society
technzlogies

CGL

Computational Geometric Learning

D2.1: Handling High-Dimensional Data

Frédéric Cazals Frédéric Chazal Christiane Lammersen
lToannis Z. Emiris Bernd Gartner Joachim Giesen
Charis Malamatos Giunter Rote

CGL Technical Report No.: CGL-TR-01

Part of deliverable: WP-2/D2.1
Site: FUB
Month: 6

Project co-funded by the European Commission within FP7 (2010-2013)
under contract nr. IST-25582

1 Introduction and Overview

We give a survey and assessment of methods that are commonly used for dealing
with high-dimensional data, mainly from the database community. We refer to the
book by Samet [59] for a comprehensive overview.

In the following chapters, we will deal with the following topics.

e Dimension reduction

e Embedding methods

e Clustering

e Nearest neighbor methods

In order to store objects in a database, it is common to map every object to a
feature vector in a (possibly high-dimensional) vector space. The feature vector then
serves as the representation of the object. For example, to represent planar shapes
within the unit square, say, one could subdivide the unit square into n pixels; the
feature vector of a shape S would then be a 0-1-vector x(S) whose i-th component
is 1 if and only if the i-th pixel is contained in the shape.

Performing database queries amounts to computing with feature vectors. In our
example, finding the shape with smallest symmetric difference to a query shape Q
can be done by computing the nearest neighbor x(S) to x(Q) w.r.t. the Hamming
distance. For 0-1-vectors as in this case, minimizing the Hamming distance is
equivalent to minimizing the Euclidean distance.

In high-dimensional spaces, many geometric data structures fail to work well.
This curse of dimensionality can be approached in several ways. Section 2 describes
methods of Dimension Reduction: mapping the high-dimensional feature space to a
lower-dimensional space while preserving (most of) the relevant properties. Dimen-
sion reduction is often used as a preprocessing step in nearest neighbor search, see
Section 5 Embedding Methods, which are described in Section 3, are complementary
to the methods of Section 2: In contrast to the dimension reduction techniques of
Section 2, which use linear mappings (projections), here one focuses also on non-
linear mappings.

Section 4 discusses Clustering Methods. Clustering is an important data analysis
and data preprocessing tool, which is widely used and studied in the database com-
munity. Since it is based mostly on pairwise distances, the methods are inherently
independent on the dimension of the data, and thus equally suited to high- and
low-dimensional data. Clustering is also used as a tool in nearest-neighbor data
structures (Section 5.1).

Section 5 describes the data-structure view to high-dimensional Nearest Neighbor
Searching (NNS). We consider point sets and point queries, which is the standard
version of the problem in Computational Geometry. Many instances of NNS reduce
to this case. We put the emphasis on approrimate NNS, in order to be able to
handle high-dimensional data. The main question is how to preprocess the input
point set into an external-memory data structure, or index, so that queries can
be efficiently reported. Section 5 focuses on three state-of-the-art paradigms to
construct indexes in high dimensions, which offer provably correct results. However,
their strong performance is typically corroborated only by experimental evidence,
since complexity analyses are very difficult. This evidence shows that average-case
behavior is strong, although there may exist some rare bad cases. We juxtapose
these approaches to a few representative data-structures and implementations from
the Computational Geometry community.

We conclude with a brief summary in Section 6.

2 Dimension Reduction

As mentioned in the introduction, objects in a database are often represented as
feature vectors.

If feature vectors are high-dimensional, many data structures for similarity
queries and other tasks based on spatial properties of the feature vectors fail to
work well. This curse of dimensionality is in part due to (somewhat counterintu-
itive) properties of high-dimensional space. For example, most of the volume of
a high-dimensional ball or a box is very close to the boundary, meaning that hi-
erarchical volume subdivision methods typically need to make many “inefficient”
subdivisions close to the boundary. Already in two dimensions, representing a poly-
gon up to a fixed error by a quadtree requires a number of nodes proportional to
the circumference of the polygon [37].

Dimension reduction computes a mapping f from the high-dimensional feature
space R to a lower-dimensional space R¥, with the goal of preserving the properties
of the feature vectors that are relevant for the application at hand. A spatial data
structure is then built on top of the transformed vectors in R, and query results
are refined, if necessary, using information from the original feature vectors. In this
section, we focus on the main methods (and some of their variations) that have
been used for dimension reduction in the database community.

