
Legal Notice
All information included in this document is subject to change without notice.
The Members of the TAS3 Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the TAS3 Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Document type: Deliverable

Title: D4.3 – WP4 Implementation

Work Package: WP4

Deliverable Number: D4.3

Editor: Dennis Vandevenne – K.U.Leuven

Dissemination Level: Restricted

Preparation Date: 31 May 2009

Version: 1.1

SEVENTH FRAMEWORK PROGRAMME
Challenge 1
Information and Communication Technologies

Trusted Architecture for Securely Shared Services

D4.3 – WP4 Implementation Page 2 of 29

 Version 1.1

The TAS3 Consortium

Contributors

 Name Organization
1 Dennis Vandevenne K.U.Leuven
2 Danny De Cock K.U.Leuven
3 Marc Santos UNIKOLD
4 Michele Bezzi SAP
5 Jeroen Hoppenbrouwers Synergetics/K.U.Leuven

Nr Participant name Country Participant
short name

Participant role

1 K.U.Leuven BE KUL Coordinator

2 Synergetics nv/sa BE SYN Project
Manager

3 University of Kent UK KENT Partner

4 University of Karlsruhe DE KARL Partner

5 Technical University of
Eindhoven

NL TU/e Partner

6 CNR/ISTI IT CNR Partner

7 University of Koblenz-Landau DE UNIKOLD Partner

8 Vrije Universiteit Brussel BE VUB Partner

9 University of Zaragoza ES UNIZAR Partner

10 University of Nottingham UK NOT Partner

11 SAP research DE SAP Partner

12 Eifel FR EIF Partner

13 Intalio FR INT Partner

14 Risaris IR RIS Partner

15 Kenteq BE KETQ Partner

16 Oracle UK ORACLE Partner

17 Custodix BE CUS Partner

D4.3 – WP4 Implementation Page 3 of 29

 Version 1.1

TTaabbllee ooff CCoonntteennttss

1 EXECUTIVE SUMMARY .. 5

2 INTRODUCTION TO THE PROTOTYPE .. 6

3 AVAILABLE RELEASE AND COMPONENTS .. 6

3.1 SOFTWARE PREREQUISITES 6
3.2 HARDWARE PREREQUISITES 6
3.3 INSTALLATION GUIDELINES 6
3.4 LICENSE INFORMATION 6

4 TUTORIAL ... 7

4.1 CREATING A SCENARIO 7
4.2 CREATING CONTEXTS 7
4.3 CREATING ACTORS 7
4.4 COMMUNICATION BETWEEN ACTORS 9
4.5 DIFFERENT VIEWS 10

4.5.1 Scenario Graph Overview ... 10
4.5.2 Inspector view... 12
4.5.3 Status and Application Front-end View ... 13

4.6 POLICY MANAGER 13
4.7 SAVING AND LOADING SCENARIOS 15

5 RUNNING THE SOFTWARE – EXECUTING THE BREAK THE GLASS
SCENARIO .. 16

5.1 DESCRIPTION OF THE BREAK THE GLASS SCENARIO 16
5.1.1 Relationship initialization between the GP and the patient. 16
5.1.2 Patient needs treatment in a hospital ... 17
5.1.3 Patient needs emergency treatment (Break the glass scenario) 17
5.1.4 Patient needs emergency treatment (Break the glass + delegation) 18

5.2 CREATING THE BREAK THE GLASS SCENARIO 18
5.2.1 Creating the contexts ... 18
5.2.2 Creating the actors .. 19
5.2.3 Making the interconnections .. 19

5.3 EXECUTING THE BREAK THE GLASS SCENARIO 20
5.3.1 The Front-Office .. 20
5.3.1.1 Authentication ... 20
5.3.1.2 Authorization .. 20
5.3.1.3 Requesting a patient's medical file ... 21

6 ROADMAP FOR FUTURE RELEASE .. 23

7 EXAMPLES OF AN ACTOR’S SOURCE CODE AND TASK
DESCRIPTIONS ... 24

8 DOCUMENT CONTROL ... 29

TTaabbllee ooff FFiigguurreess

D4.3 – WP4 Implementation Page 4 of 29

 Version 1.1

Figure 1: The user interface for adding an actor .. 9
Figure 2: The overview of the break the glass scenario .. 11
Figure 3: Inspector view of a Medical Doctor ... 13
Figure 4: Policy manager user interface .. 15
Figure 5: Break the glass scenario sequence diagram .. 18
Figure 6: The Front-Office after initialization ... 21
Figure 7: The user interface for breaking the glass .. 22

D4.3 – WP4 Implementation Page 5 of 29

 Version 1.1

1 Executive Summary

The requirements assessment report (D1.2) has pointed out that WP4 Information Protection
has two central high-level requirements. The first refers to the possibility to demonstrate to
lay users the complex security and trust features of the TAS3 system. The second refers to
the ability of providers to prove that they processed the information and services in
accordance to the required policies.
The present version of this deliverable introduces a system independent and protocol
agnostic prototype of the TAS3 ecosystem which addresses the first requirement. Future
versions will extend this prototype to address the other WP4 requirements.
This prototype is built using the demonstrator framework of K.U.Leuven that provides an
ecosystem within which different actor types can be defined and instantiated. These actors
provide dummy functionality by default, but can easily be linked to real life instances of
genuine service providers. Each of these actors (e.g., an information repository, a medical
doctor, a hospital, an employment agency…) is able to communicate through the framework
with each other actor. The security level of this communication (insecure, authenticating all
outbound traffic, encrypting all communication, or authenticating and encrypting all
communication), is specific to the policy of the actor, i.e., whether the actors can effectively
communicate with one another is subject to both actors’ respective policies. The
demonstrator framework provides this communication policy enforcement by default.
The actors that have been specifically defined and instantiated for the TAS3 ecosystem (cf.
section 5) are those necessary to illustrate the break-the-glass principle that has been
elaborated on in D7. In addition to these actors, the TAS3 specific functionality has been
developed and integrated in this framework.

IMPORTANT CAVEAT: The prototype presented in this deliverable focuses on showing the
functionality and security properties of a TAS3 ecosystem with its actors using task driven
business processes that currently operate on dummy actors, but that can easily be
instantiated with genuine service providers and consumers. Because this deliverable is the
outcome of the work of WP4 executed during the first year of a four year project, the
presented implementation is not to be considered as a reference implementation in the strict
sense: this prototype illustrates the functionality of the complex TAS3 ecosystem and is not
intended to be used as a reference implementation to test against the functionality of a full
blown TAS3 service provider or service consumer. The building blocks that implement the
real-life components with standard-based protocols are being designed in work package 2,
and will then be aligned with the work of the work packages 3, 5, 7, 8, 9. Subsequently,
these building blocks will be integrated by work package 12. Testing the real-life components
will be the object of work package 10.

