
Partial Report for Deliverable Nr. 2.2
Linear Algebra over a Principal Ideal Domain

Smith Normal Form

Responsible: Thierry Coquand, coquand@chalmers.se
Written by: Cyril Cohen, cohen@crans.org

and Anders Mörtberg, mortberg@chalmers.se
Site: University of Gothenburg, Sweden

Deliverable Date: February 2011
Forecast Date: August 2011

Abstract
This report presents a formalization of the theory of rings with explicit divisibility

using the SSReflect extension to the Coq system. The goal of this work is to be able
to formalize and prove correct the Smith normal form algorithm for computing homology
groups of simplicial complexes from algebraic topology.

1 Introduction

This report discusses ongoing work to formalize the theory of rings with explicit divisibility
in the Coq system with the SSReflect extension. One important application of this is
the formalization of the Smith normal form algorithm which is a generalization of Gauss’
elimination algorithm to principal ideal domains instead of fields. Our motivation for studying
this algorithm is mainly for computing homology groups of simplicial complexes in algebraic
topology. This has applications in analysis of digital images [2] for example. The first step in
formalizing this is to have a definition of principal ideal domains in type theory, as presented
in this document.

The results presented here will also be used in the development of D2.3: linear algebra
over a coherent strongly discrete ring.

2 Rings with explicit divisibility

From here on all rings are discrete integral domains. The standard examples for all of the
rings presented here are Z and k[x] where k is a field. This section is loosely based on the
presentation of divisibility in discrete domains of [6].

Definition 1 A ring R has explicit divisibility if it has a divisibility test that produces
witnesses.

1

That is, given a and b we can check if a | b and if this is the case get x such that b = xa.
Two elements a, b ∈ R are associated if a | b and b | a, as we have cancellation this is
equivalent to b = ua for some unit u. Note that this give an equivalence relation.

One important property is that if R is a ring with explicit divisibility then R[x] also
is. This follow from the standard long division algorithm for polynomials over a field which
can be modified in such a way that it uses the explicit divisibility relation instead. If the
algorithm at some point needs to divide an element by an element that doesn’t divide it then
the algorithm terminates with the result that the polynomial doesn’t divide the other.

An interesting class of rings with explicit divisibility are GCD rings, these are non-
Noetherian analogues of unique factorization domains.

Definition 2 A GCD ring R is a ring with explicit divisibility in which every pair of elements
has a greatest common divisor, that is, for a, b ∈ R there is gcd(a, b) such that gcd(a, b) | a,
gcd(a, b) | b and ∀g, (g | a) ∧ (g | b)⇒ g | gcd(a, b).

Note first that we make no restriction on a and b, so these can both be zero, if this is
the case then the greatest common divisor is zero. This makes sense as zero is the maximum
element for the divisibility relation. Note also that R is assumed to be an ring with explicit
divisibility so the fact that gcd(a, b) | a means that we can find x such that a = x · gcd(a, b).
By Euclid’s algorithm we know that both Z and k[x] are GCD rings.

With the above definition the greatest common divisor of two elements is not unique, e.g.
the greatest common divisor of 2 and 3 in Z is either 1 or −1. But if we consider equality
up to multiplication by units, i.e. up to associatedness, then the greatest common divisor is
unique. So from here on equality should be read as equality up to associatedness.

Two elements a, b ∈ R are coprime, written a⊥b, if their greatest common divisor is 1
(or equivalently a unit). For example 2 and 3 are coprime. One important lemma which is
sometimes called Euclid’s lemma1 is that if a | bc and a⊥b then a | c. This can be used to
prove that an irreducible element in a GCD ring is prime.

We now turn our attention to the polynomial ring R[x] over a GCD ring R. The greatest
common divisor of the coefficients of p ∈ R[x] is called the content of p and is written cont(p).
A polynomial is primitive if its content is 1.

Theorem 1 Let R be a GCD ring and p, q ∈ R[x], then cont(pq) = cont(p)cont(q).

This result is called Gauss lemma and one corollary is that the product of two primitive
polynomials is primitive.

Theorem 2 Let R be a GCD ring and p ∈ R[x], then we can find a primitive q such that
p = cont(p) · q.

Using these two theorems one can prove constructively that if R is a GCD ring then R[x]
is GCD ring. This can be done in the same manner as in the proof found in [4] that if R
is a Unique Factorization Domain (abbreviated UFD) then R[x] is an UFD as well. This is

1It seems like this result is called Gauss’ lemma in France, but we will use Euclid’s lemma as Gauss lemma
will denote something else later on.

