)

[PeopleSvc] "Liberty ID-WSF People Service Specification", liberty-idwsf-people-service-1.0-

errata-v1.0.pdf from http://projectliberty.org/resource_center/specifications/

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 110 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page 91 of 95TAS3

Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[PERMIS] D.W.Chadwick and A. Otenko: "The PERMIS X.509 Role Based

PrivilegeManagement Infrastructure". Future Generation Computer Systems, Vol

19, Issue 2, Feb 2003. pp 277-289

[RESTFUL] R. Fielding:

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[RFC1157] J. Case et al.: " A Simple Network Management Protocol (SNMP)", RFC 1157,

1990.

[RFC1950] P. Deutcsh, J-L. Gailly: "ZLIB Compressed Data Format Specification version

3.3", Aladdin Enterprises, Info-ZIP, May 1996

[RFC1951] P. Deutcsh: "DEFLATE Compressed Data Format Specification version 1.3",

Aladdin Enterprises, May 1996

[RFC1952] P. Deutcsh: "GZIP file format specification version 4.3", Aladdin Enterprises,

May 1996

[RFC2119] S. Bradner, ed.: "Key words for use in RFCs to Indicate Requirement Levels",

Harvard University, 1997.

[RFC2138] C. Rigney et al.: "Remote Authentication Dial In User Service (RADIUS)", RFC

2138, April 1997.

[RFC2139] C. Rigney: "RADIUS Accounting", RFC 2139, April 1997.

[RFC2246] T. Dierks and C. Allen: "The TLS Protocol Version 1.0", RFC 2246, January

1999.

[RFC2251] M. Wahl, T. Howes, S. Kille: "Lightweight Directory Access Protocol (v3)", RFC

2251, December 1997.

[RFC2256] Wahl, M., "A Summary of the X.500(96) User Schema for use with LDAPv3",

RFC 2256, December 1997.

[RFC2560] Myers et al., "X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol - OCSP", RFC 2560, June 1999.

[RFC2798] M. Smith: "Definition of the inetOrgPerson LDAP Object Class", Netscape

Communications, RFC 2798, April 2000.

[RFC3548] S. Josefsson, ed.: "The Base16, Base32, and Base64 Data Encodings", July 2003.

(Section 4 describes Safebase64)

[RFC3588] P. Calhoun et al.: "Diameter Base Protocol", RFC 3588, September 2003.

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 111 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[RFC3768] R. Hinden, ed.: "Virtual Router Redundancy Protocol (VRRP)", RFC 3768, April

2004.

[SAML2LOA] OASIS. "Level of Assurance Authentication Context Profiles for SAML 2.0"

Working Draft 01. 01 July 2008

[SAML11core] SAML 1.1 Core, OASIS, 2003

[SAML11bind] "Bindings and Profiles for the OASIS Security Assertion Markup Language

(SAML) V1.1", Oasis Standard, 2.9.2003, oasis-sstc-saml-bindings-1.1

[SAML2core] "Assertions and Protocols for the OASIS Security Assertion Markup

Language (SAML) V2.0", Oasis Standard, 15.3.2005, saml-core-2.0-os

[SAML2prof] "Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0",

Oasis Standard, 15.3.2005, saml-profiles-2.0-os

[SAML2profErrata] OASIS. "Profiles for the OASIS Security AssertionMarkup Language

(SAML) V2.0 - Errata Composite Working Draft", 12 February 2006

TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page 92 of 95TAS3

Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[SAML2bind] "Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0",

Oasis Standard, 15.3.2005, saml-bindings-2.0-os

[SAML2context] "Authentication Context for the OASIS Security Assertion Markup

Language (SAML) V2.0", Oasis Standard, 15.3.2005, saml-authn-context-2.0-os

[SAML2meta] Cantor, Moreh, Philpott, Maler, eds., "Metadata for the OASIS Security

Assertion Markup Language (SAML) V2.0", Oasis Standard, 15.3.2005, saml-

metadata-2.0-os

[SAML2security] "Security and Privacy Considerations for the OASIS Security Assertion

Markup Language (SAML) V2.0", Oasis Standard, 15.3.2005, saml-sec-consider-

2.0-os

[SAML2conf] "Conformance Requirements for the OASIS Security Assertion Markup

Language (SAML) V2.0", Oasis Standard, 15.3.2005, saml-conformance-2.0-os

[SAML2glossary] "Glossary for the OASIS Security Assertion Markup Language (SAML)

V2.0", Oasis Standard, 15.3.2005, saml-glossary-2.0-os

[SAML2SimpleSign] "SAML 2.0 POST Simple Sign Binding", OASIS, 2008.

