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4. Preface 

 
The scope and objectives of the REALITY project are: 
 

 Development of design techniques, methodologies and methods for real-time 
guaranteed, energy-efficient, robust and adaptive SoCs, including both digital and 
analogue macro-blocks“ 

 
The Technical Challenges are: 

 To deal with increased static variability and static fault rates of devices and 
interconnects. 

 To overcome increased time-dependent dynamic variability and dynamic fault rates.  

 To build reliable systems out of unreliable technology while maintaining design 
productivity.  

 To deploy design techniques that allow technology scalable energy efficient SoC 
systems while guaranteeing real-time performance constraints. 

 
Focus Areas of this project are: 
 

 “Analysis techniques” for exploring the design space, and analysis of the system in 
terms of performance, power and reliability of manufactured instances across a wide 
spectrum of operating conditions.  

 

 “Solution techniques” which are design time and/or runtime techniques to mitigate 
impact of reliability issues of integrated circuits, at component, circuit, architecture 
and system (application software) design. 

  
 
 
The REALITY project has started its activities in January 2008 and is planned to be 
completed after 30 months.  It is led by Dr. Miguel Miranda of IMEC. The Project Coordinator 
is Dr. Miguel Miranda. Five contractors (STM, ARM, KUL, UoG, UNIBO) participate in the 
project.  The total budget is 2.899 k€. 
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5. Abstract 

 
The goal of this WP is to develop advanced methodologies and techniques for Statistical 
Analysis all the way from the device level to the system level. The WP also targets 
developing and fully characterizing a limited standard cell library (50-100 cells) for synthesis 
based on restricted design rules for use in WP2, WP3, WP4, and WP5. Novel techniques to 
percolate variability all the way from the device level to the system level shall be developed 
to evaluate the impact that intrinsic variability will have on timing, energy, and yield of the 
complete SoC architecture, including a view on the impact of application-dependent activity. 
Commercial EDA solutions (e.g., fast circuit simulators, SSTA tools, power analysis tools, 
etc) shall be reused in the flow wherever possible in combination with Monte Carlo-based 
simulation techniques. Also considered in this WP is the strategic aspect of the 
standardization of the interfaces between different abstraction levels to enable the 
propagation of variability specific information throughout the design flow in order to 
guarantee the compatibility with existing electronic design simulation/verification tools. 
 
This document is the deliverable D 2.4 comprising a description of an electronic information 
format for data under process variability. This is used to ease the link between levels of a 
variability aware design flow such as the one set in place in overall WP2. On top of that, 
there is an application interface to access the data, and an application layer for graphical 
representation. 
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10. Introduction 

 
Key part to master the complexity and density of information of any variability aware design 
flow is a “Variability Aware Modelling information format” (VAM IF). Thus imec developed a 
format that considers connections between five levels of abstraction of modelling or 
simulation. It defines how variability information must be carried from the one level to the 
other. 
 
The VAM IF is divided in 5 chapters or XML-files, corresponding to these levels of modelling. 

 Chapter technology 

 Chapter compact model 

 Chapter cell 

 Chapter digital  

 Chapter system 
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11. The role of the information format in Reality  

11.1. Overview 
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Figure 1 Work package overview. 

As the Figure shows, the information format described in this deliverable plays an important 
role. It is positioned along and between every step of the flow, where it defines the format of 
information that flows between the steps. It serves as storage and retrieval system for this 
information. 

11.2. Link to other work packages 

The format accepts data from WP1 in form of injectors. These are additional circuit elements 
that model the variability of transistors. This can be done for several transistor types, but also 
differently degraded transistors.  
The information format is also capable of storing and retrieving variability data on higher 
levels, such as the ones worked out in WP2, and integrated in WP5, like variable standard 
cells, macros, processor parts, or processors.  
Its application layer allows to graphically publish the variability information in several formats. 
This is used heavily in almost all workpackages, especially WP6. 
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12. Application Layer Examples 

The picture below shows several screen shots of the VAMIF browser application. The top-left 
screen shows the browser window itself on a digital chapter, highlighting a component-object 
(an ARM processor part).Objects can be browsed (cf Plot button top left of window). 

 
Figure 2 Vamif Application Layer Examples 
 
To the right one finds an open plot window on a memory object. The Geometry selection box 
provides local (matched), global (c2c) and total (world) information and local sensitivity data 
(of the object to modifications in specific sub-blocks (matched_x)). The long list provides all 
metrics, which the user can choose to plot. There are about 500 parameters in this memory 
example. The user can plot pdfs, cdfs, and yield, all for 1 or 2 (compound) parameters.  
 
The lower left plot shows an example 2-dimensional pdf of a processor part. The lower right 
plot shows a probit plot of the read-voltage distribution of two memories in two modes. Probit 
plots using this technique are used extensively to report in WP1, WP3, WP5, and WP6. 
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13. Chapters of the IF 

13.1. General concepts 

The information format is distributed over 5 “chapters” or XML-files,  corresponding to 
the simulation levels of abstraction, having following filenames: 

technology.xml 
compactmodel.xml 
cell.xml 
digital.xml 
system.xml 

These 5 files are in the same directory.  This set of 5 files applies to one single design 
(i.e. identical mask set) with one single technology option, which is reflected in the 
directory name. 

All data in the directory is assumed to be correlated.  This is a direct consequence of the 
principle that VAMIF is a “virtual technology” (~platform) 

Scripts, programs, tools using the VAMIF should be sufficiently instructed by only giving 
them the path to this directory. 
Scripts, programs, tools writing to a chapter should only update the chapter, thus leaving 
the unrelated data in the chapter untouched.  It is forbidden that a scripts “resets” a 
chapter. 

13.2. Chapter Technology 

This chapter collects technology variability information. 
The lowest level of abstraction, includes variability and reliability information from three 
complementary sources.  Variability information is terms of dimensions or of concentrations. 

 the information that comes from the semiconductor fab, as measurement data sets. 

As a side effect, the VAM IF thus defines the variability data that are needed from the 

fab 

 from science and literature. Large part of the work is to devise the formulas for 

reliability-related effects, with the possibility to model it for deep sub micron devices. 

 TCAD simulations 
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This chapter is the input for the path from technology information to compact models that can 
handle variability and reliability effects. 
 
In the most trivial form, i.e. if there is no variability information at all, this chapter is empty. 
Chapter technology 

 

 

note 
Tools using VAMIF should always be able to handle empty or 
deliberately missing information, and treat that as the absence of 
variability and use the nominal (or “invariable”) value (which should 
be available from the non variability aware design flow). 

13.3. Chapter compact model 

Idea: this chapter contains all information necessary for adding electrical domain variability 
and reliability information to the classical compact model (Vth, β …), and other device 
models (R, C…) used in analog simulation and in (standard / non-standard) cell calibration.  
The intended users of (i.e. tools reading) this chapter are wrappers and scripts doing analog 
simulation, standard cell characterization, memory simulation, etc.   
 

 Variability in this context always includes reliability, ageing and degradation effect, 

and wherever possible plain yield issues. 

 The VAM concept considers the regular compact models as a black boxes.  The 

compact model may as well be a  physical or electrical model (i.e. a SPICE model 

with parameters as tox, concentrations or Vth), or predictive and even purely 

hypothetical.  We strive to “model and simulator independency”. 
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In the most trivial form, i.e. if there is no variability information at all, this file and chapter may 
be empty.  Or it may contain only a reference to the regular compact models. 
Chapter compactmodel 

 

 
 
chapter compactmodel 
logbook 

 entry 22sep2007 10:17 qwerty.exe scaling data 

 entry 26sep2007 23:44 qwerty.exe scaling data 

 

object name=mosfet                   // MOSFET with no variability at all 

modeled 
 value name=mosfet_type nmosfet_hv 

 value name=path psp1.mod     

 

object mosfet  

 value mosfet_type pmosfet 

 value path psp6b.mod 

 parameter delta_vth  
 parameter delta_beta average 0.94 stddev 0.01 
 value delta_w -1e-9 
 value delta_l +23e-9 

 value w0    1um 
 value l0    1um 

 

13.4. Chapter cell 

Concept: this chapter contains all information necessary for adding variability and reliability 
information to the classical standard cell (i.e. to simulators using standard cells), plus the 
variability applying to the circuits parts coming from back annotated schematics.   
The intended users (readers) of this chapter are wrappers and scripts doing digital 
simulation, and maybe, after translation to a proper format, SSTA.   
 
User (tool writer) challenges are:  

 How to run a library or any more complex IP unattended through cell calibration, in a 

reasonable time.   

 How to generate the EMC population of .lib files?   

 (in the future) How to add non-static variability (temporal noise, jitter)? 

 How to capture similar information for non-standard cells (“Macros”, such as 

embedded memory, mixed signal blocks…) 

 Keep non-variability corners: calibrate the library for a given set of environmental 

parameters (VDD, T, age). 
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In the most trivial form, i.e. if there is no variability information at all, this chapter contains 
only a reference to the regular (“invariable”) standard cell library. 
 
Chapter cell 
logbook 

 entry 22sep2007 10:11 makeit.exe create library 

 entry 26oct2007 12:12 makeit.exe create library 

 

13.5. Chapter digital 

Idea: this chapter contains all information necessary for adding variability and reliability 
information to digital simulation, architecture.   
 
The component-level information is variability of timing, static and dynamic power.  Other 
information is timing and application information as the activity (stress history).  The Chapter 
is used by a tool that can estimates parametric yield.  Other information that might be needed 
is a list of blocks that are considered as [top-level] blocks that needs calibration. 
 
In the most trivial form, i.e. if there is no variability information at all, this chapter contains one 
single top level digital block.  Subsequent tools (DigiVAM) will take the list of top-level blocks 
and calibrate them. 

13.6. Chapter system 

Idea: this chapter contains remaining information necessary for adding variability and 
reliability information tot system level simulations and yield estimation.  It must also contain 
the top level activity information, application specifics, and external factors as temperature, 
VDD, temperature, age, .. 
 
System yield is written into this chapter, as a set of EMC tables with total power versus clock 
period. Display tools as “Vamifbrowser” will plot these into the “iso yield” format. 
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14. Syntax 

14.1. XML and the VAM IF conventions 

14.1.1. Files and chapters 

The VAM IF chapters are in XML format. 
Each chapter is a separate file, with filename identical to chapter name. 
All chapter files are in the same directory.   
 
This VAMIF directory, and each of its 5 files is design-project and technology option specific.  
If one wants to explore alternate technology options, library options, architecture opttions, 
one should do that in a separate directory, possibly while linking the chapters that do not 
differ. 
 

It is assumed by default that all objects (and their parameters) inside the directory are 
correlated.   

 
Scripts running under VAM should use VAMIF chapters as exclusive information source or 
pointers thereto.  The only argument to such script is the VAMIF directory path. 

14.1.2. Units and dimensions 

Unless otherwise noted all units are Si.  E.g. 5 um are represented as 5e-6. 

It is a later1 extension, to understand following postfixes, case sensitive: 
 T *1e12    a /1e15 
 G *1e9    p /1e12 
 M *1e6    n /1e9 
 k *1000    u /1e6 
 % /100    m /1e3 

Time is expressed in seconds.  It is a not explicitly supported later extension 
to understand following postfixes: 
 1hour 3600 
 1day 86400 
 1year 31557600 

14.2. General syntax and use 

XML implementations of different data information are described using the following syntactic 
elements (related to the corresponding XML implementation itself): 
 
Convention: All keywords have only lower case alphabetic characters [a-z], digits [0-9] and _ 
 
parameter  The XML element named parameter 
description The attribute named description 
double, string, … datatypes of an attribute’s or element’s content 
(distribution) the reference to the XML element distribution described 

later 
(…)?  the part of XML document that appears zero or one time 

                                                
1
 If not implemented, a tool reading VAMIF should complain and flag such extensions. 
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(…)* the part of XML document that appears zero or more times 
(…)+ the part of XML document that appears one or more times 
| the choice among two or more alternatives 
 
The description of XML implementations presented in this chapter is focused on the 
explanation of individual elements’ and attributes’ structure and meaning. The precise formal 
descriptions of our XML applications for different chapters of the information format (from 
syntactic point of view) are kept in the corresponding XML Schema documents.  

14.3. Values, parameters, Emc_sets, objects and containers 

In the VAMIF, there are 4 basic standalone elements allowable 
The 

 Container: a generic representation of a more complex structure, itself containing 

zero or more values, objects and other containers 

 Value: in most cases similar to a double, but it may be also a string etc… 

 Parameter: this is a value with a distribution attached to it. 