2

interesting since it gives an alternative proof to the one presented in [6] which does not rely
on the field of fractions of R[x]. So this alternative proof should be more suitable to formalize
in type theory as it does not rely on the field of fractions. Formalizing this theorem would
give an algorithm for computing the greatest common divisor of two elements in for example
Z[x1, . . . , xn] or k[x1, . . . , xn].

Another class of rings with explicit divisibility are Bézout rings.

Definition 3 A Bézout ring is a ring R with explicit divisibility such that for any two
elements a, b ∈ R there is x, y ∈ R such that ax+ by = gcd(a, b).

Clearly any Bézout ring is a GCD ring. We also know that both Z and k[x] can be proved
to be Bézout rings using the extended version of Euclid’s algorithm.

Just as GCD rings are non-Noetherian analogues of the classical notion of UFD, Bézout
rings are the non-Noetherian analogues of principal ideal domains. Bézout rings can hence
also be characterized as rings in which every finitely generated ideal is principal.

The final class of rings with explicit divisibility that we shall consider in this section are
Euclidean rings.

Definition 4 An Euclidean ring is a ring a R with a Euclidean norm N : R→ N such that
for any a ∈ R and nonzero b ∈ R we have N (a) 6 N (ab). Further, for any a ∈ R and nonzero
b ∈ R we can find q, r ∈ R such that a = bq + r and either r = 0 or N (r) < N (b).

The extended version of Euclid’s algorithm can be implemented for Euclidean rings and
hence any Euclidean ring is both a Bézout and a GCD ring. Both Z and k[x] are examples of
Euclidean rings: take the absolute value function for Z and the size of the underlying list as
explained in section 3.1 of [1] for k[x] and then the standard division algorithm can be used
to compute q and r.

3 Smith normal form

As mentioned in the introduction the Smith normal form algorithm is a generalization of
Gauss’ algorithm for solving equations over any principal ideal domain and not just over a
field.

Before introducing the Smith normal form of a matrix we need to discuss principal ideal
domains in constructive mathematics. The reason is that we cannot use Bézout rings as it is
still an open problem to show that the algorithm is correct over them [5]. So what we need
is a suitable constructive approximation of the Noetherian property. The proper definition
in this case is that the strict divisibility relation is well-founded.

Definition 5 A constructive principal ideal domain is a Bézout ring in which the strict
divisibility relation is well-founded. a divides b strictly if a | b but b - a.

This is the right setting in order to specify the Smith normal form algorithm.

3

Theorem 3 Let R be a constructive principal ideal domain and M ∈ Rm×n. Then it is
possible to compute invertible S ∈ Rm×m and T ∈ Rn×n such that

SMT =

α1 0 0 · · · 0
0 α2 0 · · · 0

0 0
. . . 0

... αr
...

0
. . .

0 · · · 0

and αi | αi+1 for 1 6 i < r.

As mentioned in the introduction this algorithm can be used for computing homology
groups of simplicial complexes in algebraic topology.

4 Formalization

In this section we will discuss the formalization of the theory of rings with explicit divisibility
using the SSReflect extension to the Coq system.

The algebraic structures have been formalized in the same manner as described in [3] using
coercions and canonical structures. The development here extends the existing algebraic
hierarchy of SSReflect and the relationship between the structures and their place in the
existing library is shown in figure 1 below. In the figure IntegralDomain is already present
in the SSReflect hierarchy and the other boxes indicate how our development extends the
existing hierarchy.

We will now discuss the formalization of the new structures starting with the defini-
tion of rings with explicit divisibility. This is called DvdRing in the implementation and is
represented as:

CoInductive div_spec (R : ringType) (a b :R) : option R -> Type :=
| DivDvd x of a = x * b : div_spec a b (Some x)
| DivNDvd of (forall x, a != x * b) : div_spec a b None.

Module DvdRing.
Record mixin_of (R : ringType) : Type := Mixin {
div : R -> R -> option R;
_ : forall a b, div_spec a b (div a b)

}.
End DvdRing.

So for a ring to be a DvdRing it needs to have a function div that returns an option type,
such that if div a b = None then a - b and if div a b = Some x then this x is the witness
that a | b. The specification for DvdRings says this, but it also requires the user to prove
that if a - b then there is no x such that a = xb.

4

Figure 1: The extension to the existing algebraic hierarchy

This has been used to prove many results about divisibility. We have also implemented
the notion of associatedness mentioned above and proved properties about it. Sadly this is
not a rewritable relation and hence we can’t use the rewrite tactic when reasoning about
elements that are associates.

