

7
th

 RTD Framework Program

REALITY

Reliable and Variability Tolerant System-on-a-Chip Design in More-

Moore Technologies

Contract No 216537

Deliverable D2.4 (Part1)

Report on Variation-Aware Statistical Information Format

Editor: Paul Zuber, Petr Dobrovolny, Miguel Miranda
Co-author / Acknowledgement:
Status - Version: V1.1
Date: 20/10/2010
Confidentiality Level: Public
ID number: IST-216537-WP2-D2.4-v1p1_part1

© Copyright by the REALITY Consortium

The REALITY Consortium consists of:

Interuniversity Microelectronics Centre (IMEC vzw) Prime Contractor Belgium

STMicroelectronics S.R.L. (STM) Contractor Italy

Universita Di Bologna (UNIBO) Contractor Italy

Katholieke Universiteit Leuven (KUL) Contractor Belgium

ARM Limited (ARM) Contractor United Kingdom

University Of Glasgow (UoG) Contractor United Kingdom

Deliverable D2.4 Page 2 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

1. Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

2. Acknowledgements

The editors acknowledge the contributions by Bart Dierickx.

3. Document revision history

Date Version Editor/Contributor Comments

09/04/2010 V0.1 Paul Zuber Framework

10/05/2010 V0.2 Paul Zuber Insert imec Contribution

10/05/2010 V1.0 Petr Dobrovolny Attached VAMIF javadoc

28/10/2010 V1.1 Miguel Miranda Updated content in
subsections: 15.8.2, 15.8.3,
15.8.4

Deliverable D2.4 Page 3 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

4. Preface

The scope and objectives of the REALITY project are:

 Development of design techniques, methodologies and methods for real-time
guaranteed, energy-efficient, robust and adaptive SoCs, including both digital and
analogue macro-blocks“

The Technical Challenges are:

 To deal with increased static variability and static fault rates of devices and
interconnects.

 To overcome increased time-dependent dynamic variability and dynamic fault rates.

 To build reliable systems out of unreliable technology while maintaining design
productivity.

 To deploy design techniques that allow technology scalable energy efficient SoC
systems while guaranteeing real-time performance constraints.

Focus Areas of this project are:

 “Analysis techniques” for exploring the design space, and analysis of the system in
terms of performance, power and reliability of manufactured instances across a wide
spectrum of operating conditions.

 “Solution techniques” which are design time and/or runtime techniques to mitigate
impact of reliability issues of integrated circuits, at component, circuit, architecture
and system (application software) design.

The REALITY project has started its activities in January 2008 and is planned to be
completed after 30 months. It is led by Dr. Miguel Miranda of IMEC. The Project Coordinator
is Dr. Miguel Miranda. Five contractors (STM, ARM, KUL, UoG, UNIBO) participate in the
project. The total budget is 2.899 k€.

Deliverable D2.4 Page 4 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

5. Abstract

The goal of this WP is to develop advanced methodologies and techniques for Statistical
Analysis all the way from the device level to the system level. The WP also targets
developing and fully characterizing a limited standard cell library (50-100 cells) for synthesis
based on restricted design rules for use in WP2, WP3, WP4, and WP5. Novel techniques to
percolate variability all the way from the device level to the system level shall be developed
to evaluate the impact that intrinsic variability will have on timing, energy, and yield of the
complete SoC architecture, including a view on the impact of application-dependent activity.
Commercial EDA solutions (e.g., fast circuit simulators, SSTA tools, power analysis tools,
etc) shall be reused in the flow wherever possible in combination with Monte Carlo-based
simulation techniques. Also considered in this WP is the strategic aspect of the
standardization of the interfaces between different abstraction levels to enable the
propagation of variability specific information throughout the design flow in order to
guarantee the compatibility with existing electronic design simulation/verification tools.

This document is the deliverable D 2.4 comprising a description of an electronic information
format for data under process variability. This is used to ease the link between levels of a
variability aware design flow such as the one set in place in overall WP2. On top of that,
there is an application interface to access the data, and an application layer for graphical
representation.

Deliverable D2.4 Page 5 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

6. List of Abbreviations

REALITY Reliable and Variability tolerant System-on-a-chip Design in More-Moore
Technologies

PDF Probabilistic Density Function

RTL Register Transfer Level

SoC System on Chip

EDA Electronic Design Automation

SSTA Statistical Static Timing Analysis

IP Intellectual Property (block)

WID Within Die Variations

CDF Cumulative Density Functions

CPU Central Processing Unit

MOSFET Metal Oxide Field Effect Transistor

SRAM Static Random Access Memory

Deliverable D2.4 Page 6 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

7. List of Tables

8. List of Figures

Figure 1 Work package overview. .. 10
Figure 2 Vamif Application Layer Examples ... 11
Figure 3 Injector concept. .. 35
Figure 4 Hot Carrier Degradation slope.. 39
Figure 5 MOSFET soft and hard breakdown. ... 46
Figure 6 MOSFET soft and hard breakdown injection. ... 48
Figure 7 Simplified MOSFET soft and hard breakdown injection. ... 48
Figure 8 Healing property of NBTI (negative-bias temperature instability) and

effectiveness of duty-cycle in controlling Vth shift .. 49

Deliverable D2.4 Page 7 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

9. Table of contents

1. DISCLAIMER .. 2

2. ACKNOWLEDGEMENTS .. 2

3. DOCUMENT REVISION HISTORY ... 2

4. PREFACE ... 3

5. ABSTRACT ... 4

6. LIST OF ABBREVIATIONS ... 5

7. LIST OF TABLES .. 6

8. LIST OF FIGURES .. 6

9. TABLE OF CONTENTS .. 7

10. INTRODUCTION ... 9

11. THE ROLE OF THE INFORMATION FORMAT IN REALITY... 10

11.1. OVERVIEW ..10
11.2. LINK TO OTHER WORK PACKAGES ..10

12. APPLICATION LAYER EXAMPLES .. 11

13. CHAPTERS OF THE IF... 12

13.1. GENERAL CONCEPTS ...12
13.2. CHAPTER TECHNOLOGY ...12
13.3. CHAPTER COMPACT MODEL ..13
13.4. CHAPTER CELL ...14
13.5. CHAPTER DIGITAL ..15
13.6. CHAPTER SYSTEM ...15

14. SYNTAX .. 16

14.1. XML AND THE VAM IF CONVENTIONS..16
14.1.1. Files and chapters ...16
14.1.2. Units and dimensions ..16

14.2. GENERAL SYNTAX AND USE ..16
14.3. VALUES, PARAMETERS, EMC_SETS, OBJECTS AND CONTAINERS17

14.3.1. The value element ...18
14.3.2. The list element ...18
14.3.3. The parameter element ..18
14.3.4. The geometry element (correlation_geometry) ..19
14.3.5. The EMC (Exponent Monte Carlo) set emc_set ..23
14.3.6. The object element ..27
14.3.7. The container element ...28

14.4. USER GUIDE TO THE VAMIF API (APPLICATION PROGRAMMING INTERFACE)29
14.4.1. Loading, parsing and (re)writing VAMIF chapters ..29
14.4.2. Creating new VAMIF elements ..31
14.4.3. Read and write data from object element ...32

15. UNDERLYING MODELS FOR VARIABILITY MECHANISMS 35

15.1. MOSFET STATIC VARIABILITY ..35
15.1.1. model ...35
15.1.2. Object and parameters ...36

Deliverable D2.4 Page 8 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

15.1.3. Scaling with W, L and others ...36
15.2. TEMPLATE FORMAT FOR THE DESCRIPTION OF A VARIABILITY OR RELIABILITY

MECHANISM ..37
15.3. HOT CARRIER DEGRADATION ..38

15.3.1. Analytical model ...38
15.3.2. Parameters (and EMC table) ...39
15.3.3. scaling rules for design parameters ..40
15.3.4. Scaling rules for dynamic stress conditions ..40

15.4. MANUFACTURING YIELD ..41
15.5. INTERCONNECT R AND C VARIABILITY ..41
15.6. LITHO VARIABILITY ...45
15.7. TDDB ON MOSFETS ...46

15.7.1. Piece-wise approximation model ..46
15.7.2. EMC table of parameters ...48
15.7.3. Rules for scaling W, L, T, t… ...49
15.7.4. Rules for scaling to multiple sequential stress conditions49

15.8. NBTI OF MOSFETS ..49
15.8.1. Algorithmical model ...49
15.8.2. EMC table and parameters ..50
15.8.3. Scaling rules for circuit and use ..51
15.8.4. Scaling rule for mulitple stress conditions ..51

15.9. MOSFET HYSTERESIS ..51
15.10. VARIABILITY OF MOSFET TEMPORAL NOISE ...51

15.10.1. MOSFET white noise ..51
15.10.2. MOSFET 1/f noise ...51
15.10.3. MOSFET RTS noise ...52

16. OTHER UNDERLYING MODELS ... 54

16.1. ACTIVITY, STRESS HISTORY ON CIRCUIT PARTS (CELLS) AND THEIR INPUTS54
16.2. BACKEND DEFINITION ..54
16.3. TEMPERATURE GRADIENT ...55
16.4. STANDARD CELL LIBRARIES ..56
16.5. REPRESENTATION OF NON-STANDARD CELLS: EMBEDDED MEMORIES58

16.5.1. The MemoryVAM configuration contained ..58
16.5.2. Donuts of memories ..63
16.5.3. Memory cells ..64

16.6. TOP LEVEL COMPONENTS HIERARCHY ...64
16.7. BACKANNOTATED NETLISTS OF COMPONENTS ..65
16.8. VARIABILITY AWARE YIELD PREDICTION ...65
16.9. EXAMPLE OF A CONFIGURATION CONTAINER ...66

17. SPECIFIC FAST MODELS FOR TOP-DOWN ... 67

17.1. Q&D STANDARD CELL REPRESENTATION ..67
17.2. Q&D AREA ...67
17.3. ION IOFF ...68
17.4. CRITICAL PATH DISTRIBUTION ...68

18. REFERENCES .. 68

APPENDIX A ... 68

Deliverable D2.4 Page 9 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

10. Introduction

Key part to master the complexity and density of information of any variability aware design
flow is a “Variability Aware Modelling information format” (VAM IF). Thus imec developed a
format that considers connections between five levels of abstraction of modelling or
simulation. It defines how variability information must be carried from the one level to the
other.

The VAM IF is divided in 5 chapters or XML-files, corresponding to these levels of modelling.

 Chapter technology

 Chapter compact model

 Chapter cell

 Chapter digital

 Chapter system

Deliverable D2.4 Page 10 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

11. The role of the information format in Reality

11.1. Overview

Bit level activity

Word level activity

Bit level activity

Word level activity

V
a

ri
a
ti
o
n

 A
w

a
re

 I
n
fo

rm
a
ti
o

n

F
o

rm
a

t
(T

2
.5

)

SoC netlist

Statistical Analysis of Architectures

(T2.4)

SoC netlist

Statistical Analysis of Architectures

(T2.4)

Transistor netlist

Statistical

Analysis

of macro-

blocks

(SRAMs,

Register

Files, etc,

T2.2))

Transistor netlist

Statistical

Analysis

of macro-

blocks

(SRAMs,

Register

Files, etc,

T2.2))

Statistical

Characterisation of

Library Cells (T2.1)

Standard Cell netlist

Statistical Analysis

of Digital

Components

(T2.3)

Standard Cell netlist

Statistical Analysis

of Digital

Components

(T2.3)

Start: Architecture level

description (RTL) and

simulation bench (WP5)

START: Variability aware

Compact Device Models (WP1)

Start: Architecture level

description (RTL) and

simulation bench (WP5)

START: Variability aware

Compact Device Models (WP1)

END: SoC Level Yield

Model (WP6)

Yield

Power
Freq.clk

END: SoC Level Yield

Model (WP6)

Yield

Power
Freq.clk

Yield

Power
Freq.clk

Yield

Power
Freq.clk

Figure 1 Work package overview.

As the Figure shows, the information format described in this deliverable plays an important
role. It is positioned along and between every step of the flow, where it defines the format of
information that flows between the steps. It serves as storage and retrieval system for this
information.

11.2. Link to other work packages

The format accepts data from WP1 in form of injectors. These are additional circuit elements
that model the variability of transistors. This can be done for several transistor types, but also
differently degraded transistors.
The information format is also capable of storing and retrieving variability data on higher
levels, such as the ones worked out in WP2, and integrated in WP5, like variable standard
cells, macros, processor parts, or processors.
Its application layer allows to graphically publish the variability information in several formats.
This is used heavily in almost all workpackages, especially WP6.

Deliverable D2.4 Page 11 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

12. Application Layer Examples

The picture below shows several screen shots of the VAMIF browser application. The top-left
screen shows the browser window itself on a digital chapter, highlighting a component-object
(an ARM processor part).Objects can be browsed (cf Plot button top left of window).

Figure 2 Vamif Application Layer Examples

To the right one finds an open plot window on a memory object. The Geometry selection box
provides local (matched), global (c2c) and total (world) information and local sensitivity data
(of the object to modifications in specific sub-blocks (matched_x)). The long list provides all
metrics, which the user can choose to plot. There are about 500 parameters in this memory
example. The user can plot pdfs, cdfs, and yield, all for 1 or 2 (compound) parameters.

The lower left plot shows an example 2-dimensional pdf of a processor part. The lower right
plot shows a probit plot of the read-voltage distribution of two memories in two modes. Probit
plots using this technique are used extensively to report in WP1, WP3, WP5, and WP6.