 Object: this is a group of correlated parameters (may contain also values) 



Deliverable D2.4  Page 18 of 68 

IST-216537-WP2-D2.4-v1.11p1  © REALITY Consortium 

14.3.1. The value element 

The value element  

name=string the name attribute required 

Double | integer | string the value required 

description=string the description or comment, provided by user or 
program 

optional 

Origin=string  the origin of the data, either provide by users or 
generated by program. Format: time 
(YYYYMMDD_hhmm) username description. 
to avoid data explosion: origin should NOT be 
automatically added to values. 

optional 

 
Example in xml:  
<value name=tox>1e-9</value> 

14.3.2. The list element 

The list element  

name=string the name attribute required 

type=string The type of list optional 

(Double|integer|string)
* 

1 or more values required 

description=string the description or comment, provided by user or 
program 

optional 

Origin=string  the origin of the data.to avoid data explosion: origin 
should NOT be automatically added to values. 

optional 

 
Example in xml:  
<list type=configuration_parameter name=bpw>4 8 32</list> 

14.3.3. The parameter element 

The parameter element serves the user to enter value with attached distribution. Parameters 

only can be part of the VAMIF object element. Before parameters are used, their 

distributions are internally converted in an object-specific emc_set, for which the parameters 

are columns. The avg, stddev, geometry and distribution elements shown hereafter only 

serve to enter data. The parameter element, where the user wants to enter the variability in 

a trivial way using a simple average and standard deviation, is given as  

name=string the name required 

description=string the description optional 

Origin=string  if not added, origin is automatically generated optional 

avg double the average or nominal value of that parameter Required
* 

Stddev double the standard deviation on that average, assuming thus 
a gaussian distribution.  If absent, zero is assumed. 
This distribution will become “matched”, see further. 

Required
* 

 
Example in xml:   
<parameter name="delta_w" description="width variation" origin="P. Dobrovolny, 20-01-2007"> 

 <avg>10e-9</avg> 

 <stddev>0.9e-9</stddev> 

</parameter> 

   

If the distribution needs to be more complex, the parameter element is generalized as 

name=string the name required 
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description=string the description optional 

Origin=string the origin of the data if known optional 

avg double the average or nominal value of that parameter optional* 

Stddev double the standard deviation of that average optional* 

(geometry) detailed description of a variability information required 

* if geometries are given, they supersede avg and stddev entries. 
 
Variability information is entered in more elaborate way using geometries. 
 
Example in XML: 
<parameter name="tox" description="oxide thickness" origin="P. Dobrovolny, 20-01-2007"> 

 <avg>20.0e-9</avg> 

 <stddev>1.4e-9</stddev> 

 <geometry …> 

 … 

 </geometry> 

 <geometry …> 

 … 

 </geometry> 

</parameter> 

 

Note on the use of parameters and emc_sets 

In an object, two distinct ways of use of parameters and emc_sets are allowed 
1. every object has al least (and often only) the emc_set 

name=”out”.  Parameter names are the column headers of the set.  

This representation is used when VAM API‟s write objects as a 

whole in a chapter. 

2. have exactly one parameter element for each parameter in the 

object.  Parameters distributions may refer to emc_sets with 

names differing from “out”, inside the same object.  In fact 

parameter elements are converted first to smaller emc_sets 

internally, and then all are combined into the internal emc_set 

name=“out”.  This method is likely used for manual inputting data 

in VAMIF. 

14.3.4.  The geometry element (correlation_geometry) 

This element can only be part of a parameter, and has the following structure  

type=geo_enum the correlation_geometry for 
which the variability is 
considered (see description 
below) 

required 

avg double the average value optional 
(gauss | poisson | delta | 

histogram | histogram_file | 

montecarlo | montecarlo_file 

| EMC |  weibull | lognormal 

| min_typ_max )+ 

One or more distribution 
component (see descriptions 
further). Serve to “fill” a 
parameter distribution internally.  

Optional, only 
used to fill in 
analytical 
distributions via 
VAMIF directly 

 

Tools must anticipate handling the fact that the distributions given for each 
correlation_geometry may have different averages.   E.g. in the creation of std 
cell or digital component delays, the resulting average for each 
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correlation_geometry is not a priori the same. 
Key is the “invariable” correlation_geometry, which is a reference for each. 
 
Proposed precedence policy: 
-if a geometry and invariable is given in detail, that geometry is assumed 
correct. 
-if a geometry is not given, it is assumed empty – hence copied from the 
invariable geometry 
-if the invariable geometry itself is not given, take its value from the parameter 
avg if given, if not assume that invariable was zero..  

 
 
Example: 
<geometry type="w2w"> 

      <gauss …> 

 … 

 </gauss> 

 <EMC …> 

 … 

 </EMC> 

 

</geometry> 

Correlation_geometries 

Variability is considered at 5 orthogonal levels of geometrical correlation. It means that the 

type attribute takes value from the enumeration set geo_enum = {“invariable”, 

“matched”, “local_systematic”, “c2c”, “w2w”, “b2b”, <some others>}: 
invariable As a reference the case without variability is tracked, in order to 

keep a common reference for the next 5 basic geometries.  The 
invariable distribution is internally represented as a EMC with a 
single entry.  For most purposes “Invariable” is very much the same 
as the TT corner. 

matched Or Local Random variability on close scale, applied to identical 
components in identical geometrical environments; it is by definition 
uncorrelated with local layout or inter-device distance. This 
geometry closely appeals to the notion “matching” or “mismatch”. 

Specific for matched only, and optional, are  attributes 

correlation_distance [default infinity] and 

correlation_exponent [default ½]. The use of this feature is not 

yet defined in detail yet. 
local_systematic Local systematic (reproducible, yet unpredictable or unpredicted2) 

variability on close scale due to components not being in identical 
layout / environments; seemingly random within a chip, reproducible 
from chip to chip.  

c2c Random from chip to chip, fixed within a chip, variability due to 
variability (which may be random or systematic) over a wafer 

w2w Random from wafer to wafer, within the same batch. 
b2b Random from batch to batch.  A further refinement fab to fab (f2f) is 

not considered 

Apart from these 1+5 basic geometries, we define following intuitively known shorthands 
and synonyms. (may become obsolete).  These are not stored in VAMIF 

                                                
2
 Systematic variability that is actually predicted, thus found in back-annotation of net lists etc., is not 

represented in VAMIF and thus not in this number.  Think of back-annotation from mask data due 
strains, proximity effects, OPC etc. 
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all 

na 
Apply to all together: there is no geometrical distinction.  In practice 

when writing such distribution, it goes into matched and the 4 other 

geometries are made invariable. 

When reading (picking) from the shorthand na or all, it should pick 

from all 5 geometries, and sum the values, referred to invariable. 
intradie 

ocv 

(local) 

Combines matched and local_systematic – when writing such 
distribution, VAMIF considers this to be equivalent to allocating all 

variability to matched (worst case) and making 

local_systematic empty. 
Interdie 

(global) 
Combines c2c, w2w and b2b – when writing such distribution, 
equivalent to c2c, where w2w and b2b become empty. 

Note: we refrain from defining similar intuitive shorthands for “global”, “random” and 
“systematic”, “reproducible” , … as these terms are inconsistently used in literature.   
 

Following  non-basic geometries can be stored in VAMIF too.  They have normally an 
information function only. 
userdef name=xxx user defined geometries with a name attribute.  May be used for 

anything, e.g. to explicitly name corners.   
ocv Is the combined effect of matched and local_systematic.  How such 

geometry must be constructed is subject to a specific method. 
world Is the combined effect of all five basic correlation_geometries.  How 

such geometry must be constructed is subject to a specific method. 
measurement In the case that a measurement set (of a large block, or of the 

system) corresponding to an object exists, it can be stored here for 
easy comparison using the VAMIFbrowser. 

 

How to use the correlation_geometry information in a Monte Carlo (-like) 
wrapper? 

 One starts from 5 independent population in the EMC set (actually 6 as 

invariable is a singular population too). We assume that the 5 

geometries are truly orthogonal (they should be, by concept!) 

 When building walls from bricks, bricks are picked in each of the 5 

geometries, with picking strategies that may differ amongst geometries. 

 The resulting “wall” populations (items at the next abstraction level) have 

again 5 geometrical kinds of variability, represented in an internal EMC 

set. 

Distribution components, implemented in this version of VAMIF 

A gauss element describes Gaussian distribution using the following parameters 

fraction = double The fraction of this gauss distribution in the total 

population for this geometry/parameter 

optional* 

average double  required 
dtddev double  required 
lower_limit double Distribution is clipped bellow this value optional 
upper_limit double Distribution is clipped beyond this value optional 
1 Sum of fractions is not necessarily 1.  In fact, as distributions are internally loaded into a 
EMC, renormalization to 1 is done automatically. Required if there are more than one 
distribution component 
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A uniform element describes a uniform distribution using the following parameters 

fraction = double The fraction of this uniform distribution in the total 

population for this geometry/parameter 

optional 

nof_points double Number of points used to approximate the uniform 
distribution.  Default=10. 

optional 

min double Distribution is clipped bellow this value required 
max double Distribution is clipped beyond this value required 

 

A emc element refers to Weighted Monte Carlo distribution, used to enter data.  

It is distinct from the internal representation of the parameter in its object! 

fraction = double The fraction of this emc distribution in the total 

population for this geometry/parameter 

Optional 

path string 

col_index integer 
path of an external ascii file, white space separated.  
0th column is frequency. 
The column index, default [1]. 

optional 

or 

set_name string 

This refers to a emc_set with a different name than 
“out”, inside the same object.  Parameter names are 

headers of this emc_set out. 

optional 

Further distribution components, not yet implemented in this version 

A poisson element describes Poisson distribution using the following parameters 

fraction = double The fraction of this poisson distribution in the total 

population for this geometry/parameter 

optional 

average double Positive number required 
factor double x-scale of distribution must be multiplied with this value optional 
offset integer origin of distribution is increased with this value optional 

 

A delta element describes a simple variability specified by only one number 

fraction = double The fraction of this delta distribution in the total 

population for this geometry/parameter 

optional 

Double a delta (single value) distribution required 

 

A histogram element retains histogram data as the set of number pairs 

fraction = double The fraction of this histogram distribution in the total 

population for this geometry/parameter 

optional 

(double double)+ a  pair of numbers  (thus in fact, this may also serve to 
input single column EMC) 

required 

Filename string  optional 
column_header 

string 
 optional 

column_header 

string 
 optional 

 

A montecarlo element keeps a set of values from a montecarlo simulation 

fraction = double The fraction of this montecarlo distribution in the total 

population for this geometry/parameter 

optional 

(double)+  required 
path string if stored in a file optional 

Note this approach does not support correlation as the EMC does. 
 

A min_typ_max describes simple variability specified by only three numbers.  

fraction = double The fraction of this min_typ_max distribution in the total 

population for this geometry/parameter 

optional 
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min double  required 
typ double  required 
max double  required 

 

Note: Yes indeed, this is strictly speaking not a distribution, but it is a route to 
introduce the classical corners into the VAM flow 

 

A weibull element describes Weibull distribution parameters 

A lognormal element describes lognormal distribution parameters 

 
Example: 
<gauss fraction=”0.9”> 

 <average>20e-9</average> 

 <stddev>1e-9</stddev> 

</gauss> 

 

14.3.5. The EMC (Exponent Monte Carlo) set  emc_set 

EMC represents by default the so-called “output domain” parameters, i.e. 
parameters that belong to the instantiations of the object for which the 
parameters are properties.  E.g. the [output domain] parameters of a logic gate 
are delays, power, energy. 
 
For use in RSM or binning/interpolation, “input domain parameters” are useful.  
These are essentially the output domain parameters of the objects used inside 
the object.  
E.g. when creating a NAND from 4 MOSFETs, it might have  
output domain parameters: 

maxdelay avdelay maxenergy avenergy staticpower  
input domain parameters: 

M1!delta_vth M1!delta_beta M2!delta_vth M2!delta_beta M3!delta_vth 
M3!delta_beta M4!delta_vth M4!delta_beta 

But preferable we use the “corrid”s of the input objects to decribe the input 
domain paramters.  See further 

 

The element emc_set represents a container to keep emc_data elements for existing 

geometries of a parameter or a correlated set of parameters 
 
emc_set 

name=string the name  (the object –specific “output domain” 
Emc_set is named “out”) 

required 

corrid=string Correlation id.: EMCs with the same corrid are 
correlated entry by entry.  Suggestion to construct this 
unique number from machine time time(0) or otherwise.  