D4.3 – WP4 Implementation Page 6 of 29

 Version 1.1

2 Introduction to the prototype

The following section will bring the reader to an understanding of how to install and execute
the demonstrator framework (section 3), how to make use of the demonstrator framework
(section 4), and how to create and run scenario’s in general and the break the glass scenario
in this particular case (section 5). Because this prototype is a work in progress, future
releases are planned (see section 6 for the roadmap for future releases).

3 Available release and components

3.1 Software prerequisites

• Java runtime environment 1.6

3.2 Hardware prerequisites

• A genuine Belgian eID card or a developer’s eID card can be used as smartcard based
authentication method

• Note that userid/password authentication is supported to enable users who do not
possess an eID card or developer’s card

3.3 Installation Guidelines

1. Download the file
http://www.esat.kuleuven.be/~decockd/tas3/wp4.prototype/TAS3_D4p3.wp4.implem
entation.20090526.tar.zip.
This file includes all java class files, source files and external jar files that are
necessary to successfully run and rebuild the prototype

2. Extract this file (unzip using the password `tasss’ (without quotes), and untar the
decrypted zip file). This will create a directory shippy.20090526.

3. Start the demonstrator framework:
1. On Windows: execute run.bat
2. On Unix: execute `. ./run.bat`

3.4 License information

The present prototype is licensed under the a triple license scheme, namely MPL 1.1/GPL
2.0/LGPL 2.1.

http://www.esat.kuleuven.be/~decockd/tas3/wp4.prototype/TAS3_D4p3.wp4.implementation.20090526.tar.zip�
http://www.esat.kuleuven.be/~decockd/tas3/wp4.prototype/TAS3_D4p3.wp4.implementation.20090526.tar.zip�

D4.3 – WP4 Implementation Page 7 of 29

 Version 1.1

4 Tutorial

In this section the general use of the prototype is explained to enable users to easily create a
scenario of their choosing. A scenario involves actors (service providers or service
consumers) that live in their own context. Examples of actors that are active in a healthcare
context are a Hospital, a Medical Doctor, a Patient, etc.
A typical scenario exists of a network of actors which belong to contexts. An actor can belong
to one context when running one scenario, and to another context when running a different
scenario. Therefore, first the creation of contexts and actors and the process of
interconnecting them are explained. Then, the different views which the demonstrator
framework offers to adjust and interact with a scenario are given and finally the saving and
opening of scenarios is explained.
Adding functionality of a specific actor to the demonstrator framework involves
straightforward Java-coding. The demonstrator framework has been programmed such that
the number of lines and simplicity of this Java-coding can be kept to a minimum. The
interaction of actors is managed through tasks.
Section 7 includes the source code of such an actor, its tasks and subtasks.
For simplicity reasons, the scenario that is used to illustrate the functionality of the presented
prototype, is based on the break-the-glass scenario, cf. D7.1, and the consultation of
summarized electronic health records (SumEHRs), cf. WP9.

4.1 Creating a scenario

Once the demonstrator framework is instantiated, the user is presented with an empty
scenario set. This state can always be obtained by asking for a new scenario in the menu
file/new. First, the scenario can be given a name with scenario/rename scenario and a
background image with scenario/add scenario background. The scenario background image is
positioned on the right top of the scenario view and is only decorative in nature. File/save
allows the user to save the current scenario at any point (see section 4.7 Saving and Loading
Scenarios).

4.2 Creating Contexts

After creating a new scenario, the necessary context(s) can be created with context/add
context or the same functionality is available by right clicking the scenario background. The
demonstrator enforces the uniqueness of each context name. After the creation of one or
more contexts, more functionality becomes available in the context menu. Existing contexts
can be renamed, given a particular color and the context visibility can be toggled.

• The renaming of a context enforces unique context names.
• To keep a clear view on the created scenario, it often is wise to give different

contexts different colors.
• Toggling a context's visibility only makes sense when it contains one or more

actors. This action changes the visibility of all actors in a particular context and of
all edges which connect to at least one actor in the context.

More contexts can always be created and existing contexts can be adjusted when this seems
necessary to the user.

4.3 Creating Actors

The creation of actors is available in the edit/add actor menu or in the pop-up menu which
appears after a right click on the scenario background. The user then sees a target which

D4.3 – WP4 Implementation Page 8 of 29

 Version 1.1

moves along with mouse movements. One needs to left-click to confirm the future location of
the actor to be added or press escape to cancel the operation. After confirmation of the
actor's location, the user is presented with a pop-up dialog which allows the quick creation of
the necessary actor. This actor is chosen from the first drop down menu named Choose actor
type. The second drop down box allows specifying the context in which the new actor will
live. Furthermore, the user also needs to specify whether the actor will be a gateway1

Figure 1
 or not.

The dialog which allows adding the actor () also contains a visibility path parameter
and an object ID. The default values for these two parameters (as well as for the remaining
fields) are sufficient for the creation of the break the glass scenario. Finally the user can
confirm the creation of the actor, or choose to cancel the operation.
The present prototype illustrating the Break-the-Glass scenario involves the following actor
types:

- Authoritative source of medical doctors: the authoritative source that is able to
confirm whether a particular actor (in this case a general practitioner) is known as a
medical doctor

- Authorization policy decision point: the PDP that will be involved in making the
decision whether a service request (in this case fetching a patient’s summarized
eHealth record (SumEHR) from the patient’s medical dossier)

- Crossroads bank of social security: a mediator service that abstracts the authoritative
source of medical doctors from actors that are active in the social security context

- E-Health: a mediator service that makes the functionality of service providers in the
healthcare context available to other service providers

- General practitioner: a medical doctor who manages the medical dossier of a patient
- General practitioners association: a grouping of two or more general practitioners.

Each practitioner has access to the medical dossier of each patient of who is a client of
the association of general practitioners

- Hospital: an actor that represents a hospital
- Medical doctor: a medical doctor stores the medical dossier of a patient in the

database with medical dossiers of the general practitioners association to which he is
associated

- Medical doctor trainee: a trainee of a medical doctor. A trainee does not yet have the
necessary credentials that allows him/her to access a patient’s SumEHR

- Patient: a patient is a client with a medical doctor
- Portal site: an actor that acts as an entry point for users
- SumEHR reference register: the authoritative source that specifies which association

of general practitioners holds the medical dossier of a patient.
The present prototype also supports actors that are not relevant to illustrate the Break-the-
Glass, but that can be used to illustrate other scenario’s, e.g., registration of a newborn child,
cross-context exchange of pseudonymized information, anonymization of information
containers, aggregating financial and property information of a legal or natural person:

- Authoritative source of bailiffs: similar to the authoritative source of medical doctors,
but dealing with bailiffs

- Bailiff: similar to a medical doctor, but providing bailiff functionality
- Belgian official journal: the authoritative source that is able to confirm whether a

citizen is known to be a civil servant or not
- Cadaster: the authoritative source that is able to map land and houses to physical and

legal persons
- Cross roads bank of enterprises: the authoritative source that hosts a database linking

information on organizations and enterprises to their context specific identifiers

1 An actor that is connected with another actor sees the functionality of the other actor.
Actors are subdivided into two categories: gateways and non-gateways. A mediator service
provider is a gateway that bridges the functionality of the actors that are connected with a
gateway.

