TAS³ Deliverable D3.1, 2nd iteration:
Design of a semantic underpinned, secure & adaptable process management platform (2)

Accompanying Letter to the Reviewers

In the report of the TAS³ review on June 25, 2009, the project reviewers had comments on Deliverable D3.1 (1) “Design of a semantic underpinned, secure & adaptable process management platform (1)”. The TAS³ Consortium has addressed the reviewer comments as follows.

a) To include a comprehensive, readable conceptual design for security of processes.
In Chapter 4 we start with a very detailed Overview in Chapter 4.1 about components which we are developing in the conceptual design and their relationship with the whole security and trust framework of TAS³. Then Chapter 4.5 describes the results of the conceptual design of security mechanisms specific to business processes highly detail. To this end, we formalize the security concepts in Section 4.5, i.e. we introduce a formal model for the execution of business processes in Section 4.5.6 and use it to formalize security concepts in Section 4.5.7. Therewith, we provide a specification well-suited for understanding the semantics of the concepts, which is also a good basis for implementation.
Deliverable D3.2 also gives insight for some of the concepts how they are implemented and Deliverable D3.3 presents how they are used in an application of the employability domain.
The enforcement of the refined business-process security is subject to the implementation chapter 5, namely Sections 5.1, 5.2, and 5.5.

b) Not to limit security considerations to just access control and to RBAC in particular.
Mostly, access control is of particular importance for supporting secure business process execution. But we also consider other security features, e.g., authentication with single sign functionality, auditing of security-relevant operations, confidentiality which is a basic mechanism in our framework using encrypted communication, when calling web services. Using security modeling at the business process design level also considers a variety of security features, not only access control.

c) Ensure that security policies are defined in a future deliverable so as to ensure an integration of research results of other deliverables (e.g. D3.1 with D2.1 or D4.2 with D8.1).
Chapter 4.1 and 5.1 describes highly detailed the integration of the Business Process specific security components into the TAS³ architecture described in Deliverable D2.1. To this end, we provide component diagrams and sequence diagrams to show the integration and interaction with the whole architecture. Additionally, the software
description in D3.2 further details the interaction with the TAS³ framework on an implementation level.

WP3 is delayed with the development of a first software version that validates the concepts planned against the TAS3 security requirements and applications. It also remains unclear what are the future security extensions of BPML.

The first software version, as planned for M18 had been postponed in accordance with the EU project management to M24, as it happed to all Deliverables planned for M18. With Deliverable D3.2 we report on the implementation of security-specific business-process components. These components are also used in the integration prototype of the Nottingham student placements application as described in Deliverable D12.4 and D3.3.

In Section 4.2 we introduce an approach to model security together with business processes. A process meta model allows to use annotations which define security properties of the business processes. To this end, the modelers like business analysts who are familiar with the application level get support for understanding and defining security from an application.

The WP03 Team
Design of a semantically underpinned, secure & adaptable process-mgt platform

Document Type: Deliverable
Title: Design of a semantically underpinned, secure & adaptable process-mgt platform
Work Package: WP3
Deliverable Nr: D3.1, second iteration
Editor: Jutta Mülle, KIT – Karlsruhe Institute of Technology
Dissemination: PU
Preparation Date: December 31, 2009
Version: rev. 10 (1.0)
The TAS³ Consortium

<table>
<thead>
<tr>
<th>Beneficiary Name</th>
<th>Country</th>
<th>Short</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 K.U.Leuven</td>
<td>BE</td>
<td>KUL</td>
<td>Coordinator</td>
</tr>
<tr>
<td>2 Synergetics nv/sa</td>
<td>BE</td>
<td>SYN</td>
<td>Partner</td>
</tr>
<tr>
<td>3 University of Kent</td>
<td>UK</td>
<td>KENT</td>
<td>Partner</td>
</tr>
<tr>
<td>4 University of Karlsruhe</td>
<td>DE</td>
<td>KARL</td>
<td>Partner</td>
</tr>
<tr>
<td>5 Technische Universiteit Eindhoven</td>
<td>NL</td>
<td>TUE</td>
<td>Partner</td>
</tr>
<tr>
<td>6 CNR/ISTI</td>
<td>IT</td>
<td>CNR</td>
<td>Partner</td>
</tr>
<tr>
<td>7 University of Koblenz-Landau</td>
<td>DE</td>
<td>UNIKOLD</td>
<td>Partner</td>
</tr>
<tr>
<td>8 Vrije Universiteit Brussel</td>
<td>BE</td>
<td>VUB</td>
<td>Partner</td>
</tr>
<tr>
<td>9 University of Zaragoza</td>
<td>ES</td>
<td>UNIZAR</td>
<td>Partner</td>
</tr>
<tr>
<td>10 University of Nottingham</td>
<td>UK</td>
<td>NOT</td>
<td>Partner</td>
</tr>
<tr>
<td>11 SAP Research</td>
<td>DE</td>
<td>SAP</td>
<td>Project Mgr</td>
</tr>
<tr>
<td>12 Eifel</td>
<td>FR</td>
<td>EIF</td>
<td>Partner</td>
</tr>
<tr>
<td>13 Intalio</td>
<td>UK</td>
<td>INT</td>
<td>Partner</td>
</tr>
<tr>
<td>14 Risarz</td>
<td>IR</td>
<td>RIS</td>
<td>Partner</td>
</tr>
<tr>
<td>15 Kenteq</td>
<td>BE</td>
<td>KETQ</td>
<td>Partner</td>
</tr>
<tr>
<td>16 Oracle</td>
<td>UK</td>
<td>ORACLE</td>
<td>Partner</td>
</tr>
<tr>
<td>17 Custodix</td>
<td>BE</td>
<td>CUS</td>
<td>Partner</td>
</tr>
<tr>
<td>18 Medisoft</td>
<td>NL</td>
<td>MEDI</td>
<td>Partner</td>
</tr>
<tr>
<td>19 Symlabs</td>
<td>PT</td>
<td>SYM</td>
<td>Partner</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jutta Mülle (1st and 2nd iteration)</td>
<td>KARL</td>
</tr>
<tr>
<td>2 Jens Müller (1st and 2nd iteration)</td>
<td>KARL</td>
</tr>
<tr>
<td>3 Thorsten Haberecht (2nd iteration)</td>
<td>KARL</td>
</tr>
<tr>
<td>4 Quentin Reul (1st iteration)</td>
<td>VUB</td>
</tr>
<tr>
<td>5 Jeroen Hoppenbrouwers (1st iteration)</td>
<td>SYN</td>
</tr>
<tr>
<td>6 Arnaud Blandin (1st iteration)</td>
<td>Intalio</td>
</tr>
<tr>
<td>7 Alex Boisvert (1st iteration)</td>
<td>Intalio</td>
</tr>
</tbody>
</table>
Executive Summary

TAS³ has the goal to provide a next generation trust & security architecture that

- is ready to meet the requirements of complex and highly versatile business processes,
- enables the dynamic user-centric management of security and trust policies, and
- ensures end-to-end secure transmission of personal information and user-controlled attributes between heterogeneous context-dependent and continuously changing systems.

The topic of work package three is the support of adaptive, secure business processes in the TAS³ framework.

This document describes the conceptual design and basic components of the system architecture for business-processes support developed during the first two periods of the project in WP3, it is the second iteration. In the following versions of this deliverable the new research results will be added, and the report will be continued.

The TAS³ architecture is based on executing business processes including web-service invocations. Therefore, we first describe the concepts for business process modelling and execution in a service-oriented environment and an open source software system with state of the art technology. Using an example process of the employability domain, we analyze requirements in detail and discuss them for the core topics of WP3, i.e. secure processes, secure adaptation of processes, semantics of business processes, and the software architecture. Following the requirements analysis, conceptual design yields mechanisms and concepts for secure business processes. Further, it features concepts for security-guided adaptations of the schemas and content of running process instances, e.g., selecting in a specific (security-related and process-specific) context different services with respect to their security properties. Modelling business processes allows to handle security specifications at the business level as well. We will provide mechanisms to transform his information to security specifications on a policy and executable level. In order to support the modelling of the security specifications and the adaptability of processes, semantics specifying the security context of processes will underpin the business process management.

As additional material the appendix contains a model of an example process from the employability scenario. We have already used it to exemplify our concepts and will continue using it to validate the research results. We describe components implementing the conceptual design in Deliverable D3.2 ([1]) and apply them to selected pilot applications, see Deliverable D3.3 ([2]).

Reading Guide

Individuals having already read a previous version of this document may want to focus on the following changed and enhanced sections.

Section 5.1 presents the integration of the Business Process specific security components into the TAS³ architecture described in [3].

Section 4.5 describes the results of the conceptual design of security mechanisms specific to business processes in more detail. To this end, we formalize the security concepts in Section 4.5, i.e. we introduce a formal model for the execution of business processes in Section 4.5.6 and use it to formalize security concepts in Section 4.5.7.

In Section 4.2 we introduce an approach to model security together with business processes. A process meta model allows to use annotations which define security properties of the business processes. To this end, the modelers like business analysts who are familiar with the application level get support for understanding and defining security from an application.

Section 4.4.2 features concepts on adaptability support for business processes, especially, how to induce and guide process adaptation by security aspects. For that, we enhance business process execution to allow to dynamically select web services and subprocesses. We propose to combine mutli-level business-process
modelling with this flexibility of flexible process execution. In Subsection 4.4.2 we have further detailed our approach for structural adaptation of business processes in execution.

The enforcement of the refined business-process security is subject to the implementation chapter 5, namely Sections 5.1, 5.2, and 5.5.
Contents

EXECUTIVE SUMMARY ... 3

READING GUIDE ... 3

LIST OF FIGURES ... 7

LIST OF TABLES .. 9

1 INTRODUCTION .. 10

1.1 **SCOPE AND OBJECTIVES** ... 10

1.2 **DOCUMENT ORGANISATION** .. 11

2 FUNDAMENTALS OF BUSINESS PROCESS MANAGEMENT 13

2.1 **BUSINESS PROCESS MANAGEMENT** .. 13

2.1.1 Languages for Modelling Business Processes 15

2.1.2 BPEL4People - Enhancing BPEL with Human Activities 16

2.2 **THE INTALIO SYSTEM** ... 16

2.2.1 IntalioDesigner .. 17

2.2.2 Apache Ode and IntalioBPMS ... 17

2.2.3 IntalioTempo: BPEL4People Workflow Model 18

3 SCENARIO AND REQUIREMENTS ANALYSIS .. 19

3.1 **MODELLING OF AN EXAMPLE PROCESS** ... 19

3.1.1 Modelling Methodology ... 19

3.1.2 The "Accreditation of Prior Learning" Process 20

3.2 **REQUIREMENTS** .. 22

3.2.1 Secure Processes ... 22

3.2.2 Secure Process Adaptation ... 25

3.2.3 Semantics of Secure Business Processes .. 27

3.2.4 Requirements on the architecture .. 28

4 CONCEPTUAL DESIGN .. 31

4.1 **MAPPING TO THE TAS³ ARCHITECTURE** 31

4.1.1 Security Enforcement in TAS³ ... 31

4.1.2 Business-process-specific security components 32

4.1.3 Components managing instance-specific security information 32

4.1.4 Components enforcing security policies on messages exchanged 34

4.1.5 Components managing the security configuration in the infrastructure 35

4.1.6 Components Creating Security Configuration 36

4.1.7 Overview of the Architecture .. 36
Overview about adaptation of business processes
List of Figures

Figure 2.1: Business Process Layers ... 13
Figure 2.2: Reference Model of the Workflow Management Coalition 14

Figure 3.1: The Core process diagram of the APL process 20
Figure 3.2: BPMN diagram for the "Commence APL" phase 20
Figure 3.3: BPMN diagram for the "PCP Generation" phase to create or complement the personal competencies profile .. 21
Figure 3.4: BPMN diagram for the "Reporting" phase 21
Figure 3.5: BPMN diagram for the "Procurement" phase 22
Figure 3.6: A web service call passing through policy enforcement points 29
Figure 3.7: Authorization in the TAS³ architecture 30

Figure 4.1: Overview of the topics of security management in processes 31
Figure 4.2: Architectural Overview about Business Process Integration in the TAS³ Architecture ... 33
Figure 4.3: Arrangement of enforcement points in web service call flow of business processes ... 34
Figure 4.4: Overview of the business-process-specific security components 38
Figure 4.5: Overview of the business-process-specific security components 40
Figure 4.6: Overview of the business-process-specific security components 41
Figure 4.7: Overview of the business-process-specific security components 42
Figure 4.8: The top layer of the DOGMA Upper Ontology 42
Figure 4.9: Representation of the business process concept in lexons 43
Figure 4.10: Roles in the Kenteq APL process ... 43
Figure 4.11: Representation of the Personally Identifiable Information concept 44
Figure 4.12: Three layer model) ... 46
Figure 4.13: Insertion of an activity causes creation of an additional structured activity 47
Figure 4.14: Differences in data flow correctness on the process model layer and on the instance layer ... 48
Figure 4.15: Adaptation concept ... 49
Figure 4.16: Meta model of a process instance .. 49
Figure 4.17: BPMN model of the internal subprocess instantiating an abstract web service. 51
Figure 4.18: UML Sequence diagram demonstrating the conceptual message flow on an explicit user-role assignment ... 54
Figure 4.19: UML sequence diagram showing the re-delegation of a permission to a process participant ... 55
Figure 4.20: UML sequence diagram showing how a delegated permission with an interval constraint is used ... 56
Figure 4.21: UML sequence diagram showing the delegation of a process role 57

Figure 5.1: Specification of roles and assignment policies in the APL process 68
Figure 5.2: Example use case for separation of duty ... 69
Figure 5.3: Explicit assignment of individuals to roles based on the decision of a human actor 71
Figure 5.4: Components interacting with the IR-PIP ... 72
Figure 5.5: Example SOAP payload of a request to the T3-PEP-RQ, illustrating the XML structure . 72
Figure 5.6: Roles in the top-level process with an indication of SoD conflict relationships 73
Figure 5.7: Definition of SoD conflicts ... 74
Figure 5.8: Adaptability architecture of a WFMS ... 75
Figure 5.9: System architecture of a business process execution engine enabling data-induced adaptation of processes ... 76
Figure 5.10: System architecture of the structural adaptation concept 77
List of Tables

Table 4.1: Overview of new security enforcement components .. 37
1 Introduction

1.1 Scope and objectives

TAS³ has the goal to provide a next-generation trust & security architecture that

- meets the requirements of complex and highly versatile business processes,
- enables the dynamic user-centric management of security and trust policies, and
- ensures end-to-end secure transmission of personal information and user-controlled attributes between heterogeneous context-dependent and continuously changing systems.

TAS³ aims at developing a Trust Network (TN) where parties, e.g., Service Providers (SPs) and users, can interact with each other securely. Thus, we must provide the means to explicitly handle interactions of services, processes and data on the TN. In principle, business processes offer this functionality. The topic of work package three is the support of adaptive, secure business processes in the TAS³ architecture. Specific objectives are:

- Provide security policies and management for processes which take security to the business-process level by handling process-wide policies, e.g., allowing for separation of duty, configuring policies according to the context of the active processes, dealing with several layers of security which arise from the composition of workflows, and catching the security aspects of interacting with service providers.

- Provide mechanisms for business-process adaptation in order to support a new flexibility to modify processes dynamically while they are running. More specifically, our ‘real’ concern is that only authorized people will be allowed to carry out such modifications. Dynamic changes must consider the current security context of the business process and of its subcomponents, e.g., services which give access to personal information.

- Allow business experts to specify trust- and security-relevant attributes and information during process modelling. This contributes to a model-driven approach of security and trust management and improve the compliance of the enforcement of security and trust with contractual agreements at the business level.

This report starts by discussing the requirements of TAS³ scenarios regarding business-process-management support, by summarizing and refining the requirements of Deliverables D1.2 [4] and D1.4 [5], and by pointing to issues left open by existing systems and approaches. Then the conceptual framework of business processes for TAS³ is described. Subsequent versions of this deliverable will refine this framework to accommodate new research results.

The TAS³ architecture is based on executing business processes using web services, user interactions during process execution and processing underlying data. Usually, there exist several alternative services and data sources that are adequate to support a particular activity in a business process. It should not be necessary to pin down in advance which activity/service will be used during execution. Supporting such an open environment, the business processes need to be adaptable in a dynamic way. In line with the overall direction of TAS³, we put much emphasis on processes that handle privacy-relevant data and personal information. We will exemplify this by using e-portfolios used for employment and training services and the health status of individuals in e-health applications. The services are provided in a distributed environment and are flexibly offered via web services with many participants involved, at distributed sites.

Thus, we first need to provide a process-modelling and execution framework in a service-oriented architecture. Following the requirements according to our analysis, the conceptual design then provides
mechanisms and concepts for secure, privacy-preserving business processes on the modelling and the execution level. The architecture developed defines the components for security enforcement of business processes in line with the fundamental TAS3 security and trust architecture. The focus of the present version of the conceptual model lies on security support in business processes. Further, the conceptual design introduces concepts for altering and adapting the schemas of running process instances, e.g., to select appropriate services with respect to their security properties or quality properties according to the requirements of the data processed.

In order to support the modelling of security specifications and the adaptability of processes, ontology methods will semantically underpin the business processes with ontology-based descriptions and annotations of the business-process components. Ontologies of business processes contribute by adding security issues at the modelling and execution level in order to yield processes with a specific security level and allow for process adaptation.

An example process from the employability scenario serves as the basis for further validation of the research results. The process model describes the result of modelling one of the business processes of the employability domain. The goal is to set up a real-world business process to validate the concepts and the framework for business-process support we will have developed. In this report the real-world business process helps to analyse and refine requirements and to get started with the system-architecture design and the conceptualization of adaptive and secure processes.

As additional material the appendix contains a model of an example process from the employability scenario. We have already used it to exemplify our concepts and will continue using it to validate the research results. We describe components implementing the conceptual design in Deliverable D3.2 ([1]) and apply them to selected pilot applications, see Deliverable D3.3 ([2]).

1.2 Document organisation

The rest of the document is organised as follows.

Chapter 2 is a brief introduction to business process management, respective architectures, modelling languages, and to the concrete business process management system in use (Intalio).

Chapter 3 describes an example scenario, i.e., a business process of the employability application area, and introduces the modelling method used for business-process design. Then it presents the results of a detailed requirements analysis for the different research threads in this work package, i.e., security management for business processes, secure adaptation of processes during execution and the influence of security on process adaptation, providing semantics of security in business processes in order to underpin adaptable secure processes with ontologies, and requirements on the security architecture.

Chapter 4 presents the conceptual design of security management for business processes up to now. It describes the architecture of the security support for business processes with the components and the enforcement process, and the alignment with the TAS3 security architecture. Further, it contains an approach of using the business process level to define security rules which allow configuring security components in an automatic way, e.g., policies or input for policy-enforcement points. As a next step, it provides an overview of the use of ontologies for secure business-process management, and the secure process-adaptation approach. Finally, our concepts for secure business processes are presented in detail, the results of the first project period, challenges and steps planned for future work.

In Chapter 5 some of the concepts presented in Chapter 4 are refined, and it is described how they map to components and will be implemented. The chapter starts by describing the integration with the TAS3 trust and security architecture and with the applications. The main part contains our efforts to realize security concepts for processes. Further on, it describes an approach to business-process related security modelling together with the modelling of the business process for security configuration of the business execution and security and enforcement layer, and fundamental mechanisms to handle process adaptations of running processes and security-aware process adaptations.

Chapter 6 gives a conclusion. Appendix A contains material on the production APL process at Kenteq, a process from the employability application area.
Recommendations for reading This report also contains some introductory material. Below we give some recommendations how to read this report, for different groups of readers.

Readers familiar with business-process-management concepts and systems can skip subsection 2.1, as well as subsection 2.2 if readers have some insight into the Intalio framework.

Readers whose interest is focused on the main topic of work package 3, security management for processes, might want to start with chapter 4 containing our main part of the report, namely the conceptual design in detail and the integration into the TAS3 security and trust architecture, and then continue with chapter 5 describing the mapping to some of the concepts of chapter 4 to systems and components for implementation. For topics of particular interest, the reader is encouraged to go back to chapter 3 that meticulously motivates and gives way to the conceptual design.
2 Fundamentals of Business Process Management

This chapter gives an introduction to business process management and the business process management framework of Intalio. Readers familiar with business process management can skip Subsection 2.1 those with some familiarity into the Intalio framework can skip Subsection 2.2.

2.1 Business Process Management

One objective of TAS³ is to create a trusted architecture for securely shared services. Thus, a crucial issue is the successful interaction of (web) services of different owners. The process of coordinating the flow of activities and data is known as orchestration. The result is a business process managed by a business process management system. In the report, we use the terms business processes and workflows as synonyms, if not otherwise stated. The term "workflow" usually puts emphasis on flows of activities which also contain human activities and coordinate human interaction with the process as well. But nowadays business process management usually comprises human interaction, as this feature becomes more and more important for businesses.

For the TAS³ project, we follow a standards-based approach. Thus, BPEL [6] is the language of choice to model executable business processes, as is BPMN [7] for modelling them. Figure 2.1 is a rough schema describing the levels of business processes.

![Figure 2.1: Business Process Layers](image)

Deploying a new business process or changing an existing one consists of several steps: First, one has to create a (formal) model of the process (or change the existing one). This is the task of business analysts, i.e. on the business level. Then a transformation of the model into an executable business process model takes place. After augmenting this result with additional implementation parts, such as concrete web services descriptions, workflow data, and web forms for human activities, the deployment on a business process management server yields a comprehensive executable process.