Contraction, or the Pruning Property. A desirable property of the transfor-
mation function f : R"® — RF is that it is contractive, i.e. (in the Euclidean metric)
that

1FG0) = FDI < lx =yl

This is also called the pruning property. The significance of this property is best seen
in the context of nearest neighbor search. Suppose that we want to find for a query
vector g € R™ all vectors x in the database such that [|[x—q|| < r. If we perform the
same query in the transformed space, i.e. find all x such that || f(x) — f(q)]| < r, we
can be sure under contraction that this set also contains all x for which ||x—ql| < r,
i.e. we have no false dismissals.

It is important to understand that f may be contractive w.r.t. the Euclidean
metric, but not w.r.t. other metrics. In this section, we focus on the Euclidean
metric as a measure of similarity.

Dimension reduction can be done in a data-dependent or a data-independent way.
In the former case, the mapping f depends on the data, with the clear advantage
that f can be tailored to the data, and the clear disadvantage that f typically needs
to be recomputed if data changes (even slightly). In the latter case, f only depends
on the parameters n and k, and possibly a random resource.

Simple dimension reduction techniques based on projections to fixed coordinates
are self-evident and can be useful (in particular, they are contractive), but their
power is obviously limited. Most notably, one can try to find the “most relevant”
of the n coordinates, and then ignore all other coordinates, resulting in a set of
transformed vectors in dimension 1. This approach generalizes to keeping the k
most relevant coordinates. In the following, we focus on the more advanced standard
methods.

2.1 Data-dependent methods

The main idea of data-dependent methods is to discover lower-dimensional struc-
ture(s) in the high-dimensional data. Recent (and nonlinear) such techniques are in
more detail discussed in Section 3. Here, we focus on techniques to discover linear
structures of lower dimension.

Principal component analysis. PCA is a classic technique [55] for computing
the k-dimensional flat F' that best approximates the n-dimensional set of feature
vectors; best in the sense that the sum of squared distances of each point to its
projection onto F' is minimized. The problem can be solved using singular value
decomposition, a standard technique from linear algebra [30]. The transformed
vectors are precisely the projections of the feature vectors onto the computed flat F'
(expressed in a basis of this k-dimensional subspace). Singular value decomposition
is also the basis of latent semantic indexing, a dimension reduction technique used
for indexing large collections of documents [21].

Dynamic SVD. PCA is best suited for static data. As soon as feature vectors
change, the coordinate transformation that “rotates” F into R* needs to be recom-
puted which is expensive. An attractive idea pursued in [56] is the following: (i)
Under feature vector changes, the current flat F' is updated only when the query
performance (measured by some heuristic criterion) has dropped too much. (ii) To
perform the update, the SVD is not done with the full set of feature vectors, but
with only a few aggregate values instead. The aggregation is done using the search
structure built over the feature vectors, based on the transformation to R*. For
example, if the vectors are stored in the leaves of a tree, aggregation can be done by
fixing a level in the tree, and then replacing all vectors in each subtree hanging off
that level with the centroid of these vectors. Experiments show that the resulting
SVD is not much worse than the full SVD in suitable applications [56].

RCSVD. Another problem with PCA is that it generates only one flat F. In
many situations, the data exhibits linear substructures of lower dimension, but this
structure may consist of several flats. In such a situation, we are confronted with
a clustering problem in the first place, see Section 4. The approach of the RCSVD
algorithm [64] is to (i) perform a PCA of the full set of feature vectors; (ii) cluster
the transformed data into non-overlapping parts; (iii) recursively handle the parts,
until no further dimension reduction can be achieved.

2.2 Data-independent methods

Data-independent methods do not rely on characteristics of a specific set of data,
but rather on characteristics of the data source. For example, we may know that
we are dealing with time series data such as daily stock prices over the last year.

Discrete Fourier transform. The Discrete Fourier transform (DFT) is a unitary
transformation of the complex space C". It expresses a sequence of n complex
numbers (in this context called a “signal”) as a linear combination of n-th roots of
unity. The roots of unity are “phases”, and the coefficients in the linear combination
are “amplitudes”. The idea is to decompose the signal into periodic signals of
varying phases and amplitudes. The DFT can be computed using the Fast Fourier
Transform (FFT) in O(nlogn) time rather than the obvious ©(n?) for matrix-vector
multiplication.