D4.3 – WP4 Implementation Page 9 of 29

 Version 1.1

- Document anonymizer: a service provider that is able to anonymize and
pseudonymize structured documents and information containers. This actor acts as
the authoritative source of the pseudonymized information. These actors relate to the
identifiers engine specified in D4.1

- Global identifier and document identifier anonymizer: actors that are responsible to
map global identifiers (e.g., national IDs), document identifiers, etc. These actors
relate to the identifiers engine specified in D4.1

- Federal, regional and local context identifier issuer: an actor that assumes the role of
an identifier issuer active at a federal, regional and local level, respectively

- Federal service bus: an actor that acts a gateway to connect different actors that are
active at the federal level

- Ministry of Finances: the authoritative source that hosts the financial information
about natural and legal entities

- National Register: the authoritative source that hosts the reference information on
natural persons

- Time stamping authority: a service provider that issues time stamps on information

Figure 1: The user interface for adding an actor

4.4 Communication between Actors

For actors to be able to communicate in a task-driven business process, they need to be
connected to each other. This can be done by connecting two actors directly (1) or by the
design of a larger part of the scenario graph by which non-adjacent actors are able to
communicate (2).
The first option is the simplest one. One actor needs to be right-clicked. Then, from the
adaptive actor specific pop-up menu which appears, the add edge function can be selected.
The scenario visualization will then draw the edge from the selected actor to the moving
mouse pointer until a second actor is selected as edge end point or escape is pressed. For a
scenario to be able to run correctly, all involved actors need to be connected as specified in
the scenario description, see section 5.2.3.
The second option requires that the two actors which need to communicate are connected via
one or more gateways, which can bridge communication messages and functionality offered

D4.3 – WP4 Implementation Page 10 of 29

 Version 1.1

by actors. Whether or not actors are gateways is specified at the actor's creation, see section
4.3.

4.5 Different Views

The main view of the demonstrator is called overview (Figure 2: The overview of the break
the glass scenario) and contains the current scenario graph which exists out of
interconnected actors. Upon the selection of an actor its inspector is shown (Figure 2) which
is a combination of a detailed view of the actor specific information and actor specific
functionalities. The last view, at the bottom, is a tabbed pane which always contains the
status window. This provides the user with feedback of the current operation of the
demonstrator. Besides the status window, the bottom view will add a tab each time a user
interface needs to be presented for the execution of a particular scenario. In this way
multiple scenario components can run at the same time, without losing oversight on the
offered functionality.

4.5.1 Scenario Graph Overview

This view, illustrated by Figure 2: The overview of the break the glass scenario, contains the
current scenario graph which exists out of interconnected actors. It provides mechanisms for
manipulating the scenario graph, the functionalities are:

• Creation of actors (see section 4.3), connections between actors (see section 4.4) and
contexts (see section 4.2) by right clicking on the overview's background. This
presents a menu with the necessary functions.

• The overview provides an interface for the selection of actors and edges. Any number
of actors and edges can be selected by holding the control-key while selecting or by
drawing a rectangle on the overview with the mouse left button.

• The positioning and repositioning of actors is supported. An actor is positioned by
moving the presented location target visualization with the mouse while being in the
process of adding an actor (see section 4.3). Actors can be repositioned by dragging
the mouse or moving the arrow keys while one or more actors are selected. Holding
the shift-key down while moving with the arrow-keys speeds up the movement. Edges
cannot be moved, positioned or repositioned, because they connect already positioned
actors and move along when their corresponding actors are repositioned.

• The addition and removal of actors is possible in the scenario graph overview. The
addition of an actor is explained above. Deletion of one or more actors is possible by
making a selection of the actor(s) to be removed and pressing the delete key.

• Advanced functionality is offered in the adaptive actor specific pop-up menu which is
shown after a right click on any of the actors in the scenario graph overview. See
below for more detailed explanation of these functionalities.

• Any number of selected actors can be quickly moved across contexts by using the
numeric key pad. (Only supported for less than ten contexts)

D4.3 – WP4 Implementation Page 11 of 29

 Version 1.1

Figure 2: The overview of the break the glass scenario

Furthermore, the scenario graph overview offers actor specific functionalities by means of the
actor specific, adaptive pop-up menu which appears by right-clicking on any of the actors in
the scenario graph overview. The functionalities are the following:

• Show inspector shows the inspector of the selected actor. This inspector provides
insight in the actor’s events log. In a next version of this prototype, the inspector will
consist of the Dashboard component that is specified in WP2, cf. D2.1, sections A.7
and D.3.

• Add edge fixes the starting point, the selected actor, of a new connection.
• Add edge to all makes a communication link between the selected actor and all other

visible actors in the scenario graph overview.
• Add edge to all in context makes a communication link between the selected actor

and all other visible actors in the context which can be selected.
• Add icon allows the user to browse for an icon to replace the default visualization of

the actor. The chosen icon should be a representative visualization of the actor. To
enable icons for actors, the icon view must be activated in the demonstrator's view
menu.

• Move to another context offers a choice of contexts to which the selected actor can
be moved to.

• Only show this context hides all actors of all other contexts than the context to
which the selected actor belongs.

• Only select this context selects all actors of the context to which the selected actor
belongs.

• Rename context asks the user to provide a new name for the context to which the
selected actor belongs. Context name uniqueness is enforced by the demonstrator.

• Change context color provides an interface to select a new color for the context to
which the selected actor belongs. All actors in that context will change color.

• Clear task queue clears all running tasks of the selected actor. This can be useful
when the scenario is in an unwanted stated.

• Show task queue shows all running tasks of the selected actor in the actor's
inspector (see section 4.5.2) which is added on the right of the scenario graph

D4.3 – WP4 Implementation Page 12 of 29

 Version 1.1

overview. Although initially created for debugging purpose, this functionality could
help the user to understand a running scenario.

• Show log opens a new browser window (currently only Firefox supported) in which
the actor specific log is shown.

• Visible actors returns all actors which are visible to the selected actor. Directly
connected actors are always visible. Other actors can be made visible by gateways.

4.5.2 Inspector view

An actor-specific inspector view can be obtained by right clicking any visible actor and
choosing the show inspector option. If the show inspector on selection option is selected in
the demonstrator's view menu, the selection of any actor directly leads to the visualization of
its inspector.
Inspectors are grouped in a tabbed container on the right of the demonstrator (Figure 3).
They have an informative function as well as an interactive function. The informative function
provides transparency of the business processes that are executed while using the prototype.
A business process is executed whenever a task or subtask is triggered. As stated before, the
inspector view fulfills the role of the Dashboard that is specified in D2.1.
The second function supports auditing the active business process. All events that occur and
an actor has to process are logged in an audit trail. The inspector provides access to these
audit trails. The audit function is specified in D2.1, cf. section 6.3.

From top to bottom, an inspector's user interface provides the following components:

• Inspector tabs Any number of inspectors can be added to the inspector view. They
will be available through the tabs on top, by which they can be closed as well. If the
last actor specific inspector is closed, the inspector view will be hidden.