Based on certain events, e.g., incoming web-service calls, time events, or interactions with humans, the server creates new instances of the process and executes them. After instantiating an executable process
it is run on workflow enactment services provided by a BPEL engine. Reactions to events are explicitly modelled in the business process model.

The business process orchestrates calls to web services or other business processes and interactions with so-called human tasks. Human tasks provide a user interface for user interactions e.g. using a web form.

The administration and monitoring component allows administrating the execution of business processes, e.g. to stop or cancel a process execution. Usually this component also comprises monitoring facilities.

The Workflow Management Coalition [8] provides a standardized component model of Workflow Management shown in Figure 2.2. It also contains an administration and monitoring component, which we need for business process management in TAS as well. Intalio provides a management console that includes the handling of human activities. Human activities correspond to the user client applications and worklist handler. The applications invoked, linked via tool manager, are web services.

Thus, the deployment of a process consists of several steps, with distinct components responsible for each step, as already described at the beginning of this section. The following list relates the Intalio components to these steps:

1. The modelling of the process (as a BPMN model enhanced with annotations to support the execution) is the responsibility of a BPMN modelling tool, such as Intalio|Designer.

2. The next task is the translation of the graphical BPMN model into an executable form and the deployment of the resulting BPEL process and, e.g., XForms for specifying human user interfaces onto the BPEL execution and workflow engines, respectively. Intalio|Designer does this as well.

3. Finally, the resulting process description is instantiated and executed. The process calls web services as modelled in the business process model and interacts with humans, e.g., by human activities, and may interact with other business process execution engines. In the IntalioBPMS system, this task is split between the Apache Ode server, which handles the execution of the actual BPEL process instance, and the Tempo engine, which handles user interaction with web forms. An Intalio process
interacts with other business processes, also with processes running on other workflow engines via web service calls.

Any comprehensive approach on integration of security and adaptability of business processes must address all three phases and consequently all of the corresponding software components.

2.1.1 Languages for Modelling Business Processes

The Business Process Modelling Notation (BPMN, see [7]) specification provides a graphical notation to express business processes in a business-process diagram. The objective of BPMN is to support business-process management for business process management experts and users involved in the process. To this end, it provides a notation that is intuitive to business users yet able to represent complex process semantics. The BPMN specification also provides a mapping between the graphical notation and the underlying execution language for business processes, particularly BPEL [6] (Business Process Execution Language).

BPMN consists of the following categories of elements: activities, gateways, connecting objects, annotations, data, and pools (with lanes).

Activities comprise tasks as basic activities and compound activities, which contain a BPMN subprocess and can be, say, an iterative activity or a transactional activity.

Gateways provide routing elements to join or split flows of activities, if applicable under specific conditions.

Connecting objects relate the other elements to each other, e.g., to define sequences of activities, gateways or events. Messages are needed to combine elements of distinct pools, defining a message flow.

Annotations allow adding data objects and arbitrary descriptions to BPMN elements.

Pools are structural units each containing a BPMN (sub)process. E.g., a pool can be used to represent a role or an organization. Interaction between elements of different pools is only possible via messages. This reflects the service calls between distributed nodes, as, say, different organizations or roles.

BPMN is used to specify a conceptual model of the business process by business analysts. What we need next is a language which is executable, i.e., for which a workflow execution machine exists. In the context of service-oriented frameworks this actually is BPEL, the business process execution language (see [6]). It is a language that allows for business-process logic to be expressed decoupled from existing software, yet tied to external software through (web) service invocations. This reduces and potentially eliminates the need to code business-process logic in a traditional programming language, such as Java, C/C++, etc. This clear separation of concerns between business processes and software services makes process logic (e.g., workflow management) simpler, more focused and easier to manage. BPEL provides modelling elements which allow transforming BPMN to a BPEL notation. However, there exist various transformations of one BPMN schema to BPEL schemas. This is because BPEL offers several possibilities to express the same concept of a BPMN model. The BPMN standardization proposes one possible transformation which could be used, but in practice each business process management system takes its proprietary transformation. So a pragmatic way is to rely on the transformation provided by the business process management system used, in our case Intalio [9].

In TAS3 business analysts are using BPMN to model the business processes. Data definitions, usually in XML, and web service descriptions in the XML-based WSDL format [10] enhance the BPMN process model as well as the tool-supported design of the web interfaces for users interacting with the business process. Having all this information then allows to automatically generate executable BPEL code. The BPEL execution engine can execute the business process instances with this code. So BPEL is not visible for the TAS3 users, they do not have to deal with it. To implement process security enhancements and adaptation of processes we will have to work with BPEL as well, e.g., to transform security enhancements of the BPMN model to an executable BPEL representation or to handle process adaptations.
2.1.2 BPEL4People - Enhancing BPEL with Human Activities

Human Activities as part of the business process model are of particular interest to TAS³. This is, because there is an explicit representation of human interactions with the process and the possibility to specify handover of control from the BPM system to persons and vice versa.

BPEL4People [11] and WS-HumanTask [12] are two standardisation proposals, complementing each other, intended to integrate human activities more closely into BPEL processes. A human activity is an activity which is executed by a human and is modelled explicitly as an activity in the business process model. It is modelled as a "black box" from the perspective of the business process management system, with input/output parameters. I.e., when a call activates the human activity, the business process management delivers the data necessary and waits until completion to get the control back. BPEL4People provides five basic states of a human activity: running, completed, failed, terminated, and obsolete. A common way to implement a human activity is to define a web form which lets the user receive and deliver the parameters. The control goes from the business process management system to the individual who possesses the role, which is related to the human activity at execution time. While WS-Human Task standardises interfaces to human tasks, BPEL4People standardises human tasks themselves, e.g., by explicitly modelling the implementation of human tasks as web forms, by managing task lists for users, who are stakeholders of the human tasks, and by carrying out the role assignments for these tasks.

WS-HumanTask defines several generic human roles with respect to tasks (and notifications), i.e., ways how individuals are connected to tasks. There is a task initiator who may be undefined. Task stakeholders are "ultimately responsible for oversight and outcome" of the task, but at least one person must be assigned to this role. Potential owners receive the task so they can take it over and complete it. The present owner is actually performing the task. The excluded owners may not become actual or potential owner. Finally, there are the roles business administrators and notification recipients. People are assigned to these roles through logical people groups, literals or expressions. Logical people groups are bound to a so-called people query specifying the membership of people in the group at deployment time and evaluating it at task creation time, possibly taking parameters into account. The format or evaluation mechanism of people queries is beyond the scope of the specification, i.e., there are no restrictions. BPEL4People allows defining start and completion deadlines. When a deadline is missed, an escalation is triggered, resulting in a notification or a reassignment of the task. Further, the standards enables to delegate and forward tasks but without affecting security rules. Potential owners, actual owners and business administrators can delegate a task. The delegate then becomes the actual owner. Forwarding a task replaces the forwarder with the recipients as potential owners.

As shown, BPEL4People and WS-HumanTask only deal with tasks and permissions to execute tasks (or delegate them, etc.). They do not address permissions on other resources such as, say, data processed, which actors in business processes might need. As the process can set the generic human roles for each task as literals, it is possible to implement arbitrary access control policies (including assignment of actors and separation of duty in particular) manually within the process model. People queries are a suitable mechanism to interface with an external access control component. However, WS-HumanTask and BPEL4People do not specify any particular authorization model themselves: It is not possible to restrict the recipients of task delegation and forwarding. This is undesirable from a security perspective.

In TAS³, human activities are a way to explicitly integrate user interactions via web user interfaces into the business process. With this, business processes not only interact with web services (e.g. providing access to data as personally identifiable information) or other business processes (e.g. running at a service provider side), but also with users via web interfaces. These users are subjects of authorization, and BPEL4People allows user abstractions in the process model with roles. This is a prerequisite to effective role-based access control (RBAC).

2.2 The Intalio System

The Intalio System [13], an open source software for business process management with its Business Process Management Suite (BPMS) [9], comprises several components:
• A graphical BPMN modeller, the IntalioDesigner [14] with BPEL generator.

• Tempo [17], which provides a (not yet comprehensive) implementation of the BPEL4People specification, in order to support human activities in business processes and the role management for the individuals.

In TAS3, the Intalio System serves as technical business process management framework. There are several reasons for this choice. Core parts of the system are open source software. So the integration of the planned enhancements of the modelling and execution components into the BPM framework is feasible. Besides that, Intalio already puts much emphasis on modelling and execution support for human tasks and role management in business processes, which are relevant business-level prerequisites of security aspects of processes. Finally, there exists a complete chain of strongly interacting components, from modelling at the business level with BPMN over transformation to BPEL as standard execution language of business processes in a service-oriented environment down to the execution engine for web service based business processes.

2.2.1 Intalio|Designer

Intalio|Designer (see [14]) is a modelling tool that supports the BPMN notation and can generate executable BPEL process definitions from business-process diagrams and additional information provided by the user, such as data assignments. Intalio|Designer also supports workflow-user interactions through integration with the Tempo project, which is an implementation of BPEL4People architecture, but still lacks compliance with the BPEL4People specification.

Security aspects are out of scope of the BPMN specification. While it is possible to model different participants in separate pools or lanes, the meaning of such a separation is vague and is not specifying security issues.

Intalio|Designer currently supports annotating pools representing individuals with organizational roles to define the authorization between processes and tasks of individuals. Beyond this, Intalio|Designer does not natively support modelling security aspects.

It is desirable to extend support for security aspects through annotations to facilitate specifying security policies declaratively instead of leaving these to be implemented in an imperative manner by business people or process modelling experts.

2.2.2 Apache Ode and Intalio|BPMS

Apache Ode (see [16]) is an open-source execution engine for business processes that follows the BPEL 2.0 specification and is governed by the Apache Software Foundation. It is used within the Intalio|BPMS [9] product suite to execute the BPEL processes and is integrated to provide seamless deployment from Intalio|Designer.

There are significant challenges related to the use of BPEL technology in secure distributed computer systems and together with web services. Of particular interest to the TAS3 project are the problems of authorizing users to execute tasks within a workflow while enforcing constraints such as separation of duty on the execution of those tasks. Conducting end-to-end secure transactions between multiple participants is a further issue.

While BPEL may be coupled with a web-service-security infrastructure (i.e., WS-Security [18]) to provide integrity and confidentiality at the transport level, the BPEL language does not provide any support for the specification of authorization policies or constraints on the execution of activities composing a business process. Hence, it is important to couple BPEL with a model to express such authorization policies and constraints as well as with a mechanism to enforce them. Further, it is important that such an authorization model be high-level and be expressed in terms of entities that are relevant from a modelling and organizational perspective. In the next chapter we illustrate this vision in more detail and with several examples.
A partial solution to these issues is the BPEL4People extension dealing with workflow tasks that require human involvement. A further solution, going beyond human activities, would be to manage security-related authentication and policy information using existing BPEL primitives. This could be achieved through explicit data assignments, explicit conditional logic, explicit invocations of security infrastructure services, etc. While feasible, this solution is not satisfactory because it clutters the process definition with imperative statements that could in principle be specified in a declarative fashion. Further, this would reduce one of the main assets of BPEL, namely to separate process logic from other concerns in order to achieve clearer and simpler process models.

Thus, if BPEL processes are to conduct secure transactions that do not only span individuals but also web services, a security model is required to be integrated with BPEL that is more general than the one offered by BPEL4People.

2.2.3 Intalio|Tempo: BPEL4People Workflow Model

Tempo (see [17]) is an open-source project to provide a workflow implementation as defined by BPEL4People. Tempo supports role-based interaction of individuals and provides means of assigning users to roles. Further, it can delegate ownership of a task to a specific person and supports use cases such as escalation of responsibilities for tasks (ownership) and assigning individuals to roles. The Tempo project has started shortly after publication of the original BPEL4People whitepaper (see [11]), but before the first BPEL4People specification draft has become available. Due to this parallel evolution, there are some differences between the two. Here is a high-level summary of the differences:

- Tempo’s design was based on what is referred to as "Constellation 4" in the BPEL4People specification. In other words, it relies on the standard BPEL <bpel:invoke> activity, i.e., the call to any activity as e.g. web services, instead of the <b4p:peopleActivity>, that establishes a call of a special human activity. Therefore it implements its own protocol between the process engine and the task-management services (i.e., WS-HumanTask implementation);
- Tempo uses standard BPEL data-assignment activities to manipulate individuals and role assignments instead of extending the <bpel:assign> activity. So role assignments are not handled as first class citizens;
- Tempo does not use process-related human roles such as the <b4p:processInitiator>, <b4p:processStakeHolders> and <b4p:businessAdministrators>, which are roles for executing (meta) process management tasks;

In addition to standard BPEL4People capabilities, Tempo provides:

- A basic role-based access control (RBAC) approach that integrates with most Lightweight Directory Access Protocol (LDAP)-compliant directory servers;
- Integration with various web-based user-interface technologies such as XForms [19], IntalioRIAA, and the TIBCO General Interface [20];
- A user-friendly task list for workflow participants that displays outstanding tasks and notifications and allows the kick-start of processes using people-initiating forms realising the user client and task list component of the WFMC.
3 Scenario and Requirements Analysis

In this chapter, we will derive and illustrate requirements using a business application, namely Accreditation of Prior Learning (APL), which is in production use at Kenteq. It is realized in form of hard-coded applications with additional, manually performed steps. To do so, we will first shortly present the methodology we used to model this application as a business process, and the process model we have derived. Then we refine the requirements which are roughly set up in Deliverable D1.2 [4] and D1.4 [5], related to secure processes, adaptation of processes, semantics of processes, and to the TAS3 architecture (see D2.1 [3]).

3.1 Modelling of an Example Process

3.1.1 Modelling Methodology

Business Processes have become very popular recently thanks to the adoption of key standards such as BPMN and due to the fact that technologies have matured. However it is important to keep in mind that Business Process Management is first a methodology that is enabled by technology and not the other way around. Intalio has provided training programs in modelling by process experts to various TAS3 members in order to transfer knowledge on the fundamentals of process modelling. During this step, participants realized that BPMN is a very advanced language, and Intalio|BPMS can support most of the real-life in-company processes. On the other hand, one quickly observes limitations when dealing with inter-company processes where one has to share parts of his business processes. Security then becomes a major concern, and it is important to capture the security concerns at the process modelling stage.

Intalio has developed the Process Modelling Framework (PMF) (see also [21]), as collection of best practices for business-process modelling. Intalio is using this framework to model business processes for its customers.

Agile software development methods have influenced this approach. Further, it is process-oriented by letting the business experts build and test business rules and process logic. This means that they obtain a stable process model with the corresponding rules and metrics before any code is written.

Intalio has derived some "golden rules" and suggests the following modelling procedure:

- A "top-down" approach for process modelling for discovery and "middle-out" implementation of business scenarios.
- (Re-)use of established process patterns, centralised business rules, and existing services.
- Room for change control in the process flow, e.g., by using an interface layer to communicate with services.
- Store data once and share it where needed.
- Write reproducible test cases to validate business scenarios.

The top-down modelling approach is achieved in line with the various layers of process diagrams, from one high-level diagram covering the overall process flow (the "core" process) via phase-level diagrams to detailed scenario-level diagrams, possibly over several layers as well. Implementation then starts "middle-out" from the scenario level: Each scenario-level diagram is implemented using implementation- and service-level processes to decouple interfaces and to prepare for possible changes. Then the next step designs "bottom-up" the interfaces to pass data needed for process flow-control.

Each scenario should be self-contained and testable as a stand-alone mini-process. An administrator can change scenarios at run-time without affecting the rest of the process. (Of course, this is only possible as long as the interface does not change. The PMF approach makes it easier to keep interfaces stable by decoupling the technical implementation using the integration and service levels, and by persisting data outside of the process.)

The PMF approach is described in more detail in [21].
3.1.2 The "Accreditation of Prior Learning" Process

Kenteq’s business includes accreditation of prior learning (APL). APL is the common name given to the process of recognising the competencies an individual has gained through formal and informal learning in various settings. Recognition in this case means awarding certificates or diplomas on the basis of a generally recognised standard, such as the qualification structure for vocational education. A thorough description can be found in Section 4.4 of Project Deliverable D9.1 [22].

This process helps demonstrating the TAS3 capabilities as part of the employability pilot. A thorough description can be found in Appendix A. The PMF approach as described in Section 3.1.1 has been used to model parts of the Kenteq APL business process.

Figure 3.1: The Core process diagram of the APL process

Figure 3.1 gives a high-level overview of the different phases of the APL process, the so-called process core. This diagram is the first step for top-down process modelling and does not yet contain any implementation aspects. It consists of four high-level activities:

- The Commence APL phase contains administrative tasks needed to initiate the APL process.
- In the PCP Generation phase, the individual seeking APL (i.e., the candidate) and Kenteq employees work together to create and validate a personal competencies profile (PCP).
- Afterwards, the Reporting phase assesses the abilities of the candidate and creates a formal report.
- Finally, the Procurement phase encompasses administrative activities like "mailing the report", "making out an invoice" and "permanently storing the report".

Figure 3.2: BPMN diagram for the "Commence APL" phase

We have modelled three of these phases in more detail. APL is quite a sophisticated process; note that each activity of the phase-level diagrams has to be modelled in more detail as a scenario-level diagram. From the "Commence APL" phase:

- "Receive Contract": introduce the contract between the candidate and Kenteq as service provider of the APL application into the APL process.
Figure 3.3: BPMN diagram for the "PCP Generation" phase to create or complement the personal competencies profile

Figure 3.4: BPMN diagram for the "Reporting" phase

- "Input Candidate Data": collect identifying data about the candidate only if he or she is not yet registered.
- "Finalising Candidate Details": check if the identifying data required is on-hand, otherwise complete it (manually).
- "Allocate Ressources": allocate the persons involved in the APL process, e.g. the coach, who will guide the candidate through the APL process.

From the "PCP Generation" phase:

- "Review PCP"
- "Approvals"
- "Finalising Candidate Details"

The APL process involves several actors. This list is partly taken from Section 4.4.4 of Project Deliverable D9.1 [22]:

- The Candidate is an employee who applies for APL.
- The Organiser is a Kenteq employee who is charged with administrative tasks.
- The Coach helps the candidate to complete the portfolio and checks the evidence.
Figure 3.5: BPMN diagram for the "Procurement" phase

- The Assessor executes the APL procedure.
- The Quality Controller ensures that the process meets the quality standards of the APL code and approves the quality of the report.

We will use these diagrams in the following to illustrate and refine the requirements we have identified.

3.2 Requirements

Accreditation of prior learning (APL) is a business process within one company (Kenteq), with various manual activities. Deploying APL as a TAS3 application means that personally identifiable information (PII) from other sources in the TAS3 ecosystem will be made available to Kenteq, and PII collected at Kenteq will be sent to other service providers for processing. This means that stronger security is needed, but this must not impair the efficiency of the business process.

In this section, we will identify the requirements on a business process management platform. The presentation consists of three parts, matching the major research areas of WP3: Secure processes, secure process adaptation and support of semantics specifying security of business processes with ontologies. The APL process is a comprehensive legacy application, and we have not yet modelled it in full detail. Consequently, we expect to discover refined and new requirements when using the concepts described in this report for the implementation of APL as a TAS3 application, as well as from the other pilot scenarios. Further, we are going to enforce the integrated treatment of secure processes, ontology and adaptability in the next phase. So we expect to identify requirements crossing the boundaries between these areas currently handled in isolation.

3.2.1 Secure Processes

To facilitate secure processes, a comprehensive approach to security, spanning modelling, deployment and execution of processes, is necessary. We structure the requirements concerning the security of processes, assigning them to several topics: First, process modelling is a cross-cutting concern relevant for all concepts for business process security. Runtime security management and enforcement consists of two parts: on the one hand, authentication and identity management, and on the other hand, authorization. Finally, we identify requirements on the runtime behaviour of business processes. We shortly present each topic and list the requirements that belong to it, before presenting each one in detail. Note, that the names of the requirements start with the number of the deliverable, in which they are introduced.

1. BPMN modelling tools such as the Intalio|Designer supports graphical modelling of business processes (D1.2-R3.1). However, the models must be enhanced to address security issues. D3.1-R.1 calls for such enhancements in general, but specific implications on the modelling process are contained in several requirements, namely D1.2-R.3.5 "task assignment" and D1.2-R.3.8 "separation of duty", and in the more detailed requirements presented in this report, namely D3.1-R.3 "explicit assignment of resources, and of users to roles", D3.1-R.4 "role mapping", D3.1-R.6 "separation of duty", D3.1-R.7 "binding of duty", and D3.1-R.8 " specification which data process participants may access at what time".
2. Authentication and identity management are of less importance to WP3. Our focus is on the compatibility of the workflow component with the authentication and identity management infrastructure provided by other work packages, as specified in D1.2-R.3.4 and D3.1-R.2.

3. The major focus of our secure business process management platform is on authorization, as specified by D1.2-R.3.5 through D1.2-R.3.8 and D1.2-R.3.10, and D3.1-R.3 through D3.1-R.8. The requirements aim at a flexible and powerful approach based on process roles and consideration of the context that business processes provide. All these requirements have implications on both modelling and runtime execution.

4. Finally, we are concerned with the runtime behaviour of business processes. D1.2-R.3.9/D.3.1-R.9 requires that processes can detect and recover from security violations. Requirement D3.1-R.10 calls for a possibility to specify under which identity, or even under which delegation tokens the process is supposed to act.

