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In the following we describe the work done within Work Package 1 within the first period. In
the description we follow the structure imposed by the tasks for this work package and period.
Wherever there is no deviation and all goals have been met, it is not mentioned specifically. We
start by restating the objectives for Work Package 1 and conclude with a discussion of the milestones
for Period 1.

Objectives

Geometric inference aims at inferring topological or geometric properties of a presumably unknown
shape from a set of data points sampling it. A stronger goal is to compute an approximation from
the sample points that shares many of the geometric and topological properties with the unknown
shape. The latter problem, known as curve/surface reconstruction in low dimensions or as manifold
learning in high dimensions, has attracted strong interest in many scientific fields where the data
may often be represented by point sets in high dimensional spaces. Although point sets may live
in high dimensional spaces, one often expects them to be located around unknown, possibly non-
linear, low dimensional shapes. An important class of shapes is formed by smooth submanifolds
of Euclidean spaces, but also more general compact subspaces need to be considered. It is then
desirable to infer topological features (dimension, Betti numbers) and geometric characteristics
(singularities, volume, curvature) of these shapes from the data. In some cases the shapes of interest
may be known through a set of conditions - e. g., solution sets of geometric constraint problems, like
boundaries of configuration spaces in robotics or iso-energy hypersurfaces in six-dimensional phase
space in physical applications - that allow to sample them. It then desirable to study and design
efficient sampling strategies to reliably approximate or reconstruct them. Building on recent results
in computational geometry and geometric approximation combined with statistical approaches the
main goal of this work package is to provide new algorithmic tools based upon strong theoretical
models to infer and compute relevant topological and geometrical properties of the shapes from
which the data are drawn.

Tasks

Task 1.a: Inference from noisy data

During the last decade, the study of the mathematical properties of distance functions to compact
sets has provided a powerful framework to infer topological and geometric properties of unknown
shapes from data sampled in a small neighborhood of them. Building on this framework and con-
sidering data as empirical probability measures rather than just compact sets, we have introduced
and developed new distance-based tools for geometric inference [6]. Indeed we have defined a way
to associate to any probability distribution a function that shares fundamental mathematical prop-
erties with usual distance functions and whose sublevel sets carry geometric information on the
distribution. We thus have obtained results allowing to infer the geometric information from data
corrupted by noise and outliers. Our results apply in any dimension and the computation of the
distance-like functions we have introduced boils down to the computation of nearest neighbors in
the data set. Our results have already been used and applied in different settings:

- in statistics to design new consistent density estimates [1]. These estimates have (up to
reparametrization) the same level sets as our distance-like functions and we have proven that
they converge to the actual density from which the data are sampled. As a consequence we



have obtained the first density estimates that come with statistical convergence and geometric
inference guarantees.

- in GIS to extract information from GPS data [5]. We have introduced a method that consists
in embedding GPS traces data (that are represented as sequences of points in the plane) into
a higher dimensional spaces and then to use the gradient of the distance-like functions to
“smooth” the data and remove noise and measurements errors.

- combining our approach to deconvolution tools we have shown that the geometric information
still can be inferred from data corrupted with a large amount of noise when the nature of the
noise is known [3];

- using the framework of distance-like functions we have also initiated an on-going work on the
inference of filamentary structures in astronomic data (see Task 3.a in Work Package 3).

Task 1.b: Clustering

Regarding clustering, the goal was both to improve some classical clustering algorithms for proba-
bilistic input and to design new clustering approaches based upon topological approaches.

We have developed and analyzed a core-set construction for the k-median clustering problem
with probabilistic data [8]. The construction can be used to obtain a (1+¢)-approximation algorithm
as well as a streaming algorithm for this problem.

We proved that there is a linear oblivious embedding for d-dimensional subspaces of [; into
O(dlog d)-dimensional I; with distortion O(dlogd) [9]. We showed that this embedding can be
used to develop improved streaming and approximation algorithms for /; regression. The technique
may also be helpful to obtain approximation algorithms for related clustering problems.

In a different setting we have used the theory of topological persistence introduced a decade
ago by H. Edelsbrunner et al to design a new clustering algorithm that comes with theoretical
guarantees [7]. Our algorithm can be seen as a variant of the classical “hill-climbing” algorithms
that intend to cluster the data according to the basins of attraction of the local maxima of the
density from which they have been generated. The use of topological persistence provides new
robust tools to help the user to robustly determine the relevant number of clusters in the data and
to get rid of non relevant clusters due to noise. In practice our algorithm relies on a basic variant
of the union-find data structure. As a consequence it can be easily and efficiently implemented to
process large data sets.