• Visible objects tree This is a tree-representation of the actors which are visible to
the actor which inspector is used. Actors can be visible through direct connections, or
they can be made visible through gateways. This is a legacy component which used to
allow the invocation of services offered by other actors. The demonstrator now
integrates scenario specific user interfaces at the bottom (see 4.5.3). The visible
objects tree is still a useful component that allows overseeing the available services
offered by the visible actors, although this functionality is also offered by the adaptive
actor specific pop-up menu.

• Actor's message trail While running a scenario, e.g. the break the glass scenario,
actors send and receive messages. This is shown in the actors' message trails.

• Security toolbar provides access to the actor’s security setting of the secure
communications utility of the demonstrator framework. It enables point-to-point and
end-to-end secure communications according to the security policy of the
communicating actors. This security policy is managed by the actor itself and obliges
the communicating party to send its replies using a security level that is at least equal
to its own security level. This feature supports the user-centricity of specifying the
security level at the communication layer. The term “secure” refers to the property
that the information sent in a secure communications session (a so-called
communications tube) is protected using one of the following security levels:

o Not protected (I): the information is sent in an insecure way
o Data-authenticity (A): the information is sent in such a way that the receiver

can determine the sender of the information. The information is authenticated
o Data-confidentiality (C): the information is sent so that only the intended

sender and receiver have access to this information. The information is sent
confidentially

o Secure (S): the data-authenticity and data-confidentiality is protected at the
same time. The sender of the information sent through a secure
communications tube can indistinguishably be determined, and only the

D4.3 – WP4 Implementation Page 13 of 29

 Version 1.1

intended sender and receiver have access to this information. The information
is sent securely.

Figure 3: Inspector view of a Medical Doctor

4.5.3 Status and Application Front-end View

The last view, at the bottom, is a tabbed pane which always contains the status window. This
provides the user with feedback of the current operation of the demonstrator. This feedback
can be any general information, for instance, the status window could give a confirmation if a
requested function, like saving a scenario (see section 4.7), is performed successfully.
Furthermore, some details might be added dependent on the requested function, like for
instance, the location where the scenario is saved.

Besides the status window, the bottom view will add a tab each time a user interface needs
to be presented for the execution of a particular instantiation of the a scenario. In this way
multiple scenario components can run at the same time, without loosing oversight on the
offered functionality to the different actors.

4.6 Policy Manager

Every actor has a policy manager that manages XACML policies based on the actor’s own
functionality and the actors that are interconnected with this actor. The evaluation of these
policies uses off-the-shelve PDPs that can easily be linked with those provided by WP5 and

D4.3 – WP4 Implementation Page 14 of 29

 Version 1.1

WP7. The policy manager can be reached by selecting Policy Manager from the actor specific
adaptive pop-up menu. When this is done the first time, a user interface with zero policies is
presented. One can start adding one or more policies and later edit, send or remove them.
The policy manager addresses the requirement with respect to the user-centricity of the
policy enforcement: each user of an actor can specify which tasks can be used or have to be
denied access to for any other know actor. The user can also specify which PDP should be
responsible for evaluating the user’s policy. This mechanism has been elaborated on in D7.1,
section

• Adding policies is a functionality that allows the user to specify the policies he or she
needs for the target scenario.

o A selection needs to be made out of the available services the actor offers. At
the writing of this document it is possible to create contradicting or overlapping
policies for which the authorization PDP would return “indeterminate” as
evaluation (see section 6).

o The service requester needs to be specified from the drop down box that
contains the actor's visible actors.

o The result (permit or deny) of the policy needs to be specified.
o The authorization policy decision point (authorization PDP) needs to be selected

from the visible authorization policy decision points.
o The current policy needs to be confirmed. This results in the policy summary.

• Editing policies is the functionality that allows existing policies to be changed. When
an existing policy is changed, it needs to be resent to the selected authorization PDP.

• Sending policies can be done on a per policy base or for all policies at once. When a
policy is edited, and needs to be resent, the user interface will make this clear by
marking the send button red. It turns green after the authorization PDP confirms the
receipt of the sent policy.

• Removing policies communicates the removal of the policy to the relevant
authorization PDP and removes it from the policy collection of the actor's policy
manager.

• Saving the policy collection to persistent storage is done when the policy manager
is closed. In this way, policies are saved per actor and per newly created scenario.

Below (Figure 4) the user interface of the policy manager is shown. The first line represents a
confirmed policy which is sent to the Authorization PDP. The second line represents a new
policy being created. The authorization policy enforcement point (Authorization PEP) check
determines whether the actor (the Authoritative Source for Medical Doctors in this case) will
enforce the policies which are created by its policy manager user interface and sent to the
authorization policy decision points.
The user has the possibility to specify any number of policies referring to any of the tasks
supported by the actor. This illustrates that a user is able to specify fine grained policies in a
convenient and user friendly manner.

D4.3 – WP4 Implementation Page 15 of 29

 Version 1.1

Figure 4: Policy manager user interface

4.7 Saving and Loading Scenarios

Created scenarios can be saved and loaded afterwards. Saving includes the scenario name,
background, actors, interconnections between actors, status information about actors (for
instance, being a gateway or actors’ locations). Saving excludes remaining tasks in the
actors’ task queues, opened inspectors, opened scenario user interface instances. In general,
running scenarios are not saved, the scenario network and its component are.

D4.3 – WP4 Implementation Page 16 of 29

 Version 1.1

5 Running the software – Executing the Break the Glass Scenario

After giving a general explanation of the break the glass scenario and principle to consult a
summarized electronic health record (also see work packages 7 and 9), this chapter walks
the reader through both the break the glass scenario creation phase and the execution
phase.

5.1 Description of the Break the Glass Scenario

In order to illustrate the break the glass scenario (cf. section 3 of D7.1), first two related
scenarios are explained: Initialization of the relationship between the general practitioner
(GP) and the patient (1) and a patient needing treatment in a hospital (2). Then the break
the glass scenario illustrates a patient receiving treatment from a medical doctor in an
emergency hospital. Finally, this last scenario is elaborated to treatment given by a medical
doctor trainee, thus a delegation component added.

A general practitioners association (GPA) is a voluntary cooperation between general
practitioners belonging to related medical disciplines. A general practitioner can prove his
relationship to a general practitioners association by showing the voucher he receives from
the general practitioners association.

There are three different types of patient files manipulated in the following scenarios: the
patient's global medical dossier, electronic medical dossier and Summarized Electronic Health
Record (SumEHR).

• The Global Medical Dossier (GMD) is kept by the patient's general practitioner or
general practitioner's association. The GMD aggregates all medical information about
the patient to avoid unnecessary double treatments and to provide a complete
medical history when necessary.

• An Electronic Medical Dossier (EMD) is a file containing medical information about the
patient which is stored by, for instance, a hospital where the patient
receives treatment. The patient's GMD should refer to this EMD, accompanied with a
summary of the treatment.