3.2.1.1 Requirement D3.1-R.1: Visualization of security specifications at the process-design level

Several specifications exist today to address security concerns at the transport level (e.g., WS-Security/SAML [18]). However, currently there is no method to easily expose security concerns visually to the process analysts. We need to annotate or enhance BPMN as well as the modelling tool, in order to accomplish this.

This requirement is a refinement of D1.2-R3.1. As modelling crosscuts all security issues, it intersects with several security requirements, as already described above.

3.2.1.2 Requirement D3.1-R.2: Distributed identity management

Actors in business processes need to be authenticated. This authentication must be based on a distributed identity management system (federated identity), because business processes in a service-oriented architecture comprise actors from different organisations. It is desirable that they can use a single account to participate in these processes. E.g., their employer or a national registry could issue their account.

The Kenteq APL process, for example, spans the employability agency, the company of the candidate and the coach and assessor, who might be independent consultants. They should be able to login using existing accounts. This implies that Kenteq needs to consult the security infrastructure to perform the authentication, and that there is a mapping between the account at Kenteq and the federated identity of the user. Further, Kenteq should be able to obtain information about them (e.g., special domain expertise) from external sources (e.g., a directory of employability professionals), also requiring such a mapping.

WP7 (Identity Management) deals with the distributed identity-management framework itself. The workflow management engine needs a component that can check the credentials presented. This is provided by the Credential Validation Service (CVS) described in D7.1 [23].

This requirement is D1.2-R.3.4.

3.2.1.3 Requirement D3.1-R.3: Flexible user/role assignment

The choice of actors in workflows can be based on different application-dependent criteria. It should thus be possible to explicitly model the assignment of users to workflow tasks and workflow roles.

In the Kenteq APL process, this is necessary for the assignment of the coach and assessor roles: It is not possible to designate a number of Kenteq employees as coaches and just pick any of them, because special skills and qualifications (that depend on the APL candidate and are thus different for each process instance) need to be taken into account, either by a human or automatically by the process logic.

This requirement corresponds to parts of D1.2-R.3.5.

3.2.1.4 Requirement D3.1-R.4: Role mapping

Some roles in business processes map directly to organisational roles that are independent from specific business processes and are managed in an independent repository, like an LDAP server. This is applicable
to the Manager role in the Kenteq APL process: A manager at Kenteq can perform this function in any instance of the APL process as well as in other processes.

Accordingly, it should be possible to directly refer or map from process roles to organisational roles, without having to explicitly assign actors to such roles.

This requirement covers a very specific aspect of D1.2-R.3.5.

3.2.1.5 Requirement D3.1-R.5: Least Privilege and Strict Least Privilege

In order to fulfil their tasks in a workflow, actors typically need access to certain relevant data. The principle of least privilege demands that a person should only get the permissions that he needs to fulfil his tasks. In our use case, an example of this principle is that a coach should only be able to access the profiles of candidates whom he is actually coaching (as opposed to those of all candidates doing APL at Kenteq). In other words, he cannot exert the coach role in unrelated cases. The principle of strict least privilege further demands that he holds these permissions only as long as needed to execute the task. For example, the candidate will be allowed to change his profile, but only at certain times (and not when it has already been reviewed by his coach or assessor).

To provide actors with the information they need to fulfil their tasks, it must be possible to specify the resources that actors of the process may access. Further, it must be possible to specify when access is allowed and when not (or only in a limited way, e.g., read-only).

This requirement corresponds to requirements D1.2-R.3.6 and D1.2-R.3.10.

3.2.1.6 Requirement D3.1-R.6: Binding of Duty

Binding of duty is, in a sense, complementary to separation of duty described in requirement D3.1-R.8: Where separation of duty requires two activities to be performed by different persons, binding of duty requires them to be performed by the same person.

For example, the person that enters data and is asked to complete that data if it has been found incomplete by someone else should be the same person. In our example, Kenteq’s APL business process, most roles (e.g., coach and assessor, and, of course, candidate), imply a binding of duty for all activities of that role.

Thus, it must be possible to impose binding of duty on roles.

The binding of duty requirements is derived from D1.2-R.3.5.

3.2.1.7 Requirement D3.1-R.7: Delegation

It can become necessary for someone involved in a process to delegate this involvement - including all permissions - to someone else.

Example: Coach Bob goes on vacation for three weeks. He is involved in two running APL instances. The day before his vacation, he decides that Charlie and Dora would be best suited to jump in for him, and they agree to do so.

The delegation refers to Bob’s involvement in two specific APL instances. It must be possible to delegate the ownership of process roles on the instance level. I.e., Bob delegates the first of the running APL instances to Charlie and the second one to Dora. This way of specifying the scope of a delegation is specific to business-process management, but is actually an example of the generic principle of constrained delegation of authority.

The permissions transferred by this delegation apply to tasks in the business process as well as to permissions on external data repositories. Thus, the handling of tasks must respect delegations. Furthermore, permissions that are assigned and activated in the context of a business process must also apply to delegates. Finally it should not be possible to delegate role ownership to arbitrary persons, because this would compromise security. Instead, a delegation policy is necessary to determine which delegations are allowed and which are not.

This requirement corresponds to D1.2-R.3.7.
3.2.1.8 Requirement D3.1-R.8: Separation of Duty

To avoid conflicts of interest (thus, ultimately for security purposes), it is sometimes required that several people cooperate to achieve a specific result (e.g., requiring two signatures of different persons to cash a cheque). This is usually done by requiring that several tasks that are all needed to achieve the desired outcome may not be performed by the same person. In any given instance of the Kenteq APL process, the same person may not act both as coach and as assessor. The reason for this is that there is a supervision relationship between coach and assessor. It must be possible to specify separation of duty constraints, to be enforced automatically at runtime.

This requirement corresponds to D1.2-R.3.8.

3.2.1.9 Requirement D3.1-R.9: Recovery from security violations

TAS³ as a trusted and secure architecture will perform various security checks at runtime. If security violations occur, they might be discovered. For example, when explicitly assigning users to roles, the organiser might nominate a clerk as coach, though he is not eligible for this role. Or he might nominate the same person as both assessor and coach, which is precluded by the separation of duties constraint mentioned above. When trying to access a resource, access might be rejected. E.g., consider the case that a candidate’s PCP has been imported from an external source. It contains references to diplomas of the candidate stored in an external repository. The process requests a diploma on behalf of the coach for inspection, but the request is rejected, say, because of misconfigured policies or because of an explicit setting from the candidate. Processes must be able to react and recover when activities fail due to security violations, for example by initiating a break-the-glass procedure (cf. Chapter 3 of Project Deliverable D7.1 [23]). These recovery mechanisms must be specifiable in a flexible and systematic way, in order to be able to react to unforeseen security violations and to keep process definitions concise.

Security violations can happen in all processes, e.g., because of permissions that have changed. In the Kenteq APL process, this might be the case for operations on the candidate’s portfolio.

This requirement corresponds to D1.2-R.3.9.

3.2.1.10 Requirement D3.1-R.10: Acting on behalf of other entities

One purpose of business processes is to coordinate the fulfilment of tasks by humans. However, processes also orchestrate automated systems running autonomously. They call services, and they frequently do it on behalf of or in the interest of a human actor involved in the business process. When, for example, the process appends an approval certificate to the PCP of the candidate, this is done on behalf of the assessor, who has explicitly approved the PCP previously. Thus, it must be possible to specify for whom a process is acting. To ease maintainability, this should be possible in the business-process model.

3.2.2 Secure Process Adaptation

In order to enhance the adaptability of business processes (workflows), existing solutions, mostly supporting static adaptations of process models, are not sufficient in TAS³ applications. (These are described in Deliverable D1.1 [24] which contains an overview of the state of the art.) Basic support for static adaptations is already contained in existing BPM systems. But there also is significant need for further research into dynamic adaptations, e.g., in order to facilitate more user support or to support cooperation of business processes that are defined by a business-process choreography (see e.g., [25], [26]).

In TAS³, we need to dynamically improve the flexibility of processes for instances that are already running. In business process models there already exists the possibility to statically model alternative sequences of activity flows i.e., a fixed defined process model supports well-known (but not too many) variations of the process. What we want to achieve with dynamic adaptability goes way beyond this possibility.

We distinguish the following levels of flexibility as process categories:
• Ad-hoc-workflows: without completely specified process schema.

• Workflows in an open dynamic environment: need to be dynamically adaptable in varying the invocation of particular web services or other processes, or even changing the specified sequence of activities, when these activities are not known at process creation time. This may be required by the context, e.g. the actor of the process or the data involved, or by a changing security environment.

• Production workflows, not very flexible but robust. These are the static adaptations that are possible today.

In TAS3 we primarily aim to support workflows in an open dynamic environment. In very particular situations even ad-hoc-workflows could be desirable, e.g. if there is the need to define a business process accessing data required for specific users, when neither the users nor the data are known beforehand. If there exists a great variety of data and of ways to access this data, it may not be feasible to design all possible sequences of tasks, decision points and branches of subworkflows in advance, and the BP manager may need to leave it to execution time to compose an adequate sequence of tasks.

Dynamic adaptation of processes comprises at least the following functionality:

• Change process schema. In the following we sometimes use "process model" as a synonym of "process schema".

• Perform basic structural changes, e.g., replace tasks, delete tasks, insert tasks.

• Change the process flow, e.g., alter branch conditions, use different data, insert human tasks, alter process flows depending on the requirements of the active role or on the current status of the process data.

• Apply adaptations to process instances, i.e., migration.

• Perform adaptations automatically, semi-automatically or manually.

To achieve adaptability of active process instances, the explicit modelling of adaptations is required in order to formalize the process status and to define well-formed processes, i.e. processes with a consistent structure with respect to business process execution requirements. Hence, we need adaptation operators describing the change of the process schema. Additionally, we must have the means to migrate process instances to a process model that has changed.

The definition of security for business processes depends on the process model itself, on the web services referred to in the process model, on interactions with humans, i.e., human tasks, and on the data used during the process, i.e., the workflow data. These elements also are the building blocks of a business process. Therefore, adaptation of the process, i.e. change of these elements and their composition (as workflow) has an impact on the security state of the process, and we need to be able to identify the effects of adaptations on the security specification of the process and manage it.

Real world processes like the Kenteq APL process, see Subsection 3.1.2, are applications that are commercially used. Because up to now there has been a lack of advanced adaptation support for business processes, actual implementations use workarounds or even run with restricted functionality compared to their potential realizations using the adaptation support envisioned. So we have to analyse the requirements for adaptability by having in mind the TAS3 framework envisaged and the enhanced possibilities for business processes in such an environment. As important categories of adaptation requirements, we have already identified runtime changes of workflow types and instances, changes initiated by stakeholders of the business process, user support for controlled workflow adaptations and adaptations resulting from changes of the data involved.

The respective requirements identified in Deliverable D1.2 [4] are D1.2-3.12 through D1.2-3.15, and they result from the following observations:
• Service providers will outsource parts of their business process to other service providers. To be able
to do so, they must have sufficient information on the available processes (interfaces, assumptions,
i.e. pre- and postconditions and effects, interaction behaviour, nonfunctional properties).

• Users expect to know as early as possible what PII they need to provide so that a particular business
process can complete successfully, or to put it another way, if the process can complete successfully
with the PII they are willing to contribute.

• Process flows are not always modelled in a fixed manner. Sometimes it is not possible to foresee
all possible flows that may occur. In the APL context for instance, depending on the candidate, the
process to perform the assessment or to choose an adequate coach may differ from the predefined
way. Another example is the change of data that results from calling a subprocess or web service.
In these cases adaptation of the active process is needed.

• Adaption of a process must result in a process that guarantees the same level of security.

There are further requirements regarding the realisation of adaptations. To achieve a better automation
and/or user support, semantic information on services and processes is needed. To accomplish this, we
need adequate ontologies of the respective application area and of the security concepts.

In TAS³, the trust and security negotiator is involved in choosing web services with adequate security
guarantees. The result is a web service that is adequate from the trust and security perspective. But the
insertion of new web services in a business process typically is subject to restrictions. The substitution
of single web services by other web services with the same interface is a basic feature of a service-oriented
architecture, but only when using abstract web services in the process model. Otherwise, the process
has to be stopped, remodelled, deployed anew, and the server has to be set up. If we wanted to provide
more flexibility, e.g., to admit web services with slightly different interfaces or even subprocesses that
are more adequate to fulfil the required trust and security conditions, our system should support more
advanced adaptations of the process. Advanced categories of adaptations need new mechanisms and
concepts considering the actual process status and checking if process modifications are allowed at all.

3.2.3 Semantics of Secure Business Processes

TAS³ aims at developing a Trust Network (TN) where parties (e.g. Service Providers (SPs) and users)
can interact with each other securely. Thus, we need to provide semantics to services, processes and data
to enable interoperability on the TN. In the Semantic Web, ontologies define concepts for a domain in
terms of their attributes and relations among these concepts in machine and human readable format.

Based on the requirements, we can identify several topics to be covered by ontologies. Firstly, the TAS³
architecture must support different web services to access applications over a network, such as the TAS³
TN, and execute these applications on their respective hosting servers (requirements D1.2-2.3, D1.2-2.4
and D1.2-3.12). Thus, service providers should provide a description of their available web services. The
World Wide Web Consortium (W3C) has developed a syntax, called the Service Description Language
(WSDL) [10], based on XML, to define the abstract operations and messages provided by a web service.
Although it supports basic interoperability, it lacks proper semantics enabling the automatic discovery,
composition and invocation of web services. For example, a human user would have to manually search
through existing web services to combine them in a useful manner. Several ontologies (e.g. OWL-S [27]
and WSMO [28]) are available to provide semantic mark-ups. Their use would allow automatic translation
of message content between heterogeneous interoperating services. [29] provides an extensive comparison
between WSMO and OWL-S. However, in TAS³, we are only concentrating on interoperability based on
security, privacy and trust.

Secondly, business processes define the order of tasks (also called sub-processes) to achieve a certain
goal. One of the aims of WP3 is to enhance flexible adaptability of business processes (see Section 3.2.2).
As a result, we need to represent business processes in terms of pre- and post-conditions of their sub-
processes, the relationships between these sub-processes and the role of its participants. Moreover, the
system must be able to enforce the separation of duty constraints (Req. 1.2-3.5 and 1.2-3.6 in Deliverable
D1.2 [4]). As a result, we need to extend the ontology with application-specific roles using these concepts to define business rules.

Thirdly, the TN should enable secure data interoperability between web services and business processes. Therefore, we need to develop an ontology describing the security-related aspects of data available within the system. For example, personally identifiable information (PII) should be specified in such a way that it is understood by all parties as sensitive data (Req. 3.9). As a result, the understanding of business processes (and of web services) is increased through the use of semantically annotated data.

Finally, parties on the TN should be able to set policies (authorisation, authentication, and trust) that control access to data (Req. 7.5, 7.6 and 7.7). Furthermore, the system should be able to detect (and resolve) conflicts when multiple authorisation policies have been defined (Req. 7.7). As a result, we need to describe the security mechanisms, e.g. Single Sign-On, used by a service and/or process to access assets.

3.2.4 Requirements on the architecture

TAS\(^3\) aims at developing a Trust Network (TN) where parties (e.g. Service Providers (SPs) and users) can interact with each other securely. Business processes provide a means to explicitly handle interactions of services, processes and data at a modelling level and during execution in the TN. Especially, security comes into play for business processes, when they interact with the environment via web services.

In TAS\(^3\), every service request as well as every service reply has to pass through policy-enforcement points (PEPs) on both the requester and the provider side. This is depicted in Figure 3.6 (taken from paragraph 1.6.2 of D2.1 [3]). Executable business processes can act both as a service requester and a service responder. They also interact with humans, either via front-end services as shown in the diagram or via a dedicated task-list console. The latter enables a type of relationship between business processes and humans not depicted here: The process acts as a service requester, creating tasks for humans to complete, and the human (through the task-list console as a proxy) acts as a service provider.

An important aspect of security is authorisation (as shown in Figure 3.7, taken from paragraph 1.6.3 of D2.1 [3]). Authorisation is not static, but instead depends on the context and on the current state of an interaction. For example, the coach and the assessor only need access to the candidate’s portfolio until they have completed their reports.

As business processes orchestrate interactions, this state becomes explicit and can be used as a parameter or context information to specify authorisation in a generic way, i.e. when checking the authorisation the actual context is available instantiating the authorisation rules.

A security architecture with native support for business processes must be able to perform the following tasks at the enforcement level:

- It must maintain the state and the security context of each process instance. This includes the interaction partners (humans or computer systems) assigned to the process instance, the activation status of permissions that are only valid in the context of the process instance, and information necessary to enforce separation of duties.

- It must store and make available the security specifications for business processes (i.e., conditions for the assignment of roles, role delegation policies, separation of duty constraints, and specifications for the assignment of permissions to role owners). These policies apply to business-process models (types), not to individual instances. Thus, the specifications are generic, i.e., apply to all instances of a particular model. First, they contain an enumeration of the human roles, the web-service-interaction partners and the resources involved in the process. Second, they contain criteria which these entities must fulfil and, according to which, automatic selection of the entities possibly occurs.

- It must take the policies and state and security context of the process instance into account when checking explicit assignments of human actors, web-service-interaction partners, or resources, or when performing automatic assignments.
It must allow processes to act on behalf of the actors involved, i.e. passing on such an authorization to services invoked, and it must allow the processes to pass on such an authorization to other human actors involved in the process. This can happen in several forms, e.g., through authorization tokens or through explicit calls of a delegation service. It must provide a central place for users where they can see which processes they are involved in, and where they can delegate their role ownership in specific business process instances.

Further, the identity of actors in business processes has to be aligned with the TAS3 identity management infrastructure. The propagation of identity handles is described in Chapter 4.2 of [3]. When a user logs into a frontend service, an identity provider authenticates his credentials and asserts his identity to the service, issuing an identity token. Each service knows the user by a different persistent pseudonym. Thus, when the frontend service needs to call another service to request data on the user, it must first acquire an identity token that the other service can use. The identity mapper service will provide this exchange.
Figure 3.7: Authorization in the TAS³ architecture
4 Conceptual Design

This chapter gives an overview of the conceptual design to facilitate secure adaptable business processes. Figure 4.1 shows the main issues regarding secure processes. Security comes into play at two levels: The definition of security settings accompanies the modelling of the process itself. Regarding execution of the process, the security settings are enforced, taking the execution context into account. Ontologies will provide semantic interoperability for security definitions. Ontologies provide support to ensure semantic correctness of the adaptation and a sufficient security level of the process adapted. Adaptation concerns both process models and running process instances.

![Figure 4.1: Overview of the topics of security management in processes](image)

4.1 Mapping to the TAS³ Architecture

This section yields to present how the business-process-specific security management and the resulting components relate to the general security architectural framework of TAS³. First, we begin with a description of the general security enforcement approach in TAS³. Then we identify four categories of specific components to establish security for business processes. The rest of the chapter then presents for each category the requirements to components of this category and describes their functionality.

4.1.1 Security Enforcement in TAS³

In TAS³, any communication is subject to specified security and trust policies. Compliance is checked for every request and every reply, both at the service requester and at the service provider side as shown in Figure 3.6. This model is generic and is not specific to business processes, but on general service-oriented architectures. The book [30] gives also a good overview about existing security mechanisms for web services and service-oriented architectures, which will be enhanced and improved in this project. The policy enforcement points shown there (PEP Out and PEP In) will, accordingly, intercept any web-service call to or from the business process and enforce any applicable policy. Again, these policies are in general not specific to business processes, except that they can refer to properties of the process model or the process instance in question. Such properties may be the execution status of the process instance (such as activities waiting for execution, values of internal variables or the execution history), the security context of the process instance, the roles and resources assigned to the process, or the description of the process model, e.g., its privacy policy.

On the other hand, activities in processes can explicitly cause modifications of their security context, e.g., assign users to a process role. These modifications need to adhere to policies. Otherwise, users could illegally go beyond their privileges. The business-process-specific security components as described in the
next section will both. On one hand, they want to support the generic policy enforcement infrastructure by providing attributes necessary to evaluate policies. On the other hand, they will evaluate and enforce the process-specific policies.

4.1.2 Business-process-specific security components

We can broadly categorise the tasks of the components needed to establish security for business processes in the TAS context into the following categories:

- Capturing and storing security-relevant information on instances of business processes.
- Runtime enforcement of security policies by inspecting incoming and outgoing messages.
- Management of configuration changes in other parts of the TAS infrastructure.
- Creation of security configurations based on process models.

Figure 4.2 shows an architecture overview of the TAS Framework in a service-oriented architecture from Deliverable D2.1 [3]. The business process (BP) box and the blue box enhance the architecture for business process handling. The blue box represents the security-related execution state of the business process, more precisely components that manage the business-process related security, based on process instance information about security. It shows how the business processes are integrated into the runtime and enforcement domain of the architecture. A business process uses the PDP to ensure authorized execution of process activities, like web service calls, subworkflow calls, use of resources as web service calls but enhanced with state information. This results in additional or enhanced business-process specific security components, which are described in the following. The modelling and configuration domain also affects the PEP of business processes. It will allow to configure the construction of the PEP and the involved security components. For their specification we use a business-process-modelling tool, enhanced to support security annotations.

From the perspective of security enforcement, Figure 4.3 shows Figure 2.10 of the TAS report [4] with the arrangement of enforcement points in web service call flow. Web Service calls are represented in Client or Service Applications, both may be realized as business processes. Again, the blue boxes represent the components managing the security state information of process instances which enhance the security handling of business processes.