Required 
except 
for 
matched 

description=string the description optional 

origin=string the origin of the data if known optional 

path=string the file (directory?) where EMC data are stored optional1 

(emc_data)+ one or more emc_data elements that keep (or point to) a 
numerical EMC data 

required 
 

emc_header gathers  col_header elements that identify parameters 

referring to the current EMC set 

Optional 

1 If this attribute is omitted, the EMC data is stored directly in the VAM IF chapter 
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Example: 
1) the emc_set with EMC data directly stored in a VAMIF chapter 

<emc_set name="emc_set_1" origin="Author: …” > 

 <EMC_header> 

 … 

 </EMC_header> 

 <EMC_data …>  … 

 </EMC_data> 

 … 

</emc_set> 

 
2) the emc_set with EMC data stored in files 
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<Emc_set name="Emc_set2" origin="Author: … "pathname="set2.dat/"> 

 <EMC_header> 

 … 

 </EMC_header> 

 <EMC_data … /> 

 <EMC_data … /> 

 … 

</Emc_set> 

The emc_header element 

The emc_header element groups col_header elements that identify parameters referring to 

the EMC set  
(col_header)* zero or more col_header elements that identify 

parameters  

optional 
 

 

The col_header element keeps information that identify a parameter whose data are stored 

in corresponding column of a EMC data table 
index=integer the index of the column (starting from 0) required 
string the name of the parameter required 

 

Some suggested, optional or mandatory column headers 

 “entry” as such is not a column.  It is the row number in the EMC table 

and e.g. also the returned value from PickInstanceIndex(). Row 

numbers start from 0. 

 “ptoir” the probability to occur in reality is always column[0] 

 “defunct”, 1 if this instance is dysfunctional, otherwise 0. 

 “outlier”, 1 if this instance contains an outlier, otherwise 0. 

 “corrid_####”: the instances in the present object are created from 

objects with EMC tables with a corrid (unique correlation id) being the 

number #### .  The data in the present column are the entries (row 

numbers) used from that other  EMC.  

 “simulation_reference”: a text reference to the simulation testbench of 

results of the entry.  Format depends on the actual script. 

 
Example: 
<emc_header> 

 <col_header index="0">ptoir</col_header> 

 <col_header index="2">dCoverC</col_header> 

 <col_header index="1">dRoverR</col_header> 

 … 

</emc_header> 

The emc_data element 
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The emc_data element keeps or points to a numerical EMC data of a parameter or a set of 

correlated parameters for a given geometry type. The EMC data stored inside XML file are 
formatted in a table where each row corresponds to one data set of a population – the first 
value of the row is the frequency (probability), the next values correspond to concrete values 
of correlated set of parameters. The same format rule is applied also for data stored in a file. 
Because generally it can not be guaranteed that the original shape of data table will be 

preserved (for instance it could be lost during some XML transformations), the attribute cols 

helps to reconstruct the original shape of table. 
 

type=string the type of geometry to which EMC data corresponds required 

pathname=string The full pathname of a file where numerical EMC data 
are stored 

optional1 

cols=integer The number of columns in the EMC data table required 
rows=integer The number of rows in EMC data table that were 

generated by a simulation 
required 

(double)+ The numerical EMC data Optional 
1 If this attribute is not present, the EMC data is stored directly in VAM IF chapter. Q: isn’t this 
redundants wth the similar attribute in the emc_set? 
 

Example: 
1) the emc_data element with EMC data stored directly in a VAMIF chapter 

<emc_data type="local_systematic" cols="2" rows="100">  

 1.215176571174768E-9 1.5999999999999986E-10  

 3.954639285187116E-9 2.2799999999999986E-10  

 1.2365241012645407E-8 2.9599999999999986E-10  

 3.714723692809837E-8 3.639999999999999E-10  

 1.07220707000726E-7 4.3199999999999985E-10  

 2.9734390324296495E-7 4.999999999999998E-10  

 7.922598189953721E-7 5.679999999999999E-10  

 … 

</emc_data> 

 

2) the emc_set element with EMC data stored in files 
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<emc_data type="w2w" cols="3" EMCs="100" pathname="D:\ic\Emc_set2\Emc_set2_w2w.dat/"> 

14.3.6. The object element 

The object element contains a set of correlated [output domain] parameters and (optional) 

input domain parameters 

name=string the name of the object required 

type=ObjectType_enum the type of the object (1)
 Optional (obsolete?) 

description=string the description or comment, provided by 
user or program 

optional 

origin=string  the origin of the data. If not provided by 
user, the origin is automatically generated  

required 

dir=string the directory where all data relevant to the 
object are stored(2) 

optional 

emc_set name=”out” the output domain EMC set  Required if no 
parameters are given 

(emc_set)* Other emc_sets, under which the input 
parameter domain EMC set 

optional 

(parameter)* Output domain parameters only if no emc_set 
name=”out” is given 

1
 Object type, if specified, gets a value from the enumeration set ObjectType_enum = {“cel”, “component”}. Specifying the object 

type enables a user/developer to exploit specific programming interface closely related to the specified type of object. 
2
 If this attribute is not present, all related EMC data are stored directly in VAM IF chapter.  If a relative path is given, this path is 

relative to the VAMIF chapter itself, is a separate directory. 

Example: 
<object dir="…\NAND1" name="NAND1" origin="Author: …" type="cell"> 

 <Emc_set dir="…\NAND1" name="inp" origin="Author: …"> 

  <EMC_header> 

   <col_header index="2">  T2_NMOS_Vth</col_header> 

   <col_header index="4">  T4_PMOS_Vth</col_header> 

   <col_header index="1">  T1_NMOS_Vth</col_header> 

   <col_header index="3">  T3_PMOS_Vth</col_header> 

  </EMC_header> 

  <EMC_data type="matched" cols="5" EMCs="100" pathname="…\inp_matchd.dat"/> 

  <EMC_data type="local" cols="5" EMCs="100" pathname="…\inp_local.dat"/> 

  <EMC_data type="c2c" cols="5" EMCs="100" pathname="…\inp_c2c.dat"/> 

  <EMC_data type="w2w" cols="5" EMCs="100" pathname="…\inp_w2w.dat"/> 

  <EMC_data type="b2b" cols="5" EMCs="100" pathname="…\inp_b2b.dat"/> 

 </Emc_set> 

 <Emc_set dir="…\NAND1" name="out" origin="Author: …” > 

  <EMC_header> 

   <col_header index="2">delay</col_header> 

   <col_header index="1">power</col_header> 

  </EMC_header> 

  <EMC_data type="matched" cols="3" EMCs="100" pathname="…\out_matchd.dat"/> 

  <EMC_data type="local" cols="3" EMCs="100" pathname="…\out_local.dat"/> 

  <EMC_data type="c2c" cols="3" EMCs="100" pathname="…\out_c2c.dat"/> 

  <EMC_data type="w2w" cols="3" EMCs="100" pathname="…\out_w2w.dat"/> 

  <EMC_data type="b2b" cols="3" EMCs="100" pathname="…\out_b2b.dat"/> 

 </Emc_set> 

 <instance_list type="matched"> 

  NAND1_1 NAND1_2 …  

 </instance_list> 

 <instance_list type="local"> 

  NAND1_1 NAND1_2 …  

 </instance_list> 

 <instance_list type="c2c"> 

  NAND1_1 NAND1_2 …  

 </instance_list> 

 <instance_list type="w2w"> 

  NAND1_1 NAND1_2 …  

 </instance_list> 

 <instance_list type="b2b"> 

  NAND1_1 NAND1_2 …  

 </instance_list> 

</object> 
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14.3.7. The container element 

The container element is defined as  

name=string the name of the container required 

type=string Following types are predefined (1) 

Type=manufacturing 

Type=model 

Type=signature 

Type=configuration 

required 

description=string the description or comment, provided by user or program optional 

origin=string  the origin of the data, either provide by users or generated 
by program. Format: YYYYMMDD hh:mm username 
description  

automatic 

(value)* Zero of more, user / case specific optional 
(object)* Zero of more, user / case specific optional 
(container)* Zero of more, user / case specific optional 
 

(1) at this moment we consider: 
Containers of type 

 Manufacturing: this container holds information that describes the manufacturing 

process, design rules, … 

 Model: this container holds models 

 Signature: this container holds “signatures”, i.e. condensed properties of unique 

instances of a distribution of cells. 

 Configuration: a user defined, tool specific, free format list of configuration data for 

tools. 

 

In the remainder of this document, we often use following shorthand 
container xyz 

or even 
model xyz 

actually means: 
container type=model name=xyz [description=…] [origin=…] 

Which looks in XML as:  
<container name=xyz type=model description=… origin=… 

> … </container> 

 

This item may contain 
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In summary: 

 an object contains a single [output domain] EMC set or one or more parameters from 

which the EMC set is internally created, and optional ”values”. EMC sets and 

parameters do not exist outside an object, and there is exactly one output domain 
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EMC set present or created in every object.  (Q:  is this limitation acceptable?  Yes, 

as: correlation is guaranteed by construction and correlation propagation enforced) 

(one keeps the possibility to import other EMC’s values via the parameter EMC 

attribute) 

 container‟s content is free.  They may contain anything, including any other 

containers, values and objects, but not parameters 

 of these the configuration container is just as well free, but is not assumed to contain 

anything other than values and other configuration containers.  Configurations are 

intended to store user/local/machine/tool specific things and are not for documented 

use in the VAMIF sense. 

14.4. User guide to the VAMIF API (Application Programming Interface)  

This chapter should provide concise user guide for the developers involved in the 
development of all simulation/ modeling levels of the overall VAM flow. The more detailed 
and complete description of VAM IF API will be left to Appendix chapters. 
As was already mentioned, the whole input/output communication of each simulation level is 
carried through appropriate VAMIF chapters. Tool (wrapper) writers use the standardized 
interface -“VAMIF API”- to access and process data stored in a VAMIF chapter and also write 
back simulated (or computed) data to another (probably higher level) VAMIF chapter. The 
general VAMIF API functionality should be preserved over different implementation 
platforms. Due the platform independency and nice Matlab interface the JAVA was choose to 
implement VAMIF API at first. For the documentation of VAM IF API implemented in JAVA 
see Appendix A. 

14.4.1. Loading, parsing and (re)writing VAMIF chapters 

This chapter will present how to load a chapter from a file, extract and write back relevant 
information and again save a chapter in a file.  
To load, display and write a whole chapter the class VamifChapter supply the set of public 
interface methods. The following Matlab example demonstrate their typical usage: 
 

Example 1 

1 techChapter = VamifChapter(„technology.xml‟); 

2 techChapter.browse; 

3 techChapter.write(„technology.xml‟); 
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At the first line the VAMIF chapter stored in the the file „techchap.xml‟ is loaded into the 
variable techChapter. The Matlab variable techChapter is actually a JAVA object with possibility 
to apply certain set of methods (called interface) to it. The complete public interface of a 
JAVA object or class can be revealed by using the Matlab command methods. The line 2 and 
3 shows two methods of the public interface of the class VamifChapter – the method display 
displays the content of a chapter on the standard output and the method write saves a 
chapter in a file specified by the first argument of the method (in our example it is the same 
file „technology.xml‟). Because a VAMIF chapter is in fact an XML application, the data are 
stored in a tree structure with several types of nodes. To access any piece of information, we 
have to specify a node’s tree path with possible set of node’s attributes to avoid ambiguity. 
The following Matlab example shows the way how to access VAMIF objects and values form 
previously loaded technology chapter (see Example 1) 
 
Example 2 
1  deltaW = techChapter.getVamifElement('object(name=delta_w)'); 

2  thickness = techChapter.getVamifElement('/metal(name=metal1)/object(name=thickness)'); 

3  alfa = techChapter.getVamifElement('value(name=alfa)'); 

 
The argument of the method getVamifElement could be simply type of a node bare name 
(parameter, object, value, …) or a node tree-path name (see line 2: 
/metal(name=metal1)/object(name=thickness)) possibly combined with one or more pairs 
node-attribute-name = node-attribute-value (see line 1,2 and 3: name=thickness, 
name=delta_w,…). 
The following example demonstrates the way how modified, newly computed or simulated 
objects or values or any other VAMIF elements could be added into a chapter. 
 
Example 3 
1  techChapter.addVamifObject(EMCSet); 

2  techChapter.addVamifObject('interconnect_scaling(name=metal1)', dROverR); 
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The method addVamifElement can have one or two arguments: at the first line the method 
absorbs one argument EMCSet - a VAMIF element that should be added to a chapter. At the 
second line the first argument specifies a tree-path under which the object should be added 
and the second argument dROverR is again a VAMIF element that should be added to a 
chapter. If the tree-path argument is missing the VAMIF element is attached directly as a 
child node to an object on which the method was invoked (in our example the method was 
invoked on techChapter object, so the EMCSet object is added at the top level of techChapter 
while dROverR object is added in the path specified by the second argument). 
Note: Chapters being updated must be integrally locked before loading.  Writing that chapter 
clears the lock.  Read-only access remains always possible.  The locking system must be 
foolproof (locks expire automatically).  Locking is a future extension, not immediately needed. 