Deliverable D2.4 Page 12 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

13. Chapters of the IF

13.1. General concepts

The information format is distributed over 5 “chapters” or XML-files, corresponding to
the simulation levels of abstraction, having following filenames:

technology.xml
compactmodel.xml
cell.xml
digital.xml
system.xml

These 5 files are in the same directory. This set of 5 files applies to one single design
(i.e. identical mask set) with one single technology option, which is reflected in the
directory name.

All data in the directory is assumed to be correlated. This is a direct consequence of the
principle that VAMIF is a “virtual technology” (~platform)

Scripts, programs, tools using the VAMIF should be sufficiently instructed by only giving
them the path to this directory.
Scripts, programs, tools writing to a chapter should only update the chapter, thus leaving
the unrelated data in the chapter untouched. It is forbidden that a scripts “resets” a
chapter.

13.2. Chapter Technology

This chapter collects technology variability information.
The lowest level of abstraction, includes variability and reliability information from three
complementary sources. Variability information is terms of dimensions or of concentrations.

 the information that comes from the semiconductor fab, as measurement data sets.

As a side effect, the VAM IF thus defines the variability data that are needed from the

fab

 from science and literature. Large part of the work is to devise the formulas for

reliability-related effects, with the possibility to model it for deep sub micron devices.

 TCAD simulations

Deliverable D2.4 Page 13 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

This chapter is the input for the path from technology information to compact models that can
handle variability and reliability effects.

In the most trivial form, i.e. if there is no variability information at all, this chapter is empty.
Chapter technology

note
Tools using VAMIF should always be able to handle empty or
deliberately missing information, and treat that as the absence of
variability and use the nominal (or “invariable”) value (which should
be available from the non variability aware design flow).

13.3. Chapter compact model

Idea: this chapter contains all information necessary for adding electrical domain variability
and reliability information to the classical compact model (Vth, β …), and other device
models (R, C…) used in analog simulation and in (standard / non-standard) cell calibration.
The intended users of (i.e. tools reading) this chapter are wrappers and scripts doing analog
simulation, standard cell characterization, memory simulation, etc.

 Variability in this context always includes reliability, ageing and degradation effect,

and wherever possible plain yield issues.

 The VAM concept considers the regular compact models as a black boxes. The

compact model may as well be a physical or electrical model (i.e. a SPICE model

with parameters as tox, concentrations or Vth), or predictive and even purely

hypothetical. We strive to “model and simulator independency”.

Deliverable D2.4 Page 14 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

In the most trivial form, i.e. if there is no variability information at all, this file and chapter may
be empty. Or it may contain only a reference to the regular compact models.
Chapter compactmodel

chapter compactmodel
logbook

 entry 22sep2007 10:17 qwerty.exe scaling data

 entry 26sep2007 23:44 qwerty.exe scaling data

object name=mosfet // MOSFET with no variability at all

modeled
 value name=mosfet_type nmosfet_hv

 value name=path psp1.mod

object mosfet

 value mosfet_type pmosfet

 value path psp6b.mod

 parameter delta_vth
 parameter delta_beta average 0.94 stddev 0.01
 value delta_w -1e-9
 value delta_l +23e-9

 value w0 1um
 value l0 1um

13.4. Chapter cell

Concept: this chapter contains all information necessary for adding variability and reliability
information to the classical standard cell (i.e. to simulators using standard cells), plus the
variability applying to the circuits parts coming from back annotated schematics.
The intended users (readers) of this chapter are wrappers and scripts doing digital
simulation, and maybe, after translation to a proper format, SSTA.

User (tool writer) challenges are:

 How to run a library or any more complex IP unattended through cell calibration, in a

reasonable time.

 How to generate the EMC population of .lib files?

 (in the future) How to add non-static variability (temporal noise, jitter)?

 How to capture similar information for non-standard cells (“Macros”, such as

embedded memory, mixed signal blocks…)

 Keep non-variability corners: calibrate the library for a given set of environmental

parameters (VDD, T, age).

Deliverable D2.4 Page 15 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

In the most trivial form, i.e. if there is no variability information at all, this chapter contains
only a reference to the regular (“invariable”) standard cell library.

Chapter cell
logbook

 entry 22sep2007 10:11 makeit.exe create library

 entry 26oct2007 12:12 makeit.exe create library

13.5. Chapter digital

Idea: this chapter contains all information necessary for adding variability and reliability
information to digital simulation, architecture.

The component-level information is variability of timing, static and dynamic power. Other
information is timing and application information as the activity (stress history). The Chapter
is used by a tool that can estimates parametric yield. Other information that might be needed
is a list of blocks that are considered as [top-level] blocks that needs calibration.

In the most trivial form, i.e. if there is no variability information at all, this chapter contains one
single top level digital block. Subsequent tools (DigiVAM) will take the list of top-level blocks
and calibrate them.

13.6. Chapter system

Idea: this chapter contains remaining information necessary for adding variability and
reliability information tot system level simulations and yield estimation. It must also contain
the top level activity information, application specifics, and external factors as temperature,
VDD, temperature, age, ..

System yield is written into this chapter, as a set of EMC tables with total power versus clock
period. Display tools as “Vamifbrowser” will plot these into the “iso yield” format.

Deliverable D2.4 Page 16 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

14. Syntax

14.1. XML and the VAM IF conventions

14.1.1. Files and chapters

The VAM IF chapters are in XML format.
Each chapter is a separate file, with filename identical to chapter name.
All chapter files are in the same directory.

This VAMIF directory, and each of its 5 files is design-project and technology option specific.
If one wants to explore alternate technology options, library options, architecture opttions,
one should do that in a separate directory, possibly while linking the chapters that do not
differ.

It is assumed by default that all objects (and their parameters) inside the directory are
correlated.

Scripts running under VAM should use VAMIF chapters as exclusive information source or
pointers thereto. The only argument to such script is the VAMIF directory path.

14.1.2. Units and dimensions

Unless otherwise noted all units are Si. E.g. 5 um are represented as 5e-6.

It is a later1 extension, to understand following postfixes, case sensitive:
 T *1e12 a /1e15
 G *1e9 p /1e12
 M *1e6 n /1e9
 k *1000 u /1e6
 % /100 m /1e3

Time is expressed in seconds. It is a not explicitly supported later extension
to understand following postfixes:
 1hour 3600
 1day 86400
 1year 31557600

14.2. General syntax and use

XML implementations of different data information are described using the following syntactic
elements (related to the corresponding XML implementation itself):

Convention: All keywords have only lower case alphabetic characters [a-z], digits [0-9] and _

parameter The XML element named parameter
description The attribute named description
double, string, … datatypes of an attribute’s or element’s content
(distribution) the reference to the XML element distribution described

later
(…)? the part of XML document that appears zero or one time

1
 If not implemented, a tool reading VAMIF should complain and flag such extensions.

Deliverable D2.4 Page 17 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

(…)* the part of XML document that appears zero or more times
(…)+ the part of XML document that appears one or more times
| the choice among two or more alternatives

The description of XML implementations presented in this chapter is focused on the
explanation of individual elements’ and attributes’ structure and meaning. The precise formal
descriptions of our XML applications for different chapters of the information format (from
syntactic point of view) are kept in the corresponding XML Schema documents.

14.3. Values, parameters, Emc_sets, objects and containers

In the VAMIF, there are 4 basic standalone elements allowable
The

 Container: a generic representation of a more complex structure, itself containing

zero or more values, objects and other containers

 Value: in most cases similar to a double, but it may be also a string etc…

 Parameter: this is a value with a distribution attached to it.

 Object: this is a group of correlated parameters (may contain also values)

Deliverable D2.4 Page 18 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

14.3.1. The value element

The value element

name=string the name attribute required

Double | integer | string the value required

description=string the description or comment, provided by user or
program

optional

Origin=string the origin of the data, either provide by users or
generated by program. Format: time
(YYYYMMDD_hhmm) username description.
to avoid data explosion: origin should NOT be
automatically added to values.

optional

Example in xml:
<value name=tox>1e-9</value>

14.3.2. The list element

The list element

name=string the name attribute required

type=string The type of list optional

(Double|integer|string)
*

1 or more values required

description=string the description or comment, provided by user or
program

optional

Origin=string the origin of the data.to avoid data explosion: origin
should NOT be automatically added to values.

optional

Example in xml:
<list type=configuration_parameter name=bpw>4 8 32</list>

14.3.3. The parameter element

The parameter element serves the user to enter value with attached distribution. Parameters

only can be part of the VAMIF object element. Before parameters are used, their

distributions are internally converted in an object-specific emc_set, for which the parameters

are columns. The avg, stddev, geometry and distribution elements shown hereafter only

serve to enter data. The parameter element, where the user wants to enter the variability in

a trivial way using a simple average and standard deviation, is given as

name=string the name required

description=string the description optional

Origin=string if not added, origin is automatically generated optional

avg double the average or nominal value of that parameter Required
*

Stddev double the standard deviation on that average, assuming thus
a gaussian distribution. If absent, zero is assumed.
This distribution will become “matched”, see further.

Required
*

Example in xml:
<parameter name="delta_w" description="width variation" origin="P. Dobrovolny, 20-01-2007">

 <avg>10e-9</avg>

 <stddev>0.9e-9</stddev>

</parameter>

If the distribution needs to be more complex, the parameter element is generalized as

name=string the name required

Deliverable D2.4 Page 19 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

description=string the description optional

Origin=string the origin of the data if known optional

avg double the average or nominal value of that parameter optional*

Stddev double the standard deviation of that average optional*

(geometry) detailed description of a variability information required

* if geometries are given, they supersede avg and stddev entries.

Variability information is entered in more elaborate way using geometries.

Example in XML:
<parameter name="tox" description="oxide thickness" origin="P. Dobrovolny, 20-01-2007">

 <avg>20.0e-9</avg>

 <stddev>1.4e-9</stddev>

 <geometry …>

 …

 </geometry>

 <geometry …>

 …

 </geometry>

</parameter>

Note on the use of parameters and emc_sets

In an object, two distinct ways of use of parameters and emc_sets are allowed
1. every object has al least (and often only) the emc_set

name=”out”. Parameter names are the column headers of the set.

This representation is used when VAM API‟s write objects as a

whole in a chapter.

2. have exactly one parameter element for each parameter in the

object. Parameters distributions may refer to emc_sets with

names differing from “out”, inside the same object. In fact

parameter elements are converted first to smaller emc_sets

internally, and then all are combined into the internal emc_set

name=“out”. This method is likely used for manual inputting data

in VAMIF.

14.3.4. The geometry element (correlation_geometry)

This element can only be part of a parameter, and has the following structure

type=geo_enum the correlation_geometry for
which the variability is
considered (see description
below)

required

avg double the average value optional
(gauss | poisson | delta |

histogram | histogram_file |

montecarlo | montecarlo_file

| EMC | weibull | lognormal

| min_typ_max)+

One or more distribution
component (see descriptions
further). Serve to “fill” a
parameter distribution internally.

Optional, only
used to fill in
analytical
distributions via
VAMIF directly

Tools must anticipate handling the fact that the distributions given for each
correlation_geometry may have different averages. E.g. in the creation of std
cell or digital component delays, the resulting average for each

Deliverable D2.4 Page 20 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

correlation_geometry is not a priori the same.
Key is the “invariable” correlation_geometry, which is a reference for each.

Proposed precedence policy:
-if a geometry and invariable is given in detail, that geometry is assumed
correct.
-if a geometry is not given, it is assumed empty – hence copied from the
invariable geometry
-if the invariable geometry itself is not given, take its value from the parameter
avg if given, if not assume that invariable was zero..

Example:
<geometry type="w2w">

 <gauss …>

 …

 </gauss>

 <EMC …>

 …

 </EMC>

</geometry>

Correlation_geometries

Variability is considered at 5 orthogonal levels of geometrical correlation. It means that the

type attribute takes value from the enumeration set geo_enum = {“invariable”,

“matched”, “local_systematic”, “c2c”, “w2w”, “b2b”, <some others>}:
invariable As a reference the case without variability is tracked, in order to

keep a common reference for the next 5 basic geometries. The
invariable distribution is internally represented as a EMC with a
single entry. For most purposes “Invariable” is very much the same
as the TT corner.

matched Or Local Random variability on close scale, applied to identical
components in identical geometrical environments; it is by definition
uncorrelated with local layout or inter-device distance. This
geometry closely appeals to the notion “matching” or “mismatch”.

Specific for matched only, and optional, are attributes

correlation_distance [default infinity] and

correlation_exponent [default ½]. The use of this feature is not

yet defined in detail yet.
local_systematic Local systematic (reproducible, yet unpredictable or unpredicted2)

variability on close scale due to components not being in identical
layout / environments; seemingly random within a chip, reproducible
from chip to chip.

c2c Random from chip to chip, fixed within a chip, variability due to
variability (which may be random or systematic) over a wafer

w2w Random from wafer to wafer, within the same batch.
b2b Random from batch to batch. A further refinement fab to fab (f2f) is

not considered

Apart from these 1+5 basic geometries, we define following intuitively known shorthands
and synonyms. (may become obsolete). These are not stored in VAMIF

2
 Systematic variability that is actually predicted, thus found in back-annotation of net lists etc., is not

represented in VAMIF and thus not in this number. Think of back-annotation from mask data due
strains, proximity effects, OPC etc.

Deliverable D2.4 Page 21 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

all

na
Apply to all together: there is no geometrical distinction. In practice

when writing such distribution, it goes into matched and the 4 other

geometries are made invariable.

When reading (picking) from the shorthand na or all, it should pick

from all 5 geometries, and sum the values, referred to invariable.
intradie

ocv

(local)

Combines matched and local_systematic – when writing such
distribution, VAMIF considers this to be equivalent to allocating all

variability to matched (worst case) and making

local_systematic empty.
Interdie

(global)
Combines c2c, w2w and b2b – when writing such distribution,
equivalent to c2c, where w2w and b2b become empty.