In Section 3.2, we have identified requirements the security architecture must fulfill. In the following Section 4.1.3 we state briefly how to meet these requirements by adapting existing or introducing new components.

4.1.3 Components managing instance-specific security information

The following architectural requirements hold for components for business-process management managing instance-specific security information:

Information of business-role assignments to individuals. We need to store which users are currently assigned to a given business-process role for a given business-process instance. A PDP can use the current role assignment to make access control decisions, or to another component can reconfigure PDPs in the infrastructure. In this case, a policy-information point (PIP) will provide it to the PDP or other components. In the case of instance-specific business-process roles, the processes are defined locally and used within the scope of one business process instance. Thus, the PIP assures for its own that the assignment is valid.

Policy decision. The PDP that checks the role assignments must be stateful so that it can enforce instance-wide separation of duty on role assignments. Note that this component is not developed by WP3 but in WP7.
Business-process specific permissions. The stateful security handling in business processes requires a repository that tracks the permissions that users have delegated to the process. For each business process model, there is a list of resource types, each with a name, which the process needs during its execution. Basically, the data to be stored for each process instance is a table with entries that have a name, an identifier of the resource, and the token describing the delegation. For this end, we must provide a component managing process permissions, i.e., a process permission manager in short PPM. Before recording an entry, the PPM checks the validity of the delegation token through the Credential Validation Service, an existing component provided by WP7 (see [23]).

Delegation handling. When the process assigns a user to a process role, this assignment must be valid, i.e., must conform to the role-assignment policy. The task of a Delegation Issuing Service (DIS) is issue tokens representing the ownership of roles. When issuing tokens, it takes the assignment policy into account. When the DIS has issued a token, the IR-PIP can store the role assignment. If the role assignment is only used by the process management platform and not distributed across the infrastructure, it is sufficient to let a PDP authorize the role assignment and store it in the IR-PIP, without issuing a token.

Information of process-instance-specific attribute for policies. Role-assignment and delegation policies can refer to attributes of the process instance that are specific to a certain business-process model. Accordingly, we need an Instance-attribute PIP that will make this data available to the PDP. Additionally, the business-process must be able to set these instance-specific attributes.

Restriction of the grant of access rights to intervals. To evaluate constraints that refer to intervals within a process, e.g., the time between start of task A and end of task B with A, B tasks in the process, the PDP must be able to determine whether the execution of a process instance is currently inside a certain interval. We will build an Interval Monitor that does this. When a process instance starts
Figure 4.3: Arrangement of enforcement points in web service call flow of business processes

execution, the Interval Monitor will have to determine the set of intervals, e.g. relevant for the
deleigation rules of the process model.

4.1.3.1 Policy-Information Point for Attributes of Process Instances (T3-BP-PIP-IA)

The IA-PIP keeps track of attributes specific for process instances. For each process model, there exist
the attribute names and the meaning of the attributes. The values are specific to instances and the process
instance can set them at runtime. Later, we plan to automatically determine the values of BPEL variables
(note that incoming messages can, in turn, automatically populate them) as attribute values.

4.1.3.2 Policy-Information Point for Intervals in Process Instance Executions (T3-BP-PIP-INTERVAL)

Process models define permissions that the PPM will automatically grant when executing a business-
process instance. The permissions may be limited to a specific phase in the execution of the process model
called an interval), e.g., a certain sub-process. The task of the T3-BP-PIP-INTERVAL is to monitor the
execution of process instances. It determines for each interval which is used for limiting the validity of a
permission whether the process-execution is currently in the interval.

4.1.3.3 Policy Information Point for Roles in Process Instances (T3-BP-PIP-IR)

The IR-PIP handles the assignments of process roles to individuals. For each process model, there exists
a set of roles as well as assignment policies for these roles. The BP-PIP-IR stores the current assignment
of individuals to the roles, for each process instance. It checks requests to assign a specific person to a role
against the relevant assignment policy before it changes the assignment. Finally, it lets other components
query the current assignment.

4.1.4 Components enforcing security policies on messages exchanged

The following architectural requirements apply to components of business process management enforcing
security policies on messages exchanged:

- The BPEL execution engine needs (application-dependent) policy-enforcement points for incoming
 and outgoing web-service calls (PEP-in and PEP-out). These PEPs determine any context information
 necessary to evaluate whether the call may be processed, in particular the ID of the business-
process instance receiving or performing the call, and of the corresponding business-process model. It communicates the authorization decision to the BPEL execution engine.

- The BPEL execution engine needs to be enhanced so that it can throw BPEL faults when authorization is denied for outgoing web-service calls.
- The authentication mechanism of the workflow component will be enhanced so that it uses single sign-on. Then, it can deal with the identity tokens returned by the identity provider.
- The Dashboard is the component of the security framework, that allows users to interact with the framework. It needs functionality so that users can see their current roles and delegate them to other current actors in the business process.

4.1.4.1 Service Requester Policy Enforcement Point (T3-PEP-RQ)

The PEP-RQ groups a number of features:

- It makes XACML requests to a PDP to determine whether requests and responses passing through the PEP are authorized. This is the functionality commonly associated with a PEP.
- It logs the service requests and audit-relevant information to a specific component in the infrastructure (the Audit Bus).
- It looks up the endpoints to be used for service calls and routes request to the correct endpoint.
- It collects any attributes needed for making the XACML request to the PDP. They are available, inter alia, from the IR-PIP and the IA-PIP.
- It looks up the policies to be used for authorizing the web service request, if they are not already known to the PDP. Additionally, it performs necessary adaptions of policies to reflect instance-specific security requirements (policy template instantiation).

4.1.4.2 Business Process Manager (T3-BP-MGR)

The business process manager makes sure that only authenticated and authorised individuals can access process instances. Authentication is accomplished by integrating single sign-on into the Intalio Tempo components. The Tempo components provide a graphical user interface for (human) tasks in business processes. Additionally, it determines the users allowed to access tasks (based on the user-role assignment stored by the IR-PIP and possibly the decision of a PDP).

4.1.5 Components managing the security configuration in the infrastructure

The following architectural requirements apply to components of business process management that manage the security configuration in the security infrastructure:

- For some of the resources delegated to the process will occur a further delegation to process participants, i.e. users holding roles in the process instance. We will provide a component, the Process Permission Manager, that will track the role assignments and assigned resources and issue delegations accordingly. These delegations will contain two kinds of restrictions, the second one being optional: First, the delegate still needs to hold the role in the process instance that has caused the delegation in the first place. Second, the execution state of the process instance must be within a given interval at the time the delegated permission is used.

- We need to store the policies and further security information related to certain business process models, namely role-assignment policies, role delegation policies, delegation rules, specification of instance attributes, and the list of resources. This information will mainly be stored in the components using it at runtime or in a general-purpose PDP. However, it might become necessary to use
a more generic form. In general, such a generic form can not be directly used by a PDP. It must be pre-processed in order to be usable with respect to specific instances of business processes.

4.1.5.1 Process-Permission Manager (T3-BP-PPM)

The permission manager keeps track of permissions assigned to process instances. These permissions will refer to specific resources (e.g., data sources) involved in the process. The permission manager will cause delegation of these permissions to persons holding roles in the process instance, according to rules defined for each process definition. The PPM will cause revocation of the permissions if the conditions of a rule no longer hold, e.g., if a person no longer holds a process role.

4.1.5.2 Process-Role-Delegation Service (T3-BP-DR)

The role-delegation service allows individuals to delegate their involvement in a specific process instance (i.e., the pair consisting of a process instance ID and a role) to another individual, who is then permitted to carry out the associated tasks, and is responsible to do so. Prior to the delegation, the DR component will require consent of the delegate. Further, the delegation is only allowed if it adheres to a delegation policy under specific conditions. The policy must be specific to the process model, and must refer to attributes of the process instance, the delegator, and the delegate.

4.1.6 Components Creating Security Configuration

4.1.6.1 Process Security Configuration (T3-BP-SM)

The Process Security Configuration Component will allow to model security during the business-process-modelling task and related to the process model. To this end, the business-process modelling tool based on BPMN has to be enhanced by security-specification parts. Taking the security-annotated process model there will be a transformation of the security model to the enforcement and execution level.

4.1.7 Overview of the Architecture

Table 4.1 is a summary of the new, reused and enhanced components. Figure 4.4 gives an overview of the components and their relations. The edges stand for possible communication between components.

- Process models are developed using a process-modelling tool. Security aspects are extracted from these models using the Security-Configuration Tool (T3-BP-SM).
- Resource access roles are handed over to the Process-Permission Manager (T3-BP-PPM), information on process roles to the Instance-role PIP (T3-BP-PIP-IR), the process model to the business process engine (T3-BP-ENGINE) and the interval model to the Interval Monitor (T3-BP-INTERVAL).
- The business process engine makes a request to the PIP-IR in order to register an intended instance-specific role-user assignment.
- The PIP-IR forwards the request to the PDP.
- The Process-Permission Manager matches role-user assignments with the resource-access rules of the process model. For every match it grants access to the user in question.
- Incoming and outgoing (payload) messages to and from the process pass through a policy-enforcement point (PEP), respectively. The PEP examines the messages and asks the PDP, via the AI-PEP, whether the message is allowed. This authorization contains necessary context, as determined by the PEP. If the messages are allowed, they are passed on to the process or its communication partner.
- The PDP may apply process-specific policies (among others). In some cases, for example using sticky policies, the PEP passes the applicable policies to the PDP.
Table 4.1: Overview of new security enforcement components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Modeling Tool with Security Configuration (T3-BP-SM)</td>
<td>Tool for modeling business processes including security configuration and an interval model.</td>
</tr>
<tr>
<td>BPEL Execution Engine (T3-BP-Engine) (existing)</td>
<td>Executes business processes specified as WS-BPEL.</td>
</tr>
<tr>
<td>Business Process Manager (T3-BP-MGR)</td>
<td>Manages the user access to the tasks, that have to be carried out.</td>
</tr>
<tr>
<td>Service Requester Policy Enforcement Point (PEP-RQ)</td>
<td>Monitor incoming and outgoing web-service calls and enforce decisions taken by the PDP.</td>
</tr>
<tr>
<td>Instance-role PIP (T3-BP-PIP-IR)</td>
<td>Stores instance-specific assignments of process-roles.</td>
</tr>
<tr>
<td>Instance-attribute PIP (T3-BP-PIP-IA)</td>
<td>Provides information about instance-specific attributes of process.</td>
</tr>
<tr>
<td>Process Permission Manager (T3-BP-PPM)</td>
<td>Manages resources delegated to the business process and the corresponding access permission tokens.</td>
</tr>
<tr>
<td>Delegation Service (T3-BP-DR)</td>
<td>Handles the delegation of resource access permissions.</td>
</tr>
<tr>
<td>Interval Monitor (T3-BP-INTERVAL)</td>
<td>Monitors whether the execution of process instances is inside given intervals.</td>
</tr>
<tr>
<td>Policy Decision Point (PDP) (existing)</td>
<td>Grants or denies authorisation according to various policies.</td>
</tr>
</tbody>
</table>

- If policies refer to process-specific attributes, the PDP requests and receives these attributes from the IA-PIP.
- When permissions constrained by an interval are used, the PDP contacts the Interval Monitor to determine whether the interval is currently active.
- The Interval Monitor requests the state of running process instances from the process engine in order to determine the intervals currently active.
- Explicit requests from the business process to the IR-PIP or the PPM in order to assign users to process roles or to register permissions delegated to the process, respectively, must contain context information about the process instance making the request.
- The dashboard of a user can request delegation of process-roles held by that user.
- Before it records the assignment of a process role, the PIP-IR requests the PDP to authorize the assignment.
- The IM monitors changes of the process-role assignments recorded in the IR-PIP and of the delegated permissions recorded in the PPM.
- When a policy refers to attributes of a process-instance, the PDP requests the attribute value from the IA-PIP.
- The process can call the IA-PIP to set attributes explicitly. We also see the possibility that the instance attribute is bound to a BPEL variable. In this case, the IA-PIP calls the BPEL execution engine to determine the current value and answer the request from the PDP.
4.2 Using Business Process Modelling to Configure Security Components

The TAS³ architecture comprises a rich functionality, and some of this functionality needs to be configured carefully to ensure smooth operation from the perspective of the users. Users perceive such smooth operation as dependability and trustworthiness. It is a prerequisite for a Secure and Trusted Network accepted by the users.

Correct configuration will also be essential to ensure that business processes and services function correctly and securely. Given that most security technology is crucial and even tiny misconfigurations may lead to failure, it must be possible to correctly configure the trust network so that it will work properly right away.

The modelling of the process takes place at the business level. This is the right abstraction level to define security rules relevant to the business process and its components. Therefore a model-driven approach seems useful to allow security specification at the business level and transform it to the execution level, e.g. to security rules for processes as role definitions and delegations or authorization rules or other ways to configure the security framework.

The architecture document [3] lists a set of requirements which outputs should be possible to derive, such as:

- Derive parameters of the trust network level model to facilitate federation and single sign on con-
configuration, e.g., with white list of trusted parties or metadata for entities.

- Provide declarative statements on attributes needed by the clients as well as policies under which providers are willing to release attributes. This output can be used to automatically configure layers of Client Request PEP and Provider Request PEP.

- Provide policies, business process models, and interface descriptions as input for automated compliance validation.

- Business Process Models that are needed as input for Business Process Visualization at the Dashboard.

- Derive security rules guiding selection of web services and use of secure entities (data), i.e. influence the discovery service for web services.

To accomplish this, we will investigate enhancing the business process modelling language by annotations or even new language elements, see chapter 5 for first elements. [31] enhance UML models with security aspects, which is a similar approach as in our case, but we will use BPMN instead. In order to support the automatic configurations of security components with information from the business process modelling we plan to develop a configuration component that uses input from an enhanced business process specification (schema) and will transform it into configuration parameters and descriptions for the security components, with respect to the list given above.

The upper part of Figure 4.4, in green colour, gives an overview how such a configuration and transformation tool will work. Input is the Business process description enhanced with security rules, like role information, authorizations for using business process elements, or auditing rules. The transformation and configuration tool transforms these business-specific security specifications in policies stored in the policy store and used from PDPs, parameters to configure the policy enforcement point or the context store. Further, also parameters to configure the trust management could be derived, e.g., places in the process where users may have the opportunity to provide feedback about the behaviour of used components thus supplying the behavioural trust management. This approach has much similarity with model-driven development. In [32] the architecture comprises a configuration component, which follows a similar approach for business processes. The main difference consists in the fact, that TAS3 supports an open distributed trust network on which the business processes are running. [33] proposes a model-driven approach to specify security with UML and generates a configured security infrastructure. We are starting from BPMN as process modelling language.

In subsection 4.2.1 we present our approach to combine security modelling in parallel to the business process modelling.

4.2.1 Modelling Security on the Business Process Modelling Level

Support for annotating BPMN process diagrams needs the following steps:

- list concepts of security which allow to define security goals,
- take a meta model of the BPMN which will be used for annotation, and
- determine concrete security annotations which will apply to business process parts.

For the first step we are taking a semantic description of goals for security modelling taken from [34]. Figure 4.5 gives a comprehensive overview about concepts for describing security goals. Some of these concepts are already part of the Project Trust Network, so e.g. we assume that communication over the internet will always need encryption. Others, especially authorization and authentication are most relevant.

The next step provides the basis for linking security specifications to business process elements. Figure 4.6 gives an overview about the elements of the BPMN model as XSD diagram. BPMN modeller like the Intalio/Designer use this structure for representing the process model. Based on this representation which
is used in the BPMN modelling tool and the process design framework of Intalio, we are preparing tool-
support for handling these security annotations during business process design. All elements of the BPMN
model can be annotated, especially activities, subprocesses, tasks as generalized element of activity and
subprocess, groups of tasks, pools, lanes, message edges, data objects, and the whole process.

Figure 4.7 shows a simple process containing a generic security annotation. The annotation starts with
the type of security annotation, i.e. '«annotation type:', and then lists the details of the security rule. We are
supporting the following types of security annotations derived from the security goals and their application
to business processes:

Authorization Authorizations are possible for several Subjects:

- Annotated elements are tasks, pools, lanes. The allocated subjects will be authorized to ex-
 ecute the annotated element.

Task-based Allocation «AllocateRole: RoleID
 - «AllocateUserID: UserID
 - «AllocateWebService: WS-UIN

Role Hierarchy The hierarchy can be explicitly defined or with use of pool and lane names:
 - «Hierarchy: definition of the hierarchy with childs and parents
 - a specialized form is the use of Pool names and Lane names as roles, using that Pools
 contain Lanes then represents the role hierarchy.

Separation of Duty «SoD: n , m; with n number of users and m number of tasks

Binding of Duty «BoD: n , m; with n number of users and m number of tasks
Delegation Annotated elements are either a data object or roles and the interval describes from which starting activity to which end activity the delegation should be valid. «DelegationUser: DataObjectID, StringOfRights, UserID, Interval

Information flow Securing the information flow handles authenticated identities, secure messaging and compliance of rules of a subprocess with the rules defined for the tasks inside.

Authenticity «Auth
Confidentiality «Conf annotate a MessagingEdge
Availability «Integrity SubProcess
Auditing «Audit annotate a MessagingEdge

With this approach and the tool support, we are already able to model security properties at the BPMN level during business process design and receive a list of security rules in relationship with the business process elements concerned. This first step is already implemented, see also Deliverable D3.2 [1]. Transforming these annotated security descriptions to the security enforcement framework of the project is ongoing work. We have started with transforming role-specific security descriptions.

4.3 High-Level Ontology Covering Business Processes

In TAS3, ontologies should allow communication across web services and business processes based on semantics rather than syntax. As a result, we would be able to generate business processes based on organisational web services and transform them into BPM graphical representation language for the end user. Moreover, we would be able to discover, substitute, compose and execute web services automatically
on the web. Finally, the different components of the TAS3 architecture should be annotated with security and privacy concepts.

As part of this work, we have developed ontologies based on the DOGMA (Developing Ontology-Grounded Methods and Applications) ontology framework [35]. According to the double articulation philosophy, a DOGMA ontology consists of a lexon base (i.e. intuitive conceptualisation), and a layer of reified ontological commitments. Its double articulation principle and grounding in natural language representation of knowledge makes DOGMA particularly fit for representing business-level as well as technical terminology and semantics typically found in business process models and their web-service implementations respectively.

In Deliverable D2.2 [36], we have described the DOGMA upper ontology. In brief, the top layer of the
upper ontology consists of three main concepts (Figure 4.8), namely Predicate, Entity and Descriptor. A predicate denotes a verb which affirms or denies information about the subject. For example, a task in a business process is represented as a type of predicate. An entity represents anything that can take part in an action or that can be acted upon. For example, PIIs are a type of entity. Finally, a descriptor categorises or describes either an entity or a predicate. For example, we would use a descriptor to represent sensitive information.

Figure 4.9: Representation of the business process concept in lexons

Figure 4.9 represents the Process concept in lexons from which the properties of a Business Process are inherited. For instance, a process consists of one (or more) processes, and each process is triggered by a condition (i.e. pre-condition) and results in other conditions (post-conditions) that may or may not be the trigger of other processes. For example in Figure 3.2, the event to "Receive Contract" triggers the "Input Candidate Data" process, which itself results in "Finalising Candidate Data". Note that the pre-conditions can also include authentication and authorisation policies.

Figure 4.10: Roles in the Kenteq APL process

Using the DOGMA approach, we can extend the different concepts to include application specific data.
For example, we can define the different types of roles available within the APL process (Figure 4.10). Based on these concepts, we can declare that an Assessor assesses the progress of an assigned candidate.

![Diagram of roles](image)

Figure 4.11: Representation of the Personally Identifiable Information concept

Similarly, we can define the concepts related to PII (Figure 4.11). This will enable web services to know whether they have to consider a security aspect in respect to the data. The main purpose of this representation is to define the things that authorisation policies are going to be applied to. For example, a business process accessing a patient’s medical records would have to define the rights that a user needs to fulfil to access it. In TAS³, the dynamic adaptation of business processes will use information related to security, privacy and trust (see [36] for more details on the security and privacy ontologies).

4.4 Securely Adapting Processes

Security is particularly important in the context of process adaptation. Security rules and policies relate to processes. In case of the change of the process flow or of components of the process, we additionally need to handle the security context so, that the resulting process guarantees sufficient security. If not, the system must reject the adaptation or we must choose another one. Next, security rules define scopes of responsibility within the business process. This serves as a basis to guide business experts or even particular stakeholders of the process to adapt the process in a semi-automatic way (if automatic adaptation is not applicable).

Adapting processes needs more support for active process instances. According to the requirements identified in 3.2.2, we will support the following steps to support process instance adaptations:

- choice of process alternatives or process patterns,
- change of the process schema, and
- migration of process instances.

In the following we will first give an overview about the aspects of adaptation we focus on. Then we describe results of structural adaptation handling in detail. The section concludes with the description of several variants of how we support substitutions of parts of the process.

4.4.1 Overview about adaptation of business processes

Our goal is to support control of the security and trust context of the business process for changes of the business process

1. during business process modelling,
2. for choosing adequate web services, process alternatives of subprocesses or process patterns, and
3. during migration of a process instance, i.e. a running business process, to the changed process, e.g. using the call of an alternative web service or subprocess.