• The Summarized Electronic Health Record (SumEHR) contains useful medical
information necessary for a specific treatment. Therefore, it contains pieces of medical
information from the Global Medical Dossier, not the whole GMD. The SumEHR
enables the communication between the patient's general practitioner of preference,
and other medical professionals like, for instance, medical doctors working in a
hospital.

5.1.1 Relationship initialization between the GP and the patient.

A patient can choose to initialize a global medical dossier (GMD) with a general practitioner of
his or her choice. In the case that this general practitioner belongs to a general practitioners
association, in fact, the patient chooses to initialize his global medical dossier with that
general practitioners association. The global medical dossier is then stored by this general
practitioners association. Furthermore, the general practitioners association needs to inform
the SumEHR Reference Register of this new relationship between the patient and the GPA.
This enables the SumEHR Reference Register to offer a service that refers to the correct GPA
for a certain patient. The initialization described above is not a part of the break the glass
scenario and is done before the scenario starts. The necessary data is stored in XML files
related to the actors.

D4.3 – WP4 Implementation Page 17 of 29

 Version 1.1

5.1.2 Patient needs treatment in a hospital

A patient feeling ill usually first visits his general practitioner, who diagnoses the patient and,
if applicable, refers him or her to a medical hospital that offers the necessary treatment. The
patient then goes to that treating hospital which initializes a patient file if none exists. This
patient file contains a reference to the GPA of the patient's choice, as declared by the patient.
After the patient has received treatment, the patient's file contains the relevant information
about that treatment, for instance, a tissue analysis and the patient’s general practitioner is
notified of the results.
It is also possible to have a reversed information flow. When the patient revisits this general
practitioner to discuss the results of the treatment, the general practitioner might need more
information from the treating hospital besides the merely the results. Therefore, the general
practitioner needs to request the patient file from the treating hospital which he can do at the
eHealth portal site after successful authentication and authorization. In order for the treating
hospital release the patient's file, the portal site application needs to include with the
request the voucher the general practitioner received from his GPA which proves their
relationship. The treating hospital then can verify whether the patient, granted access to his
or her treatment data, belongs to this GPA by verifying the voucher and the local reference to
the patients GPA.

5.1.3 Patient needs emergency treatment (Break the glass scenario)

A patient needing emergency treatment goes (or is brought) to the hospital closest to the
patient's location. The emergency medical doctor then needs to be able to retrieve the
SumEHR of the patient's GMD in order to be able to treat the patient.
To retrieve this information, the emergency MD turns to the eHealth portal site. He
authenticates himself and requests a voucher to prove his capacity of medical doctor. In the
back-office, eHealth mediates this service by forwarding the request to the Authoritative
Source Medical Doctors (ASMD) which answers with a voucher that states the medical
doctor's capacity and allows verifying this.
After successful authentication and authorization, the eHealth portal site offers the
functionality to request a patient's SumEHR from the GMD stored at the GPA. EHealth, as
mediator, first uses the service offered by the SumEHR Reference Register which returns a
reference to the GPA it has learnt to associate to the patient's GMD. Then, the mediator can
request a SumEHR from the referred GPA, which will refuse to release this information
because the emergency medical doctor is not a member of the patient's GPA. The eHealth
front-office notifies the emergency medical doctor and asks him whether he would like to
"break the glass", which means that he can get access if he documents his request with a
motivation and provides the necessary proof of capacity. The GPA will then return the
requested SumEHR and log the emergency medical doctor's motivation and capacity
voucher. This process is shown in Figure 5.
For this demonstration scenario, we assume this will result in enough medical information to
treat the patient. In a real-life situation, it might be the case that this SumEHR refers to
relevant medical information stored by medical practices or hospitals where the patient has
had treatment before. Therefore it might be necessary to aggregate this information. This
case is also included in Figure 5.

D4.3 – WP4 Implementation Page 18 of 29

 Version 1.1

Figure 5: Break the glass scenario sequence diagram

5.1.4 Patient needs emergency treatment (Break the glass + delegation)

This scenario is similar to the one described above, except that a medical doctor trainee will
attempt to break the glass. This will fail because his capacity voucher does not specify this
capability. He will then request a delegation voucher from his supervising medical doctor.
This will allow the trainee to break the glass.
This delegation component is not implemented in the current version of the scenario (see
section 6).

5.2 Creating the break the glass scenario

First the different contexts are identified and created in section 5.2.1, then these contexts
are populated with the, for the break the glass scenario required, actors in section 5.2.2. The
third step, explained in section 5.2.3, entails interconnecting the actors where necessary.
After this, the break the glass scenario is ready to be executed. This process is explained in
section 5.3.

5.2.1 Creating the contexts

The process of creating a context in the demonstrator is explained in section 4.2. This
process needs to be repeated for each context of the break the glass scenario. Although the

D4.3 – WP4 Implementation Page 19 of 29

 Version 1.1

user is free to choose the context names (this will not break any functionality), we suggest
the following for the break the glass scenario:

The (general) medical context
The federal context
The treating hospital context
The emergency hospital context
The general practitioner's practice context.

5.2.2 Creating the actors

The process of creating an actor in the demonstrator is explained in section 4.3. This process
needs to be repeated for each actor of the break the glass scenario. The necessary
information for the actors' creation is presented in Table 1. Note: at least two General
Practitioners Associations need to be created.

Actor Context Gateway
Medical Doctor Emergency hospital No
Medical Doctor Trainee Emergency hospital No
Medical Doctor Treating hospital No
General Practitioner General practitioner's practice No
Patient Changing context:

General practitioner's practice
Treating
Emergency hospital

No

Authoritative Source Order Of Doctors Medical No
Authorization Policy Decision Point Medical No
SumEHR Reference Register Medical No
General Practitioners Association Medical No
Portal Site Federal No
Cross Roads Bank For Social Security Federal No
eHealth Federal Yes

Table 1: Actors with their contexts and gateway status

5.2.3 Making the interconnections

The process of enabling actors to communicate with each other in the demonstrator is
explained in section 4.4. This process needs to be repeated for each communication link
between two actors of the break the glass scenario.

D4.3 – WP4 Implementation Page 20 of 29

 Version 1.1

Connecting actors via an explicit link:
• Connect SumEHR Reference Register to all General Practitioners Associations in the

medical context.
• Connect eHealth to all General Practitioners Associations.
• Connect eHealth to the SumEHR Reference Register and to the Portal Site.
• Connect the Cross Roads Bank For Social Security eHealth and to the Authoritative

Source Order Of Doctors
• Connect the Authoritative Source Order Of Doctors to its authorization PDP.
• Connect the Portal Site to Medical Doctors, Medical Doctors Trainees and General

Practitioners.
• Connect Patient to Medical Doctors, Medical Doctors Trainees and General Practitioners.
• Connect the General Practitioner to the General Practitioners association he or she

belongs to. (Not necessary for the break the glass functionality, just for clarity of the
actors' relations)

Connecting actors via gateway functionality forwarding:
• Connect the Cross Roads Bank for Social Security to the gateway eHealth.
• Connect the Flemish Portal Site to the gateway eHealth.