Note: we refrain from defining similar intuitive shorthands for “global”, “random” and
“systematic”, “reproducible” , … as these terms are inconsistently used in literature.

Following non-basic geometries can be stored in VAMIF too. They have normally an
information function only.
userdef name=xxx user defined geometries with a name attribute. May be used for

anything, e.g. to explicitly name corners.
ocv Is the combined effect of matched and local_systematic. How such

geometry must be constructed is subject to a specific method.
world Is the combined effect of all five basic correlation_geometries. How

such geometry must be constructed is subject to a specific method.
measurement In the case that a measurement set (of a large block, or of the

system) corresponding to an object exists, it can be stored here for
easy comparison using the VAMIFbrowser.

How to use the correlation_geometry information in a Monte Carlo (-like)
wrapper?

 One starts from 5 independent population in the EMC set (actually 6 as

invariable is a singular population too). We assume that the 5

geometries are truly orthogonal (they should be, by concept!)

 When building walls from bricks, bricks are picked in each of the 5

geometries, with picking strategies that may differ amongst geometries.

 The resulting “wall” populations (items at the next abstraction level) have

again 5 geometrical kinds of variability, represented in an internal EMC

set.

Distribution components, implemented in this version of VAMIF

A gauss element describes Gaussian distribution using the following parameters

fraction = double The fraction of this gauss distribution in the total

population for this geometry/parameter

optional*

average double required
dtddev double required
lower_limit double Distribution is clipped bellow this value optional
upper_limit double Distribution is clipped beyond this value optional
1 Sum of fractions is not necessarily 1. In fact, as distributions are internally loaded into a
EMC, renormalization to 1 is done automatically. Required if there are more than one
distribution component

Deliverable D2.4 Page 22 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

A uniform element describes a uniform distribution using the following parameters

fraction = double The fraction of this uniform distribution in the total

population for this geometry/parameter

optional

nof_points double Number of points used to approximate the uniform
distribution. Default=10.

optional

min double Distribution is clipped bellow this value required
max double Distribution is clipped beyond this value required

A emc element refers to Weighted Monte Carlo distribution, used to enter data.

It is distinct from the internal representation of the parameter in its object!

fraction = double The fraction of this emc distribution in the total

population for this geometry/parameter

Optional

path string

col_index integer
path of an external ascii file, white space separated.
0th column is frequency.
The column index, default [1].

optional

or

set_name string

This refers to a emc_set with a different name than
“out”, inside the same object. Parameter names are

headers of this emc_set out.

optional

Further distribution components, not yet implemented in this version

A poisson element describes Poisson distribution using the following parameters

fraction = double The fraction of this poisson distribution in the total

population for this geometry/parameter

optional

average double Positive number required
factor double x-scale of distribution must be multiplied with this value optional
offset integer origin of distribution is increased with this value optional

A delta element describes a simple variability specified by only one number

fraction = double The fraction of this delta distribution in the total

population for this geometry/parameter

optional

Double a delta (single value) distribution required

A histogram element retains histogram data as the set of number pairs

fraction = double The fraction of this histogram distribution in the total

population for this geometry/parameter

optional

(double double)+ a pair of numbers (thus in fact, this may also serve to
input single column EMC)

required

Filename string optional
column_header

string
 optional

column_header

string
 optional

A montecarlo element keeps a set of values from a montecarlo simulation

fraction = double The fraction of this montecarlo distribution in the total

population for this geometry/parameter

optional

(double)+ required
path string if stored in a file optional

Note this approach does not support correlation as the EMC does.

A min_typ_max describes simple variability specified by only three numbers.

fraction = double The fraction of this min_typ_max distribution in the total

population for this geometry/parameter

optional

Deliverable D2.4 Page 23 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

min double required
typ double required
max double required

Note: Yes indeed, this is strictly speaking not a distribution, but it is a route to
introduce the classical corners into the VAM flow

A weibull element describes Weibull distribution parameters

A lognormal element describes lognormal distribution parameters

Example:
<gauss fraction=”0.9”>

 <average>20e-9</average>

 <stddev>1e-9</stddev>

</gauss>

14.3.5. The EMC (Exponent Monte Carlo) set emc_set

EMC represents by default the so-called “output domain” parameters, i.e.
parameters that belong to the instantiations of the object for which the
parameters are properties. E.g. the [output domain] parameters of a logic gate
are delays, power, energy.

For use in RSM or binning/interpolation, “input domain parameters” are useful.
These are essentially the output domain parameters of the objects used inside
the object.
E.g. when creating a NAND from 4 MOSFETs, it might have
output domain parameters:

maxdelay avdelay maxenergy avenergy staticpower
input domain parameters:

M1!delta_vth M1!delta_beta M2!delta_vth M2!delta_beta M3!delta_vth
M3!delta_beta M4!delta_vth M4!delta_beta

But preferable we use the “corrid”s of the input objects to decribe the input
domain paramters. See further

The element emc_set represents a container to keep emc_data elements for existing

geometries of a parameter or a correlated set of parameters

emc_set

name=string the name (the object –specific “output domain”
Emc_set is named “out”)

required

corrid=string Correlation id.: EMCs with the same corrid are
correlated entry by entry. Suggestion to construct this
unique number from machine time time(0) or otherwise.

Required
except
for
matched

description=string the description optional

origin=string the origin of the data if known optional

path=string the file (directory?) where EMC data are stored optional1

(emc_data)+ one or more emc_data elements that keep (or point to) a
numerical EMC data

required

emc_header gathers col_header elements that identify parameters

referring to the current EMC set

Optional

1 If this attribute is omitted, the EMC data is stored directly in the VAM IF chapter

Deliverable D2.4 Page 24 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Example:
1) the emc_set with EMC data directly stored in a VAMIF chapter

<emc_set name="emc_set_1" origin="Author: …” >

 <EMC_header>

 …

 </EMC_header>

 <EMC_data …> …

 </EMC_data>

 …

</emc_set>

2) the emc_set with EMC data stored in files

Deliverable D2.4 Page 25 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

<Emc_set name="Emc_set2" origin="Author: … "pathname="set2.dat/">

 <EMC_header>

 …

 </EMC_header>

 <EMC_data … />

 <EMC_data … />

 …

</Emc_set>

The emc_header element

The emc_header element groups col_header elements that identify parameters referring to

the EMC set
(col_header)* zero or more col_header elements that identify

parameters

optional

The col_header element keeps information that identify a parameter whose data are stored

in corresponding column of a EMC data table
index=integer the index of the column (starting from 0) required
string the name of the parameter required

Some suggested, optional or mandatory column headers

 “entry” as such is not a column. It is the row number in the EMC table

and e.g. also the returned value from PickInstanceIndex(). Row

numbers start from 0.

 “ptoir” the probability to occur in reality is always column[0]

 “defunct”, 1 if this instance is dysfunctional, otherwise 0.

 “outlier”, 1 if this instance contains an outlier, otherwise 0.

 “corrid_####”: the instances in the present object are created from

objects with EMC tables with a corrid (unique correlation id) being the

number #### . The data in the present column are the entries (row

numbers) used from that other EMC.

 “simulation_reference”: a text reference to the simulation testbench of

results of the entry. Format depends on the actual script.

Example:
<emc_header>

 <col_header index="0">ptoir</col_header>

 <col_header index="2">dCoverC</col_header>

 <col_header index="1">dRoverR</col_header>

 …

</emc_header>

The emc_data element

Deliverable D2.4 Page 26 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

The emc_data element keeps or points to a numerical EMC data of a parameter or a set of

correlated parameters for a given geometry type. The EMC data stored inside XML file are
formatted in a table where each row corresponds to one data set of a population – the first
value of the row is the frequency (probability), the next values correspond to concrete values
of correlated set of parameters. The same format rule is applied also for data stored in a file.
Because generally it can not be guaranteed that the original shape of data table will be

preserved (for instance it could be lost during some XML transformations), the attribute cols

helps to reconstruct the original shape of table.

type=string the type of geometry to which EMC data corresponds required

pathname=string The full pathname of a file where numerical EMC data
are stored

optional1

cols=integer The number of columns in the EMC data table required
rows=integer The number of rows in EMC data table that were

generated by a simulation
required

(double)+ The numerical EMC data Optional
1 If this attribute is not present, the EMC data is stored directly in VAM IF chapter. Q: isn’t this
redundants wth the similar attribute in the emc_set?

Example:
1) the emc_data element with EMC data stored directly in a VAMIF chapter

<emc_data type="local_systematic" cols="2" rows="100">

 1.215176571174768E-9 1.5999999999999986E-10

 3.954639285187116E-9 2.2799999999999986E-10

 1.2365241012645407E-8 2.9599999999999986E-10

 3.714723692809837E-8 3.639999999999999E-10

 1.07220707000726E-7 4.3199999999999985E-10

 2.9734390324296495E-7 4.999999999999998E-10

 7.922598189953721E-7 5.679999999999999E-10

 …

</emc_data>

2) the emc_set element with EMC data stored in files

Deliverable D2.4 Page 27 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

<emc_data type="w2w" cols="3" EMCs="100" pathname="D:\ic\Emc_set2\Emc_set2_w2w.dat/">

14.3.6. The object element

The object element contains a set of correlated [output domain] parameters and (optional)

input domain parameters

name=string the name of the object required

type=ObjectType_enum the type of the object (1)
 Optional (obsolete?)

description=string the description or comment, provided by
user or program

optional

origin=string the origin of the data. If not provided by
user, the origin is automatically generated

required

dir=string the directory where all data relevant to the
object are stored(2)

optional

emc_set name=”out” the output domain EMC set Required if no
parameters are given

(emc_set)* Other emc_sets, under which the input
parameter domain EMC set

optional

(parameter)* Output domain parameters only if no emc_set
name=”out” is given

1
 Object type, if specified, gets a value from the enumeration set ObjectType_enum = {“cel”, “component”}. Specifying the object

type enables a user/developer to exploit specific programming interface closely related to the specified type of object.
2
 If this attribute is not present, all related EMC data are stored directly in VAM IF chapter. If a relative path is given, this path is

relative to the VAMIF chapter itself, is a separate directory.

Example:
<object dir="…\NAND1" name="NAND1" origin="Author: …" type="cell">

 <Emc_set dir="…\NAND1" name="inp" origin="Author: …">

 <EMC_header>

 <col_header index="2"> T2_NMOS_Vth</col_header>

 <col_header index="4"> T4_PMOS_Vth</col_header>

 <col_header index="1"> T1_NMOS_Vth</col_header>

 <col_header index="3"> T3_PMOS_Vth</col_header>

 </EMC_header>

 <EMC_data type="matched" cols="5" EMCs="100" pathname="…\inp_matchd.dat"/>

 <EMC_data type="local" cols="5" EMCs="100" pathname="…\inp_local.dat"/>

 <EMC_data type="c2c" cols="5" EMCs="100" pathname="…\inp_c2c.dat"/>

 <EMC_data type="w2w" cols="5" EMCs="100" pathname="…\inp_w2w.dat"/>

 <EMC_data type="b2b" cols="5" EMCs="100" pathname="…\inp_b2b.dat"/>

 </Emc_set>

 <Emc_set dir="…\NAND1" name="out" origin="Author: …” >

 <EMC_header>

 <col_header index="2">delay</col_header>

 <col_header index="1">power</col_header>

 </EMC_header>

 <EMC_data type="matched" cols="3" EMCs="100" pathname="…\out_matchd.dat"/>

 <EMC_data type="local" cols="3" EMCs="100" pathname="…\out_local.dat"/>

 <EMC_data type="c2c" cols="3" EMCs="100" pathname="…\out_c2c.dat"/>

 <EMC_data type="w2w" cols="3" EMCs="100" pathname="…\out_w2w.dat"/>

 <EMC_data type="b2b" cols="3" EMCs="100" pathname="…\out_b2b.dat"/>

 </Emc_set>

 <instance_list type="matched">

 NAND1_1 NAND1_2 …

 </instance_list>

 <instance_list type="local">

 NAND1_1 NAND1_2 …

 </instance_list>

 <instance_list type="c2c">

 NAND1_1 NAND1_2 …

 </instance_list>

 <instance_list type="w2w">

 NAND1_1 NAND1_2 …

 </instance_list>

 <instance_list type="b2b">

 NAND1_1 NAND1_2 …

 </instance_list>

</object>

Deliverable D2.4 Page 28 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

14.3.7. The container element

The container element is defined as

name=string the name of the container required

type=string Following types are predefined (1)

Type=manufacturing

Type=model

Type=signature

Type=configuration

required

description=string the description or comment, provided by user or program optional

origin=string the origin of the data, either provide by users or generated
by program. Format: YYYYMMDD hh:mm username
description

automatic

(value)* Zero of more, user / case specific optional
(object)* Zero of more, user / case specific optional
(container)* Zero of more, user / case specific optional

(1) at this moment we consider:
Containers of type

 Manufacturing: this container holds information that describes the manufacturing

process, design rules, …

 Model: this container holds models

 Signature: this container holds “signatures”, i.e. condensed properties of unique

instances of a distribution of cells.

 Configuration: a user defined, tool specific, free format list of configuration data for

tools.