We have also implemented a proof that if R is a DvdRing then R[x] also is. This was
done by implementing a version of long division for polynomials which uses the div function
and terminates with None if it reaches a None at some point in the computation.

Next we have the GCDRing structure which is implemented as:

Module GcdRing.
Record mixin_of (R : dvdRingType) : Type := Mixin {
gcdr : R -> R -> R;
_ : forall a b g, g %| gcdr a b = (g %| a) && (g %| b)

}.
End GcdRing.

5

Here %| is notation for the divisibility function utilizes that there is a coercion from
option to bool in SSReflect libraries.

For a ring to be a GcdRing it need to have a gcd function and satisfy the property above.
This property is sufficient as it implicitly give that gcd(a, b) | a and gcd(a, b) | b as divisibility
is reflexive.

We have formalized the notion of being coprime and proved Euclid’s lemma and that
the prime elements are the same as the irreducible elements in a GCDRing. We have also
implemented the notion of content of polynomials over a GCDRing and proved Gauss lemma.
This proof is quite involved and we have found a slightly different proof from the one in [6]
which is more suitable for formalization.

The BezoutRing structure looks like:

CoInductive bspec (R : gcdRingType) (a b : R) : R * R -> Type :=
BezoutSpec x y of gcdr a b %= x * a + y * b : bspec a b (x, y).

Module BezoutRing.
Record mixin_of (R : gcdRingType) : Type := Mixin {
bezout : R -> R -> (R * R);
_ : forall a b, bspec a b (bezout a b)

}.
End BezoutRing.

Here %= denotes associatedness. The ring is assumed to be a GCDRing and the user
should provide a function that computes a pair (x, y) such that ax+ by = gcd(a, b). We have
proved that it is sufficient to instantiate this structure in order to get a GCDRing.

Finally we have the EuclideanRing structure that represents Euclidean rings

CoInductive edivr_spec (R : ringType)
(g : R -> nat) (a b : R) : R * R -> Type :=
EdivrSpec q r of a = q * b + r & (b != 0) ==> (g r < g b)
: edivr_spec g a b (q, r).

Module EuclideanRing.
Record mixin_of (R : ringType) : Type := Mixin {
enorm : R -> nat;
ediv : R -> R -> (R * R);
_ : forall a b, a != 0 -> enorm b <= enorm (a * b);
_ : forall a b, edivr_spec enorm a b (ediv a b)

}.
End EuclideanRing.

This structure contains the Euclidean norm and the Euclidean division function together with
their specifications. The theory for proving that Euclidean rings are Bézout and GCD rings
is quite interesting, this involves the implementation and correctness proof of the extended
Euclid’s algorithm and the ordinary Euclid’s algorithm. All of this has been implemented
and proved correct, so we would only need to instantiate the EuclideanRing structure and

6

then we would get the Bézout-, GCD- and DvdRing structures for free. But we are not forced
to use the default implementations; maybe there is a more efficient algorithm for a specific
structure and we may then want to implement this and not use the general predefined version.

As we mentioned in the beginning the two standard examples of these rings are Z and
k[x] where k is a field. We have instantiated the EuclideanRing structure with two imple-
mentations of Z, one unary and one binary. The unary one is already part of the SSReflect
library, so proving that it satisfies the axioms of EuclideanRing was straight-forward. We
have tested to compute with it and it works fine, but it is quite inefficient as it is a unary
representation:

> Time Eval compute in (gcdr 11466%:Z 1428).
= Posz 42
: DvdRing.Pack (GcdRing.class zint_gcdType) zint_gcdType

Finished transaction in 1. secs (0.97327u,0.003333s)

> Time Eval compute in (gcdr 114662%:Z 14282).
[Segmentation fault]

The reason we get a segmentation fault is that it uses too much memory. The more
efficient binary implementation of integers was slightly more difficult to prove that it is an
instance of the EuclideanRing structure as we had to use the standard Coq implementation
of Z so we couldn’t use all of the facilities of SSReflect in the proofs. But in the end it
turned out to be significantly faster:

> Time Eval compute in (gcdr 11466 1428)%Z.
= 42%Z
: DvdRing.Pack (GcdRing.class Z_gcdType) Z_gcdType

Finished transaction in 0. secs (0.339978u,0.s)

> Time Eval compute in (gcdr 114662 14282)%Z.
= 2%Z
: DvdRing.Pack (GcdRing.class Z_gcdType) Z_gcdType

Finished transaction in 5. secs (4.973009u,0.066663s)

Note that the last computation actually terminates and doesn’t use too much memory.
Also note that the first computation is faster than in the previous test.