14.4.2. Creating new VAMIF elements 

Until now we discussed the situation when VAMIF elements (object, container, value …) 
were created based on loading and parsing their XML representation from a VAMIF chapter. 
But the user of a VAMIF chapter also has to be able to create new VAMIF elements based 
for instance on the measurements data, simulation data, data from FABs and so on. The 
next example shows creation a new object element based on some hypothetical variability 
data to demonstrate hierarchical way of such process. 
The object element servers for keeping correlated variability data (parameter elements) 
together with related value elements. The Java class VamifObject represents he basic way 
how to construct an object VAMIF element. Nevertheless a user instead of creating 
VamifObject most likely will use the specialized variants (Java subclasses) of the VamifObject 
called Rule, Cell, Component, … The following example demonstrates the creation of Rule 
element of type mosfet containing some parameter and value elements. 
 
Example 4 
1  % create the gauss distribution „gauss‟ 

2  vthMean = 0.5; 

3  vthSigma = 0.01; 

4  gauss = GaussDist(vthMean, vthSigma); 

5  gauss.setFraction(0.90); 

6 

7  % create the EMC distribution „EMC‟ 

8  EMC = EMCDist(„Emc_set‟); 

9  EMC.setFraction(0.10); 

10 

11 % create the matched geometry  

12 geo = Geometry('matched') 

13 geo.addDistComponent(gauss); 

14 geo.addDistComponent(EMC); 

15 

16 % create the parameter Vth 

17 vth = Parameter(„vth‟, vthMean, geo); 

18 vth.setDesc('The vth parameter'); 

19 

20 NMOSTypeName = 'nmos_pt_013'; 

21 NMOSRule = Rule(RuleName.MOSFET); 

22 NMOSRule.setAttr(„type‟, NMOSTypeName); 

23 NMOSRule.addParam(vth); 

24 
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25 delta_w = NumericValue('delta_w', 0.0); 

26 NMOSRule.addValue(delta_w); 

27 delta_l = NumericValue('delta_l', 0.0); 

28 NMOSRule.addValue(delta_l); 

29 w0 = NumericValue('w0', 0.0); 

30 NMOSRule.addValue(w0); 

31 l0 = NumericValue('l0', 0.0); 

32 NMOSRule.addValue(l0); 

19 compChapter.addVamifElement(NMOSRule); 

 
This parameter vth comprises real variability data only for „matched‟ geometry. This geometry 
has two distribution components, a gauss distribution and a EMC distribution. The lines 1-5 
displays the way how to construct the gauss distribution element gauss from mean and sigma, 
at the lines 7-9 the EMC distribution element EMC is created and „matched‟ type of geometry 
geo (containing previously created distribution objects gauss and EMC) is constructed at lines 
11-14. The parameter element vth is created at lines 16-18. The rule element of ‟mosfet‟ type 
is constructed at lines 20-21, the line 22 sets the name attribute of the rule element and the 
parameter element vth is added to the rule at the line 23. At lines 25-32 a set of value 
elements – delta_w, delta_l, w0 and l0 - are added to the rule element and finally the rule 
element is added to the chapter compChapter. 
The similar approach can be utilized to create other types of VAMIF elements. The only 
requirement is that a VAMIF element stored in a chapter has a counterpart Java class 
implemented in the VAMIF API.  

14.4.3. Read and write data from object element 

The object element represents a set of correlated variability data together with some other 
non-variable information attached to it. For detail explanation of its structure see chapter 5.3. 
This chapter demonstrates how to retrieve numerical data from object element, how to use 
this data in a computation and produce newly computed object elements. 
 
Example 5 
1  % retrieve (non-variable) values  

2  % from NMOSRule and PMOSRule elements 

3  % ----------------------------------- 

4  nmos_delta_w = NMOSRule.getValue(„delta_w‟); 

5  nmos_delta_l = NMOSRule.getValue(„delta_l‟); 

6  nmos_w0 = NMOSRule.getValue(„w0‟); 

7  nmos_l0 = NMOSRule.getValue(„l0‟); 

8  pmos_delta_w = PMOSRule.getValue(„delta_w‟); 

9  pmos_delta_l = PMOSRule.getValue(„delta_l‟); 

10 pmos_w0 = PMOSRule.getValue(„w0‟); 

11 pmos_l0 = PMOSRule.getValue(„l0‟); 

12  

13 % create new VAMIF cell object 

14 % ---------------------------- 

15 cellName = „NAND2‟; 

16 cell = Cell(cellName); 

17 cell.setDir(„design1/cells/NAND1‟); 

18 

19 % define input domain  cell‟s parameters 

20 % -------------------------------------- 

21 cell.addInpParam(„T1_vth‟); 
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22 cell.addInpParam(„T2_vth‟); 

23 cell.addInpParam(„T3_vth‟); 

24 cell.addInpParam(„T4_vth‟); 

25 

26 % define output domain cell‟s parameters 

27 % -------------------------------------- 

28 cell.addOutParam('power'); 

29 cell.addOutParam('delay'); 

30 

31 % set gamma as a common value for all parameters involved in the computation 

32 % -------------------------------------------------------------------------- 

33 VamifObject.setGamma(0.2); 

34 

35 % run Exponent Monte Carlo simulation over all geometries 

36 % ------------------------------------------------------- 

37 geometry = {'matched', 'local', 'c2c', 'w2w', 'b2b'}; 

38 nofMCSamples = 100; 

39 for j=1:length(geometry) 

40   geo = geometry{j}; 

 

41   for i=1:nofMCSamples 

42 

43     % randomly pick Vth for each cell‟s transistor and apply Pelgrom rule 

44     % ------------------------------------------------------------------- 

45     idx = NMOSRule.pickInstanceIdx(geo); 

46     T1_prob = NMOSRule.getInstanceProb(geo, idx);  

47     T1_vth0 = NMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');  

48     T1_vth = pelgromRule(T1_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0); 

49     idx = NMOSRule.pickInstanceIdx(geo); 

50     T2_prob = NMOSRule.getInstanceProb(geo, idx);  

51     T2_vth0 = NMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');  

52     T2_vth = pelgromRule(T2_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0); 

53     idx = PMOSRule.pickInstanceIdx(geo); 

54     T3_prob = PMOSRule.getInstanceProb(geo, idx);  

55     T3_vth0 = PMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');  

56     T3_vth = pelgromRule(T3_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0); 

57     idx = PMOSRule.pickInstanceIdx(geo); 

58     T4_prob = PMOSRule.getInstanceProb(geo, idx);  

59     T4_vth0 = PMOSRule.getOutParamInstanceVal(geo, idx, 'Vth');  

60     T4_vth = pelgromRule(T4_vth0, nmos_delat_w, nmos_delta_l, nmos_w0, nmos_w0); 

61    

62     % now an analog simulation comes to determine „delay‟  

63     % and „power‟ for the current instance of the cell 

64     cellNetlist = modifyNetlist(cell, T1_vth, T2_vth, T3_vth, T4_vth) ; 

65     [delay, power] = analogSimulation(cellNetlist); 

66 

67     % store simulation results in the cell object 

68     % ------------------------------------------- 

69     instanceName = [cellName, '_', int2str(i)]; 

70     prob = T1_prob * T2_prob * T3_prob * T4_prob ; 

71     inpParams = [T1_vth, T2_vth, T3_vth, T4_vth] ; 
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72     outParams = [delay power]; 

73     cell.addSample(geoType, instanceName, prob, Vth, inpParams, outParams); 

74   end 

75 end 

 
The example shows the code that enables characterizing the variability of the cell NAND2. in 
terms of delay and power. The input variability is represented by the variability of Vth of cell’s 
transistors. We assume that the VAMIF elements NMOSRule and PMOSRule have been 
already loaded or created (see the code in the previous chapter).  
At lines 1-11 non-variable numerical parameters used for evaluation of Pelgrom rule – 
delta_w, delta_l, w0, l0 – are retrieved from NMOSRule and PMOSRule elements. Lines 13-
17 displays the creation of the new cell VAMIF element with corresponding cell name NAND2 
and root directory where simulated results are stored. At the lines 19-29 the parameters of 
input and output domain are defined. The method VamifObject.setGamma at the line 33 sets the 
Gamma value. This method sets the Gamma value for all parameters involved in a 
computation. The set Gamma value remains valid till the next calling of the method 
VamifObject.setGamma. The Gamma is the exponent used to sample a EMC distribution. 
Gamma is a number between 0 and 1, where 0 corresponds to classic MC sampling, 1 
corresponds to Entry Sampling and values in between are Weighted Monte Carlo sampling3.   
The outer loop over all types of variabilities contains the inner “Monte Carlo” loop. The 
method pickInstanceIdx randomly picks an index from an existing EMC distribution set. In 
case when a distribution of a particular variability type is not a EMC distribution, it is 
numerically converted to a EMC distribution. Then the method getInstanceProb and 
getOutParamInstanceVal return probability and concrete value of the output parameter 
corresponding to the randomly picked index. Retrieved Vth values are subject of Pelgrom rule 
– in this code represented by function call pelgromRule. Resulting Vth values are then used to 
modify original (non-variable) cell netlist to create its random instance which is then 
characterized by an analog simulation (lines 62-65). 
The results of the cell characterization - values of delay and power - are then stored in the 
output domain of the cell object using the method addSample. After finishing the inner and 
outer loop the cell object NAND2 should be complete characterize in its output domain (together 
with input data stored in its input domain). 
 
 

                                                
3 if you do not know which gamma to choose, set gamma to 1 if you pick only one brick to 
build a wall, and go down to 0.2…0 if your need many independently picked bricks to build a 
wall.  Note thus that gamma may vary significantly amongst geometries.  Matched and 
Local_systemtic typically have values 0 … 0.5; c2c, w2w and b2b have values around 0.5 … 
1. 
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15. Underlying models for variability mechanisms 

This chapter contains the descriptions of variability and reliability mechanisms. 

Conventions for denominating distributions used in this chapter: 
Vth, W, T: means the nominal, average or invariable value 
ΔVth, ΔW, ΔT: static shifts away from the above value 

If a parameter is called “delta_vth”, it means that it is referred 
to a certain “vth” in a relative fashion.  The invariable geometry 
of a “delta_something” is exactly zero. 
If the parameter would be called “vth” as such, the members of 
the EMCs are not relative. 

σVth, σW, σT: “distribution” of the parameter. 
In case of a Gaussian distribution “σ” means standard 
deviation, but in VAM we use the symbol σ in a generalized 
way, implying 5 corerlation_geometries etc. 
Each of the 5 correlation_geometry distributions may be 
explicited as σMVth, σLVth, σCVth, σWVth, σBVth.   
Refrain from using algebra on σs that is valid for true 
Gaussians only. 

15.1. MOSFET static variability 

Part of chapter “compact model”  

15.1.1. model 

Most variability parameters and several degradation mechanisms are at some point during 
the modeling flow condensed into a ΔVth and other netlist components.   
For that purpose every MOSFET is a SPICE netlist is reparsed as: 
 

 
Figure 3 Injector concept. 
 
 
The ΔVth in this scheme is series voltage source added to the netlist; the ΔID/ID (Δbeta) 
Is a current dependent current source added to the netlist. 

Note that in the VAMIF approach, the MOSFET, or any transistor, itself is a 
blackbox.  Its modelcard is NOT changed.  This allows using any compact 
model, macro, subcircuit, with minimal invasion in the existing simulation 
flow 

 

Pelgrom’s rule for W and L scaling applies to the matching geometry only.  See further 
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15.1.2. Object and parameters 

object  

type=mosfet 

name=<mosfet_type> should correspond to the model name in SPICE 

(“modelcard” such as nmosfet, mypmos, nmos_hv etc.) Default: this object applies to all 
transistors.  One may also have multiple mosfet_type entries in this container. 
 

value compact_model_path path to compact model of this mosfet_type 

[optional]. 

parameter delta_vth  basic ΔVth variability – note that the Pelgrom rules 

apply to the “matched geometry” fraction only; for 
other geometries the distribution is taken as such.  

Note also that the invariable delta_vth is 0 

parameter delta_beta basic ΔID/ID or Δbeta variability - note that the 

Pelgrom rules apply to the “matched geometry” 
fraction only!  Note also that the invariable 

delta_beta is 0. 

value delta_w    default = 0 

value delta_l    default = 0 

value wref     default = 1um, the reference MOSFET for which 

the ΔVth and Δbeta data are valid. 

value lref     default = 1um, idem 

Not yet documented, but eventually coming: 

parameter r_sd  modeling SD leakage variability 

parameter r_gate  modeling gate leakage (GS, GD) 

parameter r_sat  modeling saturation impedance variability 

If documented, the unpredicted part of strain can be modeled 

value strainfactor if given, additional Δbeta variability  may be added 

starting from overlay variability (parameter 

alignment in rule litho): 

Δbeta=strainfactor*alignment 

 

ΔVth and Δbeta in this approach are assumed to already include the variability 
effects of dopant and interface state fluctuations, CD variations, LER variations 
and layer thickness variations, and more.  If one chooses to include the 
propagate one or more of DF, ISF, CDV, LER or LTV separately, make sure that 
their effect is taken out of the ΔVth and Δbeta parameters. 
 