5.3 Executing the Break the Glass Scenario

To execute the break the glass scenario one right clicks the Medical Doctor actor from the
emergency hospital context. From the list of visible actors (see section 4.5.1), the Federal
Portal Site offers the make front-office functionality. By selecting this, the break the glass
scenario user interface, also known as the front-office portal (see section 5.3.1), appears as
a tabbed panel next to the status window, as explained in section 4.5.3 and shown in Figure
6.

5.3.1 The Front-Office

The front-office represents the user-interface towards the Medical Doctor actor. It allows for
entity authentication, authorization and for requesting the patient file (with or without
breaking the glass). It also gives feedback to the user about the status of these processes.

5.3.1.1 Authentication

Entity authentication is implemented by a combination of token-based authentication and
knowledge-based authentication. The Belgian eID card is chosen as the token, which is
combined with the personal identification number (PIN). The Medical Doctor initiates the
authentication process by clicking the authenticate button of the front-office user-interface.
He will then be prompted for his personal identification number.
Users who do not have a Belgian eID card or a developer’s card can user userid/password
authentication. The default password is “pwd” (without quotes).
After successful authentication, the user obtains an authenticity voucher. The authentication
process entails the communication of two actors, the Medical Doctor and the Portal Site.
In a real life situation, the authenticity voucher will have been issued by an IdP, as
elaborated on in D2.1.

5.3.1.2 Authorization

In order to be authorized to request a patient's SumEHR, the user needs to claim a capacity
which entitles him or her to do so. In this example, the break the glass scenario, the user
needs to claim the capacity of a Medical Doctor. This can be done with the Federal Portal
front-office application where he can select this capacity and claim it with the authorize
button.

D4.3 – WP4 Implementation Page 21 of 29

 Version 1.1

The authorization process entails the communication of the Medical Doctor, the Federal
Portal, the Cross Roads Bank for Social Security and the Authoritative Source Order of
Doctors. The Federal Portal forwards the request to the Cross Roads Bank for Social Security,
with eHealth in between as a gateway to forward the functionality. The Cross Roads Bank for
Social Security has the information where to find an authoritative source which can verify the
claimed capacity. In this case it is the Authoritative Source Order of Doctors which will do the
verification and which will return proof, an authorization voucher, to the Cross Roads Bank
for Social Security, which in its turn forwards the authorization voucher back to the service
requestor. The identifier used across the different contexts is the national register number.
Furthermore, the front-office also allows for multiple claimed capacities and the annulation of
a single or all claimed capacities. Validating the authorization of an actor and the aggregation
of the necessary attributes has been described in D7.1. Each actor involved in this
authorization depends on the PDP to which it has been associated to determine the grant or
deny decision.

5.3.1.3 Requesting a patient's medical file

After the authentication and authorization step, the Federal Portal front-office user-interface
allows the Medical Doctor to request the patient's medical file (Figure 6). The medical doctor
needs to provide the patients ID (national registry number for this demonstrator). Then he or
she can click on the get patient SumEHR button.

Figure 6: The Front-Office after initialization

If the medical doctor is a member of the General Practitioners Association, he will receive the
requested patient's SumEHR. Otherwise, the user interface will prompt the medical doctor
that he can only retrieve the patient's SumEHR by "breaking the glass". He can then check
the "I want to break the glass" check box, which causes the necessary user interface
elements to appear to enter the motivation, which is required to break the glass (Figure 7). A
new attempt to retrieve the patient's SumEHR will then succeed and the General Practitioners
Association will log the motivation provided by the Medical Doctor.

D4.3 – WP4 Implementation Page 22 of 29

 Version 1.1

Figure 7: The user interface for breaking the glass

D4.3 – WP4 Implementation Page 23 of 29

 Version 1.1

6 Roadmap for future release

Version Planned functionality addition

1.01 As delivered with this document

1.1 Version delivered to the Commission end of May 2009

1.2 Policy Filter that ensures no contradicting or overlapping policies can be specified

GPA-MD vouchers should replace “medical doctors capacity vouchers + local DB check”

1.3 Redesign of the authentication and authorization user interface

Make policy persistence more intuitive in the Policy Manager

1.4 Add delegation component to the break the glass scenario (see section 5.1.4) in the
form of a delegation manager

1.5 Alignment of the prototype with the use cases selected for the first pilot

2.0 Incorporate Trust and privacy policy negotiation

2.1 Version delivered to the Commission end of 2009

D4.3 – WP4 Implementation Page 24 of 29

 Version 1.1

7 Examples of an actor’s source code and task descriptions

CrossRoadsBankOfSocialSecurity.java

/***
 * ***** BEGIN LICENSE BLOCK * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla
 * 1.1 (the "License"); you may not use this file except in compliance with the

 Public License Version

 * License. You may obtain a copy of the License at http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
 * the specific language governing rights and limitations under the License.
 *
 * The Initial Developer of the Original Code is Dennis Vandevenne
 *

.

 * Portions created by the Initial Developer are Copyright (C) 2008 the Initial
 * Developer. All Rights Reserved.
 *
 * Contributor(s):
 * Dennis Vandevenne <dennisvandevenne@gmail.com
 *

>
Danny De Cock <godot@godot

 *
.be>

 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable
 * instead of those above. If you wish to allow use of your version of this
 * file only under the terms of either the GPL or the LGPL, and not to allow
 * others to use your version of this file under the terms of the MPL,
 * indicate your decision by deleting the provisions above and replace them
 * with the notice and other provisions required by the GPL or the LGPL. If
 * you do not delete the provisions above, a recipient may use your version
 * of this file under the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK *****
 */
package framework.administration.crossroadsbankofsocialsecurity.implementations;
import javax.swing.ImageIcon;