In a seminal paper, Agrawal, Faloutsos and Swami have introduced the DFT as a
tool for dimension reduction in the context of time series data [3]. Their observation
was that in many cases, only a few leading phases (the ones of lowest frequency)
are necessary in order to accurately represent time series data. Thus, dimension
reduction is very simple here: (i) perform the DFT; (ii) in the transformed space, use
the simple dimension reduction scheme of projecting onto the leading coordinates.

Random projections. We have already made the point that projections to a
fixed set of k coordinates are usually not very effective in keeping (metric) properties
of the feature vectors. In geometric terms, these are projections to axis-aligned k-
flats. But maybe surprisingly, projecting to random k-flats is much better. The
classic Johnson-Lindenstrauss-Lemma (in the version of Matousek [48]) states the
following. If there are N feature vectors, then the projection f to a random k-
dimensional subspace, for k = O(log(N)/e?), satisfies

1 =e)llx=ylI* < Ifx) — F@IF < A +e)x vl

with high probability. Thus, f is not contractive, but approximately contractive,
and even approximately distance-preserving. The reduction in dimension is expo-
nential. Achlioptas has made this result useful for database applications, by showing
that the projection to a random subspace can be replaced with a linear transfor-
mation that is realized by a k x N matrix with elements chosen randomly from the
set {—v/3,0,v/3} [1].

The constants behind the big-O in the Johnson-Lindenstrauss-Lemma are not
small [48]. Despite this, it was shown that random projections behave well in
practical applications, even for small values of &k [10].

3 Embedding Methods

Classically, embedding methods are meant to ease the calculation of (costly) dis-
tances between objects. They typically embed the objects into a vector space within
which a distance metric approximating the original one can be used [59]. On a pair-
wise basis, the quality of an embedding is measured by the distortion incurred by
the distance metric. In the context of nearest neighbor searches (see Section 5),
one can assess the symmetric difference between the exact k-nearest neighbors, and
those reported in the embedded space.

As opposed to this body of work, our focus in this survey is on embedding
methods for learning theory. That is, present embedding methods in the context of
non-linear dimensionality reduction, the ultimate goal being to learn a topological
space from a sampling, and to report features of that space.

3.1 Embedding via spectral methods

Many of the most popular approaches to embed data in Euclidean spaces boil down
to spectral methods. Note that the term spectral method is ambiguous and used dif-
ferently within different communities. Here we use it in the sense of data analysis
similar as van der Maaten et al. did [65]. That is, for us in a spectral method, a
symmetric matrix is derived from the data and the solution to a given optimization
problem can be obtained from the eigenvectors of this matrix. The geometric op-
timization problems that lead to a spectral technique are mostly of a least squares
nature and include the following classical (and archetypical) problems:

(1) Find the k-dimensional subspace that approximates the point cloud best in a
least squares sense.

(2) Find the embedding of the point cloud in k-dimensional space that preserves
the distances between the points best possible in a least squares sense.

The first problem is the well-known principal component analysis (PCA, see 2.1)
as it asks for the principal directions (components) of the data. It essentially is a
data quantization technique: every data point gets replaces by its projection onto

the best approximating k-dimensional subspace. The loss incurred by the quantiza-
tion is the variance of the data in the directions orthogonal the best approximating
k-dimensional subspace. As long as this variance is small PCA can also be seen as
denoising the original data. Many machine learning techniques including clustering,
classification and semi-supervised learning [36], but also near neighbor indexing and
search can benefit from such a denoising.

The second problem is called multi-dimensional scaling (MDS). An important
application of MDS is visualization of the point cloud data: the data points get em-
bedded into two- or three-dimensional space, where they can be directly visualized.
The main purpose of visualization is to use the human visual system to get insights
into the structure of the point cloud data, e.g., the existence of clusters or—for data
points labeled with discrete attributes—relations between this attributes. MDS vi-
sualization remains to be a popular tool for point cloud data analysis, but of course
a lot of information will get lost (and in general cannot be restored by the human
visual system) if the intrinsic dimension of the data points is larger than three.