In such case, one could e.g. implement CD variations and LER by directly 
impacting the L and W parameters of the MOSFET modelcard. 
 
Our preference and baseline however is that ΔVth and Δbeta do include all 
mentioned effects. 

 
In a typical case, for each correlation_geometry, there is a EMC table representing the 
mentioned parameters, in a correlated fashion, e.g.: 

ptoir delta_vth delta_beta r_sd r_gate 

0.00013 +0.00239 -0.0445   

0.00044 -0.00097 -0.0067   

0.000012 -0.00566 +0.0125   

… … …   

15.1.3. Scaling with W, L and others 
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Pelgrom’s rule for W and L scaling applies to the matched correlation_geometry only 
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having nominal design size Wref and Lref. Often the nominal size is 1um. 

For all other geometries,  Vth  and    are independent of W and L! 

 

At this moment we assume that there is no significant scaling of  Vth  and     with 

temperature and VDS. 

15.2. Template format for the description of a variability or reliability mechanism 

This paragraph describes how a reliability/variability model must be setup in order to be 
implementable in VAMIF/VAM. 
Essentially such description consists of 4 parts. 

1. analytical or algorithmical model (say, C-code), containing design values and 

technology parameters, which describes (a) network element(s) for insertion in a 

SPICE netlist. 

Example: in TDDB a extra resistor R (or alike) obeys: 
Δ(1/R) = Δ(t) * “slope” * exp(A * max(abs(VGS), abs(VDS)) 
Where this formula contains design values t, VGS, VDS (i.e. known by the 
designer or simulator, technology value A (a technology dependent constant), 
and the parameter “slope” 

2. statistical distribution of the parameters in that model  

In a general case, all parameters are represented in a emc_set in a VAMIF 
“object”.  In the most elaborate case, statistics for all correlation_geometries 
exist, directly or indirectly derived from measurements.  Minimally only 
geometry “matched” (=“all”) must exist.  If there is not variability, the EMC may 
contain just one entry or line. 
The values are added to the object separately.  Also the reference state (the 
conditions where the EMC measurements are taken) is given as values. 

It is thus silently assumed that the EMC set refers to one single reference case 
for [Wref, Lref, tref, Tref, Vref, …], and that the object thus contains also the relevant 
Wref, Lref, etc. 

It is mandatory that the model contains exclusively “values” known by the 
designer (or designer tools), and “parameters” coming from measurements and 
likely subject to a distribution.  Key is also: how to obtain such measurement 
data and transform them in a good set of parameters. 

3. scaling rules allowing to translate the effect to a different case that is not in the 

measured set (i.e. in the set that is represented in the EMC tables). E.g. the case 

described in the EMC applies to Wref, Lref and VGSref; now what would it transform to 

for a case W, L, VGS? 

Examples in the following paragraphs 

4. scaling the cumulative effect of multiple different stress conditions 
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Examples in next paragraphs 

We consider worst case degradation conditions captured in a single 
degradation corner 

 
These 4 items are each time a sub-paragraph in the real models here below 

15.3. Hot carrier degradation 

15.3.1. Analytical model 

We propose to follow the approach as Chittoor Parthasarathy4 compiled in his PhD. 
The degradation [relating to created interface states, hence to saturation current, gm, weak 
inversion slope and Vth] is expressed as: 
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Where ΔD is proportional to the “damage” in terms of interface states, n is about ½, m is 
about 3 [depends on VGD] and H is a technology constant.  
We assume that we can calibrate the formula with a reference measurement, thus: 
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which opens the perspective for straightforward implementation in the VAM IF, as ΔVTH and 
Δgm/gm can be modeled with analog net list element.  The variability thereof is then easily 
brought in via variability on these parameters themselves. 
We silently assume that we can interchange Δgm/gm and ΔID/ID, thus: 
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The degradation under bias conditions that have been different during different time 
spans t1, t2, … is straightforward extension: 
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4
 C. Parthasarathy, “Etude de la fiabilité de technologies CMOS avancées: applications a la simulation 

de la fiabilité de conception de circuit numeriques et analogiques”, PHD thesis, 9 Oct 2006, chapter 
4.2.  With acknowledgements for Guido Groeseneken. 
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This formula is usable as such when IB or IB/ID is known by the simulator.  Often this is not the 
case. 
In order to tackle that situation, we include in the rule Parthasarathy’s (with some pragmatic 
simplification) approach to calculate IB/ID: 
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for VDS>VGS-VTH, (for an NMOSFET).  Otherwise IB is just zero. 
 

And we reduce to two technology constants A and VB: 
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A and VB are approximately constant for a given type of MOSFET in a given technology. A is 
not of importance as it is eliminated in the HCD formula.  VB must be obtained from a IB/ID 
calibration measurement plotted as follows.  Temperature dependence is neglected. 

 
Figure 4 Hot Carrier Degradation slope. 

 
 

Although conceived for NMOS, the overall HCD formula might be applied to PMOS.  In 
that case, VDS>VGS-VTH! In a PMOS the absolute value of VTH decreases due to HCD, 
and the gm decreases.  Typically one chooses to neglect the effect of HCD in PMOS. 

15.3.2. Parameters (and EMC table) 

object  

type=hcd 

name=<mosfet_name> 

the transistor type to which this 
applies.  Default: all transistor 
types. 

  
parameter delta_vth_ref  
parameter delta_beta_ref  

value t_ref    

value id_ref  

value ib_ref // if not 
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given, the 
IB/ID 
estimation 
formula is 
used 

value w_ref 

value n optional, 

default 0.5 

value m optional, 

default 3 

value vb // used only 

for 
estimating 
IB/ID , see 
formula.  
Good 
default 
wanted – in 
absence, 
without any 
guarantee, 
use 1V. 

value vth_ref // used only 

for 
estimating 
IB/ID // 
default: use 
the 
MOSFET’s 
Vth, 
something 
like 0.5V 
  

15.3.3. scaling rules for design parameters 
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Allows to scale for different W.  L is not explicit in this formula, ID/IB depends on L, it is.  One 
must of course know ID and IB either from the simulations or from 

  THrefGSDS
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log  (see above) 

15.3.4. Scaling rules for dynamic stress conditions 
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 indicates that 

the stress histories can be added before taking the result to the power n. 

15.4. Manufacturing yield 

This item describes hard defects that occur in manufacturing and that are not modeled via 
any variability and reliability rules in VAMIF.   This is often described as functional yield in 
contrast to parametric yield. 
 

Formula:   ][

1

2

2

marea

m
yieldyield   

Where  densitydefectyield
m

_exp21
     Poisson: probability to have no defect in 1 m2 

In chapter system: 
Container system_properties 

value chipsize nnn in m2!  (Si units) 

value chipdiagonal nnn in m  (Si units)  // optional 

 

In chapter technology: 
object name=manufacturing_yield  

parameter defect_density average=ddd defects per m2! (Si units) 

parameter defect_size …  optional 

 

Defect_density given as such only as an average and no distribution 
assumes that the statistics are pure poisson irrespective of geometry 
 

This is an exception to the prescribed use of parameter. In fact one can 

imagine that the above is a shorthand for: 
Container type=rule name=manufacturing_yield  
 parameter defects_density  

  average ddd stddev ddd  

  geometry na 

   distribution poisson average ddd  

 [parameter defect_size … ] 
 

 

Parameter (hence distribution) defect_size is not documented at the moment.  In the future 

this distribution may be used for finer assessment of impact of manufacturing defects on 
subcircuit size. 

15.5. Interconnect R and C variability 

As these are device electrical parameters, this is part of chapter “compact_model” 
 
For an interconnect resistance 

 
av

av

av R

RR

R

R 
  
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Where Rav is the average [nominal, design]5 resistance of a resistor or interconnect, R is the 
actual value, ΔR is the difference between the two.   
This ratio is subject to a distribution, in shorthand6 

 






 










av

av

av R

RR

R

R
  

For a particular resistor or interconnect in a certain layer, use following Pelgrom-like relation 

for the matched geometry only: 
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
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

 
  

 (W are design widths, W+ΔW are effective/electrical widths) 
 
Similarly 

 
av

av

av C

CC

C

C 
  

Where Cav is and average [nominal, design]7  inter-interconnect capacitance, C is the actual 
value, ΔC is the difference between the two.   
This ratio is subject to a distribution, in shorthand 

 
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


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C

C
  

For a particular later capacitance within a layer, use following Pelgrom-like relation for the 

matched geometry only: 
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L is the wire length, S+ΔS are effective/electrical spacings 
Within the same layer, ΔS=- ΔW 

 
For capacitances between interconnects on different layers, the key layer name is the 
dielectric name. 
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An in more elaborate form: 
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L is the effective wire length, the length over which the line segments overlap 
W+ΔW are effective overlap width 

“overlay”: 






 

C

C
  has a fraction due normal C and to overlay variability.  The overlay 

part may be significantly larger than the classic C variability.  The additional fraction of 
“overlay” is defined by the device-specific value η (eta). 

η (eta) must be obtained by the designer or by back annotation.  

                                                
5
 all three mean the same: it is the value that the simulation tool assumes in the non-variability-aware 

simulation flow, and to which VAMIF is assumed to add variability. 
6
 Shorthand σ stands for any distribution, including multiple geometrical correlations.  It implies the 

same information as in reserved keyword parameter. 
7
 All three mean the same: it is the value that the simulation tool assumes, and to which VAMIF is 

assumed to add variability. 
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Typically: 

 If one of the layers overlaps completely the other, over the 

full length, as in matched capacitor design, eta is zero. 

 A wire or plate that orthogonally crosses: eta is zero. 

 If the capacitor is partly overlapping for both metals, eta is 

maximal, 1. 

 For two wires of same width on top of each other, eta is 

small, in the order of 0.0 to 0.2. 

Default eta is 0. 

 
 
Object  

type=interconnect_rc  

name =<layername> 

Layername default: if not 
indicated, applies to all 
interconnect layers – must 
comply to interconnect name 

used in backend_definition in 

chapter technology.  It means 
also that multiple versions of this 
rule may exist for the various 
metals. 

parameter delta_rr . 
 basic 

oR

R







 
 variability – note 

that the Pelgrom rules apply to 
the “matched distribution” fraction 
only 

value l0      

value w0      
Both default = minimum width (!)  
in that layer 

value delta_w   

 
default = 0. defines electrical 
width wrt design width.  Note that 
delta_w equals also –ΔS  (?).  
includes the LER effect (how?) 

value sheet_r  sheet resistance R□ for large 
squares.  Optional, only given if 
known, 

value s0     default = minimum spacing in that 
layer (for C)  

 

How should software tools proceed when they have only a 
backannotated R, but no clue on W and L of line segments? 
We propose:  estimate L as: L = R/ R□*(W0+ΔW), i.e. we assume that 
the wire has minimum width, which is a reasonable worst case. L 
should not drop below minimum. 

<<<Similar approach for C to be explicated???>>> 

 

Alternative approach to import a few critical resisters / capacitors in VACCinate: 

-think of resistor naming as R_METAL1_W2u somenode othernode bwp*50Ohm 

-or code in in extra comment line in spice netlist 
-or in separate table with the resistor name as entry 
-Q: how about length parameterization 
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Proposition to define C from inside a spice netlist for VACCinate 
lateral 
c_metal1_l200u_s2u line1 line2 50fF 

vertical 
c_diel2_l200u_w2u_eta0.1 line2 vdd 40fF 

Any simple capacitor is perhaps subdivided in many individual capacitors.  Is that worth 
the effort? 

 
 
Object  

type=vertical_capacitor  

name =<dielectriclayername> 

Layername default: if not 
indicated, applies to all dielectric 
layers – must comply to 
interconnect name used in 

backend_definition in chapter 

technology.   

parameter delta_cc_zero . 

parameter delta_cc_overlay . 
 oC

C







 
  and 

overlayC

C







 
  

variability – note that the Pelgrom 
rules apply to the “matched 
distribution” fraction only 

value l0      

value w0      
 

value delta_w   

 
default = 0. defines electrical 
width wrt design width.   includes 
the LER effect (how?) 