Regarding the support of adaptation of business processes for running process instances, we have detailed the approach for structural adaptations. On that, we have investigated a formal model of BPMN processes adequate to catch the process status and how to specify adaptations.

Adaptation concerns both, process models and running process instances, and needs to take security into account at both levels.

We will focus on security mechanisms guiding the adaptation process. To this end, selecting adaptation alternatives should use decision parameters which are based on trust and security properties of the processes, services, data and users involved, and their relationships. Additionally, in order to assess the validity of the process adaptation envisaged, we have to observe the trust and security level of the process as well as the authorisations of the actors.

Concerning the use of credentials and security rules to guide adaptation, [37] provides an authorization model for process adaptation with particular authorization rules of change operations of processes and with using scopes of validity related to the process composition.

Fully automatic adaptation will be possible in special cases, e.g., adding/changing data or subprocesses to query data sources, or adaptation because of security or trust issues, e.g., that we discover a web service with the same interface but with another (higher) trust level than the preselected service. Another category of adaptation support provides semi-automatic adaptations guided by users, as, e.g., user interface of an assessor or candidate in the APL employability scenario choosing a similar service, or the interaction with the student in the Nottingham student enrollment scenario, e.g., to lower the required trust level, so that the service becomes usable. We want to provide a repository of process patterns to support the automatic adaptation and semi-automatic adaptation. An important issue to come to powerful adaptation support is to specify process semantics in order to discover adequate new tasks or subprocesses, i.e. complex activities. For all these cases, we need security and trust properties of web services and business processes and subprocesses to guarantee the same or an adequate level of security of the process after its adaptation.

In the following we introduce a concept for structural adaptation of business processes focussing on the migration of process instances concerned. This is a fundamental adaptation mechanisms for running process instances supporting a set of structural changes of the sequence flow. Then we present how to manage substitutions of parts of the process regarding the semantic level of subprocesses and web services as well as the technical level of business process execution. This adaptation approach also will also include mechanisms to support stakeholders of the process, defining and controlling the process adaptation.

4.4.2 Structural Adaptation Concept

We developed an adaptation concept with the objective to get able to perform structural modifications on a BPMN model and to convert these changes to running instances of this model.

The challenge was to develop such a concept that structural modifications on running process instances can be performed on the BPMN layer, inside the graphical BPMN modelling tool. So a business analyst or a process participant is able to execute changes on running process instances without the need to have advanced skills in business process management on the technical level.

"Structural modifications" hereby means changes on the process model that affect directly the process flow, for instance the insertion of a new activity or the deletion of an existing one.

4.4.2.1 Challenges

There are several publications on structural adaptation of running processes. At most, these approaches are based on process models specifically developed for this purpose, therefore their practical applicability is relatively restricted. We took the work of Manfred Reichert [38], which is based on an adaption-specific process model, as a landmark to develop an adaption model based on the industry and OMG standards BPMN and BPEL.

We focused on designing an integrated adaption concept containing all affected process layers: the
BPMN layer, where the process is graphically developed with a BPMN modelling tool, the process definition layer with BPEL and the instance execution layer in a business process execution engine (see Figure 4.12).

An essential challenge was to comply with integrity and consistency constraints, in particular on the instance execution layer. First of all, we have to guarantee the correctness of the process models on the BPMN and on the BPEL layer after process modification. On the instance layer, the maintenance of instance execution state integrity and the maintenance of data flow correctness are crucial. We will examine these constraints in further detail in section 4.4.2.2.

Two fundamental obstacles hindered the development of an integrated adaption model. First, there exists no formal meta model for BPMN, so far. Today BPMN is a model on the graphical level only, deposited with attributes. Version 2.0 of OMG’s BPMN standard will define a formal meta model, but this version is still under development. On the instance level there does not exist a formal model for instances of BPEL processes either. At least there is a meta model for BPEL defined as a XML-Schema document available at the BPEL 2.0 specification. To define a model for the adaption of BPEL instances modelled with BPMN we need meta models for all affected layers. So we had to develop models for BPMN and the BPEL process instances.

Secondly, there is still no standardised approach for translating BPMN to BPEL. The BPMN 1.1 standard [39] contains a non-normativ proposal of how to map BPMN 1.1 process models to BPEL 1.1 [40]. But to the best of our knowledge there exists nothing comparable for the translation of BPMN 1.1/1.2 to the current version of the BPEL standard, BPEL 2.0. The fact that BPMN to BPEL mapping is still an open topic is caused by the differing expressive power of the two meta models. Therefore, a full mapping of BPMN to BPEL is not possible in general. For our adaption approach we do not need a full mapping of all BPMN elements and structures to BPEL, but a solution which covers the essential ones. For this purpose we reverted on the translation approach proposed in the BPMN 1.1 standard and adopted it to BPEL 2.0.

![Figure 4.12: Three layer model](image-url)
4.4.2.2 Integrity and consistency constraints

In the following we will give an insight into the integrity and consistency constraints every process adaption concept for BPMN and BPEL has to comply with.

Process model correctness

Within the scope of an adaptation concept for BPMN and BPEL we have to deal with two process model layers. Modifications on one layer must affect the other one. In our user-oriented approach we assume that changes of the process are performed within a BPMN modelling tool, i.e. on the BPMN layer. Depending on the adaptation concept these changes have to be transferred to the corresponding BPEL process model. In our adaptation model we do not adapt the BPEL process definition manually but make a common translation of the BPMN model by an available BPEL compiler.

Execution state consistency

Regarding the maintenance of the instance execution state integrity, two aspects are essential. The first question is in which execution states of a process instance modifications on the underlying process model are allowed. It seems to be obvious to allow only modifications on process sections that have not yet been executed. But regarding to process loops or compensations it might be reasonable to allow modifications on selected parts of the process that have already been executed on the instance layer.

It can be necessary to adapt the execution state of a process instance, whose process model has been modified. This is because there is no one-to-one correspondence between BPMN and BPEL elements. We give a short example for this.

![BPMN and BPEL code](image)

Figure 4.13: Insertion of an activity causes creation of an additional structured activity

Figure 4.13 shows a BPMN process model and the corresponding BPEL process definition. We want to insert a new activity called "B" into the process. On the BPEL layer this causes the creation of a basic activity called "B". In addition to that there is the need to create a new complex sequence activity in order to comprise the basic activities A and B.

Assuming that, on the instance layer, activity A is currently being active, it is necessary to assign the status "active" to the complex sequence element, too. Otherwise the instance execution status would become inconsistent.

This example shows that we have to adopt not only the execution state of modified activities to the general execution state of the instance, but also the state of other BPEL elements may be affected by the modification operation. This might even affect additional BPEL elements, that do not have a corresponding element on the BPMN layer.
Data flow correctness The correctness of data flow is another important issue in the development of process models and in the adaptation of process instances. Surprisingly, neither the BPMN specification nor the BPEL standard define correctness criteria for data flow correctness. As the only declaration of data flow correctness made in BPEL is the definition of a `bpel:uninitializedVariable`-Fault, which is thrown, when trying to read a process variable, that has not yet been initialised.

This approach may be sufficient for the development of process models where the data flow correctness can be quite intuitively verified on the graphical layer. But this no longer holds for the development of an adaptation concept. Dealing with running process instances means that there may occur side-effects of the process modification operation that are not visible on the graphical layer nor on the BPEL layer, but could have considerable effect on data flow consistency of the affected instances.

Figure 4.14 shows an example. The correct process in the upper half of the figure, contains a write-read sequence. Both activities access variable A – the data flow is correct. After modifying the process model in that way that both, the write activity and the read activity use variable B, the data flow of the modified process model is totally correct, as well.

![Figure 4.14: Differences in data flow correctness on the process model layer and on the instance layer](image)

But on the instance layer a problem might occur: Imagine an instance of the process in which the write-activity has already been completed and the read-activity is not activated yet. This execution state shows the underpart of Figure 4.14. When migrating this process instance to the new process model, then a data flow problem occurs. The write activity has been executed before adaptation with write access to variable A, and the following read-activity (running on the new process model) expects variable B to be written.

This example shows that we have to deal with a different understanding of data flow correctness on the process model definition layer and on the instance layer. The degree of relevance of this aspect to an adaptation concept is highly dependent on the question if modifications of already completed parts of the process are allowed or not.

4.4.2.3 Adaptation concept

Figure 4.15 shows the general approach of our process adaptation concept. We come from the idea that the process administrator is able to apply a set of well-defined adaptation operations to an existing BPMN process model. He or she chooses one operation, e.g. `TaskSerialInsert`, and provides the necessary parameter values. For simplification reasons we do not allow free-hand modifications on the process model, so far.

A common BPEL compiler then automatically translates the modified and validity checked BPMN process model to BPEL representation. Using this representation we have to migrate the running process instances. Depending on the adaptation operation performed, several validity and integrity verification
operations must check the correctness of the modification, before finally migrating the process instance to the new process model.

These steps concern mainly the data flow verification and the inspection and possibly the adaptation of the instance’s execution state. We discussed these aspects briefly in section 4.4.2.2. For the verification procedure in complete we refer to the description in [41].

We also developed meta models for a relevant subset of BPMN and for the instance layer to define the data flow operations, the verification step of the process execution state, and the instance migration, itself. The BPMN meta model is a formal version of the BPMN model described in the BPMN 1.1 standard. The definition is available in [41].

Our instance layer meta model consists of the relevant part of the BPEL process model, the current instance execution state and the current variable values, see Figure 4.16.

Process instance := process definition + instance execution state + instance variable values

Figure 4.16: Meta model of a process instance

As already discussed before, for defining an adaptation model it is essential to provide a well-defined model for the translation of BPMN to BPEL. We split the top-level adaptation operation into an adequate BPMN modification operation and an appropriate instance adaptation operation. The details of the instance adaptation operation (including data flow verification and instance execution state adjustment) can only be specified if it is formally defined, how the mapping of the BPMN process to BPEL looks like. We made some restrictions. First we focus on a set of basic adaptation operations. Further, we assumed that we have a block structure of the process models, which is valid for the BPMN part handled with some further restrictions. In particular, on the BPMN layer this means, e.g., that a splitting gateway must be followed by a merging gateway. On the BPEL layer we do not permit using flow activities in general.
enhancements a formal and standardised BPMN 1.1 to BPEL 2.0 mapping of the full models becomes an essential requirement.

Section 5.7 contains the architecture developed for our adaptation approach.

4.4.3 Substitution of Parts of Business Processes

In the requirements section we have already mentioned that substituting web services or subprocesses during execution of a business process is not sufficiently supported by existing business process execution engines, also in service-oriented application frameworks. Using abstract web services during design allows to exactly determine one concrete web service for execution before its call. In this case we have to model the determination of the web service explicitly as activity in the business process itself.

To become more flexible we are proposing methods in different levels which may be combined.

On the technical level, we propose to allow for substituting a web service call by a subprocess, which is internally defined for the business process execution engine, i.e. we propose to improve the business process engine, in our case the Apache ODE which is also the execution engine of the Intalio/BPMS, by this modification. A first simple approach is to substitute each web service call by such a subprocess. This may result in too much overhead during business process execution.

Meeting this problem needs support on the business process modelling level. We will need a methodology to determine those subprocesses and web services that should be prepared for dynamically replacing them during execution. In literature there exist other proposals like [42] which introduces a process meta model with parts, i.e. activities, that are modelled as abstract web services and replaced in an automatic manner by searching a web service with a discovery tool. The drawback is the meta model which restricts the places in the process where substitution is possible. We will go another way: starting with a multi-level business process modelling methodology like the PMF, see chapter 2, the process designer will be allowed to define a level from which down the hierarchy all childs in the subprocess hierarchy are realized as abstract web services. Further, explicitly defining a subprocess or web service as fixed will stop this form of flexibility for that branch in the subprocess graph.

The next step aims modelling the internal substituting subprocess. We are providing a generalized subprocess with parameters to define the endpoints of the subprocess or web service as minimum parameters. We provide the following specializations of this subprocess:

- The direct call with parameters of the endpoint reference of a web service.
- Using a discovery service which searches for adequate web services.
- Using a specific repository, e.g. local to the business process engine, which allows at modelling level to define alternative subprocesses and patterns and store them semantically annotated in a semantic web service repository.
- Using a user web interface which interacts with the business process actor and gets information about the choice of the concrete web service with help of the user. This is a flexible way, to enhance user influence, but it needs further preparation, e.g. providing a list of possible web services or subprocesses with properties, e.g. the trust level, assisting the user.

The first variant is a basic implementation of the internal substituting subprocess, we have realized it as first approach and basis for the other variants. Figure 4.17 shows its BPMN representation.

The second one needs a discovery service with web service catalog as possibly available in a service-oriented framework. In our case we require security and trust properties for discovery, e.g. calling a trust and security negotiation service, which will be provided in the TAS³ framework.

The last variant is already used in the Nottingham demonstrator defining an example of an web user interface to define additional information for selecting a web service, see also Deliverable D3.3 [2].

The third variant is presently under investigation. A first version with a semantic web service repository already exists. Further work will elaborate the concept especially the semantic description of the web
services and how it will cooperate with the business process modelling activity. Concerning the use of credentials and security rules to guide adaptation, [37] provides an authorization model for process adaptation with particular authorization rules of change operations of processes and with using scopes of validity related to the process composition. Validation and further refinement needs input from the pilot applications in future.

4.5 Security of Business Processes

Our approach to facilitate the security of business processes is to build on well-established solutions to well-known problems. For example, the concept of roles and role-based access control (RBAC) is based on the insight that there is always some classification of users, and that it applies to access control decisions as well. We extend the basic RBAC approach by introducing new abstractions tailored to the domain of processes, taking into account that processes glue together the resources and actors involved. We do not propose security settings to be tailored to a specific run-time scenario, making them less generic. Instead, we use the composition and execution context (i.e., which actors and resources are involved, and which activities are currently executing) of running process instances to let the system make access-control decisions. This means that we strive to include security parameters in process models in a declarative fashion wherever possible. This is not always sufficient, and we supplement it by enriching process models with explicit (imperative) actions, such as the assignment of individuals to process roles. The partitioning of processes into several layers of sub-processes, as part of the process-modelling framework (PMF), makes process diagrams easier to read and prevents issues with only local significance from cluttering up the global view. In line with this approach, we plan to allow policies that are specific to sub-processes.

The solutions presented in this section are structured in the same way as the requirements in Section 3.2.1. Section 4.5.1 addresses authentication and identity management. Sections 4.5.2 through 4.5.5 address authorization. We introduce a formal model for the execution of business processes in Section 4.5.6 and use it to formalize security concepts in 4.5.7. With that, the business-process specific security concepts become more clearly specified providing a fundamental description for their use and implementation, and make it more understandable that we get a richer variety of security support for SOA applications that are based on business processes compared with those directly programmed without explicit representation of the sequence flow and its interactions with actors, resources and external events.
We will look at the run-time behaviour of business processes in the implementation chapter, namely sections 5.6 and 5.7. In Chapter 5, we will also present preliminary solutions for the cross-cutting concern of modelling. The order of the solutions in this chapter follows that of the respective requirements.

4.5.1 Federated identity and single sign-on for the user interface

Business processes in a distributed service-oriented environment include actors from several different organisations. They interact with the business process via a task-list console. In order to do so, they must be authenticated, i.e., they need to log in.

The current APL process as installed at Kenteq is a hard-coded application with additional tasks performed manually. When the TAS³ infrastructure will be in production, the Kenteq process should run as a business process in the secure infrastructure. When the APL process accesses PII of the user from different services, it must use the federated identity system of TAS³. The user is known by a different pseudonym those services. The business process must use the Identity Mapper to translate the user’s IM token (Id Mapper bootstrap token) to a token usable for the web service that is about to be called.

Further, single sign-on based on federated identity must be supported by the task-list console so that users do not need to keep separate logins for different service providers in the TAS³ infrastructure.

4.5.2 Process roles with instance-specific assignment

Roles are a vital ingredient of business-process definitions. They let us abstract from the concrete persons involved in a business process, thus widening the scope of the definitions.

In business-process-management systems, roles are used for access control as well as for task assignment. The access control aspect is about coupling permissions to roles and roles to individuals, thus making permission assignment easier and more flexible. In the next paragraph, we briefly describe the Role Based Access Control (RBAC) model. Then we say how we plan to enhance RBAC in order to support our requirements. We then introduce our concept of process roles with instance-specific assignments, including modelling support and the extension of the concept with local roles. Then we will present a conceptual design.

Role-Based Access Control is a mature access control model. It has first been described in 1992 [43]. In 1996, Sandhu et al. proposed their own version of RBAC [44], leading to a unified standardization proposal in 2000 [45]. The result was a formal standard published in 2004 [46]. RBAC is a general-purpose access control model, not specifically tailored to business process management. The standard only defines the relevant entities (user, role, session, permission) and their relationships. It explicitly does not propose a machine-readable representation, scalability requirements, and the like.

The RBAC reference model is defined as a collection of four components: Core RBAC, Hierarchical RBAC, Static Separation of Duty Relations, and Dynamic Separation of Duty Relations. Core RBAC includes users, roles, permissions and sessions. Permissions are assigned to roles, and users are assigned to one or more roles. Users activate roles in the context of a session and then hold the permissions assigned to these roles for the session. Hierarchical RBAC adds a role hierarchy. The remaining two components define relations between (conflicting) roles. Static separation of duty puts constraints on the assignment of roles to users, while dynamic separation of duty limits the simultaneous activation of roles by a user in one session. We will treat Separation of Duty (SoD) in more detail below.

An obvious application of RBAC to business processes is the interpretation of sessions as business-process instances. Dynamic separation of duty then results in a separation of duty between roles over one process instance. This means that the activation of a role by a user is valid for an entire business-process instance. However, organization-wide roles are not sufficient to support versatile business processes: Similar (or similarly named) roles in different process models can have very different prerequisites. In other words, there is not necessarily a one-to-one match between overall organizational roles and the roles in business process models.

We briefly recall requirements relevant to the handling of roles in business processes: We need process roles that are separate from organisational roles specified elsewhere, and we want to be able to explicitly assign individuals to roles (requirement D3.1-R.3). On the other hand, we still want to be able to re-use
existing organisational roles in a business process (requirement D3.1-R.4). Further, it shall be possible to specify that a role implies binding of duty, i.e., that the same person executes all tasks for the role (requirement D3.1-R.6).

The RBAC model does not specifically capture business processes and process instances. Interpreting sessions as business process instances solves the problem only partly: RBAC does not support constraints on the activation of a role for a business process instance that take the characteristics of that instance into account. This means that a user can log in and activate a certain role in any process instance, without any guarantee that he actually has the necessary skills.

To fulfil the requirements and to overcome the shortcomings of the RBAC approach in our specific context, we propose the concept of process roles. The assignment of actors to such roles is stored separately for each process instance. It is subject to a policy that specifies criteria which the user assigned must fulfil, based on attributes of the user. Such a policy is defined for each role in the process model. Role mapping (requirement D3.1-R.4) is a case that does not need any special treatment, because ”Role” is an attribute of users like any other.

Different entities take assignment decisions at different points in time: Some assignments are already fixed when the process instance starts and passed to it in the start event. In other cases, the process itself (by an explicit activity) or a user performs the assignment when the process is already running. In most cases, a user holding a special role will be charged with such decisions.

In some cases, it is also possible to let the execution engine choose an individual for a role. Different strategies are conceivable as long as the assignment policy for the role in question is fulfilled. The system can then choose either an eligible actor itself and assign the tasks to him, or it can present the first task for the role to all actors eligible and choose the first individual who claims the task.

The model of process roles that we have introduced so far implies a binding of duty. This means that the specific person holding a role in the process instance performs all tasks assigned to the role.

Figure 4.18 demonstrates what happens when the business process performs an explicit assignment of a user to a role. The process, based on the user decision, calls the IR-PIP to perform the assignment. This request passes through the Collector part of the PEP which adds information to identify the business process model and instance. The IR-PIP hands the request on to the DIS. The DIS retrieves the assignment policy for the role in question from the BP-PAP and checks the assignment. It then communicates its decision back to the IR-PIP. Assuming that the assignment is allowed, the IR-PIP records the assignment. It sends a reply to the business indicating success. Additionally, it notifies the Re-delegation Handler about the change in the role assignment. If the assignment is not allowed, the IR-PIP will not record it. The reply to the business process will cause the PEP to raise a fault. The process must handle this fault to avoid abrupt termination.

4.5.3 Active Security

As stated in requirement D3.1-R.5, it must be possible to specify the resources which actors of the process may access. Further, it must be possible to specify when access is allowed and when not (or only in a limited way, e.g., read-only). There already are some approaches in the literature that aim to fulfill this and similar requirements, i.e., to limit the amount of data that a person can access and the time interval when such an access is possible, according to the context. We will briefly review these approaches and assess their suitability for our scenario. Then we describe our concepts for active security and the implementation planned.

Team-Based Access Control was originally proposed by Thomas in 1997 [47] and refined and extended by him and others in 2001 [48]. TMAC addresses collaborative environments in general, not specifically business-process-management systems. The basic idea is to capture the users and resources that participate in a task, and to limit permissions by defining them using a combination of roles and resource types. As this approach is well-suited for business processes, we propose to adopt it in TAS3. However, in TMAC the users and objects involved in a team are just sets. Differences between the permissions of team members only arise from the roles they already possess outside of the context of the team, but there is no explicit relationship between abstract users (i.e., process roles) or abstract resources defined in the model and the
individual users and resources assigned at run-time. This is not sufficient for business processes with well-defined roles played by individual users. We propose to address this deficiency in TAS3.