In the remainder of this document, we often use following shorthand
container xyz

or even
model xyz

actually means:
container type=model name=xyz [description=…] [origin=…]

Which looks in XML as:
<container name=xyz type=model description=… origin=…

> … </container>

This item may contain

 v

a
lu

e

lis
t

p
a
ra

m
e
t

e
r

e
m

c
_

s
e
t

o
b
je

c
t

c
o

n
ta

in
e
r

chapter x x

object x x x x

container x x x x

In summary:

 an object contains a single [output domain] EMC set or one or more parameters from

which the EMC set is internally created, and optional ”values”. EMC sets and

parameters do not exist outside an object, and there is exactly one output domain

Deliverable D2.4 Page 29 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

EMC set present or created in every object. (Q: is this limitation acceptable? Yes,

as: correlation is guaranteed by construction and correlation propagation enforced)

(one keeps the possibility to import other EMC’s values via the parameter EMC

attribute)

 container‟s content is free. They may contain anything, including any other

containers, values and objects, but not parameters

 of these the configuration container is just as well free, but is not assumed to contain

anything other than values and other configuration containers. Configurations are

intended to store user/local/machine/tool specific things and are not for documented

use in the VAMIF sense.

14.4. User guide to the VAMIF API (Application Programming Interface)

This chapter should provide concise user guide for the developers involved in the
development of all simulation/ modeling levels of the overall VAM flow. The more detailed
and complete description of VAM IF API will be left to Appendix chapters.
As was already mentioned, the whole input/output communication of each simulation level is
carried through appropriate VAMIF chapters. Tool (wrapper) writers use the standardized
interface -“VAMIF API”- to access and process data stored in a VAMIF chapter and also write
back simulated (or computed) data to another (probably higher level) VAMIF chapter. The
general VAMIF API functionality should be preserved over different implementation
platforms. Due the platform independency and nice Matlab interface the JAVA was choose to
implement VAMIF API at first. For the documentation of VAM IF API implemented in JAVA
see Appendix A.

14.4.1. Loading, parsing and (re)writing VAMIF chapters

This chapter will present how to load a chapter from a file, extract and write back relevant
information and again save a chapter in a file.
To load, display and write a whole chapter the class VamifChapter supply the set of public
interface methods. The following Matlab example demonstrate their typical usage:

Example 1

1 techChapter = VamifChapter(„technology.xml‟);

2 techChapter.browse;

3 techChapter.write(„technology.xml‟);

Deliverable D2.4 Page 30 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

At the first line the VAMIF chapter stored in the the file „techchap.xml‟ is loaded into the
variable techChapter. The Matlab variable techChapter is actually a JAVA object with possibility
to apply certain set of methods (called interface) to it. The complete public interface of a
JAVA object or class can be revealed by using the Matlab command methods. The line 2 and
3 shows two methods of the public interface of the class VamifChapter – the method display
displays the content of a chapter on the standard output and the method write saves a
chapter in a file specified by the first argument of the method (in our example it is the same
file „technology.xml‟). Because a VAMIF chapter is in fact an XML application, the data are
stored in a tree structure with several types of nodes. To access any piece of information, we
have to specify a node’s tree path with possible set of node’s attributes to avoid ambiguity.
The following Matlab example shows the way how to access VAMIF objects and values form
previously loaded technology chapter (see Example 1)

Example 2
1 deltaW = techChapter.getVamifElement('object(name=delta_w)');

2 thickness = techChapter.getVamifElement('/metal(name=metal1)/object(name=thickness)');

3 alfa = techChapter.getVamifElement('value(name=alfa)');

The argument of the method getVamifElement could be simply type of a node bare name
(parameter, object, value, …) or a node tree-path name (see line 2:
/metal(name=metal1)/object(name=thickness)) possibly combined with one or more pairs
node-attribute-name = node-attribute-value (see line 1,2 and 3: name=thickness,
name=delta_w,…).
The following example demonstrates the way how modified, newly computed or simulated
objects or values or any other VAMIF elements could be added into a chapter.

Example 3
1 techChapter.addVamifObject(EMCSet);

2 techChapter.addVamifObject('interconnect_scaling(name=metal1)', dROverR);

Deliverable D2.4 Page 31 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

The method addVamifElement can have one or two arguments: at the first line the method
absorbs one argument EMCSet - a VAMIF element that should be added to a chapter. At the
second line the first argument specifies a tree-path under which the object should be added
and the second argument dROverR is again a VAMIF element that should be added to a
chapter. If the tree-path argument is missing the VAMIF element is attached directly as a
child node to an object on which the method was invoked (in our example the method was
invoked on techChapter object, so the EMCSet object is added at the top level of techChapter
while dROverR object is added in the path specified by the second argument).
Note: Chapters being updated must be integrally locked before loading. Writing that chapter
clears the lock. Read-only access remains always possible. The locking system must be
foolproof (locks expire automatically). Locking is a future extension, not immediately needed.

14.4.2. Creating new VAMIF elements

Until now we discussed the situation when VAMIF elements (object, container, value …)
were created based on loading and parsing their XML representation from a VAMIF chapter.
But the user of a VAMIF chapter also has to be able to create new VAMIF elements based
for instance on the measurements data, simulation data, data from FABs and so on. The
next example shows creation a new object element based on some hypothetical variability
data to demonstrate hierarchical way of such process.
The object element servers for keeping correlated variability data (parameter elements)
together with related value elements. The Java class VamifObject represents he basic way
how to construct an object VAMIF element. Nevertheless a user instead of creating
VamifObject most likely will use the specialized variants (Java subclasses) of the VamifObject
called Rule, Cell, Component, … The following example demonstrates the creation of Rule
element of type mosfet containing some parameter and value elements.

Example 4
1 % create the gauss distribution „gauss‟

2 vthMean = 0.5;

3 vthSigma = 0.01;

4 gauss = GaussDist(vthMean, vthSigma);

5 gauss.setFraction(0.90);

6

7 % create the EMC distribution „EMC‟

8 EMC = EMCDist(„Emc_set‟);

9 EMC.setFraction(0.10);

10

11 % create the matched geometry

12 geo = Geometry('matched')

13 geo.addDistComponent(gauss);

14 geo.addDistComponent(EMC);

15

16 % create the parameter Vth

17 vth = Parameter(„vth‟, vthMean, geo);

18 vth.setDesc('The vth parameter');

19

20 NMOSTypeName = 'nmos_pt_013';

21 NMOSRule = Rule(RuleName.MOSFET);

22 NMOSRule.setAttr(„type‟, NMOSTypeName);

23 NMOSRule.addParam(vth);

24

Deliverable D2.4 Page 32 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

25 delta_w = NumericValue('delta_w', 0.0);

26 NMOSRule.addValue(delta_w);

27 delta_l = NumericValue('delta_l', 0.0);

28 NMOSRule.addValue(delta_l);

29 w0 = NumericValue('w0', 0.0);

30 NMOSRule.addValue(w0);

31 l0 = NumericValue('l0', 0.0);

32 NMOSRule.addValue(l0);

19 compChapter.addVamifElement(NMOSRule);

This parameter vth comprises real variability data only for „matched‟ geometry. This geometry
has two distribution components, a gauss distribution and a EMC distribution. The lines 1-5
displays the way how to construct the gauss distribution element gauss from mean and sigma,
at the lines 7-9 the EMC distribution element EMC is created and „matched‟ type of geometry
geo (containing previously created distribution objects gauss and EMC) is constructed at lines
11-14. The parameter element vth is created at lines 16-18. The rule element of ‟mosfet‟ type
is constructed at lines 20-21, the line 22 sets the name attribute of the rule element and the
parameter element vth is added to the rule at the line 23. At lines 25-32 a set of value
elements – delta_w, delta_l, w0 and l0 - are added to the rule element and finally the rule
element is added to the chapter compChapter.
The similar approach can be utilized to create other types of VAMIF elements. The only
requirement is that a VAMIF element stored in a chapter has a counterpart Java class
implemented in the VAMIF API.

14.4.3. Read and write data from object element

The object element represents a set of correlated variability data together with some other
non-variable information attached to it. For detail explanation of its structure see chapter 5.3.
This chapter demonstrates how to retrieve numerical data from object element, how to use
this data in a computation and produce newly computed object elements.

Example 5
1 % retrieve (non-variable) values

2 % from NMOSRule and PMOSRule elements

3 % -----------------------------------

4 nmos_delta_w = NMOSRule.getValue(„delta_w‟);

5 nmos_delta_l = NMOSRule.getValue(„delta_l‟);

6 nmos_w0 = NMOSRule.getValue(„w0‟);

7 nmos_l0 = NMOSRule.getValue(„l0‟);

8 pmos_delta_w = PMOSRule.getValue(„delta_w‟);

9 pmos_delta_l = PMOSRule.getValue(„delta_l‟);

10 pmos_w0 = PMOSRule.getValue(„w0‟);

11 pmos_l0 = PMOSRule.getValue(„l0‟);

12

13 % create new VAMIF cell object

14 % ----------------------------

15 cellName = „NAND2‟;

16 cell = Cell(cellName);

17 cell.setDir(„design1/cells/NAND1‟);

18

19 % define input domain cell‟s parameters

20 % --------------------------------------

21 cell.addInpParam(„T1_vth‟);

Deliverable D2.4 Page 33 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

22 cell.addInpParam(„T2_vth‟);

23 cell.addInpParam(„T3_vth‟);

24 cell.addInpParam(„T4_vth‟);

25

26 % define output domain cell‟s parameters

27 % --------------------------------------

28 cell.addOutParam('power');

29 cell.addOutParam('delay');

30

31 % set gamma as a common value for all parameters involved in the computation

32 % --

33 VamifObject.setGamma(0.2);

34

35 % run Exponent Monte Carlo simulation over all geometries

36 % ---

37 geometry = {'matched', 'local', 'c2c', 'w2w', 'b2b'};

38 nofMCSamples = 100;

39 for j=1:length(geometry)

40 geo = geometry{j};

41 for i=1:nofMCSamples

42

43 % randomly pick Vth for each cell‟s transistor and apply Pelgrom rule

44 % ---

45 idx = NMOSRule.pickInstanceIdx(geo);

46 T1_prob = NMOSRule.getInstanceProb(geo, idx);

47 T1_vth0 = NMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');

48 T1_vth = pelgromRule(T1_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0);

49 idx = NMOSRule.pickInstanceIdx(geo);

50 T2_prob = NMOSRule.getInstanceProb(geo, idx);

51 T2_vth0 = NMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');

52 T2_vth = pelgromRule(T2_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0);

53 idx = PMOSRule.pickInstanceIdx(geo);

54 T3_prob = PMOSRule.getInstanceProb(geo, idx);

55 T3_vth0 = PMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');

56 T3_vth = pelgromRule(T3_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0);

57 idx = PMOSRule.pickInstanceIdx(geo);

58 T4_prob = PMOSRule.getInstanceProb(geo, idx);

59 T4_vth0 = PMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');

60 T4_vth = pelgromRule(T4_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0);

61

62 % now an analog simulation comes to determine „delay‟

63 % and „power‟ for the current instance of the cell

64 cellNetlist = modifyNetlist(cell, T1_vth, T2_vth, T3_vth, T4_vth) ;

65 [delay, power] = analogSimulation(cellNetlist);

66

67 % store simulation results in the cell object

68 % ---

69 instanceName = [cellName, '_', int2str(i)];

70 prob = T1_prob * T2_prob * T3_prob * T4_prob ;

71 inpParams = [T1_vth, T2_vth, T3_vth, T4_vth] ;

Deliverable D2.4 Page 34 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

72 outParams = [delay power];

73 cell.addSample(geoType, instanceName, prob, Vth, inpParams, outParams);

74 end

75 end

The example shows the code that enables characterizing the variability of the cell NAND2. in
terms of delay and power. The input variability is represented by the variability of Vth of cell’s
transistors. We assume that the VAMIF elements NMOSRule and PMOSRule have been
already loaded or created (see the code in the previous chapter).
At lines 1-11 non-variable numerical parameters used for evaluation of Pelgrom rule –
delta_w, delta_l, w0, l0 – are retrieved from NMOSRule and PMOSRule elements. Lines 13-
17 displays the creation of the new cell VAMIF element with corresponding cell name NAND2
and root directory where simulated results are stored. At the lines 19-29 the parameters of
input and output domain are defined. The method VamifObject.setGamma at the line 33 sets the
Gamma value. This method sets the Gamma value for all parameters involved in a
computation. The set Gamma value remains valid till the next calling of the method
VamifObject.setGamma. The Gamma is the exponent used to sample a EMC distribution.
Gamma is a number between 0 and 1, where 0 corresponds to classic MC sampling, 1
corresponds to Entry Sampling and values in between are Weighted Monte Carlo sampling3.
The outer loop over all types of variabilities contains the inner “Monte Carlo” loop. The
method pickInstanceIdx randomly picks an index from an existing EMC distribution set. In
case when a distribution of a particular variability type is not a EMC distribution, it is
numerically converted to a EMC distribution. Then the method getInstanceProb and
getOutParamInstanceVal return probability and concrete value of the output parameter
corresponding to the randomly picked index. Retrieved Vth values are subject of Pelgrom rule
– in this code represented by function call pelgromRule. Resulting Vth values are then used to
modify original (non-variable) cell netlist to create its random instance which is then
characterized by an analog simulation (lines 62-65).
The results of the cell characterization - values of delay and power - are then stored in the
output domain of the cell object using the method addSample. After finishing the inner and
outer loop the cell object NAND2 should be complete characterize in its output domain (together
with input data stored in its input domain).

3 if you do not know which gamma to choose, set gamma to 1 if you pick only one brick to
build a wall, and go down to 0.2…0 if your need many independently picked bricks to build a
wall. Note thus that gamma may vary significantly amongst geometries. Matched and
Local_systemtic typically have values 0 … 0.5; c2c, w2w and b2b have values around 0.5 …
1.

Deliverable D2.4 Page 35 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

15. Underlying models for variability mechanisms

This chapter contains the descriptions of variability and reliability mechanisms.