 
 
Object  

type=via  

name =<layername> 

Layername default: applies to all 
via and contact layers – must 
comply to via layer used in 

backend_definition in chapter 

technology.  
parameter delta_rr  
  
value r      

basic 
oR

R







 
 variability 

nominal r of the via (optional data) 

 
 
A point tool will translate chapter technology to chapter compact model, and do: 

σ(deltaR/R) = alfa * (σthickness/thickness)  + beta * σ(LER) / w + gamma*(effect of 
barrier layer thickness horizontal) + delta*(effect of barrier layer thickness vertical) 
 
alfa and beta are constants that need separate calculation. In the absence of any better 
value, we use the default 1.  

thickness is the average of thickness found in the backend_definition 

σthickness is the distribution thereof 
the value w = welectrical = wdesign+delta_welectrical. 
σ(delta_w) is the distribution of delta_welectrical, which is derived from delta_wphysical see 
below. 
(both σthickness and σ(delta_wphysical) are subject to 5 types of geometry if available from 
fab.) 
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delta_welectrical = f(LER, technology things) + f(delta_wphysical) 
default rule is: delta_welectrical = delta_wphysical 

delta_wphysical is found in the backend_definition 

LER is found in rule litho 

 

15.6. Litho variability 

Part of chapter technology. 
 

The 4 elementary litho parameters are: 

 Δdose/dose , as derived from variability on a dose in [mJ/cm2] 

 Focus [nm] 

 Aligment [nm],  overlay error 

 LER [nm], accompanied by the correlation length along edge 

This litho LER may translate to the LER-effect in interconnects?> 
 
The two first have a rather well documented impact on printing accuracy, as: 

CD = f(dose, focus)  
A good, simple first order formula exists: 
 CD = a* Δdose/dose + b*focus2   [8] 

This may be the basis to for a rule estimating linewidth and spacing variations for 
interconnects and MOSFET W and L.   
 
These a en b are functions of local layout geometry,  

 Hence, a end b are parameters with only local_systematic variability 

 Eventually, OPC-like tools may predict these, thus yielding a and b per polygon piece.  

We assume that this is not the case, hence: 

 
For the moment we propose the following approach: 

 a and b are defined as parameters (local_systematic only9) representing the “general  

layout style” used in the design.  For a so called litho-friendly (RDR) layout style, a 

and b are lower and have smaller distributions than for a spaghetti style layout.   

                                                
8
 Staf Verhaegen, IMEC, 22-jul-07 

9
 Although a and b are represented as local_systematic, tools should apply it to all geometries of 

delta_dose and focus in the formula CD = a* Δdose/dose + b*focus. 
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object name=litho 

 parameter a   (local_systematic only) // reflects layout style 

 parameter b   (local_systematic only) // reflects layout style 

 parameter delta_dose Δdose/dose, average is 0 

 parameter focus  in [m] average is 0 

 parameter alignment in [m] average is 0 (overlay alignment error) 

 parameter ler  in [m] line edge roughness 

 value     ler_length [m] correlation length of LER 

 

typical values for 65nm (no guarantee on these values!) 
1sigma(focus)=50nm 
1sigma(Δdose/dose)=2% 
1sigma(alignment)=10nm 
1sigma(LER)=2nm, averaged 
1sigma(CD) due to dose = 4%, for long parallel lines (matched) 
1sigma(CD) due to focus = 4%, for long parallel lines (matched) 

15.7. TDDB on MOSFETs 

15.7.1. Piece-wise approximation model 

 
Figure 5 MOSFET soft and hard breakdown. 
 
 

 soft breakdown (sbd) happens after a time tsbd.  After that the initial “fresh” I/V 

characteristic changes to a “sbd” I/V characteristic. This I/V characteristic is strongly 

non-linear, and is characterized by.  

 ware-out (wo) happens after a time two, after which the device goes in “hard 

breakdown” (hbd).   The I/V behavior becomes that of a simple time dependent, 

progressively decreasing resistance R, obeying: 

o Δ(1/R) = Δ(t) * slope * exp(A * max(abs(VGS), abs(VDS)) 

tsbd 

two “fresh”  

“sbd”  

Igate 

Elapsed time 

(J.S. Suehle et al.IRPS 2004) 

Slope, A 
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o Asymptotically R evolutes to zero!  The observed current limitation is due to 

external series resistances to the gate. 
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How is this injected (VACCinate) a Spice net list? 
 

In fresh state and in soft breakdown, gate leakage is a time 
dependent nonlinear resistance between G, S, D and B, as 
shown below.  

 

In hard breakdown the 
resistance is linear, and 
obeys.  
Δ(1/R) = Δ(t) * slope * exp(A * 
max(abs(VGS), abs(VDS)) 
 
Herein slope is a “parameter” 
and,  there is one technology 
specific  “value” A, which has 
unit [V] 
 
 

Figure 6 MOSFET soft and hard breakdown injection. 
 
 
We simplify the SBD model further: we disregard the small asymmetry between inversion 
and accumulation, and we completely disregard the leakage to Bulk.  The model will be 
implemented as a  Verilog-A model, which is identical in both quadrants. 

 

The proposed model10 for Fresh and SBD, for one quadrant is: 


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with 3 parameters that must be fitted to each measurement curve. 
R fits to the IV curve for high I. η (“eta”) and I0 determine the low current 
behavior.  Physically the “ideality factor” η must be larger dan 1. 
One can revert to a simple, piece-wise linear approximation, using R 
and a Von (dotted line in figure) in case the analog simulator can not 
handle the full model.  Von is then calculated from the formula, where 
Von=2R.I(Von) 

Figure 7 Simplified MOSFET soft and hard breakdown injection. 
 

15.7.2. EMC table of parameters 

This table contains a populations of measured devices (or created devices). Some 
parameters are given, duplicated for G-S and G-D. 
These are for a given [technology, NMOS/PMOS, tox,] W, L, T, t, …, example: 
ptoir Tsbd two slope_s slope_d rfresh rsbd_s rsbd_d etafresh etasbd_s etasbd_d i0fresh i0sbd_s i0sbd_d 

1 2022 23456 23.3 22.1 1.23e9 3.4e7 3.4e7 3,7 1.3 1.3 1.23e-19 3.4e-7 3.4e-7 

1 678 10987 24.5 23.7 9.88e8 1.1e7 1.1e7 3.5 1.6 1.6 9.88e-18 1.1e-7 1.1e-7 

1 13900 19765 21.7 19.0 7.88e8 2.9e7 2.9e7 3.2 1.5 1.5 7.88e-18 2.9e-7 2.9e-7 

                                                
10 R. Fernández, J. Martín-Martínez, R. Rodríguez, M.Nafría, and X. H. Aymerich, “Gate 
Oxide Wear-Out and Breakdown Effects on the Performance of Analog and Digital Circuits”, 
IEEE Transactions on ED, Vol. 55-4, p.997 (2008) 
 

R 

V 

R 

Von 

I 

V 
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In this table separate values for source and drain are given.  We might consider to simply 
further and make these identical. 

15.7.3. Rules for scaling W, L, T, t… 

Should tell us “what is the effect on elapsed time” when  stress condition V, T etc change.  
(attention: the measurement conditions after stress do not change) 
 
A Pelgrom rule applies to R, only for Matched 
 

15.7.4. Rules for scaling to multiple sequential stress conditions 

Approach: each stress condition on its own creates an “elapsed time”.  The different stress 
conditions just accumulate those times. 

15.8. NBTI of MOSFETs 

15.8.1. Algorithmical model 

 

 

Figure 8 Healing property of NBTI (negative-bias temperature instability) and effectiveness of 
duty-cycle in controlling Vth shift11 

                                                
11 Vattikonda R., Wang W., Cao Y., “Modeling and Minimization of PMOS NBTI Effect for 
Robust Nanometer Design”, DAC 2006 
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Function 

 
NBTI creates an upper and lower boundary between which the transistor will move.  The 
actual value at evaluation time is not known (pick randomly???) 

)_,,,,_,_,('

)_,,,,_,_,(

max

min

parameterssomeIDVDSVGSratetogglecycledutytimefVth

parameterssomeIDVDSVGSratetogglecycledutytimefVth




 

We to derive these relations from Cao’s model12, summarized in this table: 

 
 

15.8.2. EMC table and parameters 

 
NBTI/PBTI in combination with radon doping fluctuations and other sources of intrinsic 
device variability just interface state fluctuations and contribute in  statistical manner to the 
variation parameters at circuit level ΔVth and Δbeta  (see Section 15.1.2  and REALITY 
deliverable D1.2), hence their table representation follows that one of variability injectors in 
general. 
 

ΔVth and Δbeta in this approach are assumed to already include the variability 

                                                
12 Sarvesh Bhardwaj, Wenping Wang, Rakesh Vattikonda, Yu Cao, Sarma Vrudhula, 
“Predictive Modeling of the NBTI Effect for Reliable Design”, CICC 2006, p. 189 
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effects of dopant and interface state fluctuations, CD variations, LER variations 
and layer thickness variations, and more. 

 
In a typical case, for each correlation_geometry, there is a EMC table representing the 
mentioned parameters, in a correlated fashion, e.g.: 
 

ptoir delta_vth delta_beta r_sd r_gate 

0.00013 +0.00239 -0.0445   

0.00044 -0.00097 -0.0067   

0.000012 -0.00566 +0.0125   

… … …   

 

15.8.3. Scaling rules for circuit and use 

As statistical parameter, we consider the combined impact of NBTI/PBTI induced interface 
states with the other sources of intrinsic variations to apply the matched geometry only via 
variability injectors. Different amount of trap concentrations will capture the effect of the 
changing stress conditions, e.g., elapsed time, voltage, T etc. For that reason and  similar to 
the time-zero matched geometry, a variability a  Pelgrom rule will apply in this case. 

15.8.4. Scaling rule for mulitple stress conditions 

We do not consider multiple stress conditions yet. Instead we consider a corner like analysis 
approach that assumes all devices of the circuit to be subject to the same stress factors. 
Hence, all devices hence share the same VMIF compact model chapter. Yet we 
accommodate for different “flavours” of stressed circuits with all devices  subject to the same 
degradation by accommodating a different VAMIF compact model chapter for each degraded 
circuit. 

15.9. MOSFET hysteresis 

Some types of MOSFETs suffer from hysteresis.  Such are: SOI with floating body, 
MOSFETs as used in EEPROM and certain high-k gate MOSFETs.  Also NBTI is a kind of 
hysteresis that is not modeled separately. 
The hysteresis is modeled as a voltage source in series with the gate. Modelling details not 
available 

15.10. Variability of MOSFET temporal noise 

Temporal noise as such is not part of the VAM(IF).  It is assumed to be sufficiently covered in 
the normal design flow.  Yet variability of MOSFET noise is represented here.  Temporal 
noise sources are: 

15.10.1. MOSFET white noise 

Also known as (thermal ~, Johnson ~) noise 
(No model for distribution) 
No report has been found that thermal noise variability is significantly higher beyond the 
noise level itself, thus not modeled at the moment. 

15.10.2. MOSFET 1/f noise  

Also known as “flicker noise” (fn) 
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We assume following model for spectral noise density of a MOSFET’s equivalent gate noise  

fLW

KF
S

GeqV
..

  where KF is a technology constant, often given explicitly or indirectly in the 

SPICE model. 
We propose to represent the variability in a dimensionless prefactor, which is 1 on average, 
and which applies to the gate voltage domain. 

fLW

KF
prefactorfnS

GeqV
..

_ 2   

The Gaussian, instantaneous/temporal, distribution of the gate voltage offset itself is 
separately obtained by integration of S: 

f
fLW

KF
prefactorfnV

high
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f

f
RMSG  

1

.
__  

)4log(
.

__

low

high

RMSG
f

f

LW

KF
prefactorfnV   

Where fhigh corresponds to the bandwidth of the circuit node and flow is somewhere between 
the age of the circuit or the time since turning to accumulation (TBD). 
Smaller MOSFETS suffer from ever larger 1/f noise, just as they suffer from ever larger Vth 
variability.  Note that the factor W.L (electrical W and L!, as for Vth) in the formula represents 
a Pelgrom rule.  This Pelgrom rule (in contrast to the MOSFET Vth variability Pelgrom rule) 
applies to all geometrical correlations. 

15.10.3. MOSFET RTS noise  

To model RTS, we need: 
(1) The number of states per reference W*L area. 
(2) The distribution13 of Vth-equivalent amplitudes for a given state for such given W*L 

 In strong inversion 

 In weak inversion14 

The effective VG equivalent amplitude is inversely proportional with W*L, so these amplitudes 
must be given for a reference W and L.  If not given Wref and Lref are assumed 1um. 
(3) To every individual RTS state belongs a set of emission & capture time constants, or 

described as an overall time constant 
ceRTS 

111
  and a duty cycle.  τRTS and τc are 

approximately inversely proportional to inversion charge thus drain current density.  τe is less 
dependent of the current.  The RTS is most effective when τc  and τc are equal, at a current 

I50. 
 
The distributions of weak inversion amplitudes is very long tailed; the time constant 
distribution covers multiple decades (Ms to ns). 
 