import framework.administration.AdministrationDefaults;
import framework.common.DefaultCommandsHandler;
import framework.common.FrameworkDefaults;
import framework.generic.genericobject.implementations.GenericEgovernmentObject;
import framework.generic.genericobject.implementations.GenericObjectCommandHandler;
import framework.generic.genericobject.implementations.taskmanaging.SubTask;
import framework.generic.genericobject.implementations.taskmanaging.Task;
import framework.generic.objectManager.implementations.ObjectManager;
import framework.policymanagement.utilities.PolicyManagementUtilities;
import framework.utilities.babel.TranslationEngine;
import framework.utilities.classnames.ClassPathUtilities;
import framework.utilities.egovernment.ArgumentParser;
public class CrossRoadsBankOfSocialSecurity extends GenericEgovernmentObject implements CrossRoadsBankOfSocialSecurityCommands,
 CrossRoadsBankOfSocialSecurityPolicySettings {
 //
 public static final String administrativeRoot = AdministrationDefaults.administrativeRoot;
 public static final String workingEnvironment = AdministrationDefaults.workingEnvironment;
 //
 public final static Class classCrossRoadsBankSocialSecurity = CrossRoadsBankOfSocialSecurity.class;
 public static final String fullClassName = ClassPathUtilities.
 fullClassNameOf(classCrossRoadsBankSocialSecurity);
 public final static String capitalizedClassName = ClassPathUtilities.
 classNameOf(classCrossRoadsBankSocialSecurity);
 //
 private final static String objectFamily = AdministrationDefaults.objectFamily;
 //
 public final static String frameTitle = capitalizedClassName;
 //
 public static boolean useIcon = false;
 public final static String objectImageIconFilename = (useIcon)
 ? FrameworkDefaults.
 absoluteDirPathToIcon(objectFamily, capitalizedClassName)
 : noIcon;
 private final static java.net.URL imgURL = classCrossRoadsBankSocialSecurity.
 getResource(objectImageIconFilename);
 public final static ImageIcon imageIcon = (imgURL != null) ? new ImageIcon(imgURL) : null;
 //
 private static final long serialVersionUID = 0000000000000000001L;
 //
 private static final String relativeClassPathToImplementations = FrameworkDefaults.
 relativeClassPathToImplementations(objectFamily, capitalizedClassName);
 //
 public static boolean defaultActAsGateway = false;
 public static boolean defaultClockMaster = false;
 public static boolean defaultClockSlave = false;
 //
 static {
 TranslationEngine.add(capitalizedClassName, TranslationEngine.ENGLISH, "CrossroadsBankOfSocialSecurity", "CBSS");
 TranslationEngine.add(capitalizedClassName, TranslationEngine.FRENCH, "BanqueCarrefourSecuriteSociale", "BCSS");
 TranslationEngine.add(capitalizedClassName, TranslationEngine.DUTCH, "KruispuntbankSocialeZekerheid", "KSZ");
 }

D4.3 – WP4 Implementation Page 25 of 29

 Version 1.1

 //
 public CrossRoadsBankOfSocialSecurity(String objectId, Boolean actAsGateway, Integer visibilityPathLength, ObjectManager
 objectManager, Boolean clockMaster, Boolean clockSlave) {
 super(objectId, imageIcon, frameTitle, actAsGateway.booleanValue(), visibilityPathLength.intValue(), objectManager,
 clockMaster.booleanValue(), clockSlave.booleanValue(), false);
 //
 this.setObjectFamily(objectFamily);
 this.setFullClassName(fullClassName);
 PolicyManagementUtilities.initializePolicySettings(actionsThatAreAllowed, workingEnvironment, objectFamily,
 capitalizedClassName, myResource, relativeClassPathToImplementations, administrativeRoot, defaultActionsOfMine, this);
 }
 public void initCommands() {
 super.initCommands();
 this.addCommand(DECLARE_BIRTH_CMD, new GenericObjectCommandHandler(actionForMyResourceDeclareBirth) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 getTaskMap().handleTask(sourceObjectId, getObjectId(), arguments, getActor());
 }
 });
 this.addCommand(CHECK_CAPACITY_MEDICAL_DOCTOR_CMD, new
 GenericObjectCommandHandler(actionForMyResourceCheckCapacityMedicalDoctor) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 getTaskMap().handleTask(sourceObjectId, getObjectId(), arguments, getActor());
 }
 });
 this.addCommand(CHECK_CAPACITY_NURSE_CMD, new GenericObjectCommandHandler(actionForMyResourceCheckCapacityNurse) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 getTaskMap().handleTask(sourceObjectId, getObjectId(), arguments, getActor());
 }
 });
 this.addCommand(CHECK_CAPACITY_CIVIL_SERVANT_CMD, new
 GenericObjectCommandHandler(actionForMyResourceCheckCapacityCivilServant) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 getTaskMap().handleTask(sourceObjectId, getObjectId(), arguments, getActor());
 }
 });
 this.addCommand(CHECK_CAPACITY_BAILLIF_CMD, new GenericObjectCommandHandler(actionForMyResourceCheckCapacityBaillif) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 getTaskMap().handleTask(sourceObjectId, getObjectId(), arguments, getActor());
 }
 });
 this.addCommand(REQUEST_TO_KSZ_CMD, new GenericObjectCommandHandler(actionForMyResourceRequestToKsz) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 if(ArgumentParser.getArgumentFromString(arguments, "id").equals("requestToKSZ")) {
 Task currentTask = taskMap.handleEndTask(sourceObjectId, getObjectId(), arguments, getActor());
 String result = ArgumentParser.encapsulateInTags("answer by KSZ", "answer");
 result += ArgumentParser.encapsulateInTags(ArgumentParser.getArgumentFromString(arguments, "servicerequester"),
 "servicerequester");
 taskMap.handleTaskDone(currentTask, result);
 }
 }
 });
 this.addCommand(TASK_DONE_CMD, new GenericObjectCommandHandler(actionForMyResourceTaskDone) {
 public void handleCommand(String sourceObjectId, String arguments, String action) {
 taskMap.handleSubTaskDone(arguments); // handle one of the subtasks
 String doneSubTaskSeqNr = ArgumentParser.getArgumentFromString(arguments, "seqnr");
 SubTask currentSubTask = taskMap.findSubtask(Integer.valueOf(doneSubTaskSeqNr).intValue());
 if(currentSubTask == null) {
 return;
 }
 if(ArgumentParser.getArgumentFromString(arguments, "birthDeclarationStatus") != null) {
 if(currentSubTask.getTaskID().equalsIgnoreCase("declareBirth")) {
 SubTask currentst = currentSubTask.getParrentTask().getSubtask("getRegionalContextIdentifier");
 if(Boolean.parseBoolean(ArgumentParser.getArgumentFromString(currentSubTask.getResult(), "accepted"))) {
 if(currentst != null) {
 if(currentst.getStatus() == 0) { //if idle, of course it's idle, "paranoid check"
 currentst.send();
 getActor().getTaskMap().show(); //debug
 }
 }
 }
 else {
 System.out.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
 System.out.println("eBirth senario terminated because birth declaration was rejected\n" +
 "no data is fed to the regional and local contexts\n" + "birth needs to be declared again");
 System.out.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
 getTaskMap().removeTask(currentst.getParrentTask());
 }
 }
 }
 else if(ArgumentParser.getArgumentFromString(arguments, "regionalcontextidentifierdaddy") != null) {
 if(currentSubTask.getTaskID().equalsIgnoreCase("getRegionalContextIdentifier")) {
 SubTask currentst = currentSubTask.getParrentTask().getSubtask("feedDataToCorve");
 // TODO: implement in generic way
 currentst.setReceivedInputArguments(currentst.getReceivedInputArguments() +
 ArgumentParser.encapsulateInTags("some data", "dataForCorve"));
 if(currentst != null) {
 if(currentst.getStatus() == 0) { //if idle, of course it's idle, "paranoid check"
 currentst.send();
 getActor().getTaskMap().show(); //debug
 }
 }
 }
 }
 }
 });
 DefaultCommandsHandler.addDefaultCommands(this);
 }
}