Atluri and Huang [49] were the first to address synchronization between the control flow of a business process and the authorisation on processed data. However, apart from this basic feature, their results are not directly applicable to our scenario, as they model business processes in a very different way.

From TMAC we borrow the concept of specifying policies in an abstract way. That means that policies are based on roles and named abstract resources. Abstract resources can be looked at as a kind of "role" for resources involved in a business process. This fits our current demonstrator process that deals with a number of distinct documents. It would also be possible to define policies based on resource types or sensitivity levels, given more detailed specifications of the data involved. In order to "instantiate" those abstract permissions at run-time, the security infrastructure needs to know the assignment of persons to roles, the matching between permissions delegated to the process, and the named resource types needs to be known. Thus, the process will be able to explicitly assign a permission to a resource so that it belongs to the process and matches an abstract resource specified by its name. At a later stage, we envision this assignment to happen automatically at the BPEL activity where the process retrieves the location of the resource, e.g., when it receives the response from a discovery service.

To be more precise, the abstract policies in our case are in the form of re-delegation rules. These rules contain the name of an abstract resource and the name of a process role. They can contain one or more intervals during which the permission is valid. At run-time, such a rule results in the re-delegation of the permission stored for an abstract resource to the user holding the specified process role. Additionally, they can contain other restrictions on the delegation. For example, the re-delegation of a read/write permission can be restricted to "read-only". The interval boundaries are stated in terms of business process activities and can either be inclusive or exclusive. This means that open, closed and semi-open intervals are possible. At a later stage, we want to check whether the end is reachable from the start, and determine (in advance) alternative end boundaries in case of, say, abrupt termination.
In Figure 4.19 we demonstrate how re-delegation works at run-time. A new instance of the business process starts execution. Then, it calls the IR-PIP to assign Bob to the Coach role. The check of the assignment is omitted here. The IR-PIP informs the Process Permission Manager (PPM) about the new assignment. The PPM inquires the Policy Store about permission assignment rules involving the Coach role. It retrieves one such rule, and uses permissions assigned to the named resource slot given in that rule. As no permission is assigned yet, it ignores the role assignment. Then, Jim delegates read/write access to Jim’s portfolio to the process. The process calls the PPM to register the delegated permission as belonging to the resource slot with the name portfolio. Again, the check of the delegation through the CVS is omitted here. The DPM notifies the Re-delegation Handler about the assignment. The PPM retrieves any re-delegation rules involving the resource slot with the name portfolio. There is one such rule: "Re-delegate read-only access on portfolio to Coach." The PPM inquires the IR-PIP about the current assignment to the Coach role and receives the reply "Bob". It calls the Delegation Service to re-delegate the permission on Jim’s portfolio to Bob, restricted to read-only access.

Figure 4.20 shows another example. Bob has been delegated permissions on detailed job records of Jim, but only for the interval starting with the request to write a report about it, and ending with the submission of the report. Jim accesses the repository containing the detailed job records through an appropriate interface. He uses the delegation token that he received from the process to do so. The repository’s PEP
uses the CVS to check the token. The CVS determines that Jim has permission to access the resource, but under the constraint that a certain interval in the process, say [A,B), is active. The PEP then asks the PDP to evaluate the credentials verified by the CVS. The PDP determines that access is granted in principle, and sends a request to the Interval Monitor to determine whether the interval is active. The Interval Monitor, based on its internal state, confirms this.

Note that the flows presented in Figure 4.19 and Figure 4.20 are conceptual. A nave implementation of the Re-delegation Handler in the way it is presented here will likely be prohibitively expensive.

4.5.4 Delegation

As stated in requirement D3.1-R.7, it must be possible to specify delegation of instance-specific roles based on particular business process instances. This way of specifying the scope of a delegation is specific to business process management. To accomplish this, the system has to enhance the dashboard to show the process instances a person is involved in. The user can then choose one or more instances and a person he wants to delegate his duties in these instances to.

Then the delegation policy is checked to determine whether the delegation is allowed. A delegation policy contains pairs of conditions, referring to the delegator and to the delegate. The conditions can, e.g., refer to their roles (role based delegation). Optionally, the policy contains a maximum length of the delegation chain. A simple way to specify the delegation policy is to place the same conditions on delegation as on the original role assignment. When delegation is permitted, the delegate is registered in the context store. Permissions of the role are granted to him, and tasks for the role are presented to him for the duration of the delegation.

Figure 4.21 illustrates the sequence flow of a delegation. First, the user (Bob) logs into his dashboard. The dashboard obtains the list of his current role ownerships and displays it. Bob then triggers delegation of one of his roles in a process instance to one of his colleagues, e.g., he delegates the Coach role in the process instance "APL 0815" to Charlie. The dashboard sends the request to the IR-PIP, which forwards it to the DIS. The Delegation Service retrieves the delegation policy for the Coach role from the Policy Store and determines that the delegation is allowed. The IR-PIP records Bob as the new holder of the Coach role.
and notifies the Re-delegation Handler (subsequent processing not shown here). The dashboard displays a confirmation to Bob. Then Bob tries to delegate his Coach role in the process instance “APL 4711” to Dora. The sequence of messages is exactly the same until the DIS evaluates the policy and denies the delegation. This time, the dashboard displays an error message to Bob.

![UML sequence diagram showing the delegation of a process role](image)

Figure 4.21: UML sequence diagram showing the delegation of a process role

4.5.5 Separation of Duty

Separation of duty between process roles is demanded by requirement D3.1-R.6. In the following, we explain our concept and its relation to existing approaches.

The RBAC model already specifies separation of duty (SoD) as an extension. RBAC distinguishes between static separation of duty and dynamic separation of duty. Static separation of duty is a constraint on the role assignment itself, and thus is not specific to business process management. Dynamic separation of duty restricts the activation of conflicting roles within one user session. This means that a user cannot activate conflicting roles at the same time. When interpreting “session” as “business-process instance”, dynamic separation of duty matches our notion of separation of duty between instance-specific roles. This
is similar to the perspective of multisession separation of duties (MSoD) [50]. There, separation of duties is specified and guaranteed for business contexts or business context instances. A business context can be a single business process or a set of business processes during which an MSoD policy must persist. An MSoD policy can affect all instances of a business context or each separate instance of a business context.

Separation of duty between process-roles within one process instance needs to be enforced by the DIS on role assignment and delegation.

4.5.6 Modelling Process Execution

Our formal model of processes focuses on the execution semantics itself, i.e., the control flow. For now, it omits external communication. However, it includes human activities as part of a process and the data involved, i.e., the organizational and informational aspect.

The model is kept simple and ignores advanced features like exception and compensation handling. As atomic processes, we support only human tasks. Other possible types include send and receive operations and data assignments with no external effect. Additionally, our model only supports nested control flow structures.¹

Definition 1 (Atomic and composite processes). Let \mathcal{P} be the set of (possible) processes. The function $\text{atomic} : \mathcal{P} \rightarrow \mathbb{B}$ is defined for every $p \in \mathcal{P}$. \mathbb{B} denotes boolean values. Atomic processes are those where $\text{atomic}(p)$ is true. For composite processes, $\text{atomic}(p)$ is false. We refer to the sets of atomic and composite processes as \mathcal{P}_a and \mathcal{P}_c, respectively.

Definition 2 (Types of atomic processes). The type of an atomic process is an element of $\{\text{ht, send, recv, nop}\}$ (i.e., human task, send operation, receive operation, or empty operation). The function $\text{type} : \mathcal{P}_a \rightarrow \{\text{ht, send, recv, nop}\}$ assigns each atomic process its type.

We define $\mathcal{P}_h = \{p \in \mathcal{P}_a \mid \text{type}(p) = \text{ht}\}$ and $\mathcal{P}_s = \{p \in \mathcal{P}_a \mid \text{type}(p) = \text{send} \lor \text{type}(p) = \text{recv}\}$.

Definition 3 (Types of composite processes). The type of a composite process is an element of $\{\text{seq, alt, par, loop}\}$ (i.e., sequence, alternative, parallel flow, or loop). The function $\text{type} : \mathcal{P}_c \rightarrow \{\text{seq, alt, par, loop}\}$ assigns each composite process its type.

Composite processes have one (loop) or several (all other types) member processes. For sequences, the members are ordered.

- For composite processes of type alt or par, a function of type members : $\{p \in \mathcal{P}_c \mid \text{type}(p) \in \{\text{alt, par}\}\} \rightarrow 2^\mathcal{P}$ determines the (unordered) set of members.

- For composite processes of type seq, a function of type size : $\{p \in \mathcal{P}_c \mid \text{type}(p) = \text{seq}\} \rightarrow \mathbb{N} \setminus \{0\}$ determines the number of members, and a function of type member : $\mathbb{N}_0 \times \{p \in \mathcal{P}_c \mid \text{type}(p) = \text{seq}\} \rightarrow \mathcal{P} \cup \bot$ determines the individual members, with $\text{member}(i, p) = \bot$ for $i \geq \text{size}(p)$. The bottom element \bot denotes an undefined function result.

- For composite processes of type loop, a function of type member : $\{p \in \mathcal{P}_c \mid \text{type}(p) = \text{loop}\} \rightarrow \mathcal{P}$ determines the process that makes up the loop body.

We need some auxiliary definitions concerning composite processes:

Definition 4 (Containment relationship). A process $p \in \mathcal{P}$ directly contains another process $q \in \mathcal{P}$ (the predicate $d_{\text{contains}}(p, q)$ holds) iff $q \in \text{members}(p) \lor \exists i \in \mathbb{N} : \text{member}(i, p) = q \land \text{member}(p) = q$.

Definition 5 (Contained processes). The set of processes contained in a process $p \in \mathcal{P}$ is defined as the closure of the d_{contains} predicate.

Definition 6 (Well-formed composite processes). A process $p \in \mathcal{P}$ is well-formed if the directed graph formed by $\text{contained}(p)$ as vertices and $\{(q, r) \mid q, r \in \text{contained}(p) \land \text{contains}(q, r)\}$ as edges is a tree with root p.

¹WS-BPEL supports unstructured control-flow via control-dependencies processing, see section 11.6 of [40].
Note that, conceptually, we could relax the requirement that the graph mentioned in Definition 6 forms a tree. Instead, it would be sufficient to demand it to be a directed acyclic graph. However, this makes several definitions more complicated, as the path from the root process \(p \) to an arbitrary process \(p' \) becomes ambiguous. We plan to address this problem in the next version of this document.

Now that we have defined process models and their structure, we can move on to the execution semantics. Until now, we have defined process models. In order to execute a process an instance of a process model is created. There can be more than one active instance of a process model at any given time.

Definition 7 (Process instances). Let \(I \) be the set of process instances. A function of type \(\text{model} : I \rightarrow \mathcal{P} \) determines the process model for a process instance.

Definition 8 (Execution state). The execution state of a process instance \(i_p \in I \) is a function of type \(s_e : \text{model}(i_p) \rightarrow \{\text{none, before, in, after}\} \).

The values before, in, and after indicate that a process is about to be executed, is currently executing or has just finished execution. Neither of these cases holds when \(s_e(p') = \text{none} \). A process can only be active (i.e., have a state other than none) when its parent process is in state in. Composite processes pass control to either one or several of their members. Then they wait for the invoked member(s) or the sequence of members to finish.

Definition 9 (State transition). Given a process instance \(i_p \in I \), a state transition is a pair \((s_e^{\text{old}}, s_e^{\text{new}})\) of execution states, where \(s_e^{\text{new}} \) results from an atomic change to \(s_e^{\text{old}} \). By atomic change we mean that only one atomic process in \(\text{model}(p) \) passes control to member processes or resumes control from them, or a process passes control to its immediate successor in a sequence.

In Definition 10, we enumerate the state transitions allowed in a formal way. State transitions always apply to an atomic process \(p_a \in \text{model}(i_p) \) or to a composite process \(p_c \in \text{model}(i_p) \) and its (immediate) members. The state transitions that are possible with an atomic process are from before to in and from in to after. When a composite process \(p_c \) changes its state from before to in, one or all of its members (depending on the type of \(p_c \)) change their state from none to before. \(p_c \) can only change from in to after when all its member processes are in state none or after. For a process of type loop, it is also possible to remain in state in while its member process loops, i.e., is reset from after to before.

Definition 10 (State transitions allowed). Let \(p = \text{model}(i_p) \). We define the state transitions by expressing the new state \(s_e' \) in terms of the old one, \(s_e \): \(s_e'(p') = s_e(p') \) for all \(p' \in \text{model}(p) \), unless we define the changed state explicitly. Only the following state transitions are allowed:

- Let \(q \in \text{model}(p) \), \(q \in \mathcal{P}_a \) and \(s_e(q) \neq \text{none} \).

 \(s_e'(q) = \text{in} \) if \(s_e(q) = \text{before} \)

- \(s_e'(q) = \text{after} \) if \(s_e(q) = \text{in} \)

- Let \(q \in \text{model}(p) \), \(q \in \mathcal{P}_c \), type\((q) = \text{seq} \), \(i \in \mathbb{N} \).

 \(s_e'(q) = \text{in} \) if \(s_e(q) = \text{before} \) and \(s_e'(\text{member}(0, q)) = \text{before} \).

- If \(s_e(q) = \text{in}, i < \text{size}(q) - 1 \), \(s_e(\text{member}(i, q)) = \text{after} \): \(s_e'(\text{member}(i+1, q)) = \text{before} \)

- If \(s_e(q) = \text{in}, i = \text{size}(q) - 1 \), \(s_e(\text{member}(i, q)) = \text{after} \): \(s_e'(\text{member}(i, q)) = \text{none} \)

- \(s_e'(q) = \text{before} \) if \(s_e(q) = \text{after} \) and \(s_e'(\text{members}(q)) = \text{none} \).

- Let \(q \in \text{model}(p) \), \(q \in \mathcal{P}_c \), type\((q) = \text{alt} \), \(m \in \text{members}(q) \).

 \(s_e'(q) = \text{in} \) if \(s_e(q) = \text{before} \) and \(s_e'(\text{members}(q) \setminus \{m\}) = \text{none} \).

- \(s_e'(q) = \text{after} \) if \(s_e(q) = \text{after} \) and \(s_e'(\text{members}(q)) = \text{none} \).

- Let \(q \in \text{model}(p) \), \(q \in \mathcal{P}_c \), type\((q) = \text{par} \).

 \(s_e'(q) = \text{in} \) if \(s_e(q) = \text{before} \) and \(s_e'(\text{members}(q)) = \text{before} \).
Each human task and each activity performed

Let \(p \) be a process instance. The execution of a process instance \(i \) is a sequence \((s_0, s_1, \ldots)\) of execution states of \(i \), where for each \(s'_i \) in the sequence with \(i > 0 \), the transition from \(s_{i-1}' \) to \(s'_i \) is allowed according to Definition 10.

Let \(p = \text{model}(i_p) \). For the initial state \(s^0_i \). If \(s^0_i = \text{before} \) and \(\forall q \in \text{contained}(p) \setminus \{p\} : s^0_i(q) = \text{none} \) hold. If the execution sequence is finite, the following must hold for the final state \(s^*_i : s^*_i(p) = \text{after} \), and \(s^*_i(p') = \text{none} \) for all other \(p' \in \text{contained}(p) \).

4.5.7 Formalisation of Security Concepts

4.5.7.1 Process roles

We now turn to the formal representation of process roles. To define role-assignment policies, we need some definitions concerning individuals, services and attributes.

We provide the possibility to define roles for any process. The process forms the scope in which the role is available. The level on which a role is defined is semantically significant, as it defines the duration of the role assignment and of the responsibility connected with the role.

Definition 11 (Execution). The execution of a process instance \(i_p \in I \) is a sequence \((s^0_i, s^1_i, \ldots)\) of execution states of \(i_p \), where for each \(s'_i \) in the sequence with \(i > 0 \), the transition from \(s_{i-1}' \) to \(s'_i \) is allowed according to Definition 10.

Let \(p = \text{model}(i_p) \). For the initial state \(s^0_i \). If \(s^0_i = \text{before} \) and \(\forall q \in \text{contained}(p) \setminus \{p\} : s^0_i(q) = \text{none} \) hold. If the execution sequence is finite, the following must hold for the final state \(s^*_i : s^*_i(p) = \text{after} \), and \(s^*_i(p') = \text{none} \) for all other \(p' \in \text{contained}(p) \).

Definition 12 (Process roles). Let \(R_h \) and \(R_s \) be the set of possible role names for humans and (web) services, respectively. For convenience, we define \(R = R_h \cup R_s \). Functions of types \(\text{roles}_h : \mathcal{P} \to 2^R_h \) and \(\text{roles}_s : \mathcal{P} \to 2^R_s \) define the roles for humans and services used in each process.

We also define functions that collect all the roles defined in a composite process and its children: \(\text{roles}_h(p) = \bigcup_{p' \in \text{contained}(p)} \text{roles}_h(p') \) and \(\text{roles}_s(p) = \bigcup_{p' \in \text{contained}(p)} \text{roles}_s(p') \).

Example 4.5.7.1 Roles in the APL process

Coach and assessor are roles in the APL process. Let \(p_{\text{APL}} \in \mathcal{P}_c \). Then \(\text{roles}_h(p_{\text{APL}}) \supset \{\text{coach}, \text{assessor}\} \). Furthermore, suppose that we have a sub-process for language-assessment \(p_{\text{LANG}} \in \text{contained}(p_{\text{APL}}) \), with \(\text{roles}_h(p_{\text{LANG}}) = \{\text{lang} _ \text{assessor}\} \). Thus, \(\text{roles}_h(p_{\text{APL}}) \supset \{\text{coach}, \text{assessor}, \text{lang} _ \text{assessor}\} \).

Definition 13 (Association of activities with process roles). Each human task and each activity performed by a service belongs to a role. A function \(\text{ht}-\text{role} : \mathcal{P}_h \to R_h \) and a function \(\text{sr}-\text{role} : \mathcal{P}_s \to R_s \) define this association.

Definition 13 demands that every activity belongs to a role. This is viable even if the assignment is known in advance. In such cases, we can provide an initialisation for the assignment of actors to roles.

When a role is associated with an activity, it must be defined for an enclosing scope. We formalize this property in the following definition:

Definition 14 (Well-formed task-role assignment). Let \(p \in \mathcal{P} \). The task-role assignment in \(p \) is well-formed if \(\forall p_h \in \text{contained}(p) \cap \mathcal{P}_h : \exists p' \in \text{contained}(p) : p_h \in \text{contained}(p') \land \text{role}_h(p_h) \in \text{roles}_h(p') \) and \(\forall p_s \in \text{contained}(p) \cap \mathcal{P}_s : \exists p' \in \text{contained}(p) : p_s \in \text{contained}(p') \land \text{role}_s(p_s) \in \text{roles}_s(p') \) hold.
Example 4.5.7.2 Activities and roles in the APL process
The Kentq APL process contains a number of distinct activities performed by humans:
\{\textit{ConductAssessment}, \textit{CandidateReview}, \textit{QCReview}\} \subset \mathcal{P}_h \cap \text{contained}(\mathcal{P}_{\text{APL}})

For each of them, the function \text{ht-role} determines the associated role:

- \text{ht-role}(\textit{ConductAssessment}) = \text{assessor}
- \text{ht-role}(\textit{CandidateReview}) = \text{candidate}
- \text{ht-role}(\textit{QCReview}) = \text{quality_controller}

The previous definitions have addressed roles in connection with process models, i.e. static aspects of role management. In the following, we turn to the dynamic aspects, including the assignment of actors to roles at runtime, the definition and evaluation of policies to control this assignment, and attributes needed for the evaluation of policies.

Example 4.5.7.3 Attributes in the APL process
Each instance of the APL process has some unique characteristics. For example, John works at MegaTools, Inc., as metalworker. Attributes of the process instance include \textit{Industry} = “Mechanical Engineering”, \textit{JobClassification} = “Worker”, \textit{ClientCompany} = “MegaTools, Inc.”.

Definition 15 (Attributes). Let \(\mathcal{A} \) be the set of possible attribute names and \(\mathcal{V} \) the set of possible attribute values.

Let \(\mathcal{H} \) be the set of humans. The attributes assigned to individuals are a function of type \(\text{atts}_h : \mathcal{H} \times \mathcal{A} \times \mathbb{N}_0 \rightarrow \mathcal{V} \cup \{\bot\} \), and \(\text{atts}_h(h,a,t) \) is the value of attribute \(a \) assigned to \(h \) at time \(t \).

A similar definition holds for services: Let \(\mathcal{S} \) the set of available services. The attributes assigned to services at time \(t \) are a function of type \(\text{atts}_s : \mathcal{S} \times \mathcal{A} \times \mathbb{N}_0 \rightarrow \mathcal{V} \cup \{\bot\} \).

Finally, a function of type \(\text{atts}_p : \mathcal{I} \times \mathcal{A} \times \mathbb{N}_0 \rightarrow \mathcal{V} \cup \{\bot\} \) represents the attributes assigned to process instances at a certain time.

Definition 16 (Actor-role assignment at runtime). The actor-role assignment for humans is a function of type \(\text{h-actors} : \mathcal{I} \times \mathcal{R}_h \times \mathbb{N}_0 \rightarrow \mathcal{H} \cup \{\bot\} \), and the actor-role assignment for services is a function of type \(\text{s-actors} : \mathcal{S} \times \mathcal{R}_s \times \mathbb{N}_0 \rightarrow \mathcal{S} \cup \{\bot\} \).