[Schema1-2] Henry S. Thompson et al. (eds): XML Schema Part 1: Structures, 2nd Ed.,

WSC Recommendation, 28. Oct. 2004, http://www.w3.org/2002/XMLSchema

[SecMech2] "Liberty ID-WSF 2.0 Security Mechanisms", liberty-idwsf-security-

mechanisms-core-2.0-errata-v1.0.pdf from

http://projectliberty.org/resource_center/specifications

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 112 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[Shibboleth] http://shibboleth.internet2.edu/shibboleth-documents.html

[SHPS] Conor Cahill, et al.: "Service Hosting and Proxying Service Specification", Liberty

Alliance Project, 15. Dec. 2006.

[Siemens10] Cram Methods http://www.cramm.com (fetched in 25.6.2010)

[SOAPAuthn2] "Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping

Services Specification", liberty-idwsf-authn-svc-2.0-errata-v1.0.pdf from

http://projectliberty.org/resource_center/specifications/

[SOAPBinding2] "Liberty ID-WSF SOAP Binding Specification", liberty-idwsf-soap-binding-

2.0-errata-v1.0.pdf from http://projectliberty.org/resource_center/specifications

[SOX02] "Sarbanes-Oxley Act of 2002", Public Law 107-204, United States, 2002.

http://frwebgate.access.gpo.gov/cgi-

bin/getdoc.cgi?dbname=107_cong_public_laws&docid=f:publ204.107

[SUBS2] "Liberty ID-WSF Subscriptions and Notifications Specification", liberty-idwsf-

subs-v1.0.pdf from http://projectliberty.org/resource_center/specifications/

[SwiderskiSnyder04] Frank Swiderski and Window Snyder. Threat Modeling. Microsoft

Press, 2004.

[SWIG] Simplified Interface and Wrapper Generator by Dave Beazley. www.swig.org

[TAS3ARCH] Sampo Kellomäki, ed.: "TAS3 Architecture", TAS3 Consortium, 2009.

Document: tas3-arch-vXX.pdf, also deliverable D2.1, document: tas3-deliv-2_1-

arch-v17_2.pdf

[TAS3BIZ] Luk Vervenne, ed.: "TAS3 Business Model", TAS3 Consortium, 2009.

[TAS3COMPLIANCE] Sampo Kellomäki, ed.: "TAS3 Compliance Requirements", TAS3

Consortium, 2009. Document: tas3-compliance-vXX.pdf

[TAS3CONSOAGMT] "TAS3 Consortium Agreement", TAS3 Consortium, 2008. (Not

publicly available.) TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57) Page

93 of 95TAS3 Protocols, API, and Concrete Architecture, 12 (1.57) 30 June 2010

[TAS3D12DESIGNRAR] David Chadwick (Kent), Seda Gürses (KUL), eds.: "Requirements

Assessment Report", TAS3 Consortium, 20090102. Document:

TAS3_D1p2_Requirements_Assesment_Report_1_V1p0.pdf

[TAS3D14DESIGNREQ] Gilles Montagnon (SAP), ed.: "Design Requirements", TAS3

Consortium, 20081221. Document:

TAS3_D1p4_Design_Requirements_1_V2p0.pdf

[TAS3D22UPONTO] Quentin Reul (VUB), ed.: "Common Upper Ontologies", TAS3

Consortium, Deliverable D2.2, 7.5.2009. Document: D2.2_ver1.7.pdf

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 113 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[TAS3D41ID] Sampo Kellomäki, ed.: "Identifier and Discovery Function", TAS3 Deliverable

4.1, 2009. Document: tas3-disco-v01.pdf

[TAS3D42Repo] David Chadwick, ed.: "Specification of information containers and

authentic repositories", TAS3 Deliverable 4.2, 2009.

[TAS3D62Contract] Joseph Alhadef, Brendan Van Alsenoy: "Contractual Framework", v3.0,

TAS3 Deliverable D6.1, December 2009.

[TAS3D71IdMAnAz] TAS3 Deliverable 7.1. "Design of Identity Management,

Authentication and Authorization Infrastructure" 3 Jan 2009.

[TAS3D81RepoSW] "Software Documentation System: Repository Services", UniKOLD,

TAS3 Deliverable 8.1, 2009.

[TAS3D82BackOffice] "Back Office Services with Documentation", TAS3 Consortium, 2009.

[TAS3D83CliSW] "TAS3 Client Software with User Guide", TAS3 Consortium, 2009.

[TAS3D91PilotUC] "Pilot Use Cases", Deliverable D9.1, TAS3 Consortium, 2009.

[TAS3DOW] "TAS3 Description of Work", TAS3 Consortium, 2008. (Not publicly available.)

File: TAS3_DescriptionOfWork.DoW.technical.annex.final.version.20071030.pdf

[TAS3GLOS] Quentin Reul (VUB), ed.: "TAS3 Glossary", TAS3 Consortium, 2009.

Document: tas3-glossary-vXX.pdf

[TAS3PROTO] Sampo Kellomäki, ed.: "TAS3 Protocols and Concrete Architecture", TAS3

Consortium, 2009. Document: tas3-proto-vXX.pdf

[TAS3RISK] Magalie Seguran, ed.: "TAS3 Risk Assessment", TAS3 Consortium, 2010.