Conventions for denominating distributions used in this chapter:
Vth, W, T: means the nominal, average or invariable value
ΔVth, ΔW, ΔT: static shifts away from the above value

If a parameter is called “delta_vth”, it means that it is referred
to a certain “vth” in a relative fashion. The invariable geometry
of a “delta_something” is exactly zero.
If the parameter would be called “vth” as such, the members of
the EMCs are not relative.

σVth, σW, σT: “distribution” of the parameter.
In case of a Gaussian distribution “σ” means standard
deviation, but in VAM we use the symbol σ in a generalized
way, implying 5 corerlation_geometries etc.
Each of the 5 correlation_geometry distributions may be
explicited as σMVth, σLVth, σCVth, σWVth, σBVth.
Refrain from using algebra on σs that is valid for true
Gaussians only.

15.1. MOSFET static variability

Part of chapter “compact model”

15.1.1. model

Most variability parameters and several degradation mechanisms are at some point during
the modeling flow condensed into a ΔVth and other netlist components.
For that purpose every MOSFET is a SPICE netlist is reparsed as:

Figure 3 Injector concept.

The ΔVth in this scheme is series voltage source added to the netlist; the ΔID/ID (Δbeta)
Is a current dependent current source added to the netlist.

Note that in the VAMIF approach, the MOSFET, or any transistor, itself is a
blackbox. Its modelcard is NOT changed. This allows using any compact
model, macro, subcircuit, with minimal invasion in the existing simulation
flow

Pelgrom’s rule for W and L scaling applies to the matching geometry only. See further

σ(ΔVth)ref and

refD

D

I

I







 
 are the variability for the nominal transistor size,

ΔVth ΔID/ID

Deliverable D2.4 Page 36 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

15.1.2. Object and parameters

object

type=mosfet

name=<mosfet_type> should correspond to the model name in SPICE

(“modelcard” such as nmosfet, mypmos, nmos_hv etc.) Default: this object applies to all
transistors. One may also have multiple mosfet_type entries in this container.

value compact_model_path path to compact model of this mosfet_type

[optional].

parameter delta_vth basic ΔVth variability – note that the Pelgrom rules

apply to the “matched geometry” fraction only; for
other geometries the distribution is taken as such.

Note also that the invariable delta_vth is 0

parameter delta_beta basic ΔID/ID or Δbeta variability - note that the

Pelgrom rules apply to the “matched geometry”
fraction only! Note also that the invariable

delta_beta is 0.

value delta_w default = 0

value delta_l default = 0

value wref default = 1um, the reference MOSFET for which

the ΔVth and Δbeta data are valid.

value lref default = 1um, idem

Not yet documented, but eventually coming:

parameter r_sd modeling SD leakage variability

parameter r_gate modeling gate leakage (GS, GD)

parameter r_sat modeling saturation impedance variability

If documented, the unpredicted part of strain can be modeled

value strainfactor if given, additional Δbeta variability may be added

starting from overlay variability (parameter

alignment in rule litho):

Δbeta=strainfactor*alignment

ΔVth and Δbeta in this approach are assumed to already include the variability
effects of dopant and interface state fluctuations, CD variations, LER variations
and layer thickness variations, and more. If one chooses to include the
propagate one or more of DF, ISF, CDV, LER or LTV separately, make sure that
their effect is taken out of the ΔVth and Δbeta parameters.

In such case, one could e.g. implement CD variations and LER by directly
impacting the L and W parameters of the MOSFET modelcard.

Our preference and baseline however is that ΔVth and Δbeta do include all
mentioned effects.

In a typical case, for each correlation_geometry, there is a EMC table representing the
mentioned parameters, in a correlated fashion, e.g.:

ptoir delta_vth delta_beta r_sd r_gate

0.00013 +0.00239 -0.0445

0.00044 -0.00097 -0.0067

0.000012 -0.00566 +0.0125

… … …

15.1.3. Scaling with W, L and others

Deliverable D2.4 Page 37 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Pelgrom’s rule for W and L scaling applies to the matched correlation_geometry only

    
)(*)(

)(*)(
*

LLWW

LLWW
VthVth

refref

ref



 

And a similar law applies to ΔID/ID:

)(*)(

)(*)(
*

LLWW

LLWW

I

I

I

I refref

refD

D

D

D












 








 


having nominal design size Wref and Lref. Often the nominal size is 1um.

For all other geometries,  Vth and    are independent of W and L!

At this moment we assume that there is no significant scaling of  Vth and    with

temperature and VDS.

15.2. Template format for the description of a variability or reliability mechanism

This paragraph describes how a reliability/variability model must be setup in order to be
implementable in VAMIF/VAM.
Essentially such description consists of 4 parts.

1. analytical or algorithmical model (say, C-code), containing design values and

technology parameters, which describes (a) network element(s) for insertion in a

SPICE netlist.

Example: in TDDB a extra resistor R (or alike) obeys:
Δ(1/R) = Δ(t) * “slope” * exp(A * max(abs(VGS), abs(VDS))
Where this formula contains design values t, VGS, VDS (i.e. known by the
designer or simulator, technology value A (a technology dependent constant),
and the parameter “slope”

2. statistical distribution of the parameters in that model

In a general case, all parameters are represented in a emc_set in a VAMIF
“object”. In the most elaborate case, statistics for all correlation_geometries
exist, directly or indirectly derived from measurements. Minimally only
geometry “matched” (=“all”) must exist. If there is not variability, the EMC may
contain just one entry or line.
The values are added to the object separately. Also the reference state (the
conditions where the EMC measurements are taken) is given as values.

It is thus silently assumed that the EMC set refers to one single reference case
for [Wref, Lref, tref, Tref, Vref, …], and that the object thus contains also the relevant
Wref, Lref, etc.

It is mandatory that the model contains exclusively “values” known by the
designer (or designer tools), and “parameters” coming from measurements and
likely subject to a distribution. Key is also: how to obtain such measurement
data and transform them in a good set of parameters.

3. scaling rules allowing to translate the effect to a different case that is not in the

measured set (i.e. in the set that is represented in the EMC tables). E.g. the case

described in the EMC applies to Wref, Lref and VGSref; now what would it transform to

for a case W, L, VGS?

Examples in the following paragraphs

4. scaling the cumulative effect of multiple different stress conditions

Deliverable D2.4 Page 38 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Examples in next paragraphs

We consider worst case degradation conditions captured in a single
degradation corner

These 4 items are each time a sub-paragraph in the real models here below

15.3. Hot carrier degradation

15.3.1. Analytical model

We propose to follow the approach as Chittoor Parthasarathy4 compiled in his PhD.
The degradation [relating to created interface states, hence to saturation current, gm, weak
inversion slope and Vth] is expressed as:

n
m

D

BD t
I

I

HW

I
tD























 **

*
)(

Where ΔD is proportional to the “damage” in terms of interface states, n is about ½, m is
about 3 [depends on VGD] and H is a technology constant.
We assume that we can calibrate the formula with a reference measurement, thus:

n

REF

m

DREF

BREF

REF

DREF

n
m

D

BD

REFREFREFREFREFth

th

t
I

I

HW

I

t
I

I

HW

I

tD

tD

gm

tgm

gm

tgm

or
tV

tV





























































**
*

**
*

)(

)(

)(

)(

)(

)(

which opens the perspective for straightforward implementation in the VAM IF, as ΔVTH and
Δgm/gm can be modeled with analog net list element. The variability thereof is then easily
brought in via variability on these parameters themselves.
We silently assume that we can interchange Δgm/gm and ΔID/ID, thus:

n

REF

m

DREF

BREF

REF

DREF

n
m

D

BD

D

REFREFD

D

D

REFREFth

th

t
I

I

W

I

t
I

I

W

I

I

tI

I

tI

or
tV

tV
























































**

**

)(

)(

)(

)(

The degradation under bias conditions that have been different during different time
spans t1, t2, … is straightforward extension:

n

REF

m

DREF

BREF

REF

DREF

n
m

D

BD

m

D

BD

D

REFREFD

D

D

REFREFth

th

t
I

I

W

I

t
I

I

W

I
t

I

I

W

I

I

tI

I

tI

or
tV

tV

































































**

...****

)(

)(

)(

)(
2

2

22
1

1

11

4
 C. Parthasarathy, “Etude de la fiabilité de technologies CMOS avancées: applications a la simulation

de la fiabilité de conception de circuit numeriques et analogiques”, PHD thesis, 9 Oct 2006, chapter
4.2. With acknowledgements for Guido Groeseneken.

Deliverable D2.4 Page 39 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

This formula is usable as such when IB or IB/ID is known by the simulator. Often this is not the
case.
In order to tackle that situation, we include in the rule Parthasarathy’s (with some pragmatic
simplification) approach to calculate IB/ID:

)exp(****
m

i
Dcm

i

i
B

E

B
IlE

B

A
I 

Where

c

DSATDS
m

l

VV
E


 and THGSDSAT VVV 

Hence

  )
*

exp(**
THGSDS

ci
THGSDS

i

i

D

B

VVV

lB
VVV

B

A

I

I




for VDS>VGS-VTH, (for an NMOSFET). Otherwise IB is just zero.

And we reduce to two technology constants A and VB:

  )exp(**
THrefGSDS

B
THrefGSDS

D

B

VVV

V
VVVA

I

I




  THrefGSDS

B

THrefGSDS

D

B

VVV

V

VVVA

I

I



































*
log

A and VB are approximately constant for a given type of MOSFET in a given technology. A is
not of importance as it is eliminated in the HCD formula. VB must be obtained from a IB/ID
calibration measurement plotted as follows. Temperature dependence is neglected.

Figure 4 Hot Carrier Degradation slope.

Although conceived for NMOS, the overall HCD formula might be applied to PMOS. In
that case, VDS>VGS-VTH! In a PMOS the absolute value of VTH decreases due to HCD,
and the gm decreases. Typically one chooses to neglect the effect of HCD in PMOS.

15.3.2. Parameters (and EMC table)

object

type=hcd

name=<mosfet_name>

the transistor type to which this
applies. Default: all transistor
types.

parameter delta_vth_ref
parameter delta_beta_ref

value t_ref

value id_ref

value ib_ref // if not

 //  )(REFTHref tV //













 

D

REFrefD

I

tI)(


in seconds!

Slope→VB

1/(VDS-VGS+VTH)

Log(IB/ID/(VDS-VGS+VTH))

Deliverable D2.4 Page 40 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

given, the
IB/ID
estimation
formula is
used

value w_ref

value n optional,

default 0.5

value m optional,

default 3

value vb // used only

for
estimating
IB/ID , see
formula.
Good
default
wanted – in
absence,
without any
guarantee,
use 1V.

value vth_ref // used only

for
estimating
IB/ID //
default: use
the
MOSFET’s
Vth,
something
like 0.5V

15.3.3. scaling rules for design parameters

n

REF

m

DREF

BREF

REF

DREF

n
m

D

BD

D

REFREFD

D

D

REFREFth

th

t
I

I

W

I

t
I

I

W

I

I

tI

I

tI

or
tV

tV
























































**

**

)(

)(

)(

)(

Allows to scale for different W. L is not explicit in this formula, ID/IB depends on L, it is. One
must of course know ID and IB either from the simulations or from

  THrefGSDS

B

THrefGSDS

D

B

VVV

V

VVVA

I

I



































*
log (see above)

15.3.4. Scaling rules for dynamic stress conditions

Deliverable D2.4 Page 41 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

n

REF

m

DREF

BREF

REF

DREF

n
m

D

BD

m

D

BD

D

REFREFD

D

D

REFREFth

th

t
I

I

W

I

t
I

I

W

I
t

I

I

W

I

I

tI

I

tI

or
tV

tV

































































**

...****

)(

)(

)(

)(
2

2

22
1

1

11

 indicates that

the stress histories can be added before taking the result to the power n.

15.4. Manufacturing yield

This item describes hard defects that occur in manufacturing and that are not modeled via
any variability and reliability rules in VAMIF. This is often described as functional yield in
contrast to parametric yield.

Formula:  ][

1

2

2

marea

m
yieldyield 

Where  densitydefectyield
m

_exp21
 Poisson: probability to have no defect in 1 m2

In chapter system:
Container system_properties

value chipsize nnn in m2! (Si units)

value chipdiagonal nnn in m (Si units) // optional

In chapter technology:
object name=manufacturing_yield

parameter defect_density average=ddd defects per m2! (Si units)

parameter defect_size … optional

Defect_density given as such only as an average and no distribution
assumes that the statistics are pure poisson irrespective of geometry

This is an exception to the prescribed use of parameter. In fact one can

imagine that the above is a shorthand for:
Container type=rule name=manufacturing_yield
 parameter defects_density

 average ddd stddev ddd

 geometry na

 distribution poisson average ddd

 [parameter defect_size …]

Parameter (hence distribution) defect_size is not documented at the moment. In the future

this distribution may be used for finer assessment of impact of manufacturing defects on
subcircuit size.

15.5. Interconnect R and C variability

As these are device electrical parameters, this is part of chapter “compact_model”

For an interconnect resistance

av

av

av R

RR

R

R 


Deliverable D2.4 Page 42 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Where Rav is the average [nominal, design]5 resistance of a resistor or interconnect, R is the
actual value, ΔR is the difference between the two.
This ratio is subject to a distribution, in shorthand6

 






 










av

av

av R

RR

R

R


For a particular resistor or interconnect in a certain layer, use following Pelgrom-like relation

for the matched geometry only:

)(*)(

)(*)(
*

00

LWW

LWW

R

R

R

R

o 









 








 


 (W are design widths, W+ΔW are effective/electrical widths)

Similarly

av

av

av C

CC

C

C 


Where Cav is and average [nominal, design]7 inter-interconnect capacitance, C is the actual
value, ΔC is the difference between the two.
This ratio is subject to a distribution, in shorthand

 






 










av

av

av C

CC

C

C


For a particular later capacitance within a layer, use following Pelgrom-like relation for the

matched geometry only:

)(*)(

)(*)(
*

00

LSS

LSS

C

C

C

C

o 









 








 


L is the wire length, S+ΔS are effective/electrical spacings
Within the same layer, ΔS=- ΔW

For capacitances between interconnects on different layers, the key layer name is the
dielectric name.