Recently the focus in point cloud data analysis shifted: more emphasis is put
on detecting non-linear features in the data, although processing the data for visual
inspection still is important. What drives this shift in focus is the insight that
most features are based on local correlations of the data points, but PCA and MDS
both have only a global view on the point cloud data. The shift towards local
correlations was pioneered by two techniques called ISOMAP [63, 20] and Locally
Linear Embedding (LLE) [57, 58]. It is important to note that focusing on local
correlations does not mean that one loses the global picture: for example the global
intrinsic dimension of the data can be estimated from local information, whereas
it is often (when the data are embedded non-linearly) not possible to derive this
information from a purely global analysis. ISOMAP and LLE and their successors
(some of which we will also discuss here) can be used both for the traditional
purposes data quantization and data visualization. In general they preserve more
information of the data (than PCA and MDS) while achieving a similar quantization
error or targeting the same embedding dimension for data visualization, respectively.

Advantages of spectral methods. In this section, we have focused on a set of
well-known methods, which follow a common thread as they ultimately resort to
spectral analysis. Consider a point cloud P sampled from a manifold M embedded
in R%. All methods that we consider intend to find the best embedding of the dataset
P into a Euclidean space R* with respect to some quadratic constraint reflecting
different geometric properties of the underlying manifold M. The embedding of
the data that minimizes the quadratic constraint can then be interpreted as the
best k-dimensional embedding of the data with respect to the geometric property
we aim to preserve. In most cases, the quadratic minimization problem boils down
to a general eigenvalue problem ensuring to find a global minimum. Moreover, the
embedding can be found by easy-to-implement polynomial-time algorithms.

This provides a substantial advantage over iterative or greedy methods based
upon Expectation-Maximization like algorithms that do not provide guarantees of
global optimality. In particular, for quite large data sets, the methods we consider
still provide results when iterative and greedy methods fail due to complexity issues.
Another advantage of spectral methods is that the quadratic objective function
leads to a measurement of the quality of the embedding. At last, spectral methods
have been widely used and studied in many applications areas (graph theory, mesh
processing [70]) giving rise to a large amount of efficient theoretical and algorithmic
tools that can be used for dimensionality reduction and data embedding.

3.2 Non-linear embedding methods

In this section, we briefly present a set of quite famous embedding methods that have
interesting geometric interpretations. They also have the advantage of leading to
easy to implement polynomial-time algorithms that prove more efficient with larger
data sets than the ones usually involved in iterative or greedy methods (like e.g. the
ones involving EM or EM-like algorithms). We also discuss the guarantees provided
by these methods. Although this is not always the case with databases, in the
following the considered data sets P are assumed to be in an Euclidean space R? and
sampled on/around a possibly unknown smooth manifold M of dimension k < d.
However most of the methods mentioned below just rely on a notion of distance
between neighboring data points. The common thread of these few methods is that
they all aim to find an embedding P C R¥ of the data set P minimizing a quadratic
functional ¢(P) that intends to preserve (local) neighborhood information between
the sample points.

Maximum Variance Unfolding (MVU). Classical methods like PCA (Prin-
cipal Component Analysis) and MDS (MultiDimensional Scaling) perform poorly
when data points are not close to an affine subspace because they are both based
on an inherent linearity assumption. Especially, both methods fail when the data
points are close to a “curled up” linear space—the most famous example is the so
called Swiss roll data set, points sampled densely from a curled up planar rectangle
in R3. The idea behind mazimum variance unfolding (MVU), introduced by Wein-
berger and Saul [66, 68, 67], is to unfold the data, i.e., to transform the data set to
a locally isometric data set, that is closer to an affine subspace. The unfolding aims
at maximizing the distance between non-neighboring points (after some choice of
neighborhood) while preserving the distances between neighboring points.

Technically MVU proceeds as follows: let D = (d;; = ||p; — p;||*) be the sym-
metric (n x n)-matrix of pairwise distances. Choose a suited neighborhood for each
point in P (Weinberger and Saul choose the symmetric x-nearest neighbors) and let
the indicator variable n;; be 1 if either p; is in the neighborhood of p; or p; is in the
neighborhood of p;, and 0 otherwise. From D an unfolding, a positive semi-definite
(n x n)-matrix K = (k;;) (interpreted as the Gram matrix of the unfolded point
set) is computed through the following semi-definite program (SDP)

Maximize the trace of K subject to
(1) K is positive semi-definite

(2)

(3)
kii — 2kij + k‘jj = dij for all (Z,j) with Nij = 1

From K a lower dimensional embedding can be computed as described for MDS.