The detailed description is subtle, yet for the purpose of estimating noise margin, one may 
suffice with a correlated set of following parameters: 

 Amplitude in strong inversion 

                                                
13

 K. Abe & al, ”Analysis of source follower random telegraph signal using nMOS and pMOS array 
TEG ” IEEE IISW 2007, proceedings p. 62 
14

 E. Simoen, B. Dierickx, "Critical examination of the relationship between random telegraph signals 
(RTS) and low-frequency (LF) noise in small-area Si MOSTs", 12th International Conference on Noise 
in Physical Systems and 1/f Fluctuations, St.Louis, Missouri, USA, 16-20 Aug., 1993 
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 Amplitude in weak inversion (it may be tricky to “invent” a value in case 

measurements are not available in the other mode.  It does not hurt to give as default 

value zero then)) 

 Reference drain current I50% at which the duty cycle is 50% (and τe = τc = 2* τRTS) for 

the reference W and L. 

 The actual time constant τRTS at I50%. 

 

How to use noise in a digital design flow?  
A possible approach for using this information for the digital 
design flow would be to adjust Monte-Carlo-wise the noise 
margin.   
Start from a default noise margin, and add to the margin the 
amplitude derived from the instantaneous range of eq gate 
voltages due to 1/f and RTS.  How to do this in practice and 
check if this corresponds to reality is an open research topic. 

 
We assume that if both RTS and 1/f are described, that they are cumulative.  This is not 
obvious as RTS and 1/f are emanations of the same phenomenon: 1/f can be described as 
the superposition of many smaller RTSs. 
Object 

type=mosfet_noise  
 

name=<mosfet_type> If name not given, applies to all MOSFETs 
Value kf Optional, rather build on the mechanism present in the existing 

SPICE models if available  
Parameter 

fn_prefactor 
Voltage domain prefactor to flicker noise. Average value being 
1 

Parameter 

rts_states 
number of RTS states in area Wref*Lref 

Value w_ref Effective (electrical) W 
Value l_ref Effective (electrical) L 
Parameter i_50 I50% , tauRTS and the amplitudes must be a correlated set of 

values. 
In case that either amplitude_si (strong inversion) or 
amplitude_wi (weak inversion) are lacking, 0 is a good default. 

Parameter tau_rts 

Parameter 

amplitude_si 

Parameter 

amplitude_wi 
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16. Other underlying models 

16.1. Activity, stress history on circuit parts (cells) and their inputs 

Is part of several chapters.  E.g. in chapter cell as it has to be used in the calibration of 

standard cells and memories for reliability effects.   
In order to calibrate cells for activity on their nodes, one needs a representation of “stress 
history”.  This is preliminary and needs huge refinements. 
 

The age of a device is represented in chapter system as 
Container name=system_properties 
 value age nnn     

in seconds!  Si units  
the number of seconds of calendar 
lifetime of the device 

 
The most basic way to represent “activity” information is as: 
Container 

type=activity    

 [value component  name]  

 [value input  name ]  
 value stress_case name  
 value togglerate nnn   
 value dutycycle nnn   

 
default cell name: applies to all cells 
default input: applies to all inputs of cell 
case: one of:  typical, worstcase, standby, …  as 
a scenario 
togglerate: the effective number of 0-1 transitions 
per second 
dutycycle: the effective ratio between input high 
time and the total time 

 

This approach is certainly too simplistic.  One should represent such information per 
individual cell, and for each cell a number of cases.  And discriminations per input, even on 
power supply tuning or stdby modes.  Likely, if too numerous, it will be in a separate file (is 
there a standard…?) 
Another shortcoming is that it does not represent correlation between inputs, not that it 
represents the recovery time, which is of use in degradation mechanisms that have some 
recovery or hysteresis. 

16.2. Backend definition 

In: Chapter technology. 

This information is used to define backend variability, including LER, thickness variations… 
Container  

type=backend_definition   //with dielectrics and metals from bottom to top 
 Container  

 Type=dielectric   

 Name=STI 
  Parameter thickness 

  Value permittivity 

  Parameter via_resistance 

 Container  

 Type=interconnect 

 Name=metal1  
  parameter thickness  

  parameter  delta_w  // where Wphysical = Wdesign + ΔW 

  value min_width    //design value 
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  value min_spacing    //design value 

  parameter LER  //NOTE is not the same as distribution on 

width!   

  [value spacing_permittivity] //in case the spacing permittivity is different 

from lower/upper dielectric 

  value resistivity 

  value resistivity_offset  // effect of the encapsulation layers etc. formula 

TBD 

 

16.3. Temperature gradient 

temperature gradient as such is not considered as a variability, but a system level input to 
the simulation flow.  In that sense it is a “predicted systematic variability”.  External tools 
might yield sub circuit specific local temperatures based on system operating mode. 
How to enter this in the VAM context is not obvious.  Possibilities are: 

 neglect and work with an average die temperature (given in chapter system) 

 back annotated local temperature per subcircuit, eventually percolating down to each 

transistor.  Input should come from external tools, data format unknown. 

 clever back annotation, using similar concepts as scenarios for power estimation and 

historic stress conditions.  I propose to piggyback such developments, both for the 

method to propagate the information, as to the activity/scenario method. 
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16.4. Standard cell libraries 

(Part of chapter cell) 

Standard cell libraries are referred to: 
 

Spectre/Spice netlists represent the original variability free library. 
We also make a clear separation between representation of .lib and of methods to 
create a .lib 
 
Creation of .lib 
in this example STDCELL_ROOT_DIR represents the root directory of the  standard cell 
characterization project (e.g. file:///einstein/scratch2/marchal/characterization) and 

LIB_NAME is a name of a library under characterization (e.g. PT130). 

The library may be represented by a collection of .gds files, one for each standard cell. 
Using an LVS tool (e.g. CALIBRE) this library is converted to a collection of Spectre 

netlists (the directory STDCELL_ROOT_DIR/run/svbd). 
 

Representation of .lib 
See below 

 
Standardcell_library  

The variability aware library e.g. is produced by SignalStormLC tool (Cadence) which 
perform characterization of standard cell with applied compact model variability. The output 
is the .alf library, subsequently converted to the .lib compatible format.  
 
the variable aware .lib library is represented as 

 For each of the 5 geometries, and as reference one “invariable” library, which is more 

or less the same as the “typical-typical” library. 

 one large library file that includes all variable instances of all characterized standard 

cells (e.g. for the cell  INVBD2 cell there are several corresponding variable instances 

INVBD2_v1, INVBD2_v2 …, INVBD2_vmax).   

/einstein/scratch2/marchal/characterization
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Note on cell interpolation: 

 Instances of the same cells in .lib files must be interpolatable: i.e. one can make 

a sensible linear combinations of instances of the same cell, by simply making 

linear combinations of the numbers on the same position in these cells.  Concept 

to be proven! 

 
 
Geometrical correlation is introduced in the .lib files 
container  

type=cell_library  

name=<name of library> 

The .lib or vital “library name”. 
If there are multiple libraries 
used, multiple containers are 
there. 

 Value root <root directory> If empty, neglect  
 Value gds_dir <pathname> GDS is given in case Spectre 

or Spice netlist do not exist yet 
and tool can handle that 

 Value spectre_dir <pathname> 

 Value spice_dir <pathname> 

Only one is required 

 Container  

 Name=Cells  

 temperature =<…> 

 vdd =<…> 

 

Attributes temperature and 
VDD are modes at which the 
library is calibrated.  There 
can thus be multiple copies of 
this container applying to the 
same library. 

  Value dotlib_dir <pathname> This directory on itself 
contains 6 subdirectories 
named invariable, matched, 
local_systematic, c2c, w2w 
and b2b.  The files therein are 
the libraries, (one or more files 
per directory) 

  object type=cell name=<cellname> 

   Parameter instantiation 

   Parameter defunct (0 or 1)15 

   Parameter outlier (0 or 1)16
 

Instantiation is the name of an 
instance in the EMC 
population of cells.  Used to 
retrieve a certain instantiation 
from the .lib.   

   [*(Parameter inputparameters)] Optional “Input domain 
parameters”: parameters of 
underlying blocks (e.g. Vths 
inside std cells). These values 
describe the used input 
parameter.  Can be used for 
binning or RSM if ever one 
wants to do that. These 
parameters have geometry 
obviously corresponding to the 

                                                
15

 Defunct==1 mandatory parameter, means that this instantiation is a non-functional part.  How to 
handle in the .lib and tools using the .lib remains to be discussed.  Minimal approach is to give the 
non-functional part very large (1 second) delays in the .lib. 
16

 Outlier==1 means that the cell contains one or more transistors that were labeled as “outlier” 
themselves.   
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dotlib geometry.  Alternate 

and preferred: use the 
“corrid_###” concept. 

[Value nominalload  

[Value inputslope 

[Parameter nominaldelay
17
 

[Parameter zeroloaddelay 

[Parameter nominalenergy 

[Parameter zeroloadenergy 

[Parameter staticpower 

[Parameter nominalsetup 

[Parameter zeroloadsetup 

[Parameter nominalhold  

[Parameter zeroloadhold  

 

 

These 5 (9 for sequential 
cells) correlated “output 
domain” parameters, are 
optional.  They yield help at 
the next level of propagating 
variability. 
 
Currently implemented using 
liberty parser and timing 
engine of Synopsys Design 
Compiler. 

 

Defunct standard cells 
Due to variability, it is likely that some instances of cells will not yield a correct 
functionality.  Classic calibration software (as SignalStorm) may crash or yield 
not usable results. 
Yet, such cells must be represented in VAMIF as realistic as possible: 

 Such cell instances should have an entry and an instantiation 

 They parameter “defunct” is set to 1 

 A .lib entry must exists. Minimally it must mimic the actual faulty 

operation by a very long delay, >>1ms 

 Preferably, the .lib entry models the static and dynamic power correctly. 

 Normally not possible with .lib, but useful and not required, would be to 

change the functionality of the cell. 

16.5. Representation of non-standard cells: embedded memories 

16.5.1. The MemoryVAM configuration contained 

Container  

type=configuration 

name=memoryvam  

 

Process 1 –related options: 
 

 list donuts fast_donut l2memory This is the list of the donuts to 
be processed by MemoryVAM. 
The actual donut information is 
inside, and referred to by, 
configuration container 
<donut_name> donut, within 
this configuration 

 value mode1.name vdd  

 list mode1.domain 1.0 1.1 1.2 
Optional. Enumerate modes 
starting from one, and supply 

                                                
17

 nominaldelay: the maximum delay for any input to any output, where all input see the given input slope, and all outputs are 

loaded nominally, eg. the max in the .lib table. zeroloaddelay: the maximum delay for any input to any output, for zero load.  
Energy: dynamic energy, per operation; staticpower: DC [leakage] power. 
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 value mode1.command “.param vdd_sv=%s” 

 

 Value mode2.name temperature 

 list mode2.domain 273 300 400 

 value mode2.command “.temp „%s-273‟” 

 

 Value mode3.name corner 

 list mode3.domain “NN FF SS SF” 

 value mode3.command “.LIB 

„/path/to/your/lib‟ %s” 

  

 Value mode4.name Margin_control_signal 

 list mode4.domain 00 01 10 11 

 value mode4.command “.inc mcs%s.inc” 

 

(…) 

Mode<n>.name, 
Mode<n>.domain, 
Mode<n>.command. 
*.name should not contain 
spaces. 
 

NOTE: Some modes you can 

apply without changing your 

netlist, such as simple 

parameter settings (eg: “.param 

vdd=%s” overrides original 

value for vdd), while others 

require you to change the 

netlist, for example in “.LIB 

„/path/to/your/lib‟ %s”, while 

most likely not work if you keep 

your original .LIB statement. 

Also NOTE: do not supply 

multiple .TEMP statements! 

Remove your original .TEMP 

statement if you are using 

.TEMP in a mode or work with 

“.TEMP placeholder” in the 

netlist and with “.PARAM 

placeholder=%s” in the mode 

command instead. 

 
Mode names must not contain 
spaces or special characters! 
These names will be found back 
later as attribute names of the 
donut objects. 
 

Do not forget that one can always reduce to 
a trivial configuration space, i.e. the donut is 
specific for one specific memory, hence 
these lists have only one value or are simply 
omitted 

 
Modes can be overwritten by 
particular donuts (NOT YET 
IMPLEMENTED).  

 Value n_matched 100 

 Value n_local_systematic 100 

 Value n_c2c 100 

 Value n_w2w 100 

Number of samples to go for. 
Specify 0 for any geometry you 
do not want to simulate. 
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 Value n_b2b 100 

 
N_matched also applies to the 
Islands, see below. 
 
Specifying a number >0 for a 
geometry that is not supplied in 
the compact model chapter 
causes an error. 