Document: tas3-risk-vXX.pdf

[TAS3TECHQUIZ] Sampo Kellomäki, ed.: "TAS3 Technical Self-Assessment

Questionnaire", TAS3 Consortium, 2010. Document: tas3-tech-quiz-vXX.pdf

[TAS3THREAT] Sampo Kellomäki, ed.: "TAS3 Threat Analysis", TAS3 Consortium, 2009.

Document: tas3-threats-vXX.pdf

[TAS3USERCENT] Gilles Montagnon, ed.: "TAS3 User Centricity Report", TAS3

Consortium, 2010. Document: tas3-user-cent-vXX.pdf

[TAS3WP] "TAS3 Architecture White Paper", TAS3 Consortium, 2009 (as of 20090324 to be

published).

[Tom09] Allen Tom, et al.: "OAuth Web Resource Authorization Profiles (OAuth WRAP)",

Version 0.9.7.2, Google, Microsoft, and Yahoo, Nov. 5, 2009 (WRAP-v0.9.7.2.pdf)

[TrustBuilder2] Adam J. Lee, Marianne Winslett and Kenneth J. Perano: "TrustBuilder2: A

Reconfigurable Framework for Trust Negotiation", IFIP Trust Management

Conference, June 2009. TAS3_D2p4_Protocols_API_Concrete_Arch-v-12 (1.57)

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 114 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

Page 94 of 95TAS3 Protocols, API, and Concrete Architecture, 12 (1.57) 30 June

2010

[UML2] http://www.sparxsystems.com.au/resources/uml2_tutorial/

[UNDP07] "e-Government Interoperability Guide", United Nations Development

Programme, 2007. http://www.apdip.net/projects/gif/GIF-Guide.pdf

[VenturiEA08] V. Venturi, et al.: "Use of SAML to retrieve Authorization Credentials",

Open GridForum, 2008. (*** Attribute PullProfilev1.5.doc; CVS related)

[Wharton94] C. Wharton et al. "The cognitive walkthrough method: a practitioner’s guide"

in J.Nielsen & R. Mack "Usability Inspection Methods" pp. 105-140, Wiley, 1994.

[WSML-Web] "Web Services Modelling Language" http://www.wsmo.org/wsml/

[WSMO05] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,

C.Feier, C. Bussler, and D. Fensel (2005). "Web Service Modeling Ontology". In

Applied Ontology 1, pages 77-106.

[WSMO-Web] "Web Services Modelling Ontology" http://www.wsmo.org/

[WSPolicy] Bajaj et al.: "Web Services Policy Framework (WS-Policy) and Web Services

Policy Attachment (WS-PolicyAttachment)", W3C, March 2006.

http://schemas.xmlsoap.org/ws/2004/09/policy/

[WSTrust] "WS-Trust 1.3", CD 6, OASIS, Sept 2006. (*** WS-Trust, STS, etc.)

[X520] ITU-T Rec. X.520, "The Directory: Selected Attribute Types", 1996.

[X521] ITU-T Rec. X.521, "The Directory: Selected Object Classes", 1996.

[XACML2] "eXtensible Access Control Markup Language (XACML)" v2.0, OASIS Standard,

February 2005. From http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml

[XACML2SAMLold] "SAML 2.0 Profile of XACML, Version 2, Working Draft 5", 19 July

2007, OASIS. (*** instead of "SAML 2.0 profile of XACML v2.0, ERRATA,

Working Draft 01, 17 November 2005" which is the version that the profile is

currently based on; XACML-ContextProfile1.1.doc from Open Grid Forum - OGF)

[XACML2SAML] "SAML 2.0 Profile of XACML, Version 2, Committee Draft", 16 April 2009

[XML] http://www.w3.org/TR/REC-xml

[XML-C14N] XML Canonicalization (non-exclusive), http://www.w3.org/TR/2001/REC-xml-

c14n-20010315; J. Boyer: "Canonical XML Version 1.0", W3C Recommendation,

15.3.2001, http://www.w3.org/TR/xml-c14n, RFC3076

[XML-EXC-C14N] Exclusive XML Canonicalization, http://www.w3.org/TR/xml-exc-c14n/

TAS3 Protocols, API, and Concrete Architecture June 30, 2011

Page 115 of 115
TAS3_D2p4_Protocols_API_Concrete_Arch_Final.doc

[XMLDSIG] "XML-Signature Syntax and Processing", W3C Recommendation, 12.2.2002,

http://www.w3.org/TR/xmldsig-core, RFC3275

[XMLENC] "XML Encryption Syntax and Processing", W3C Recommendation, 10.12.2002,

http://www.w3.org/TR/xmlenc-core

[XPATH99] James Clark and Steve DeRose, eds. "XML Path Language (XPath) Version

1.0", W3C Recommendation 16 November 1999. From:

http://www.w3.org/TR/xpath

[ZXIDREADME] Sampo Kellomäki: "README.zxid" file from zxid.org, 2009