Locally Linear Embedding (LLE). LLE is a method introduced in [57, 58]
that intends to take into account the local linearity of the underlying manifold
M to perform the reduction of dimension. In a first step, LLE discards pairwise
distances between widely separated points by building a neighborhood graph G.
The goal of this first step is to connect only close points of P so that the neighbors
of each vertex p; in G are contained in a small neighborhood of p; which is close to
the tangent space of the underlying manifold M at p;. To take this local linearity

into account, LLE computes for each vertex p; of the graph its best approximation
as a linear combination of its neighbors. More precisely, one computes a sparse
matrix of weights W; ; that minimize the quadratic error

n
eW)=>lpi— > Wil
i=1 JEN(p:)

where N (p;) is the set of the vertices that are connected to p; in G. This is a simple
least square problem. Solving it with the additional constraint

vi, Y Wi =1

JENgb(p;)

makes the weights invariant to rescaling, rotations and translations of the data (the
weights thus characterize intrinsic properties of the data). The weights matrix is
then used to perform the dimensionality reduction: given k < d, the points p; are
mapped to the points p; € R* that minimize the quadratic function

(pi) =Y b — > Wipsl°
i j

This quadratic minimization problem classically reduces to solving a sparse n x n
eigenvalue problem. To provide satisfactory result, the data have to be sufficiently
dense to ensure that the neighbors of a given point provide a good approximation of
the tangent space of M. Moreover, even if the data are dense enough, the choice of
the neighbors may also be awkward: choosing a too small or too large neighborhood
may lead to very bad estimates of the tangent space.

ISOMAP. ISOMAP is a version of MDS introduced in [63, 20], where the matrix
of Euclidean distances is replaced by the matrix of the geodesic distances between
data points on M. In a first step, ISOMAP builds a neighborhood graph such that
the distances between points of P in the graph are close to the geodesic distances
on M. Once the geodesic distance matrix has been built, ISOMAP proceeds like
classical MDS to embed P in R*.

One of the advantage of ISOMARP is that it provides convergence guarantees. First,
it can be proven that if the data are sufficiently densely sampled on M, the distance
on the neighbor graph is close to the one on M [19, 49, 28]. Nevertheless, in practice
robust estimation of geodesic distances on a manifold is an awkward problem that
requires rather restrictive assumptions on the sampling. Second, since the MDS
step in the ISOMAP algorithm intends to preserve the geodesic distances between
points, it provides a correct embedding if M is isometric to a convex open set of R¥.
It appears that ISOMAP is not well-suited to deal with data on manifolds M that
do not fulfill this hypothesis. Nevertheless some variants (conformal ISOMAP [20])
have been proposed to overcome this issue. Note also that ISOMAP is a non local
method since all geodesic distances between pairs of points are taken into account.
As a consequence ISOMAP involves a non-sparse eigenvalue problem which is a
main drawback of this method. To partly overcome this difficulty some variant of
the algorithm using landmarks have been proposed in [20].

Laplacian Eigenmaps. This method introduced in [8, 9] follows the following
general scheme: first a weighted graph G with weights W, ; is built from the data.
Here the weights measure closeness between the points: intuitively the bigger W; ;
is, the closer p; and p; are. A classical choice for the weights is given by the Gaussian

_llpi—p;1I°

=), where o is a user-defined parameter!. Second the

kernel W; ; = exp(

1To obtain a sparse matrix W the values of Wi, ; that are smaller than some fixed small threshold
are usually set to 0.

graph G is embedded into R* in such a way that the close connected points stay
as close as possible. More precisely the points p; are mapped to the points p; € R¥
that minimize R
S(P) = lIps — b;1*Wi;.
]

There is an interesting and fundamental analogy between this discrete minimization
problem on the graph G and a continuous minimization problem on M. Indeed, it
can be seen that minimizing ¢ on the functions defined on the vertices of G corre-
sponds (in a discretized version) to minimizing [, ||V f||* on the space of functions
f defined on M with L? norm ||f||3. = [, [If]* = 1. From the Stokes formula,
this integral is equal to [1 L(f)f, where L is the Laplace-Beltrami operator on M
and its minimum is realized for eigenfunctions of £. Similarly the minimization
problem on G boils down to a general eigenvector problem involving the Laplacian
of the graph. Indeed the Laplace operator on G is the matrix L = D — W, where
D is the diagonal matrix D;; = Zj Wi ;. It can be seen as an operator acting on
the functions f defined on the vertices of G by subtracting from f(p;) the weighted
mean value of f on the neighbors of p;. By a classical computation, one can see
that ¢(P) = tr(PTLP), where P is the n x k matrix with i-th row given by the
coordinates of p;. It follows that, given k > 0, the minimum of ¢ is deduced from
the computation of the k + 1 smallest eigenvalues of the equation Ly = ADy (the
smallest one corresponding to the eigenvalue 0 has to be removed). The analogy

between the discrete and continuous setting extends to the choice of the weights of