)(*)(

)(*)(
*

00

LWW

LWW

C

C

C

C

o 









 








 


An in more elaborate form:

)(*)(

)(*)(
*

0022

LWW

LWW

C

C

C

C

C

C

overlayo 









 








 








 


L is the effective wire length, the length over which the line segments overlap
W+ΔW are effective overlap width

“overlay”: 






 

C

C
 has a fraction due normal C and to overlay variability. The overlay

part may be significantly larger than the classic C variability. The additional fraction of
“overlay” is defined by the device-specific value η (eta).

η (eta) must be obtained by the designer or by back annotation.

5
 all three mean the same: it is the value that the simulation tool assumes in the non-variability-aware

simulation flow, and to which VAMIF is assumed to add variability.
6
 Shorthand σ stands for any distribution, including multiple geometrical correlations. It implies the

same information as in reserved keyword parameter.
7
 All three mean the same: it is the value that the simulation tool assumes, and to which VAMIF is

assumed to add variability.

Deliverable D2.4 Page 43 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Typically:

 If one of the layers overlaps completely the other, over the

full length, as in matched capacitor design, eta is zero.

 A wire or plate that orthogonally crosses: eta is zero.

 If the capacitor is partly overlapping for both metals, eta is

maximal, 1.

 For two wires of same width on top of each other, eta is

small, in the order of 0.0 to 0.2.

Default eta is 0.

Object

type=interconnect_rc

name =<layername>

Layername default: if not
indicated, applies to all
interconnect layers – must
comply to interconnect name

used in backend_definition in

chapter technology. It means
also that multiple versions of this
rule may exist for the various
metals.

parameter delta_rr .
 basic

oR

R







 
 variability – note

that the Pelgrom rules apply to
the “matched distribution” fraction
only

value l0

value w0
Both default = minimum width (!)
in that layer

value delta_w

default = 0. defines electrical
width wrt design width. Note that
delta_w equals also –ΔS (?).
includes the LER effect (how?)

value sheet_r sheet resistance R□ for large
squares. Optional, only given if
known,

value s0 default = minimum spacing in that
layer (for C)

How should software tools proceed when they have only a
backannotated R, but no clue on W and L of line segments?
We propose: estimate L as: L = R/ R□*(W0+ΔW), i.e. we assume that
the wire has minimum width, which is a reasonable worst case. L
should not drop below minimum.

<<<Similar approach for C to be explicated???>>>

Alternative approach to import a few critical resisters / capacitors in VACCinate:

-think of resistor naming as R_METAL1_W2u somenode othernode bwp*50Ohm

-or code in in extra comment line in spice netlist
-or in separate table with the resistor name as entry
-Q: how about length parameterization

Deliverable D2.4 Page 44 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Proposition to define C from inside a spice netlist for VACCinate
lateral
c_metal1_l200u_s2u line1 line2 50fF

vertical
c_diel2_l200u_w2u_eta0.1 line2 vdd 40fF

Any simple capacitor is perhaps subdivided in many individual capacitors. Is that worth
the effort?

Object

type=vertical_capacitor

name =<dielectriclayername>

Layername default: if not
indicated, applies to all dielectric
layers – must comply to
interconnect name used in

backend_definition in chapter

technology.

parameter delta_cc_zero .

parameter delta_cc_overlay .
 oC

C







 
 and

overlayC

C







 


variability – note that the Pelgrom
rules apply to the “matched
distribution” fraction only

value l0

value w0

value delta_w

default = 0. defines electrical
width wrt design width. includes
the LER effect (how?)

Object

type=via

name =<layername>

Layername default: applies to all
via and contact layers – must
comply to via layer used in

backend_definition in chapter

technology.
parameter delta_rr

value r

basic
oR

R







 
 variability

nominal r of the via (optional data)

A point tool will translate chapter technology to chapter compact model, and do:

σ(deltaR/R) = alfa * (σthickness/thickness) + beta * σ(LER) / w + gamma*(effect of
barrier layer thickness horizontal) + delta*(effect of barrier layer thickness vertical)

alfa and beta are constants that need separate calculation. In the absence of any better
value, we use the default 1.

thickness is the average of thickness found in the backend_definition

σthickness is the distribution thereof
the value w = welectrical = wdesign+delta_welectrical.
σ(delta_w) is the distribution of delta_welectrical, which is derived from delta_wphysical see
below.
(both σthickness and σ(delta_wphysical) are subject to 5 types of geometry if available from
fab.)

Deliverable D2.4 Page 45 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

delta_welectrical = f(LER, technology things) + f(delta_wphysical)
default rule is: delta_welectrical = delta_wphysical

delta_wphysical is found in the backend_definition

LER is found in rule litho

15.6. Litho variability

Part of chapter technology.

The 4 elementary litho parameters are:

 Δdose/dose , as derived from variability on a dose in [mJ/cm2]

 Focus [nm]

 Aligment [nm], overlay error

 LER [nm], accompanied by the correlation length along edge

This litho LER may translate to the LER-effect in interconnects?>

The two first have a rather well documented impact on printing accuracy, as:

CD = f(dose, focus)
A good, simple first order formula exists:
 CD = a* Δdose/dose + b*focus2 [8]

This may be the basis to for a rule estimating linewidth and spacing variations for
interconnects and MOSFET W and L.

These a en b are functions of local layout geometry,

 Hence, a end b are parameters with only local_systematic variability

 Eventually, OPC-like tools may predict these, thus yielding a and b per polygon piece.

We assume that this is not the case, hence:

For the moment we propose the following approach:

 a and b are defined as parameters (local_systematic only9) representing the “general

layout style” used in the design. For a so called litho-friendly (RDR) layout style, a

and b are lower and have smaller distributions than for a spaghetti style layout.

8
 Staf Verhaegen, IMEC, 22-jul-07

9
 Although a and b are represented as local_systematic, tools should apply it to all geometries of

delta_dose and focus in the formula CD = a* Δdose/dose + b*focus.

Deliverable D2.4 Page 46 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

object name=litho

 parameter a (local_systematic only) // reflects layout style

 parameter b (local_systematic only) // reflects layout style

 parameter delta_dose Δdose/dose, average is 0

 parameter focus in [m] average is 0

 parameter alignment in [m] average is 0 (overlay alignment error)

 parameter ler in [m] line edge roughness

 value ler_length [m] correlation length of LER

typical values for 65nm (no guarantee on these values!)
1sigma(focus)=50nm
1sigma(Δdose/dose)=2%
1sigma(alignment)=10nm
1sigma(LER)=2nm, averaged
1sigma(CD) due to dose = 4%, for long parallel lines (matched)
1sigma(CD) due to focus = 4%, for long parallel lines (matched)

15.7. TDDB on MOSFETs

15.7.1. Piece-wise approximation model

Figure 5 MOSFET soft and hard breakdown.

 soft breakdown (sbd) happens after a time tsbd. After that the initial “fresh” I/V

characteristic changes to a “sbd” I/V characteristic. This I/V characteristic is strongly

non-linear, and is characterized by.

 ware-out (wo) happens after a time two, after which the device goes in “hard

breakdown” (hbd). The I/V behavior becomes that of a simple time dependent,

progressively decreasing resistance R, obeying:

o Δ(1/R) = Δ(t) * slope * exp(A * max(abs(VGS), abs(VDS))

tsbd

two “fresh”

“sbd”

Igate

Elapsed time

(J.S. Suehle et al.IRPS 2004)

Slope, A

Deliverable D2.4 Page 47 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

o Asymptotically R evolutes to zero! The observed current limitation is due to

external series resistances to the gate.

Deliverable D2.4 Page 48 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

How is this injected (VACCinate) a Spice net list?

In fresh state and in soft breakdown, gate leakage is a time
dependent nonlinear resistance between G, S, D and B, as
shown below.

In hard breakdown the
resistance is linear, and
obeys.
Δ(1/R) = Δ(t) * slope * exp(A *
max(abs(VGS), abs(VDS))

Herein slope is a “parameter”
and, there is one technology
specific “value” A, which has
unit [V]

Figure 6 MOSFET soft and hard breakdown injection.

We simplify the SBD model further: we disregard the small asymmetry between inversion
and accumulation, and we completely disregard the leakage to Bulk. The model will be
implemented as a Verilog-A model, which is identical in both quadrants.

The proposed model10 for Fresh and SBD, for one quadrant is:








































 1exp0

q

kT

RIV
II



with 3 parameters that must be fitted to each measurement curve.
R fits to the IV curve for high I. η (“eta”) and I0 determine the low current
behavior. Physically the “ideality factor” η must be larger dan 1.
One can revert to a simple, piece-wise linear approximation, using R
and a Von (dotted line in figure) in case the analog simulator can not
handle the full model. Von is then calculated from the formula, where
Von=2R.I(Von)

Figure 7 Simplified MOSFET soft and hard breakdown injection.

15.7.2. EMC table of parameters

This table contains a populations of measured devices (or created devices). Some
parameters are given, duplicated for G-S and G-D.
These are for a given [technology, NMOS/PMOS, tox,] W, L, T, t, …, example:
ptoir Tsbd two slope_s slope_d rfresh rsbd_s rsbd_d etafresh etasbd_s etasbd_d i0fresh i0sbd_s i0sbd_d

1 2022 23456 23.3 22.1 1.23e9 3.4e7 3.4e7 3,7 1.3 1.3 1.23e-19 3.4e-7 3.4e-7

1 678 10987 24.5 23.7 9.88e8 1.1e7 1.1e7 3.5 1.6 1.6 9.88e-18 1.1e-7 1.1e-7

1 13900 19765 21.7 19.0 7.88e8 2.9e7 2.9e7 3.2 1.5 1.5 7.88e-18 2.9e-7 2.9e-7

10 R. Fernández, J. Martín-Martínez, R. Rodríguez, M.Nafría, and X. H. Aymerich, “Gate
Oxide Wear-Out and Breakdown Effects on the Performance of Analog and Digital Circuits”,
IEEE Transactions on ED, Vol. 55-4, p.997 (2008)

R

V

R

Von

I

V

Deliverable D2.4 Page 49 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

In this table separate values for source and drain are given. We might consider to simply
further and make these identical.

15.7.3. Rules for scaling W, L, T, t…

Should tell us “what is the effect on elapsed time” when stress condition V, T etc change.
(attention: the measurement conditions after stress do not change)

A Pelgrom rule applies to R, only for Matched

15.7.4. Rules for scaling to multiple sequential stress conditions

Approach: each stress condition on its own creates an “elapsed time”. The different stress
conditions just accumulate those times.

15.8. NBTI of MOSFETs

15.8.1. Algorithmical model

Figure 8 Healing property of NBTI (negative-bias temperature instability) and effectiveness of
duty-cycle in controlling Vth shift11

11 Vattikonda R., Wang W., Cao Y., “Modeling and Minimization of PMOS NBTI Effect for
Robust Nanometer Design”, DAC 2006

Deliverable D2.4 Page 50 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Function

NBTI creates an upper and lower boundary between which the transistor will move. The
actual value at evaluation time is not known (pick randomly???)

)_,,,,_,_,('

)_,,,,_,_,(

max

min

parameterssomeIDVDSVGSratetogglecycledutytimefVth

parameterssomeIDVDSVGSratetogglecycledutytimefVth





We to derive these relations from Cao’s model12, summarized in this table:

15.8.2. EMC table and parameters

NBTI/PBTI in combination with radon doping fluctuations and other sources of intrinsic
device variability just interface state fluctuations and contribute in statistical manner to the
variation parameters at circuit level ΔVth and Δbeta (see Section 15.1.2 and REALITY
deliverable D1.2), hence their table representation follows that one of variability injectors in
general.

ΔVth and Δbeta in this approach are assumed to already include the variability

12 Sarvesh Bhardwaj, Wenping Wang, Rakesh Vattikonda, Yu Cao, Sarma Vrudhula,
“Predictive Modeling of the NBTI Effect for Reliable Design”, CICC 2006, p. 189

Deliverable D2.4 Page 51 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

effects of dopant and interface state fluctuations, CD variations, LER variations
and layer thickness variations, and more.

In a typical case, for each correlation_geometry, there is a EMC table representing the
mentioned parameters, in a correlated fashion, e.g.:

ptoir delta_vth delta_beta r_sd r_gate

0.00013 +0.00239 -0.0445

0.00044 -0.00097 -0.0067

0.000012 -0.00566 +0.0125

… … …

15.8.3. Scaling rules for circuit and use

As statistical parameter, we consider the combined impact of NBTI/PBTI induced interface
states with the other sources of intrinsic variations to apply the matched geometry only via
variability injectors. Different amount of trap concentrations will capture the effect of the
changing stress conditions, e.g., elapsed time, voltage, T etc. For that reason and similar to
the time-zero matched geometry, a variability a Pelgrom rule will apply in this case.