Task 2.a: Scale selection

Geometric inference is inherently multiscale (the topological structure of data usually depends on
the scale at which these data are considered). We have adopted statistical approaches to try to
automatically select relevant scales at which the data should be considered. In this direction we have
continued and achieved a work initiated before the beginning of the CG-Learning project. We have
designed a penalized criterion to select a relevant simplicial complex among a family of complexes
approximating the considered data at different scales [4]. The validity of this criterion is assessed
in a statistical setting using the theory of model selection. We expect to explore applications of
this method during the next period.



Task 2.b: Morse-Smale and flow complexes

No work proposed in Period 1.

Task 3.a: Sampling and approximation of manifolds

In order to focus our effort we first considered the class of ruled surfaces which arise in the context
of contact surfaces of a polygonal planar robot and a polygonal obstacle. Here we strive to obtain
an approximation which is optimal in the Hausdorff distance sense. Furthermore, we try to exploit
the unique geometrical properties of the surfaces under consideration.

So far, we obtained asymptotic results on the approximation error for the helices which generate
the contact surfaces. We expect to get better approximations by looking at the surfaces directly.

Progress has been made on polyhedral approximations of submanifolds in Euclidean Spaces.
Our main objective was to find an optimal triangulation of a surface, that is using as few points as
possible to achieve good accuracy in the sense of the Hausdorff distance. We restricted ourselves
to the asymptotic setting, where the number of vertices is large. See techreport [10]. In the
continuation of works by Schneider and Gruber (convex case) and Clarkson, our main focus has
been on the asymptotic complexity of such approximations with vertices on the manifold. One of the
major problems one faces when considering non-convex hypersurfaces is that the edge length is no
longer guaranteed to decrease if the Hausdorff distance between the surface and its approximating
mesh decreases. We have provided strong evidence indicating that for an arbitrary surface the
maximal edge-length of an optimal approximating mesh goes to zero with the Hausdorff distance.
This enabled us to establish a lower bound on the complexity of an optimal approximating mesh.
We also obtained a result concerning to the complexity of arbitrary meshes for convex hypersurfaces.
Furthermore, we considered examples of non-convergence of the area of approximating meshes of
surfaces, in a sense a generalization of the Schwarz lantern.

Task 3.b: Upsampling using Delaunay refinement

We have proposed an algorithm that can mesh any smooth submanifold of Euclidean space. The
algorithm is a variant of Delaunay refinement. It constructs the tangential complex and therefore
avoids constructing any subdivision of the ambient space, which leads to a complexity that only
depends linearly on the ambient dimension [2].

Milestones

MS1: Noise removal vs. effect minimization

In general, noise removal or outliers characterization is an ill-defined problem in data analysis and
geometric inference does not escape this issue. We have shown that the framework of distance-like
functions associated to probability measures allows to minimize the effect of outliers without having
to exhibit them explicitly. However we have also shown that when the nature of the noise is known,
it can be removed from the data. As in many cases the exact nature of the noise in data is unknown
we have decided to concentrate our effort on methods that minimize the effect of the noise and
outliers rather than trying to remove them.



MS2: Geometric criteria for scale selection

Statistical model selection provides an interesting framework for automatic scale selection but there
remain many open questions. We have decided to pursue these and to consider other statistical
approaches as well.

MS3: Choice of criteria for implementing constraint surfaces

For the three-dimensional configuration space for rigid robots in the plane, we will capitalize on the
structure of the ruled surface and consider special methods that may produce long skinny triangles
along the surface, but which are refined near the seams (edges). With the view of intersecting
the mesh with arbitrary planes, as required by the hybrid representation of configuration spaces
(Manifold Sampling, see Workpackage 3), this is preferable to a uniform mesh.

For general surfaces (for example in 6 dimensions), we intend to use the method of Clarkson
[2006] as planned originally, to get an approximating mesh with samples on the surface, and then
offset this approximation to both sides to get one-sided (conservative) approximations. The para-
metric form in which the contact surfaces are given lends itself well to obtaining the curvature
estimates that are needed in Clarkson’s method.
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