G: choosing W, ; = exp(fw), where o is a user-defined parameter, allows to

interpret the weights as a discretization of the heat kernel on M [8]. From the side
of the guarantees, the Laplacian eigenmaps only involve intrinsic properties of G so
they are robust to isometric perturbations of the data. Moreover, the relationship
with the Laplacian operator on M provides a framework leading to convergence
results of L to the Laplace operator on M [9].

Hessian Eigenmaps (HLLE). ISOMAP provides guarantees when the unknown
manifold M is isometric to a convex open subset of R*¥. Although the hypothesis
of being isometric to an open subset of R¥ seems to be rather reasonable in several
practical applications, the convexity hypothesis appears to be often too restrictive.
HLLE is a method introduced in [22] intending to overcome this convexity con-
straint. The motivation of HLLE comes from a rather elementary result stating
that if M is isometric to a connected open subset of R* then the null-space of the
operator defined on the space of C2-functions on M by

H: f—>/ | Hess f(m)||*dm
M

where Hess f is the Hessian of f, is a (k + 1)-dimensional space spanned by the
constant functions and the “isometric coordinates” of M. It is thus appealing to
estimate this null space in order to recover these isometric coordinates to map M
isometrically on an open subset of R¥. To do this the algorithm follows the same
scheme as LLE and the estimation of the null-space of H reduces to an eigenvalue
computation of a sparse n x n matrix. As a consequence HLLE allows to process
embedding for a larger class of manifolds M than ISOMAP. The quality of the
reduction is obviously closely related to the quality of the approximation of the
kernel of the operator H. Nevertheless, it is important to notice that the algorithm
involves the estimation of second order differential quantities for the computation
of the Hessian while LLE requires only first order ones to approximate the tangent
space of M. To be done efficiently this usually needs a very dense sampling of M.

At last, note that HLLE is the same as Laplacian Eigenmaps where the Laplacian
operator has been replaced by H.

Diffusion Maps. Diffusion maps [14] provide a method for embedding based
upon Markov random walks on a weighted graph G reflecting the local geometry of
P . The graph G is built in a similar way as for Laplacian Eigenmaps: the larger is
the weight of an edge, the “closer” are its endpoints. In particular G can be built
using the discretization of the heat kernel on M (see section 3.2). From the weights
matrix W one constructs a Markov transition matrix IT by normalizing the rows of
w

W
IL; ; = d(l’]) where d(p;) = Z Wi 1 is the degree of the vertex p;
bi
k
II; ; can be interpreted as the probability of transition from p; to p; in one time
step. The term I1;(7,5) of the successive powers II* of II represent the probability
IT,(p;, p;) of going from p; to p; in ¢ steps. The matrix IT can be seen as an operator
acting on the probability distributions supported on the vertices of G. It admits an

invariant distribution ¢ defined by ¢o(p;) = Ed.(g&)),-)- The idea of diffusion maps is

thus to define a metric between the points of P which is such that at a given ¢ > 0
two points p; and p; are close if the conditional distributions of probability II;(p;, .)
and II;(p;, .) are close. The choice of a weighted L? metric between the conditional
distributions allows to define a diffusion metric between the points of P

s (pi pr) — T (py, pr))?
)= 3

which is closely related to the spectral properties of the random walk on G given
by II. Intuitively, two points p; and p; are close if there are many paths connecting
them in G. Note that the parameter ¢ representing the “duration” of the diffusion
process may be interpreted as a scale parameter in the analysis. Given k and
t > 0, the diffusion map provides a parameterization and an embedding of the data
set which minimizes the distortion between the Euclidean distance in R* and the
diffusion distance D;. The diffusion map is obtained from the eigenvectors of the
transition matrix IT and the eigenvalues to the power ¢ of the transition matrix.
The diffusion maps framework reveals deep connections with other areas (such as
spectral clustering, spectral analysis on manifolds,...) that open many questions
and make it an active research area. For a more detailed presentation of diffusion
maps and its further developments the reader is referred to [14, 15, 44].