Implementing the proof that k[x] is an EuclideanRing also required some work. One
possibility would have been to use the pseudo-division algorithm that is already in the SS-
Reflect libraries but we decided not to do this as it would be unnecessarily inefficient, as
it has to compute many irrelevant things. So instead we implemented the algorithm from
scratch. The correctness proof is similar to the proof that R[x] is a ring with explicit divis-
ibility if R is. So we can compute for example greatest common divisors of elements of k[x]
where k is one of the fields in the SSReflect library like Q or Zp where p is a prime.

In order to be able to start formalizing the theory about Smith normal forms we imple-
mented constructive principal ideal domains, called PriRings in the implementation. This
was done by implementing a predicate for strict divisibility and specifying that it is well

7

founded.

Definition sdvdr (R : dvdRingType) (x y : R) :=
(x %| y) && ~~(y %| x).

Module PriRing.
Record mixin_of (R : dvdRingType) : Type := Mixin {
_ : well_founded (@sdvdr R)

}.
End PriRing.

So to prove that EuclideanRings are PriRings we had to prove that strict divisibility is
well founded. The well_founded predicate in Coq is expressed using accessibility predicates
and hence we had to do reasoning about this in order to prove what we wanted. This has been
done and hence we will be able to compute the Smith normal form for matrices of coefficients
from Z and k[x] once we have formalized the algorithm.

The Smith normal form algorithm has been implemented in the functional programming
language Haskell. The implementation is based on the algebraic hierarchy presented in [7].
We have begun converting this implementation to Coq and started proving its correctness
using SSReflect.

5 Conclusion and further work

In this report we have presented a formalization of the theory of rings with explicit divisibility.
This gives formalized algorithms for computing for example greatest common divisors of
elements in Z and k[x] where k is Q or Zp where p is prime. We can also perform certified
long division in polynomial rings over these rings.

In order to finish the deliverable we need to convert the Haskell implementation of the
Smith normal form algorithm into Coq and prove it correct. This will most likely require
quite a lot of work but at least all the preliminary work has been done and we are now
in the correct setting to start the formalization. The next step would then be to do some
experiments with it and compute some homology groups for real examples from algebraic
topology.

It would also be interesting to finish the proof that R[x] is a GCD ring if R is and use this
to compute greatest common divisors over multivariate polynomial rings. For doing this we
would probably need to do a lot of reasoning about associated elements and as this relation
is not rewritable we wouldn’t be able to use the rewrite tactic which may result in very long
proofs. In order to remedy this C. Cohen has explored if it would be possible to use quotient
types or setoids in order to be able to rewrite with the relation but so far no satisfactory
solution has been found.

8

References

[1] C. Cohen and A. Mahboubi. A formal quantifier elimination for algebraically closed fields.
In Proceedings of the 10th ASIC and 9th MKM international conference, and 17th Calcule-
mus conference on Intelligent computer mathematics, AISC’10/MKM’10/Calculemus’10,
pages 189–203, Berlin, Heidelberg, 2010. Springer-Verlag.

[2] ForMath La Rioja node. From Digital Images to Simplicial Complexes: A Report. Tech-
nical report, Departamento de Matemticas y Computacin, Universidad de La Rioja, 2011.

[3] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical struc-
tures. In Proceedings 22nd International Conference on Theorem Proving in Higher Order
Logics (TPHOLs’2009), volume 5674 of Lecture Notes in Computer Science, pages 327–
342, 2009.

[4] D. E. Knuth. The art of computer programming, volume 2: seminumerical algorithms.
Addison-Wesley, 1981.

[5] D. Lorenzini. On Bzout Domains. http://www.math.uga.edu/~lorenz/Bezout.pdf.

[6] R. Mines, F. Richman, and W. Ruitenburg. A Course in Constructive Algebra. Springer-
Verlag, 1988.

[7] A. Mörtberg. Constructive Algebra in Functional Programming and Type Theory. Mas-
ter’s thesis, Chalmers University of Technology, 2010. http://web.student.chalmers.
se/~mortberg/master/MSc-Thesis.pdf.

9

http://www.math.uga.edu/~lorenz/Bezout.pdf
http://web.student.chalmers.se/~mortberg/master/MSc-Thesis.pdf
http://web.student.chalmers.se/~mortberg/master/MSc-Thesis.pdf

	Introduction
	Rings with explicit divisibility
	Smith normal form
	Formalization
	Conclusion and further work