 Value gamma_matched 0  

 Value gamma_local_systematic 0 

 Value gamma_c2c 0.9 

 Value gamma_w2w 1 

 Value gamma_b2b 0.8 

Gammas (EMC statistics) used 
for each geometry. 
You can omit gamma values 
and MemoryVam tries to find an 
optimized gamma for you.  
 

 list CORNERS NN FF SS SF … 

 Value CORNER_LIB „/path/to/your/lib‟ 
Will create simulation decks 
using CORNER_LIB with the 
.LIB suffices given in 
CORNERS 
 
There is no CORNER Geometry 
Type (yet). Therefore, at the 
moment, new object in a new 
cell.xml file in a new directory 
corners/ is created and the w2w 
Geometry is used. The user can 
browse this chapter and 
combine corner figures and 
cloud figures using the MATLAB 
Figure editor functions. 
 
(NOTE: STATUS is 
EXPERIMENTAL. Known 
limitation: If you use MODES 
(see above, the behaviour of 
CORNERS is undefined) 
 

 Value dest_directory <dir> Working directory for 
MemoryVam. If omitted, 
<xml_directory>/.mvam will be 
used. The directory is created if 
it does not exist. 

 Value pass_to_vaxc_<option> <value> 

 (…) 

 

Optional low level control of 
vaccinate. Normally not required 
for MemoryVAM users. 
<option>=<value>  is processed 
by vaccinate, not by 
MemoryVam. Refer to 
VACCinate user guide for more 
information and list of supported 
options. 

 

 

Value pass_to_vaxc_gamma_autoreduce 30 

Value pass_to_vaxc_gamma_autoreduce_step 0.9 

 

Automatically reduce too high 
gamma values to a small 
enough number using at most 
gamma_autoreduce iterations 
and adapting GAMMA -> 
GAMMA * STEP. If, after all 
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iterations, Gamma is still too 
high, MVAM continues with a 
warning. DEFAULT: 30 
iterations, step factor 0.9. To 
turn off Gamma autoreduction 
based on probability, set 
gamma_autoreduce to 0 (not 
recommendend). To make the 
reduction in finer steps, use 
higher numbers for step, such 
as 0.95 or 0.99 but  then make 
sure to use higher number of 
iterations. 
 
The default settings are safe 
together with starting values for 
gamma of 1.0 
 
NOTE: Do not worry about 
messages like 
Warning: Divide by zero. 

> In 

pick_matrix>analyze_probabilities 

at 328 

  In pick_matrix at 179 

  In vaccinate at 242 

  In mvam at 146 

These happen when gamma is 
so high that the resulting 
probabilities would be smaller 
than the resolution of a double 
float. In this case mvam reduces 
gamma automatically. 
 

Simulator –related options: 
 

 Value simulator_executable <executable> MemoryVAM runs the simulator 
<executable> for you with the 
vaccinated donut file name as 
only parameter from the 
directory of the vaccinated 
donut file. You can add 
command line options here, 
MemoryVAM always adds the 
testbench-wrapper as last 
parameter. 
Example: “hspice64 –mt 8 –i “ or 
“hspice_sub –I” 
NOTE:  you can also specify a 
wrapper script that takes as $1 
parameter the testbench-
wrapper to be simulated. 

 Value unimportant_measures 

<regexp_string> 

 

By default, MemoryVAM 
considers a “failed” of any 
.MEAS statement as a 
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functional failing of the donut 
variant. You can specify a 
regular expression for 
exceptions here.  
Example: 
“^chk|dummy|stability$” 
Will ignore “failed” 
measurements when computing 
yield for all measures beginning 
with “chk”,  the measure 
“dummy” and all measure 
ending with “stability”. 

Process 2 –related options: 
 

 Value N 100 Memories are created in a Monte 

Carlo Fashion from donut statistics. 

Specify here how many memory 

samples you want. 

100, 200, 5000 are good settings 

for low, medium, and high 

accuracy. 

 

 List memory_cells M1109 M4563 S6542 Not USED. Every donut produces 

one memory in this version. 

 

The actual memory cells to be 

processed.  The actual cell 

information is in the container 

memory_cell, including which donut 

is used in that cell. 
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16.5.2. Donuts of memories 

Memories as such cannot be calibrated as a whole.  In VAM, MemoryVAM calibrates a 
memory through its “donut”.  See also MemoryVAM Users manual.  
 
Container  

type=donut 

name=<donut name> 

This container contains 
configuration information for one 
particular donut 

  
 Value testbench <path> Test bench = path to file name 

which contains instantiation of 
your donut. 

 Value circuit <circuit name> 

  
Needed for VACCination to know 
where to start injecting. If your 
circuit resides at toplevel, specify: 
top__level__ (in total four 
underscores) 

 Value island_table <path> 

  

Path to the island table. Example: 

/my/project/island.csv. 

See below on format of this file. 

Without island specification, process 

two cannot run and process one can 

run with limited functionality only. 

 Value vsr_table <path> 

  

Path to the “Variability scaling rule 

table”. Example: /my/project/vsr.csv. 

Without this file, See below on format 

and meaning of this file. 

 Value vsr_table <path> 

  

Path to the “constraint table”. 

Example: /my/project/constraints.csv. 

See below on format of this file. 
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16.5.3. Memory cells 

These are represented at the same level as standard cells and standard cell libraries.  
Memory cell variability is coded as a population of .lib cells.  There may be one or more 
memory libraries, represented as following container.  (see als MemroyVAM container) 
container  

type=memory  

name=<name_of_memory> 

The .lib or vital “library name”. 
If there are multiple libraries 
used, multiple such containers 
exist. 

 Value root <root directory> If empty, neglect  
 Value gds_dir <pathname> Only for reference 
 value donut <name> the donut underlying this 

memory 
  
 *(object type=memory 

 name=<name> 

 Temperature=60 

 Vdd=1.1 

 <configurationparameters>=<…> 

All modes and configuration 
parameters are attributes to 
the memoryobject 

  Value dotlib_dir <pathname> This directory on itself 
contains 6 subdirectories 
named invariable, matched, 
local_systematic, c2c, w2w 
and b2b.  The files therein are 
the libraries, one single file per 
directory. 

  Parameter instantiation 

  Parameter defunct (0 or 1) 

  Parameter outlier (0 or 1)] 

Instantiation is the name of an 
instance in the EMC 
population of cells.  Used to 
retrieve a certain instantiation 
from the .lib.   

  [*(Parameter corrid_###)] See the “corrid_###” concept. 
  Parameter <*>  

. 

 

16.6. Top level components hierarchy 

System yield analysis works with top level components.  In the most trivial case there is only 
one single toplevel component.  In the more elaborate case, there may be a hierarchy of 
toplevel components, which is represented as containers of toplevel components. 
Toplevel component names correspond with their RTL name and with the names in 
backannotated netlist container. 
Container  

type=toplevel_components 

 Value rtl_path <string> 

 

 Value component <component_name1> 

 Value component <component_name2> 

 container toplevel_component 

  Value component <component_name3> 

  Value component <component_name4> 

 

Do not confuse this container with the following!  The top level description may contain 
multiple instances of the same component.   
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16.7. Backannotated netlists of components 

System component library, i.e. all cells that are use in yield analysis.  Each of the cells is 
described by VHDL or Verilog, and [may be] backannotated using .SPEF and .SDC file 
 
Custom cells (used in Macro’s) and Standard cells do not belong here. 
Container  

type=netlist  

name=… 

 

Vdd=… 

Temperature=… 
Attributes . The 
temperature/supply set 
for which this library is 
evaluated.  There may 
thus be multiple instances 
if this container. 

 Value root <root directory> If empty, neglect  
 Value spef_dir <path> Is absent, one neglects 

backannotation 
 Value sdc_dir <path> If not given, one uses a 

default [tbd if VAMIF must 
provide a default] 

 Value verilog_dir 

 Value vhdl_dir 
At least one per cell is 
needed 

 Value sdf_dir 

   
Optional. Coding of 
populations of 
components xxxx_v1 etc. 
if needed.,.  maybe sfd s 
are not recorded 

 Value vcd_dir 

 Container 

 type=components 

 

 

This information allows 
EMC sampling 
components 
For each component 
there is 1 entry. 

  Object  

  Type=component 

  name=<componentname> 

 

Instantiation is the name 
of an instance in the EMC 
population of 
components.  

   Parameter longestdelay 

   Parameter staticpower 

   Parameter dynamicenergy  

   Parameter instantiation 

   Parameter defunct (0 or 1) 

   Parameter outlier (0 or 1)   

The longest delay for the 
actually used set of 
vectors.  Not exactly the 
same as critical path 
delay.  

The effect of output load on delay and dynamic power is accounted for by the fact that output 
interconnect C is lumped into the component itself. 

16.8. Variability aware yield prediction 

The variability aware yield prediction tool consumes information from the digital chapter and 
produces results written into the system chapter. 
 
The input is represented by three main parts: 
1) The description of system  
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 the [possibly hierarchical] list of top level components, implying also the connectivity, 

which is by default assumed to correspond to a parallel organization. 

2) The PTOIR versus (dynamic energy, static power, max delay) in EMC format, for each 

component 

 the component variabilities, from the backannotated netlist 

3) The activity of each block (at this moment it's only one number - derived from previous 

(logic?) simulation - representing the number of activations of the block per unit of time; 

it's application dependent); future extensions assumes the bit level vector trace (vector of 

bits) representation  [see activity] 

4) The timing and energy constraints enabling yield calculation 

 
The output is  
1) Multi-dimensional representation of (parametric including functional) variability cloud the 

user parameter space (clock frequency, power, <other parameters as T, VDD…>) 

2) This will happen for each geometry separately, and for all geometries aggregated. 

 
Converting to iso-yield curves is done in a rendering tool such as the “VAMIF-browser” 
(browse).  If the rendering tool can do the aggregation itself, no separate parameter is 
required. 
 
object  

type=systemyield  
 

Vdd=1.8  

Temperature=21 

Age=82000000 

Attributes, multiple 
instances of the same 
object may exist  

 Value <other> <some value>  
 Parameter totalpower  
 Parameter cycletime  
 Parameter aggregated_totalpower All are aggregated in 

geometry “all (matched) 
 Parameter aggregated_cycletime  

 

16.9. Example of a configuration container 

See the MemoryVAM configuration container 
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17. Specific fast models for Top-Down 

The following models are specific for the so-called “Quick&Dirty” VAM.   They contain the 
reduced set representation of libraries and other objects. 
At yield estimation level and at compact model abstraction level, one assumes that the 
scripts are already fast and do not need a Q&D version. 

17.1. Q&D standard cell representation 

Applies to the “average” Stdcell, or on each individual (if specific name is given TBD). 
This information is either extracted as an average form .lib, or synthesized separately and 
eventually brought back into a .lib by scaling. 

Object 
Type=qd_standardcell 

 

[Value cellname <name>]  
Value nominalload  

Value inputslope 

Parameter nominaldelay
18
 

Parameter zeroloaddelay 

Parameter nominalenergy 

Parameter zeroloadenergy 

Parameter staticpower 

Nominalload [F] = load capacitor for which 
nominal delay and energy are obtained.  
This q&d model assumes that any other 
load condition is linearly interpolated 
Inputslope [V/s] = assumed worst case 
input slope [default zero] 

 

17.2. Q&D area 

In some  applications of VAM, it is necessary to have an estimation of the area of a circuit 
part (standard cell, digital block): 

 To estimate the functional yield, using the manufacturing yield object 

 To estimate the average distance between circuit part inside, to assess the 

interpolation of variability between matched and c2c geometries, using correlation 

length and correlation exponent. 

                                                
18

 nominaldelay: the maximum delay for any input to any output, where all input see the given inputslope, and all outputs are 

loaded nominally, eg. the max in the .lib table. zeroloaddelay: the maximum delay for any input to any output, for zero load.  
Energy: dynamic energy, per operation; staticpower: DC [leakage] power. 
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Container  

type=qd_area  
 

Value mosfet_over_node_factor  how much area does a MOSFET (in 
a stdcell) take on average 
compared to node number 
[e.g.22nm] squared 

Value stdcell_routing_efficiency Ratio between actual routed stdcell 
density and minimum packed 
stdcells  

Value stdcell_over_mosfet  

17.3. Ion ioff 

Elementary MOSFET parameters for quick and dirty analog/digital behavior 

Container  
Type=Qd_ion_ioff 

Name=<Mosfettype> 

 Ion   (for a minimum MOSFET) 
 Ioff   (for a minimum MOSFET) 
 Cgate (for a minimum MOSFET) 

 

17.4. Critical path distribution 

Part of chapter digital. 
 
This feature is not used in a full VAM flow, as the detail of each path is known as such and is 
thus not a variability “parameter”.  This parameter is of use in early, fast, empirical path-
finding. 
[critical] path length is expressed in units of execution time, without further correlations 
added.  [If this distribution is part of a larger set which contains also parameters as VDD and 
T, we have inherited automatically that correlation.] 
object  

type=critical_path_distribution  
 

 parameter critical_path  required  
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Appendix A  

The documentation of VAM IF API implemented in JAVA 
 
 