15.8.4. Scaling rule for mulitple stress conditions

We do not consider multiple stress conditions yet. Instead we consider a corner like analysis
approach that assumes all devices of the circuit to be subject to the same stress factors.
Hence, all devices hence share the same VMIF compact model chapter. Yet we
accommodate for different “flavours” of stressed circuits with all devices subject to the same
degradation by accommodating a different VAMIF compact model chapter for each degraded
circuit.

15.9. MOSFET hysteresis

Some types of MOSFETs suffer from hysteresis. Such are: SOI with floating body,
MOSFETs as used in EEPROM and certain high-k gate MOSFETs. Also NBTI is a kind of
hysteresis that is not modeled separately.
The hysteresis is modeled as a voltage source in series with the gate. Modelling details not
available

15.10. Variability of MOSFET temporal noise

Temporal noise as such is not part of the VAM(IF). It is assumed to be sufficiently covered in
the normal design flow. Yet variability of MOSFET noise is represented here. Temporal
noise sources are:

15.10.1. MOSFET white noise

Also known as (thermal ~, Johnson ~) noise
(No model for distribution)
No report has been found that thermal noise variability is significantly higher beyond the
noise level itself, thus not modeled at the moment.

15.10.2. MOSFET 1/f noise

Also known as “flicker noise” (fn)

Deliverable D2.4 Page 52 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

We assume following model for spectral noise density of a MOSFET’s equivalent gate noise

fLW

KF
S

GeqV
..

 where KF is a technology constant, often given explicitly or indirectly in the

SPICE model.
We propose to represent the variability in a dimensionless prefactor, which is 1 on average,
and which applies to the gate voltage domain.

fLW

KF
prefactorfnS

GeqV
..

_ 2 

The Gaussian, instantaneous/temporal, distribution of the gate voltage offset itself is
separately obtained by integration of S:

f
fLW

KF
prefactorfnV

high

low

f

f
RMSG  

1

.
__

)4log(
.

__

low

high

RMSG
f

f

LW

KF
prefactorfnV 

Where fhigh corresponds to the bandwidth of the circuit node and flow is somewhere between
the age of the circuit or the time since turning to accumulation (TBD).
Smaller MOSFETS suffer from ever larger 1/f noise, just as they suffer from ever larger Vth
variability. Note that the factor W.L (electrical W and L!, as for Vth) in the formula represents
a Pelgrom rule. This Pelgrom rule (in contrast to the MOSFET Vth variability Pelgrom rule)
applies to all geometrical correlations.

15.10.3. MOSFET RTS noise

To model RTS, we need:
(1) The number of states per reference W*L area.
(2) The distribution13 of Vth-equivalent amplitudes for a given state for such given W*L

 In strong inversion

 In weak inversion14

The effective VG equivalent amplitude is inversely proportional with W*L, so these amplitudes
must be given for a reference W and L. If not given Wref and Lref are assumed 1um.
(3) To every individual RTS state belongs a set of emission & capture time constants, or

described as an overall time constant
ceRTS 

111
 and a duty cycle. τRTS and τc are

approximately inversely proportional to inversion charge thus drain current density. τe is less
dependent of the current. The RTS is most effective when τc and τc are equal, at a current

I50.

The distributions of weak inversion amplitudes is very long tailed; the time constant
distribution covers multiple decades (Ms to ns).

The detailed description is subtle, yet for the purpose of estimating noise margin, one may
suffice with a correlated set of following parameters:

 Amplitude in strong inversion

13

 K. Abe & al, ”Analysis of source follower random telegraph signal using nMOS and pMOS array
TEG ” IEEE IISW 2007, proceedings p. 62
14

 E. Simoen, B. Dierickx, "Critical examination of the relationship between random telegraph signals
(RTS) and low-frequency (LF) noise in small-area Si MOSTs", 12th International Conference on Noise
in Physical Systems and 1/f Fluctuations, St.Louis, Missouri, USA, 16-20 Aug., 1993

Deliverable D2.4 Page 53 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

 Amplitude in weak inversion (it may be tricky to “invent” a value in case

measurements are not available in the other mode. It does not hurt to give as default

value zero then))

 Reference drain current I50% at which the duty cycle is 50% (and τe = τc = 2* τRTS) for

the reference W and L.

 The actual time constant τRTS at I50%.

How to use noise in a digital design flow?
A possible approach for using this information for the digital
design flow would be to adjust Monte-Carlo-wise the noise
margin.
Start from a default noise margin, and add to the margin the
amplitude derived from the instantaneous range of eq gate
voltages due to 1/f and RTS. How to do this in practice and
check if this corresponds to reality is an open research topic.

We assume that if both RTS and 1/f are described, that they are cumulative. This is not
obvious as RTS and 1/f are emanations of the same phenomenon: 1/f can be described as
the superposition of many smaller RTSs.
Object

type=mosfet_noise

name=<mosfet_type> If name not given, applies to all MOSFETs
Value kf Optional, rather build on the mechanism present in the existing

SPICE models if available
Parameter

fn_prefactor
Voltage domain prefactor to flicker noise. Average value being
1

Parameter

rts_states
number of RTS states in area Wref*Lref

Value w_ref Effective (electrical) W
Value l_ref Effective (electrical) L
Parameter i_50 I50% , tauRTS and the amplitudes must be a correlated set of

values.
In case that either amplitude_si (strong inversion) or
amplitude_wi (weak inversion) are lacking, 0 is a good default.

Parameter tau_rts

Parameter

amplitude_si

Parameter

amplitude_wi

Deliverable D2.4 Page 54 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

16. Other underlying models

16.1. Activity, stress history on circuit parts (cells) and their inputs

Is part of several chapters. E.g. in chapter cell as it has to be used in the calibration of

standard cells and memories for reliability effects.
In order to calibrate cells for activity on their nodes, one needs a representation of “stress
history”. This is preliminary and needs huge refinements.

The age of a device is represented in chapter system as
Container name=system_properties
 value age nnn

in seconds! Si units
the number of seconds of calendar
lifetime of the device

The most basic way to represent “activity” information is as:
Container

type=activity

 [value component name]

 [value input name]
 value stress_case name
 value togglerate nnn
 value dutycycle nnn

default cell name: applies to all cells
default input: applies to all inputs of cell
case: one of: typical, worstcase, standby, … as
a scenario
togglerate: the effective number of 0-1 transitions
per second
dutycycle: the effective ratio between input high
time and the total time

This approach is certainly too simplistic. One should represent such information per
individual cell, and for each cell a number of cases. And discriminations per input, even on
power supply tuning or stdby modes. Likely, if too numerous, it will be in a separate file (is
there a standard…?)
Another shortcoming is that it does not represent correlation between inputs, not that it
represents the recovery time, which is of use in degradation mechanisms that have some
recovery or hysteresis.

16.2. Backend definition

In: Chapter technology.

This information is used to define backend variability, including LER, thickness variations…
Container

type=backend_definition //with dielectrics and metals from bottom to top
 Container

 Type=dielectric

 Name=STI
 Parameter thickness

 Value permittivity

 Parameter via_resistance

 Container

 Type=interconnect

 Name=metal1
 parameter thickness

 parameter delta_w // where Wphysical = Wdesign + ΔW

 value min_width //design value

Deliverable D2.4 Page 55 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

 value min_spacing //design value

 parameter LER //NOTE is not the same as distribution on

width!

 [value spacing_permittivity] //in case the spacing permittivity is different

from lower/upper dielectric

 value resistivity

 value resistivity_offset // effect of the encapsulation layers etc. formula

TBD

16.3. Temperature gradient

temperature gradient as such is not considered as a variability, but a system level input to
the simulation flow. In that sense it is a “predicted systematic variability”. External tools
might yield sub circuit specific local temperatures based on system operating mode.
How to enter this in the VAM context is not obvious. Possibilities are:

 neglect and work with an average die temperature (given in chapter system)

 back annotated local temperature per subcircuit, eventually percolating down to each

transistor. Input should come from external tools, data format unknown.

 clever back annotation, using similar concepts as scenarios for power estimation and

historic stress conditions. I propose to piggyback such developments, both for the

method to propagate the information, as to the activity/scenario method.

Deliverable D2.4 Page 56 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

16.4. Standard cell libraries

(Part of chapter cell)

Standard cell libraries are referred to:

Spectre/Spice netlists represent the original variability free library.
We also make a clear separation between representation of .lib and of methods to
create a .lib

Creation of .lib
in this example STDCELL_ROOT_DIR represents the root directory of the standard cell
characterization project (e.g. file:///einstein/scratch2/marchal/characterization) and

LIB_NAME is a name of a library under characterization (e.g. PT130).

The library may be represented by a collection of .gds files, one for each standard cell.
Using an LVS tool (e.g. CALIBRE) this library is converted to a collection of Spectre

netlists (the directory STDCELL_ROOT_DIR/run/svbd).

Representation of .lib
See below

Standardcell_library

The variability aware library e.g. is produced by SignalStormLC tool (Cadence) which
perform characterization of standard cell with applied compact model variability. The output
is the .alf library, subsequently converted to the .lib compatible format.

the variable aware .lib library is represented as

 For each of the 5 geometries, and as reference one “invariable” library, which is more

or less the same as the “typical-typical” library.

 one large library file that includes all variable instances of all characterized standard

cells (e.g. for the cell INVBD2 cell there are several corresponding variable instances

INVBD2_v1, INVBD2_v2 …, INVBD2_vmax).

/einstein/scratch2/marchal/characterization

Deliverable D2.4 Page 57 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Note on cell interpolation:

 Instances of the same cells in .lib files must be interpolatable: i.e. one can make

a sensible linear combinations of instances of the same cell, by simply making

linear combinations of the numbers on the same position in these cells. Concept

to be proven!

Geometrical correlation is introduced in the .lib files
container

type=cell_library

name=<name of library>

The .lib or vital “library name”.
If there are multiple libraries
used, multiple containers are
there.

 Value root <root directory> If empty, neglect
 Value gds_dir <pathname> GDS is given in case Spectre

or Spice netlist do not exist yet
and tool can handle that

 Value spectre_dir <pathname>

 Value spice_dir <pathname>

Only one is required

 Container

 Name=Cells

 temperature =<…>

 vdd =<…>

Attributes temperature and
VDD are modes at which the
library is calibrated. There
can thus be multiple copies of
this container applying to the
same library.

 Value dotlib_dir <pathname> This directory on itself
contains 6 subdirectories
named invariable, matched,
local_systematic, c2c, w2w
and b2b. The files therein are
the libraries, (one or more files
per directory)

 object type=cell name=<cellname>

 Parameter instantiation

 Parameter defunct (0 or 1)15

 Parameter outlier (0 or 1)16

Instantiation is the name of an
instance in the EMC
population of cells. Used to
retrieve a certain instantiation
from the .lib.

 [*(Parameter inputparameters)] Optional “Input domain
parameters”: parameters of
underlying blocks (e.g. Vths
inside std cells). These values
describe the used input
parameter. Can be used for
binning or RSM if ever one
wants to do that. These
parameters have geometry
obviously corresponding to the

15

 Defunct==1 mandatory parameter, means that this instantiation is a non-functional part. How to
handle in the .lib and tools using the .lib remains to be discussed. Minimal approach is to give the
non-functional part very large (1 second) delays in the .lib.
16

 Outlier==1 means that the cell contains one or more transistors that were labeled as “outlier”
themselves.

Deliverable D2.4 Page 58 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

dotlib geometry. Alternate

and preferred: use the
“corrid_###” concept.

[Value nominalload

[Value inputslope

[Parameter nominaldelay
17

[Parameter zeroloaddelay

[Parameter nominalenergy

[Parameter zeroloadenergy

[Parameter staticpower

[Parameter nominalsetup

[Parameter zeroloadsetup

[Parameter nominalhold

[Parameter zeroloadhold

These 5 (9 for sequential
cells) correlated “output
domain” parameters, are
optional. They yield help at
the next level of propagating
variability.

Currently implemented using
liberty parser and timing
engine of Synopsys Design
Compiler.

Defunct standard cells
Due to variability, it is likely that some instances of cells will not yield a correct
functionality. Classic calibration software (as SignalStorm) may crash or yield
not usable results.
Yet, such cells must be represented in VAMIF as realistic as possible:

 Such cell instances should have an entry and an instantiation

 They parameter “defunct” is set to 1

 A .lib entry must exists. Minimally it must mimic the actual faulty

operation by a very long delay, >>1ms

 Preferably, the .lib entry models the static and dynamic power correctly.

 Normally not possible with .lib, but useful and not required, would be to

change the functionality of the cell.

16.5. Representation of non-standard cells: embedded memories

16.5.1. The MemoryVAM configuration contained

Container

type=configuration

name=memoryvam

Process 1 –related options:

 list donuts fast_donut l2memory This is the list of the donuts to
be processed by MemoryVAM.
The actual donut information is
inside, and referred to by,
configuration container
<donut_name> donut, within
this configuration

 value mode1.name vdd

 list mode1.domain 1.0 1.1 1.2
Optional. Enumerate modes
starting from one, and supply

17

 nominaldelay: the maximum delay for any input to any output, where all input see the given input slope, and all outputs are

loaded nominally, eg. the max in the .lib table. zeroloaddelay: the maximum delay for any input to any output, for zero load.
Energy: dynamic energy, per operation; staticpower: DC [leakage] power.

Deliverable D2.4 Page 59 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

 value mode1.command “.param vdd_sv=%s”

 Value mode2.name temperature

 list mode2.domain 273 300 400

 value mode2.command “.temp „%s-273‟”

 Value mode3.name corner

 list mode3.domain “NN FF SS SF”

 value mode3.command “.LIB

„/path/to/your/lib‟ %s”

 Value mode4.name Margin_control_signal

 list mode4.domain 00 01 10 11

 value mode4.command “.inc mcs%s.inc”

(…)

Mode<n>.name,
Mode<n>.domain,
Mode<n>.command.
*.name should not contain
spaces.