This function is only defined for roles belonging to the model: \(\text{h-actors}(i_p,r,t) = \bot \) if \(r \not\in \text{roles}_h^*(\text{model}(i_p)) \), and \(\text{s-actors}(i_p,r,t) = \bot \) if \(r \not\in \text{roles}_s^*(\text{model}(i_p)) \).

As a shortcut, we define actors\(_p(r,t) = \text{h-actors}_p \) if \(r \in \mathcal{R}_h \) and actors\(_p(r,t) = \text{s-actors}_p \) if \(r \in \mathcal{R}_s \).

Definition 17 (Role assignment policies). The set of possible role-assignment policies for the role \(r \in \mathcal{R} \) in process model \(p \in \mathcal{P} \), \(\mathcal{RAP}(p,r) \), is defined inductively. In the following, we give the rules and the meaning of the resulting policies.

- \(\forall a_p,a_a \in \mathcal{A} : \text{atequality}(a_p,a_a) \in \mathcal{RAP}(p,r) \): The values of the process-instance attribute \(a_p \) and of the attribute \(a_a \) of the prospective assignee of the role are equal.
- \(\forall a_a \in \mathcal{A}, v \in \mathcal{V} : \text{valuequality}(a_a,v) \in \mathcal{RAP}(p,r) \): The attribute \(a_a \) of the prospective assignee is equal to a given value.
- \(\forall \text{pol}_1, \text{pol}_2 \in \mathcal{RAP}(p,r) : (\text{pol}_1 \land \text{pol}_2) \in \mathcal{RAP}(p,r) \): Both \(\text{pol}_1 \) and \(\text{pol}_2 \) hold.
- \(\forall \text{pol}_1, \text{pol}_2 \in \mathcal{RAP}(p,r) : (\text{pol}_1 \lor \text{pol}_2) \in \mathcal{RAP}(p,r) \): At least one of \(\text{pol}_1 \) or \(\text{pol}_2 \) holds.

The set of all possible role assignment policies is defined as:

\[
\mathcal{RAP} = \bigcup_{r \in \mathcal{R}, p \in \mathcal{P}} \mathcal{RAP}(p,r)
\]

Given a process \(p \in \mathcal{P} \), a function of type \(\text{pol}_p : \text{roles}_h(p) \cup \text{roles}_s(p) \rightarrow \mathcal{RAP} \). determines the assignment policies for the roles of that process.
Example 4.5.7.4 Role assignment policy for the coach role
In the APL process, only coaches with expertise in the industry the candidate is working in may assume the coach role:
\[
\text{attequal}(\text{Industry, ExpertiseInIndustry}) \land \text{valequal}(\text{Coach, "true"})
\]

Given a role, an actor, and the context, the function allowed determines whether the actor fulfills the applicable policy. It uses poleval to actually evaluate this policy.

Definition 18 (Evaluation of role-assignment activities). The function \(\text{poleval} : R \times \mathcal{P} \times (H \cup S) \times I \times N_0 \times (V \cup \perp)^{H \times \mathcal{P} \times N_0} \times (V \cup \perp)^{I \times \mathcal{P} \times N_0} \rightarrow \mathbb{B} \) is defined as follows:

- \(\text{poleval}(\text{attequal}(a_p, a_d), a, i_p, t, atts_x, atts_p) \mapsto (atts_p(i_p, a_p, t) = atts_x(a, a_d, t)) \land atts_x(a, a_d, t) \neq \perp \)
 (with \(a_p, a_d \in A \))

- \(\text{poleval}(\text{valequal}(a_d, v), a, i_p, t, atts_x, andatts_p) \mapsto atts_x(a, a_d, t) = v \)
 (with \(a_d \in A, v \in V \))

- \(\text{poleval}(\text{pol}_1 \land \text{pol}_2, a, i_p, t, atts_x, andatts_p) \mapsto \text{poleval}(\text{pol}_1, a, i_p, t, atts_x, atts_p) \land \text{poleval}(\text{pol}_2, a, i_p, t, atts_x, andatts_p) \)
 (with \(\text{pol}_1, \text{pol}_2 \in R \times \mathcal{P} \))

- \(\text{poleval}(\text{pol}_1 \lor \text{pol}_2, a, i_p, t, atts_x, atts_p) \mapsto \text{poleval}(\text{pol}_1, a, i_p, t, atts_x, atts_p) \lor \text{poleval}(\text{pol}_2, a, i_p, t, atts_x, atts_p) \)
 (with \(\text{pol}_1, \text{pol}_2 \in R \times \mathcal{P} \))

Definition 19 (Authorisation of role-assignment activities). The function \(\text{allowed} : I \times (R \cup \mathcal{P}) \times (H \cup S) \times I \times N_0 \times (V \cup \perp)^{H \times \mathcal{P} \times N_0} \times (V \cup \perp)^{I \times \mathcal{P} \times N_0} \rightarrow \mathbb{B} \) is defined as follows\(^2\):

- \(\text{allowed}(i_p, r, a, t, atts_x, atts_p) \) equals \(\text{poleval}(\text{pol}_p(r), a, i_p, t, atts_x, atts_p) \) for \(a \in H \)
 and \(\text{poleval}(\text{pol}_p(r), a, i_p, t, atts_x, atts_p) \) for \(a \in S \).

4.5.7.2 Permission management

We can now turn to the formalization of the permission management system introduced in Section 4.5.3.

Definition 20 (Permissions). A permission is a class of operations that can be performed on a resource. \(\mathbb{P} \) is the set of permissions with a partial order \(\leq \), the implication relationship. If \(p_1 \leq p_2 \), \(p_2 \) implies \(p_1 \).

For each process model, we define a number of resource slots. A running process instance can assign a resource to each slot at runtime. Permission allocation rules take the current resource allocation and actor-role assignment to determine the permissions to be granted to users. Resource slots define which permissions the process must possess for the resource allocated to the slot.

Definition 21 (Resource slots). The set \(\mathcal{S} \) gives the available names for resource slots. A resource slot is a pair consisting of a slot name and a set of necessary permissions. A function of type \(\text{slots} : \mathcal{P} \rightarrow 2^{\mathcal{S} \times 2^\mathbb{P}} \) specifies the resource slots for a process model.

For a given process \(p \in \mathcal{P} \), we also define a function that collects all slots from child processes:
\[
\text{slots}^*(p) = \bigcup_{p' \in \text{contained}(p)} \text{slots}(p')
\]

Definition 22 (Resource allocation). Let \(\mathcal{R} \) be the set of existing resources. A resource allocation is a function of type \(\text{alloc}_p : \text{slots}^*(p) \times \mathbb{N}_0 \rightarrow \mathcal{R} \). It maps from slots to resources at a given time.

Permission-allocation rules specify the permissions of actors in the process regarding the resources assigned to the process. Such rules consist of a slot referred to by its name, a role and a permission to be assigned.

\(^2\) denotes the set of functions from \(B \) to \(A \)
Definition 23 (Permission-allocation rules). A function of type rules : \(P \rightarrow 2^{\mathcal{S} \times \mathcal{R} \times \mathcal{P}} \) specifies the permission-allocation roles for all processes.

Processes are hierarchically nested, and roles and resource slots are valid in all sub-processes contained in a process. We must ensure that role names and resource slot names uniquely identify roles and resource slots, respectively. In order to achieve this, two alternatives are available: Either, roles and resource slots defined in a process hide those defined in a higher-level process, or re-using names already used in a higher-level process is not allowed. To keep things simple, we choose the latter alternative.

Permission-allocation rules reference definitions of roles and resource slots. In order for such references to be meaningful, the definition must occur in the same process it is used in, or a higher-level one.

Definition 24 (Consistency criteria for processes). A process \(p \in P \) fulfills the following consistency criteria:

- **No hiding of names used in a higher-level process:**
 - \(\forall r \in \mathcal{R}_h : \forall p' \in \text{contained}(p) \setminus \{p\} : r \in \text{roles}_h(p) \rightarrow r \not\in \text{roles}_h(p') \)
 - \(\forall r \in \mathcal{R}_h : \forall p' \in \text{contained}(p) \setminus \{p\} : r \in \text{roles}_h(p) \rightarrow r \not\in \text{roles}_h(p') \)
 - \(\forall s \in \mathcal{S} : \forall p' \in \text{contained}(p) \setminus \{p\} : (\exists p \in \mathcal{P} : (s, p) \in \text{slots}(p)) \rightarrow (\neg \exists p' \in \mathcal{P} : (s, p') \in \text{slots}(p')) \)

- **Definition of used roles and resource slots:**
 - \(\forall p' \in \text{contained}(p), s \in \mathcal{S}, r \in \mathcal{R}_h, p \in \mathcal{P} : (s, r, p) \in \text{rules} \rightarrow (\exists p'' \in \text{contained}(p), p' \in \text{contained}(p') \wedge (s, p') \in \text{slots}(p'') \wedge (p' \geq p)) \)
 - \(\forall p' \in \text{contained}(p), s \in \mathcal{S}, r \in \mathcal{R}_h, p \in \mathcal{P} : (s, r, p) \in \text{rules} \rightarrow (\exists p'' \in \text{contained}(p), p' \in \text{contained}(p') \wedge r \in \text{roles}(p'')) \)

Definition 25 (Allocation results). Given a process instance \(i_p \in I \) and a point in time \(t \), let \(h \)-actors and \(s \)-actors be the role assignment, \(\text{alloc}_p \) the resource allocation, and \(s'_e \) the execution state of the process instance.

The allocation result is the set of permissions valid at \(t \), namely:

\[
\bigcup_{p'' \in \text{contained}(p) \cap \text{rules}(p'')} \bigcup_{(s, r, p) \in \text{rules}(p)} : \{(\text{actors}(i_p, r, t), \text{alloc}_p(s, t, p))\}.
\]

Definition 25 collects permission-allocation rules from all active sub-processes of a given process (i.e., sub-processes with an execution state of \(\text{in} \)). The result consists of the instantiation of all rules, i.e., resource slots and roles are filled in with actual resources and actors taken from the assignment valid at \(t \).

4.5.7.3 Extended Execution Semantics

We have introduced an execution semantics at the beginning of this section. In the following, we present an extended execution semantics that includes the current security context, i.e., the assignment of roles, attributes and resources to process instances.

We need explicit actions to trigger these assignments. Thus, we need to introduce new types of atomic operations and adapt Definition 2 accordingly.

Definition 26 (Types of atomic processes (revised)). The type of an atomic process is defined by the function type : \(\mathcal{P}_a \rightarrow \{\text{ht}, \text{send}, \text{recv}, \text{ar}, \text{sa}, \text{ar, nap}\} \). Atomic processes with the new types aa, sa, and ar assign actors (humans or services) to roles, set attribute values of the process instance, and allocate resources, respectively.

A function of type \(\text{aa-role} \) : \(\{p \in \mathcal{P}_a | \text{type}(p) = \text{aa}\} \rightarrow (\mathcal{R}_h \cup \mathcal{R}_a) \) returns the role which the operation assigns actors to. A function of type \(\text{aa-actor} \) : \(I \times \mathbb{N}_0 \rightarrow (\mathcal{H} \cup \mathcal{S}) \cup \bot \) determines the actor assigned by the operation at a given time when the process is actually executed.

\(\text{sa-att} : \{p \in \mathcal{P}_a | \text{type}(p) = \text{sa}\} \rightarrow \mathcal{A} \) is the type of a function that returns the attribute set by the operation. A function of type \(\text{sa-val} : I \times \mathbb{N}_0 \rightarrow \mathcal{V} \cup \bot \) gives the value assigned to the attribute at time \(t \).
Finally, a function of type ar-slot : \{p \in \mathcal{P}_a | \text{type}(p) = sa\} \rightarrow \mathcal{S}$ specifies which slot an operation of type ar assigns resources to, while a function of type ar-res : $I \times \mathbb{N}_0 \rightarrow \mathcal{R} \cup \perp$ specifies the actual resource assigned at time t.

Example 4.5.7.5 Assignment of an actor in the APL process

In the first phase of the APL process, the process chooses a coach and an assessor. We look at a simplified process p consisting only of the relevant activities.

p is a sequence, $p \in \mathcal{P}_c$ and type(p) = seq. It consists of two sub-processes that assign users to roles: size(p) = 2, member($0, p$) = p_0, member($1, p$) = p_1, $p_0, p_1 \in \mathcal{P}_a$, type($p_0$) = type($p_1$) = ar.

p defines two roles, coach and assessor: roles$_h(p) = \{\text{coach, assessor}\}$. p_0 and p_1 assign actors to the coach and to the assessor role, respectively: aa-role(p_0) = coach, aa-role(p_1) = assessor.

Let i_p be an instance of p, model(i_p) = p. Let execution of p_0 and p_1 in i_p occur at t_0 and t_1, respectively. If aa-actor(i_p, t_0) = Bob and aa-actor(i_p, t_1) = Jim, Bob will be assigned to the coach role and Jim will be assigned to the assessor role after the execution of p.

We can now extend our execution semantics (Definition 11) so that it not only encompasses the “bare” execution state s^0_e of a process instance p, but also the current assignments of actors to roles, resources to slots, and the current values of attributes expressed by functions h-actors$_p$, s-actors$_p$, alloc$_p$, and atts$_p$.

As already defined in Definition 11, the execution of a process $p \in \mathcal{P}$ is a sequence (s^0_e, s^1_e, \ldots) of execution states of p. The initial state s^0_e has already been defined there.

The security configuration also encompasses the assignment of actors to roles, of resources to resource slots, and the values of process instance attributes. In the following definition, we will define the initial security configuration.

Definition 27 (Initial security configuration). Initially, all roles are unassigned, i.e., h-actors($i_p, r, 0$) = \perp for all $r \in \text{roles}_h^0(\text{model}(i_p))$ and s-actors($i_p, r, 0$) = \perp for all $r \in \text{roles}_s^0(\text{model}(i_p))$. Further, all slots are unassigned initially, i.e., alloc$_s^0(s, 0)$ = \perp for all $s \in \text{slots}^0_p$. Finally, attributes of the process are initially unassigned as well, atts($i_p, a, 0$) = \perp for all $a \in \mathcal{A}$.

Now we can extend Definition 10 with the changes of the security configuration that are allowed.

Definition 28 (Allowed changes of the security configuration: Role assignment). Role assignments only change when an operation (atomic process) of type aa is executed, i.e., changes its state from before to in3. Furthermore, the role assignment only changes when the role-assignment policy is fulfilled. Otherwise, an error situation occurs which the process must handle.

Unless otherwise defined, h-actors(i_p, r, t) = h-actors($i_p, r, t - 1$) for all $r \in \text{roles}_h^0(\text{model}(i_p))$ and s-actors(i_p, r, t) = s-actors($i_p, r, t - 1$) for all $r \in \text{roles}_s^0(\text{model}(i_p))$.

Let p' contained(model(i_p)) with type(p') = aa, $s^{-1}_e(p') = \text{before}$, $s'_e(p') = \text{in}$. Without loss of generality4, let $r := \text{aa-role}(p) \in \mathcal{H}$. If allowed($i_p, r, \text{aa-actor}(p, t), t, \text{atts}_h, \text{atts}_p$), then h-actors$_p(i_p, r, t) = \text{aa-actor}(i_p, t).

Definition 29 (Allowed changes of the security configuration: Resource allocation). Resource allocations only change when an operation (atomic process) of type ar is executed. Unless defined otherwise, alloc$_p(s, t) = \text{alloc}_p(s, t - 1)$ for all $s \in \text{slots}_e^0(p)$.

Let p' contained(p) with type(p') = ar, $s^{-1}_e(p') = \text{before}$, $s'_e(p') = \text{in}$. Let $s^* := \text{ar-slot}(p')$. Then alloc$_p(s^*, t) = \text{ar-res}(i_p, t)$.

Definition 30 (Allowed changes of the security configuration: Process-instance attributes). Finally, attributes of process instances only change when an operation (atomic process) of type sa is executed. Unless defined otherwise, atts(i_p, a, t) = atts($i_p, a, t - 1$) for all $a \in \mathcal{A}$.

Let p' contained(p) with type(p') = sa, $s^{-1}_e(p') = \text{before}$, $s'_e(p') = \text{in}$. Let $a^* := \text{sa-attr}(p')$. Then atts($i_p, a^*, t$) = sa-val($i_p, t$).

3This choice of the exact point where the execution takes effect is somewhat arbitrary. What is important, however, is to make sure that the execution takes effect at all.

4For aa-role(p) $\in \mathcal{H}$, replace h-actors$_p$ by s-actors$_p$ and atts$_h$ by atts$_s$ in the following.
4.5.7.4 Separation of Duty

Definition 31 (Separation-of-duty rules). A separation-of-duty rule is a pair \((r_1, r_2) \in \mathcal{R} \times \mathcal{R}\) and specifies a conflict between two roles. For each process \(p\), separation-of-duty rules can be defined between roles in this process or its sub-processes. The set of such roles for a process \(p\) is determined by a function of type \(\text{sod} : \text{contained}(p) \rightarrow 2^{\mathcal{R} \times \mathcal{R}}\).

These roles are subject to the following consistency constraints that must hold for any \((r_1, r_2) \in \text{sod}(p')\) for all \(p' \in \text{contained}(p)\):

- Both roles must be of the same type: \((r_1 \in \mathcal{R}_h \land r_2 \in \mathcal{R}_h) \lor (r_1 \in \mathcal{R}_s \land r_2 \in \mathcal{R}_s)\)
- Both roles must be defined in \(p'\) or its sub-processes: \(r_1, r_2 \in \text{roles}_h(p') \cup \text{roles}_s(p')\)

We define a function \(\text{sod}^\ast : \text{contained}(p) \rightarrow \mathcal{R} \times \mathcal{R}\) that collects all rules defined for a composite process: \(\text{sod}^\ast(p) = \bigcup_{p' \in \text{contained}(p)} \text{sod}(p')\).

Given the definition of separation-of-duty rules, we have to adapt the evaluation of role-assignment policies in Definition 19.

Definition 32 (Evaluation of role-assignment policies including separation of duty). Let \(p \in \mathcal{P}\) be a process, \(r \in \mathcal{R}_h \cup \mathcal{R}_s\) a role, \(a \in \mathcal{H} \cup \mathcal{S}\) the human or the service to be assigned to the role (with either \(r \in \mathcal{R}_h \land a \in \mathcal{H}\) or \(r \in \mathcal{R}_s \land a \in \mathcal{S}\)), \(t\) the current point in time, and \(\text{atts}_h, \text{atts}_s, \text{atts}_p\) the attribute assignment for human actors, services, and the process instance of \(p\), respectively.

The function \(\text{allowed}^\ast : \mathbb{I} \times (\mathcal{R}_h \cup \mathcal{R}_s) \times (\mathcal{H} \cup \mathcal{S}) \times \mathbb{N}_0 \times (\mathcal{V} \cup \bot)^{\mathcal{H} \times \mathbb{N}_0} \times (\mathcal{V} \cup \bot)^{\mathcal{S} \times \mathbb{N}_0} \times (\mathcal{V} \cup \bot)^{\mathbb{I} \times \mathcal{A} \times \mathbb{N}_0} \rightarrow \mathbb{B}\) determines whether \(a\) may be assigned to \(r\).

\[\text{allowed}^\ast(i_p, r, a, t, \text{atts}_h, \text{atts}_s, \text{atts}_p) = \text{allowed}(i_p, r, a, t, \text{atts}_h, \text{atts}_s, \text{atts}_p) \land (\forall (r, r_2) \in \text{sod}^\ast : a \neq \text{actors}_p(r_2, t))\]

The definitions of the functions \text{allowed} and \text{poleval} are the ones from Definition 19.

In order to include the enforcement of separation of duty in the process execution, we have to replace \text{allowed} by \text{allowed}^\ast in Definition 28.
5 Implementation Design

Our security concepts are designed to integrate with existing technology (BPMN, BPEL, BPEL4People) and software (the Intalio open-source components) in the business process management domain, and with the TAS3 security architecture. In this chapter, we provide the implementation design of first parts of the conceptual design. The concepts of chapter 4 are mapped to concrete implementation and we already started to prepare the validation of the concepts demonstrated with a business process of our pilot applications, the Kenteq APL process.

At the beginning, we describe the integration approach of security management for business processes in more detail. Briefly the approach to federated identity and single sign on for users of business processes is introduced. Then, a main part examines implementation of role handling of process roles with instance-specific assignments. Further parts deal with delegation and separation of duty, and fault handling mechanisms for reacting to security violations.

Finally, there are two topics. One is a very first description on security modelling during business process design and how to transform it to policies at the process execution level. Processes consist of subprocesses, which reflect a processing unit from the business point of view. With that we can handle subprocesses as scopes of security. The last topic describes the efforts on adapting processes, which are active. This results in a basic formalized model of process changes, on the schema level and on migrating process instances. The adaptation architecture includes a repository of processes and process patterns. Additionally, we have started to implement an authorization module for processes and process adaptations, which was designed in previous work [51] in our group. With that we are able to start with the main research in adaptability, namely to investigate how to use process-specific security supporting process adaptation.

5.1 Integration of Security Management for Business Processes into TAS3

In this section, we describe how we will coordinate the development of the secure process management platform with the development of the TAS3 infrastructure and the applications processes running on the platform.

Business processes will model both (payload) applications and secure transactions in the TAS3 architecture. The TAS3 architecture orchestrates the security components by a well-defined, finite state diagram that can be modelled as a process. This can provide early prototypes of security processes (for production use, the performance of such an implementation will probably not suffice).