4 Clustering

During the past decades, clustering algorithms have been extensively studied in the
database community. It goes beyond the scope of this report to give a comprehensive
overview of the vast available literature. For this reason, we will focus our summary
only on the milestones in this research area.

One of the most widely used clustering algorithms is Lloyd’s k-means algorithm
[46, 26, 47]. This algorithm is based on two observations: (i) Given a fixed set of
centers, we obtain the best clustering by assigning each point to the nearest center
and (i7) given a cluster, the best center of the cluster is the center of gravity (mean)
of its points. Lloyd’s algorithm repeatedly applies these two local optimizations
steps to the current solution until no more improvement is possible. It is known that
the algorithm converges to a local optimum [61], and the quality of the computed
solution is sensitive to the choice of the starting centers.

A popular density-based algorithm is DBSCAN (Density Based Spatial Clus-
tering of Applications with Noise) [23]. This is a heuristic that works based on the
following two assumptions: (i) Inside of a cluster the density of points is higher
than the density outside of the cluster and (#) within areas of noise the density
of points is lower than the density inside of any cluster. The key idea of the al-
gorithm is now that each cluster contains at least one so-called core point and a
cluster consists of all the points that are density-reachable from such a core point.
Here, a point is called core point if the ball with certain radius centered at this
particular point contains more than a certain threshold of points, i.e., the density
in some local neighborhood of the point exceeds some threshold. Furthermore, a
point p is called directly density-reachable from a point ¢ if ¢ is a core point and
p is contained in the local neighborhood of ¢. By canonically extending this def-
inition, a point p is called density-reachable from a point ¢ if there is a chain of
directly density-reachable points that starts in ¢ and ends in p. Finally, points
that are neither density-reachable from core points nor core points themselves are
considered as noise. The advantages of DBSCAN are that it is able to discover
clusters of arbitrary shape and that it does not require the number of clusters as
input parameter.

A well-known medoid-based algorithm is CLARANS (Clustering Large Appli-
cations based on RANdomized Search) [52]. A medoid is similarly defined as a
mean of a cluster but it is always a member of the input points. More precisely,
a medoid is a point of a cluster whose average distance to all the points in the
cluster is minimal. The heuristic CLARANS is based on the two medoid-based
methods PAM (Partitioning Around Medoids) and CLARA (Clustering LARge
Applications) developed by Kaufman and Rousueeuw [40]. PAM is a local search
heuristic that starts with k£ arbitrary medoids and iteratively swaps one medoid
and one non-medoid such that changing the status of these points decreases the
total sum of the distances of the points to their closest medoids the most. This
local improvement step is repeated until the algorithm reaches a local minimum of
the clustering cost. In order to reduce the running time, Kaufman and Rousueeuw
developed a randomized version of PAM, which they called CLARA. Basically,
CLARA draws multiple random samples of the input points, runs algorithm PAM
on each sample set, and outputs the clustering with the lowest clustering cost (in
terms of the sum of distances of the points to the closest medoid). Like CLARA
the algorithm CLARANS is also a randomized version of PAM. In each local im-
provement step, CLARANS does not consider all possible swaps of one medoid and
one non-medoid like PAM does, but it only considers a randomly chosen subset of
all possible swaps. CLARANS computes a certain fixed number of local minima
in this manner and outputs the clustering with the minimum clustering cost among
all these local minima.

One of the earliest and best known practical clustering algorithms for data
streams is BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [71].
BIRCH is a heuristic which exploits the observation that the point space is usually
not uniformly occupied. It scans the given set of input points once and computes a
pre-clustering by summarizing dense regions of points by their so-called clustering
features. Such a clustering feature consists of the number of points in the region,
the center of gravity, and the sum of squared distances to the origin. Thereby, the
problem of clustering the original input point set is reduced to the problem of clus-
tering the set of summaries, which is much smaller than the original point set. The
pre-clustering is then clustered by using an agglomerative (bottom-up) clustering
algorithm. In this process, the algorithm uses the clustering features to calculate
the intra-cluster distances. BIRCH successively merges the closest pair of clusters
until the desired number of clusters is obtained.