D4.3 – WP4 Implementation Page 26 of 29

 Version 1.1

CrossRoadsBankOfSocialSecurityTasks/tasks.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="tasks.xsl"?>

<tasks>
 <actor>CrossRoadsBankOfSocialSecurity</actor>

 <task>
 <id>declareBirth</id>
 <requiredArguments>
 <requiredArgument>declarerRRN</requiredArgument>
 <requiredArgument>childName</requiredArgument>
 <requiredArgument>childSurName</requiredArgument>
 <requiredArgument>rrndaddy
 <requiredArgument>

</requiredArgument>
rrnmommy

 <requiredArgument>
</requiredArgument>

servicerequester
 <requiredArgument>

</requiredArgument>
authenticityvoucher

 <requiredArgument>
</requiredArgument>

capacityvoucher
 </requiredArguments>

</requiredArgument>

 <requiredResults>
 <requiredResult>birthDeclarationStatus</requiredResult>
 <requiredResult>rrnbaby
 <requiredResult>

</requiredResult>
servicerequester

 </requiredResults>
</requiredResult>

 <subtasks>
 <subtask>
 <id>declareBirth</id>
 </subtask>
 <subtask>
 <id>getRegionalContextIdentifier</id>
 </subtask>
 <subtask>
 <id>feedDataToCorve</id>
 </subtask>
 </subtasks>
 </task>

 <task>
 <id>requestToKSZ</id>
 <requiredArguments>
 <requiredArgument>personalIdentifier
 <requiredArgument>

</requiredArgument>
organizationIdentifier

 <requiredArgument>
</requiredArgument>

servicerequester
 </requiredArguments>

</requiredArgument>

 <requiredResults>
 <requiredResult>answer</requiredResult>
 <requiredResult>servicerequester
 </requiredResults>

</requiredResult>

 <subtasks>
 <subtask>
 <id>requestToKSZ</id>
 </subtask>
 </subtasks>
 </task>

 <task>
 <id>CheckCapacityMedicalDoctor</id>
 <requiredArguments>
 <requiredArgument>personalIdentifier
 <requiredArgument>

</requiredArgument>
servicerequester

 </requiredArguments>
</requiredArgument>

 <requiredResults>
 <requiredResult>capacityvoucher
 <requiredResult>

</requiredResult>
servicerequester</requiredResult>

D4.3 – WP4 Implementation Page 27 of 29

 Version 1.1

 </requiredResults>
 <subtasks>
 <subtask>
 <id>CheckCapacityMedicalDoctor</id>
 </subtask>
 </subtasks>
 </task>

 <task>
 <id>CheckCapacityNurse</id>
 <requiredArguments>
 <requiredArgument>personalIdentifier
 <requiredArgument>

</requiredArgument>
servicerequester

 </requiredArguments>
</requiredArgument>

 <requiredResults>
 <requiredResult>capacityvoucher
 <requiredResult>

</requiredResult>
servicerequester

 </requiredResults>
</requiredResult>

 <subtasks>
 <subtask>
 <id>CheckCapacityNurse</id>
 </subtask>
 </subtasks>
 </task>

 <task>
 <id>CheckCapacityCivilServant</id>
 <requiredArguments>
 <requiredArgument>personalIdentifier
 <requiredArgument>

</requiredArgument>
servicerequester

 </requiredArguments>
</requiredArgument>

 <requiredResults>
 <requiredResult>capacityvoucher
 <requiredResult>

</requiredResult>
servicerequester

 </requiredResults>
</requiredResult>

 <subtasks>
 <subtask>
 <id>CheckCapacityCivilServant</id>
 </subtask>
 </subtasks>
 </task>

 <task>
 <id>CheckCapacityBailiff</id>
 <requiredArguments>
 <requiredArgument>personalIdentifier
 <requiredArgument>

</requiredArgument>
servicerequester

 </requiredArguments>
</requiredArgument>

 <requiredResults>
 <requiredResult>capacityvoucher
 <requiredResult>

</requiredResult>
servicerequester

 </requiredResults>
</requiredResult>

 <subtasks>
 <subtask>
 <id>CheckCapacityBailiff</id>
 </subtask>
 </subtasks>
 </task>
</tasks>

D4.3 – WP4 Implementation Page 28 of 29

 Version 1.1

CrossRoadsBankOfSocialSecurityTasks/subTasks/declareBirth.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="subtask.xsl"?>

<subtask type="async">
 <id>declareBirth</id>
 <target>RijksregisterRegistreNational</target>
 <requiredArguments>
 <requiredArgument>declarerRRN</requiredArgument>
 <requiredArgument>childName</requiredArgument>
 <requiredArgument>childSurName</requiredArgument>
 <requiredArgument>rrndaddy
 <requiredArgument>

</requiredArgument>
rrnmommy

 <requiredArgument>
</requiredArgument>

servicerequester
 <requiredArgument>

</requiredArgument>
authenticityvoucher

 <requiredArgument>
</requiredArgument>

capacityvoucher
 </requiredArguments>

</requiredArgument>

 <requiredResults>
 <requiredResult>birthDeclarationStatus</requiredResult>
 <requiredResult>rrnbaby
 <requiredResult>

</requiredResult>
servicerequester

 </requiredResults>
</requiredResult>

 <timeout>10000</timeout>
</subtask>

CrossRoadsBankOfSocialSecurityTasks/subTasks/getLocalContextIdentifier
.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="subtask.xsl"?>

<subtask>
 <id>getLocalContextIdentifier</id>
 <target>LocalContextIdentifierIssuer</target>
 <requiredArguments>
 <requiredArgument>daddyRRN</requiredArgument>
 </requiredArguments>
 <requiredResults>
 <requiredResult>localcontextidentifier
 </requiredResults>

</requiredResult>

 <timeout>600000</timeout>
</subtask>

D4.3 – WP4 Implementation Page 29 of 29

 Version 1.1

8 Document Control

Amendment History

Version Baseline Date Author Description/Comments
1.0 15/04/2009 DVDV First draft, description of the

demonstrator framework V.0.
1.01 19/04/2009 DDC Submitted to review team
1.02 29/05/2009 DDC Final version

	1 Executive Summary
	2 Introduction to the prototype
	3 Available release and components
	3.1 Software prerequisites
	3.2 Hardware prerequisites
	3.3 Installation Guidelines
	3.4 License information

	4 Tutorial
	4.1 Creating a scenario
	4.2 Creating Contexts
	4.3 Creating Actors
	4.4 Communication between Actors
	4.5 Different Views
	4.5.1 Scenario Graph Overview
	4.5.2 Inspector view
	4.5.3 Status and Application Front-end View

	4.6 Policy Manager
	4.7 Saving and Loading Scenarios

	5 Running the software – Executing the Break the Glass Scenario
	5.1 Description of the Break the Glass Scenario
	5.1.1 Relationship initialization between the GP and the patient.

	5.2 Creating the break the glass scenario
	5.3 Executing the Break the Glass Scenario

	6 Roadmap for future release
	7 Examples of an actor’s source code and task descriptions
	8 Document Control