We can think of different levels of integration of (payload) business processes into the TAS3 architecture. The basic level is for the process to speak the TAS3 wire protocol on any web service calls it makes or receives, and to use the TAS3 single-sign-on mechanism to authenticate user interactions. The wire protocol would be implemented by using a custom network stack which is transparent to the business process. Access control cannot take that state of the business process and its context into account, and the process does not even notice access-control decisions made on its behalf. Our integration approach is based on a combination of enhancements in the application processes and in the BPEL executor. We introduce process-specific security concepts handled by dedicated runtime components. The rationale is that we do not need to explicitly model them in application processes. Annotations on application processes provide the configuration for these components. Further, for cases where such implicit, modelling-time configuration is not possible, we provide application processes with the possibility to explicitly manipulate their security context. This holds for decisions affecting the security context that are highly application-dependent, possibly even involving manual steps, such as the assignment of actors in the Kenteq APL process.

Integration into the TAS3 architecture is necessary in several fields:

- Single-signon: Components that interact directly with the user must use a single-signon mechanism compatible with the TAS3 architecture to authenticate the user. This concerns the presentation of
Design of a secure adaptable BPM platform

human tasks to actors in business processes.

- Identity management: Processes must use identity tokens in the format used by the trust network, and possibly use a mapping service when making outgoing calls on behalf of a user.
- Secure communication: The BPEL engine must transform all outgoing and incoming communication to/from the wire protocol used in the trust network.
- Authorization: The PEP used by the BPEL engine must collect context information needed for authorization and create a request that the PDP understands. The same holds for the user interface.
- Permission management and policy deployment: Permissions granted to the service provider running the business process are handled semi-automatically by components associated with the BPEL engine. It will become necessary to cause permissions to be granted to actors involved in a process. Further, policies may be instance-specific and must be automatically created when a process instance is created. Accordingly, proper interfaces must be in place to deploy credentials granting permissions and policies to the policy decision points.

5.2 Federated identity and single sign-on for the user interface

TAS uses a common single sign-on (SSO) framework based on SAML 2.0. Users are known to an identity provider (IdP). Whenever they login to a service provider (SP), the identity provider is involved to assert the user’s identity.

SSO support is necessary for all components involved in direct interaction with the user. This holds for the T3-BP-MGR component, which is based on Intalio Tempo: It provides a task-list console as a user interface. When a user logs into Tempo, he will see tasks he is eligible to execute. Two modules of Tempo are relevant here: The User Interface Framework (UIFW) handles the presentation of the user interface, including log-in and the selection of tasks. The Security Framework (SFW) provides authorization and authentication. The basic implementation in the open-source edition of Tempo compares credentials (username and password) with a simple XML file, and provides authorisation based on roles provided in that file.

In order to support SSO, we will modify the log-in functionality of the UIFW component: Instead of generating a log-in screen itself, it will forward the browser of the user to the ZXID service provider servlet (provided by Symlabs), which allows the user to choose his identity provider and log-in using that IdP. The ZXID servlet then stores session information in the Tomcat servlet container which is then used by Tempo. As both Tempo and the ZXID SP servlet run in the same Tomcat servlet container, they can use the session store to exchange information.

The identity information (persistent SAML 2.0 Name IDs) currently must be handled explicitly by the application business process.

5.3 Process roles with instance-specific assignment

In this section, we will take a look at how the concept of process roles introduced in Chapter 4 strengthens the security of business processes, and in particular Kenteq’s APL process, and how it fits this use case. Then, we will consider implementation issues concerning the Intalio system, including ideas about how to use the existing modelling tool to support the new security concepts. Finally, we briefly introduce possible future enhancements, namely local roles and automatic assignment of users to roles.

With the process role approach, we are able to support constraints on the activation of a role for a business process instance that take the characteristics of that instance into account. This was not possible before: For example, when a Kenteq employee logs into the system and activates his Coach role, there is no guarantee that he actually has the knowledge to provide advice to the candidate in that instance of the APL process. Further, we can support different application needs as to when and how users are assigned to roles in the application process: Some assignments are already fixed when the process starts. For example, the candidate is in the centre of Kenteq’s APL process. She is, of course, determined in the contract and
is known when the APL process starts. The organiser, who is mainly charged with administrative duties, is also fixed in the contract. In other cases, the process itself (by an explicit activity) or a user performs the assignment when the process is already running. E.g., after the APL process has started, the organiser assigns a coach, an assessor, and a quality controller for the specific instance. Our proposed concept of process roles implies binding of duty. This means that the specific person holding a role in the process instance performs all tasks assigned to the role. This is also corresponds to the Kenteq APL process, and there was no explicit support for binding of duty in Intalio|BPMS before.

Currently, tasks for humans or BPMN lanes containing such tasks include the role which a user must possess in order to work on the task. This allows collecting the roles involved in a business process definition. Some roles, however, will only occur in subprocesses and not in the main process. In order to have a better overview of all roles in a process, we will explicitly include a list of all roles in the model of a business process. Each role gets the assignment policy annotated. In the process model in Figure 5.1, simple logical expressions symbolise the policies.

![Figure 5.1: Specification of roles and assignment policies in the APL process](image)

As we have already mentioned, one way of assigning users to roles in the Kenteq APL process is by explicit actions of the process, based on the decision of the human participant holding the Organiser role. This is shown in Figure 5.3, which shows the Allocate Resources scenario from the Commence APL phase: First, the Organiser is explicitly asked to name users for the different roles. Then the process calls the context store to perform the assignment.

In addition to the new components already mentioned in Chapter 4, we also have to adapt the Intalio system. This mainly concerns the task-list component (Intalio|Tempo). We will re-use the existing interfaces. When a business process creates a task for a human, it sends a request to the Intalio Tempo component. This request includes the role that has to execute the task. Currently, Tempo looks up the users having this role. Tempo has an extensible architecture and security modules that can obtain the necessary information from either a simple XML file or an LDAP server. Then it presents the task to all users found. Any of them can claim the task and carry it out. We will enhance the interface to the security module so that it contains information on the context of the task. In particular, this is the ID of the process instance it belongs to. We will introduce a new security module that involves the IR-PIP when determining the user whom the task will be presented to. It will look up the role assignments for the process instance in question and only return the user who has been assigned to the role. This check takes place when the list of open tasks is displayed to a user.

We will provide a tool where the process designer can specify the roles occurring in the process and the corresponding assignment policies. The implementation will use XACML to encode the policies, as recommended by the TAS^3 architecture specification (Section 9.3.2 of Project Deliverable D2.1 [3]). For deployment to the BP-PIP, the designer has to specify the ID of the process model that the specification belongs to. In the future, we will directly integrate this view into Intalio Designer.

As process models are split up into several levels of sub-processes, we believe that these hierarchical models can be leveraged for the definition of roles as well, in line with the goal to leverage the sub-process structure for security modelling: The current version of the Kenteq APL process only contains global roles that apply to the entire process (see Figure 5.6). As an example for a possible local role, consider the case...
that the profile of the candidate indicates that he knows a foreign language. A sub-process to obtain a rating according to the Common European Framework of Reference for Languages is invoked for each language. This sub-process specifies a role "language assessor", which will be assigned to someone with knowledge of the language in question. We will consider this case in a future iteration.

The IR-PIP will provide a web-service interface to assign users to roles. The process can use this interface to perform explicit assignments. In some cases, it is also possible to let the execution engine choose an individual for a role. Different strategies are conceivable as long as the assignment policy for the role in question is fulfilled. The system can then choose either an eligible actor itself and assign the tasks to him, or it can present the first task for the role to all actors eligible and choose the first individual who claims the task. We still have to explore how to implement automatic assignment. For the time being, the process has to explicitly assign users to a role before it creates any task for the role. This means that the process designer has to include activities that first determine a user to assign to the role, and then perform the actual assignment.

The IR-PIP component handles the assignment of actors to roles in business-process instances. It stores role definitions (originating from the modelling tool) for each business-process model as configuration.

Actors are identified by persistent SAML NameIDs (for humans) and endpoint references (for web-services). Discovery of suitable actors is not part of the functionality of this component. Currently, an explicit request (by the business process) is necessary to execute the assignment of an actor to a role. We are planning to extend this by a mechanism which calls a discovery component if needed.

The IR-PIP component keeps part of the security-relevant state information of business-process instances. It is not involved in the execution of business processes or in the presentation of the user interface.

The T3-BP-PIP-IR is running as a web service and provides its functionality via a web service interface (SOAP over HTTP). It keeps its state in an embedded database.

When deploying a process model to the process engine, the PIP-IR gets the role definitions of the process model. When an instance of a business process is being created the PIP-IR receives a message from the process engine with an intended role-user assignment. It calls the PDP to check if this assignment is permitted according to policies of the process model. If this is the case the PIP-IR stores the assignment and forwards this information to the T3-BP-PPM component.

Figure 5.4 shows the components the PIP-IR is interacting with.

During process execution, the roles used in tasks executed by the process must be translated into the
assigned user or service. For human tasks, this translation happens in the process itself: The process looks up the user assigned to a role by making a request to the IR-PIP. Then, it requests Tempo to create the tasks. This request already includes the actual user who has to perform the task. With the Intalio Designer modelling tool, tasks can be connected with roles. We will provide an automatic translation so that the process performs the lookup of the user assigned to the role.

For tasks involving services, the PEP-RQ acts as a proxy between the business process and the actual service. The request to the PEP-RQ includes the actual payload and the role of the service to be called. The PEP-RQ looks up the assigned service endpoint and forwards the payload to that service.

An example of the SOAP payload of a request to the T3-PEP-RQ is given in Figure 5.5. The actual payload is encapsulated inside the `<pep:payload>` element.
Figure 5.3: Explicit assignment of individuals to roles based on the decision of a human actor
Figure 5.4: Components interacting with the IR-PIP.

```xml
<pep:request xmlns:pep="http://bpel.pep-rq.kit.tas3.eu/">
  <pep:instance-id>12345</pep:instance-id>
  <pep:endpoint-id>matchingService</pep:endpoint-id>
  <pep:action>match</pep:action>
  <pep:payload>
    <m:matchingRequest xmlns:m="http://services.tas3.eu/">
      <m:portfolio>...</m:portfolio>
      <m:programme>...</m:programme>
    </m:matchingRequest>
  </pep:payload>
</pep:request>
```

Figure 5.5: Example SOAP payload of a request to the T3-PEP-RQ, illustrating the XML structure
5.4 Delegation and Separation of Duty

No further changes to Intalio|Tempo are necessary in order to support delegation. As Tempo requests role assignments from the IR-PIP when it creates the list of open tasks for a user, delegations of process roles will become effective immediately. We will provide an interface where users can see their current process roles and cause delegation of roles, which will become a part of the dashboard. We will provide the necessary backend functionality as part of the IR-PIP. Process designers can first specify delegation policies for process roles in a separate tool, together with the role assignment policies. Later, we will integrate this tool into Designer. There is no need to add additional activities to process models in order to support delegation.

Just like binding of duties for roles, separation of duty currently can only be implemented in an imperative way: The process designer has to explicitly specify the assignment of individuals to tasks in the process model itself, including computation to determine an assignment that fulfils the SoD constraints. But this may be error-prone for large process diagrams or complex SoD constraints, as the constraints themselves are not explicitly visible. Thus, a better option is to explicitly specify the SoD constraints and to enforce these explicit constraints during execution.

Conflicts between global roles will be defined together with these roles (Figure 5.6 and Figure 5.7) and will be valid for the entire process. We will consider local roles in the next iteration of this deliverable. Then, we will also consider conflicts involving local roles. A SoD conflict relation between two roles means that the same person may not be assigned to both roles. The SoD policy is stored on the BP-PAP when being deployed and checked when assigning or delegating process roles.

Again, no further changes to the BPEL execution engine or to the workflow engine are necessary. We will enhance the tool for the definition of process roles with the possibility to specify SoD constraints between roles. At a later stage, we will integrate this tool into Intalio Designer. The major part of the implementation concerns the context store: On each request for role assignment or delegation, it needs to check whether the specified assignee or delegate is already assigned to a conflicting role.

![Figure 5.6: Roles in the top-level process with an indication of SoD conflict relationships](image)

5.5 Reaction to Security Violations

Processes must be able to detect error conditions due to security violations and recover from them (requirement D3.1-R.9). First, this means that if the PEP inside the BPEL execution engine detects security violations, it must communicate them to the process. It does so by throwing a fault. A fault in WS-BPEL has a type identified by a qualified name (QName). There will be one error type for security violations occurring at normal web-service call on the application level, and one for each kind of security-specific calls, like the assignment of users to roles. The only information that can be implied from the fault is that the request was denied. Second, the process must be able to react to such faults. This is done by including fault handlers in the BPMN diagram in Intalio Designer. They are translated into WS-BPEL fault handlers. When a fault occurs, this handler executes. It can contain arbitrary activities necessary to recover from the fault, e.g. retrying the request with other parameters or initiating a break-the-glass
As fault handling is a standard WS-BPEL mechanism, no further implementation is required to handle faults. Our implementation of the IR-PIP will throw a fault when a role assignment is not allowed. Components in the TAS3 security architecture are likely to create faults in error situations as well, e.g. when access to a repository is denied.

5.6 Security scope of processes and subprocesses

It must be possible to specify on behalf of whom a process is acting (requirement D3.1-R.10). For the calls to external systems that a process will be making during its lifetime, it can act for different people in each case. Business processes (like any web-services) will use tokens when acting on behalf of the users participating in them (cf. D2.1 [3], section 4.2).

We want to use annotations in the process model to automatically determine which token to use for outgoing calls if there are several users. This serves as a first approach to distinguish different parts in a process that require different levels of security. The annotation will either be on entire BPMN pools or on sub-processes in a BPMN diagram and consist of a process role. When a call to an external service requires an identity token, the identity mapper service will automatically be invoked to exchange the existing token into one usable by the external service, and this token will then be used in the call.

5.7 Structural Changes of the Process Flow

For process adaptation the structural changes of the process flow starts at the business process modelling level and then transforms the changed model to the execution level of business processes. With that, the adaptation relates to the schema level. In the next step the migration of running processes takes place, those processes, that match the old schema and the planned change is possible. We perform the following steps:

- Adapt the process by using change operations on the BPMN level and workflow pattern libraries.
- Transform the change operations and changed workflow to the execution level by
 - Mapping to BPEL (on a schema level, e.g. using the Intalio mapper),
 - Migrating process instances: investigate the state of the instances, select instances affected, and adapt the running instances of the process.

Structural process adaptation uses a repository of process patterns. These patterns support the choice of suitable patterns to change the process schema. There will be selected alternatives for structural changes, and automatic adaptations are supported if possible. But in general the adaptation component only proposes alternatives for structural changes. Making the decision will be a manual task by a process administrator. Figure 5.8 shows the adaptation architecture with modelling and execution level.
Reasons for process adaptation are many-fold. A driving force for process changes is the change of data which is involved in the business process. Ad-hoc processes, i.e., processes that are not fully designed, e.g., because there are many users with very specific requirements regarding the process, require to enhance the process during execution. Often these requirements result from the specific data that is needed, e.g., on a special data type like a single value vs. a set of entities or aggregates of those entities, see [51]. Another reason is exceptions caused by violation of security rules when accessing data. A possible reaction could be to, say, choose other data that is accessible to the current user but having a lower security level, e.g., anonymised data. Another possible reaction would be to provide an adequate certificate to the user. In both cases, a process adaptation typically is required. Other exceptions like "specific data is not available" could be a reason to change an active process as well. In today’s business processes, they usually simply fail when such unexpected events occur.

Because processes and the functional organisation of their task composition often depend on the underlying data, we have investigated how data changes influence process structure changes. We propose a method to use data dependencies to detect if a process needs to be changed. If applicable, adequate adaptations of the process schema are proposed [52]. The enhanced system architecture is shown in Figure 5.9. The data type surveillance component is responsible to detect changes of the data types that are relevant for the process structure. The component works on the database of the business process management system triggering the workflow alteration component on specific change events. The component then checks if an adaptation of the process schema becomes necessary. In this case, the component proposes workflow adaptations using the repository of workflow patterns.

Further results of ours [41] are a formal model of adaptation operations at the BPMN level and their relationship to the BPEL process model. On the instance layer it has to be checked if the modified schema is adequate for any of the running instances. A crucial issue for this is the correctness of the data flow in the process instance changed. The process instances for which the new schema is applicable must be migrated. Finally, the process instances continue executing the new process flow.

In order to be able to transform adapted processes and to manage process versions, we identified a set of adaptation functions on the BPMN and the BPEL level. As a basic model we support structural process changes with operators such as, say, AddTasks, DeleteTasks, AddSequenceFlows, SetSequenceFlowConditionExpressions. These operations are composed of reusable basic methods called modification (on the
Figure 5.9: System architecture of a business process execution engine enabling data-induced adaptation of processes

BPMN layer) and adaptation (on the instance layer) primitives.

Figure 5.10 shows the system architecture of our structural adaptation concept and the course of actions taking place within one adaptation operation. We need an adaptation enabled process modelling tool. This can be obtained by integrating an adaptation plugin into an existing modelling tool for instance. The plugin or the modelling tool itself provides the user interface the process administrator is operating on. When the modification on the process modell have been performed, the model is translated to BPEL. Both the BPMN and the BPEL representation are stored in a repository, which is be accessible for the modelling tool and the process execution engine.

The adaptation plugin calls the adaptation component and notifies it on the adaptation operation to be performed. Depending on the specific operation the adaptation component manages the adapted execution of the corresponding data flow analysis, the execution state verification and the instance migration itself. During the performance of these validations the process execution engine has to be in a consistent state. Therefor the engine is being stopped beforehand.

Before the irrevocable instance migration takes place, the adaptation component informs the process administrator about the results of the integrity checks and let him decide, which instances he really wants to migrate. After migration the process engine can continue the execution of the process instances.

These results of adaptation support will serve as a basis for more flexible and adaptable business processes in TAS3. Next steps will be to investigate in more detail the influence of security specifications of parts of the process, i.e. tasks, sub-processes, web services, data and actors, to the validity of process change. Especially, the security-guided choice of web services is of interest. E.g., if a web services guarantees a higher level of security but delivers the required data or functionality, the user may want to use that one. A challenge results from this kind of flexibility and tolerance, for which we are planning to use a semantic specification of the security of the process and its parts.
Figure 5.10: System architecture of the structural adaptation concept
6 Conclusions

This document represents the first two phases of the design of a business process management platform in the TAS\(^3\) project, i.e. the second iteration of this report. We will refine this report according the project plan in the next project phases with more detailed and new results.

Regarding the requirements described in Deliverables D1.2 [4] and D1.4 [5] we have designed the various components of a platform for secure process management, i.e., a business process modelling platform and execution engine for processes in service-oriented applications, security issues of business processes, and secure adaptability of business processes. The components have to interoperate with each other and have to be integrated in the TAS\(^3\) security architecture. To accomplish this, we developed the architecture by refining and amending the overall TAS\(^3\) architecture.

One of our goals is to provide a platform that enables the partners to model secure business processes in the application scenarios and run the business processes modelled. To this end, there have been structured training sessions for business process modelling using the Intalio tools, and we modelled a real-world business process from the employability scenario, the Kenteq APL process, in cooperation with modelling experts and domain experts. On this basis, we will be able to model more complex processes in the employability and the e-health area requiring flexibility and in particular security specifications. Furthermore, modelling the TAS\(^3\) security process as business process is planned in 2009. We can then use this process to check various process alternatives and can investigate the integration of business processes with the TAS\(^3\) security levels.

The main focus of this work package is on security of processes: Which concepts will be required, what is provided by standards, which enhancements do we need? The results are placed on three levels: to enhance the process modelling tool with features to specify security in a more comprehensive way at the business level. On the next level: to provide a transformation of these security-related enhancements of the business process to policies and parameters to configure security components in the TAS\(^3\) security infrastructure. Finally: to design and establish concepts for security enforcement in business processes.

With respect to adaptability we have proposed concepts for structural adaptation of processes and authorization of process use and adaptation. They serve as a starting point for more advanced adaptation concepts, to be investigated in the future. Further, we have described results regarding adaptation of processes induced by changes of the data used by the process. Our research focuses on the relationship and possible support of adaptation and process security concepts.

A main issue of WP3 in 2009 is to implement a first software version which will validate first concepts planned against the TAS\(^3\) security requirements and against the applications. We are going to integrate the process management platform in the TAS\(^3\) architecture in close cooperation with WP8 and with pilots of WP9.
Bibliography

[22] B. Claerhout (Ed.), “Pilots Specifications and Use Case Scenarios, TAS3 Deliverable 9.1, Rev. 1.”

Glossary

- B4P or BPeL4People: enhancement of the BPEL standard to support human activities
- BPEL: Business Process Execution Language
- BPM: Business Process Modelling
- BP-PAP: Business Process Policy Administration Point
- CVS: Credential Validation Service
- DIS: Delegation Issuing Service
- DPM: Delegated Permissions Manager
- IA-PIP: Instance-Attribute Policy Information Point
- IR-PIP: Instance-Role Policy Information Point
- OWL: Web Ontology Language
- OWL-S: OWL based web service ontology
- PCP: Personal Competency Profile
- PEP: Policy Enforcement Point
- PIP: Policy Information Point
- PMF: Process Modelling Framework
- QC: Quality Controller
- SoD: Separation of Duties
- SP: Service Provider
- TN: Trust Network
- WSMO: Web Service Modelling Ontology
Appendix A: Kenteq APL Business Process Model