NOTE: Some modes you can

apply without changing your

netlist, such as simple

parameter settings (eg: “.param

vdd=%s” overrides original

value for vdd), while others

require you to change the

netlist, for example in “.LIB

„/path/to/your/lib‟ %s”, while

most likely not work if you keep

your original .LIB statement.

Also NOTE: do not supply

multiple .TEMP statements!

Remove your original .TEMP

statement if you are using

.TEMP in a mode or work with

“.TEMP placeholder” in the

netlist and with “.PARAM

placeholder=%s” in the mode

command instead.

Mode names must not contain
spaces or special characters!
These names will be found back
later as attribute names of the
donut objects.

Do not forget that one can always reduce to
a trivial configuration space, i.e. the donut is
specific for one specific memory, hence
these lists have only one value or are simply
omitted

Modes can be overwritten by
particular donuts (NOT YET
IMPLEMENTED).

 Value n_matched 100

 Value n_local_systematic 100

 Value n_c2c 100

 Value n_w2w 100

Number of samples to go for.
Specify 0 for any geometry you
do not want to simulate.

Deliverable D2.4 Page 60 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

 Value n_b2b 100

N_matched also applies to the
Islands, see below.

Specifying a number >0 for a
geometry that is not supplied in
the compact model chapter
causes an error.

 Value gamma_matched 0

 Value gamma_local_systematic 0

 Value gamma_c2c 0.9

 Value gamma_w2w 1

 Value gamma_b2b 0.8

Gammas (EMC statistics) used
for each geometry.
You can omit gamma values
and MemoryVam tries to find an
optimized gamma for you.

 list CORNERS NN FF SS SF …

 Value CORNER_LIB „/path/to/your/lib‟
Will create simulation decks
using CORNER_LIB with the
.LIB suffices given in
CORNERS

There is no CORNER Geometry
Type (yet). Therefore, at the
moment, new object in a new
cell.xml file in a new directory
corners/ is created and the w2w
Geometry is used. The user can
browse this chapter and
combine corner figures and
cloud figures using the MATLAB
Figure editor functions.

(NOTE: STATUS is
EXPERIMENTAL. Known
limitation: If you use MODES
(see above, the behaviour of
CORNERS is undefined)

 Value dest_directory <dir> Working directory for
MemoryVam. If omitted,
<xml_directory>/.mvam will be
used. The directory is created if
it does not exist.

 Value pass_to_vaxc_<option> <value>

 (…)

Optional low level control of
vaccinate. Normally not required
for MemoryVAM users.
<option>=<value> is processed
by vaccinate, not by
MemoryVam. Refer to
VACCinate user guide for more
information and list of supported
options.

Value pass_to_vaxc_gamma_autoreduce 30

Value pass_to_vaxc_gamma_autoreduce_step 0.9

Automatically reduce too high
gamma values to a small
enough number using at most
gamma_autoreduce iterations
and adapting GAMMA ->
GAMMA * STEP. If, after all

Deliverable D2.4 Page 61 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

iterations, Gamma is still too
high, MVAM continues with a
warning. DEFAULT: 30
iterations, step factor 0.9. To
turn off Gamma autoreduction
based on probability, set
gamma_autoreduce to 0 (not
recommendend). To make the
reduction in finer steps, use
higher numbers for step, such
as 0.95 or 0.99 but then make
sure to use higher number of
iterations.

The default settings are safe
together with starting values for
gamma of 1.0

NOTE: Do not worry about
messages like
Warning: Divide by zero.

> In

pick_matrix>analyze_probabilities

at 328

 In pick_matrix at 179

 In vaccinate at 242

 In mvam at 146

These happen when gamma is
so high that the resulting
probabilities would be smaller
than the resolution of a double
float. In this case mvam reduces
gamma automatically.

Simulator –related options:

 Value simulator_executable <executable> MemoryVAM runs the simulator
<executable> for you with the
vaccinated donut file name as
only parameter from the
directory of the vaccinated
donut file. You can add
command line options here,
MemoryVAM always adds the
testbench-wrapper as last
parameter.
Example: “hspice64 –mt 8 –i “ or
“hspice_sub –I”
NOTE: you can also specify a
wrapper script that takes as $1
parameter the testbench-
wrapper to be simulated.

 Value unimportant_measures

<regexp_string>

By default, MemoryVAM
considers a “failed” of any
.MEAS statement as a

Deliverable D2.4 Page 62 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

functional failing of the donut
variant. You can specify a
regular expression for
exceptions here.
Example:
“^chk|dummy|stability$”
Will ignore “failed”
measurements when computing
yield for all measures beginning
with “chk”, the measure
“dummy” and all measure
ending with “stability”.

Process 2 –related options:

 Value N 100 Memories are created in a Monte

Carlo Fashion from donut statistics.

Specify here how many memory

samples you want.

100, 200, 5000 are good settings

for low, medium, and high

accuracy.

 List memory_cells M1109 M4563 S6542 Not USED. Every donut produces

one memory in this version.

The actual memory cells to be

processed. The actual cell

information is in the container

memory_cell, including which donut

is used in that cell.

Deliverable D2.4 Page 63 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

16.5.2. Donuts of memories

Memories as such cannot be calibrated as a whole. In VAM, MemoryVAM calibrates a
memory through its “donut”. See also MemoryVAM Users manual.

Container

type=donut

name=<donut name>

This container contains
configuration information for one
particular donut

 Value testbench <path> Test bench = path to file name

which contains instantiation of
your donut.

 Value circuit <circuit name>

Needed for VACCination to know
where to start injecting. If your
circuit resides at toplevel, specify:
top__level__ (in total four
underscores)

 Value island_table <path>

Path to the island table. Example:

/my/project/island.csv.

See below on format of this file.

Without island specification, process

two cannot run and process one can

run with limited functionality only.

 Value vsr_table <path>

Path to the “Variability scaling rule

table”. Example: /my/project/vsr.csv.

Without this file, See below on format

and meaning of this file.

 Value vsr_table <path>

Path to the “constraint table”.

Example: /my/project/constraints.csv.

See below on format of this file.

Deliverable D2.4 Page 64 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

16.5.3. Memory cells

These are represented at the same level as standard cells and standard cell libraries.
Memory cell variability is coded as a population of .lib cells. There may be one or more
memory libraries, represented as following container. (see als MemroyVAM container)
container

type=memory

name=<name_of_memory>

The .lib or vital “library name”.
If there are multiple libraries
used, multiple such containers
exist.

 Value root <root directory> If empty, neglect
 Value gds_dir <pathname> Only for reference
 value donut <name> the donut underlying this

memory

 *(object type=memory

 name=<name>

 Temperature=60

 Vdd=1.1

 <configurationparameters>=<…>

All modes and configuration
parameters are attributes to
the memoryobject

 Value dotlib_dir <pathname> This directory on itself
contains 6 subdirectories
named invariable, matched,
local_systematic, c2c, w2w
and b2b. The files therein are
the libraries, one single file per
directory.

 Parameter instantiation

 Parameter defunct (0 or 1)

 Parameter outlier (0 or 1)]

Instantiation is the name of an
instance in the EMC
population of cells. Used to
retrieve a certain instantiation
from the .lib.

 [*(Parameter corrid_###)] See the “corrid_###” concept.
 Parameter <*>

.

16.6. Top level components hierarchy

System yield analysis works with top level components. In the most trivial case there is only
one single toplevel component. In the more elaborate case, there may be a hierarchy of
toplevel components, which is represented as containers of toplevel components.
Toplevel component names correspond with their RTL name and with the names in
backannotated netlist container.
Container

type=toplevel_components

 Value rtl_path <string>

 Value component <component_name1>

 Value component <component_name2>

 container toplevel_component

 Value component <component_name3>

 Value component <component_name4>

Do not confuse this container with the following! The top level description may contain
multiple instances of the same component.

Deliverable D2.4 Page 65 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

16.7. Backannotated netlists of components

System component library, i.e. all cells that are use in yield analysis. Each of the cells is
described by VHDL or Verilog, and [may be] backannotated using .SPEF and .SDC file

Custom cells (used in Macro’s) and Standard cells do not belong here.
Container

type=netlist

name=…

Vdd=…

Temperature=…
Attributes . The
temperature/supply set
for which this library is
evaluated. There may
thus be multiple instances
if this container.

 Value root <root directory> If empty, neglect
 Value spef_dir <path> Is absent, one neglects

backannotation
 Value sdc_dir <path> If not given, one uses a

default [tbd if VAMIF must
provide a default]

 Value verilog_dir

 Value vhdl_dir
At least one per cell is
needed

 Value sdf_dir

Optional. Coding of
populations of
components xxxx_v1 etc.
if needed.,. maybe sfd s
are not recorded

 Value vcd_dir

 Container

 type=components

This information allows
EMC sampling
components
For each component
there is 1 entry.

 Object

 Type=component

 name=<componentname>

Instantiation is the name
of an instance in the EMC
population of
components.

 Parameter longestdelay

 Parameter staticpower

 Parameter dynamicenergy

 Parameter instantiation

 Parameter defunct (0 or 1)

 Parameter outlier (0 or 1)

The longest delay for the
actually used set of
vectors. Not exactly the
same as critical path
delay.

The effect of output load on delay and dynamic power is accounted for by the fact that output
interconnect C is lumped into the component itself.

16.8. Variability aware yield prediction

The variability aware yield prediction tool consumes information from the digital chapter and
produces results written into the system chapter.

The input is represented by three main parts:
1) The description of system

Deliverable D2.4 Page 66 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

 the [possibly hierarchical] list of top level components, implying also the connectivity,

which is by default assumed to correspond to a parallel organization.

2) The PTOIR versus (dynamic energy, static power, max delay) in EMC format, for each

component

 the component variabilities, from the backannotated netlist

3) The activity of each block (at this moment it's only one number - derived from previous

(logic?) simulation - representing the number of activations of the block per unit of time;

it's application dependent); future extensions assumes the bit level vector trace (vector of

bits) representation [see activity]

4) The timing and energy constraints enabling yield calculation

The output is
1) Multi-dimensional representation of (parametric including functional) variability cloud the

user parameter space (clock frequency, power, <other parameters as T, VDD…>)

2) This will happen for each geometry separately, and for all geometries aggregated.

Converting to iso-yield curves is done in a rendering tool such as the “VAMIF-browser”
(browse). If the rendering tool can do the aggregation itself, no separate parameter is
required.

object

type=systemyield

Vdd=1.8

Temperature=21

Age=82000000

Attributes, multiple
instances of the same
object may exist

 Value <other> <some value>
 Parameter totalpower
 Parameter cycletime
 Parameter aggregated_totalpower All are aggregated in

geometry “all (matched)
 Parameter aggregated_cycletime

16.9. Example of a configuration container

See the MemoryVAM configuration container

Deliverable D2.4 Page 67 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

17. Specific fast models for Top-Down

The following models are specific for the so-called “Quick&Dirty” VAM. They contain the
reduced set representation of libraries and other objects.
At yield estimation level and at compact model abstraction level, one assumes that the
scripts are already fast and do not need a Q&D version.

17.1. Q&D standard cell representation

Applies to the “average” Stdcell, or on each individual (if specific name is given TBD).
This information is either extracted as an average form .lib, or synthesized separately and
eventually brought back into a .lib by scaling.

Object
Type=qd_standardcell

[Value cellname <name>]
Value nominalload

Value inputslope

Parameter nominaldelay
18

Parameter zeroloaddelay

Parameter nominalenergy

Parameter zeroloadenergy

Parameter staticpower

Nominalload [F] = load capacitor for which
nominal delay and energy are obtained.
This q&d model assumes that any other
load condition is linearly interpolated
Inputslope [V/s] = assumed worst case
input slope [default zero]

17.2. Q&D area

In some applications of VAM, it is necessary to have an estimation of the area of a circuit
part (standard cell, digital block):

 To estimate the functional yield, using the manufacturing yield object

 To estimate the average distance between circuit part inside, to assess the

interpolation of variability between matched and c2c geometries, using correlation

length and correlation exponent.

18

 nominaldelay: the maximum delay for any input to any output, where all input see the given inputslope, and all outputs are

loaded nominally, eg. the max in the .lib table. zeroloaddelay: the maximum delay for any input to any output, for zero load.
Energy: dynamic energy, per operation; staticpower: DC [leakage] power.

Deliverable D2.4 Page 68 of 68

IST-216537-WP2-D2.4-v1.11p1 © REALITY Consortium

Container

type=qd_area

Value mosfet_over_node_factor how much area does a MOSFET (in
a stdcell) take on average
compared to node number
[e.g.22nm] squared

Value stdcell_routing_efficiency Ratio between actual routed stdcell
density and minimum packed
stdcells

Value stdcell_over_mosfet

17.3. Ion ioff

Elementary MOSFET parameters for quick and dirty analog/digital behavior

Container
Type=Qd_ion_ioff

Name=<Mosfettype>

 Ion (for a minimum MOSFET)
 Ioff (for a minimum MOSFET)
 Cgate (for a minimum MOSFET)

17.4. Critical path distribution

Part of chapter digital.

This feature is not used in a full VAM flow, as the detail of each path is known as such and is
thus not a variability “parameter”. This parameter is of use in early, fast, empirical path-
finding.
[critical] path length is expressed in units of execution time, without further correlations
added. [If this distribution is part of a larger set which contains also parameters as VDD and
T, we have inherited automatically that correlation.]
object

type=critical_path_distribution

 parameter critical_path required

18. References

References appear in text.

Appendix A

The documentation of VAM IF API implemented in JAVA