Another well-known heuristic which uses a hierarchical clustering approach is

10

CURE (Clustering Using REpresentatives) [34]. This algorithm is based on the
following two observations: (i) The shape of a cluster might not be spherical and
(ii) outliers are typically further away from the mean of a cluster. Like BIRCH,
CURE uses an agglomerative clustering approach. It starts with each point as
one single cluster and then successively merges the two clusters with the closest
pair of representative points until the desired number of clusters is obtained. In
contrast to BIRCH, CURE is not centroid-based but represents each cluster by
a certain constant number of well scattered points. By representing each cluster
by multiple points, the detection of clusters with non-spherical shape is improved.
In order to dampen the effect of outliers, each representative point is shrunken
towards the mean of its cluster by some certain fraction. Furthermore, to speed-up
computations, CURE applies random sampling and a partitioning approach.

Another well-known clustering algorithm for data streams is the streaming im-
plementation of algorithm LSEARCH from O’Callaghan et al. [54] and Guha et al. [31].
This algorithm partitions the input stream into chunks and computes for each chunk
a k-means clustering solution using a local search algorithm from Guha et al. [32].
Finally, the local search algorithm is applied once more on the union of the solutions
for the chunks to obtain a k-means clustering for the whole input stream. The local
search algorithm of Guha et al. [32] takes advantage of the relationship between the
k-means clustering problem and the uniform facility location problem. In the latter
problem, the number of facilities (or cluster centers) is not limited, but some cost
has to be paid for each used facility. Now, the algorithm of Guha et al. is based
on the observation that if the opening cost of a facility increases, then the number
of facilities of an optimal solution tends to decrease. Hence, to solve the k-means
problem, the algorithm of Guha et al. performs a binary search on the opening
cost of a facility to find a cost that gives the desired number of cluster centers.
During the binary search, each facility location problem is solved by starting with
an initial solution that is obtained by a simple non-uniform sampling approach and
then refining this solution by making local improvements.

A relatively new research area which is of great interest for our project is clus-
tering of uncertain data. This is motivated by the fact that most of the real world
datasets contain uncertain, imprecise, or incomplete data. Typical examples are
measurements of sensor networks or datasets arising from record linkage across
multiple data sources.

In recent publications, some traditional clustering approaches have been ex-
tended so that they can handle uncertain data. For instance, Chau et al. [12] and
Ngai et al. [53] extended Lloyd’s k-means algorithm, and Kriegel and Pfeifle [42, 43]
and Xu and Li [69] extended the density-based clustering algorithm DBSCAN for
handling uncertainty.

Very recently, Glinnemann et al. [35] developed a subspace clustering heuristic
for uncertain data. Subspace clustering was introduced for high-dimensional input
data whose clusters appear in low-dimensional subspaces rather than in the full-
dimensional ambient space. The input of the algorithm of Giinnemann et al. is a
set of probabilistic points from a Euclidean space where each point is formalized
as a probability distribution function. The output is a set of subspace clusters.
Each such cluster is defined as a set of relevant dimensions and a subset of the
input points where each point is associated with a membership degree. This means,
a point can belong to several clusters and a member ship degree indicates how
relevant a particular point for a particular cluster is. The key idea of the algorithm
is to approximate subspace clusters via hypercubes. In the relevant dimensions of
the subspace cluster, the extent of the hypercube is limited by a fixed maximal
width, while, in the non-relevant dimensions, the extent is unlimited. To compute
the subspace clusters, the algorithm chooses randomly some medoid points and
considers all possible hypercubes (the number is exponential in the dimension)

11

around each medoid point. For each hypercube, it then computes the support of
the hypercube, i.e., the number of points which are very likely to be located within
this hypercube. Based on the support and the number of relevant dimensions of the
hypercube, the quality of the hypercube is computed. Finally, the hypercube with
the highest quality is chosen as subspace cluster and the set of possible medoids
is reduced. In this manner, the algorithm computes one subspace cluster after the
other until the set of possible medoids is empty. To speed up computations, the
algorithm deploys some pruning and sampling techniques.

Surprisingly, only a few theoretical results on clustering uncertain data have
been obtained so far [17, 33]. Cormode and McGregor [17] were the first who the-
oretically investigated probabilistic clustering problems. Here, probabilistic means
that the input is a set of probabilistic points, each formalized as a discrete prob-
ability distribution function which describes the possible locations of the points.
Cormode and McGregor considered two variations of probabilistic clustering. In
the first variation, called unassigned clustering, each point is assigned to the closest
cluster center. In the second variation, called assigned clustering, each point is as-
signed to a fixed cluster center, no matter where it is actually located. Cormode and
McGregor obtained a (1 4 ¢)-approximation for the unassigned Euclidean k-median
problem and both the unassigned and assigned Euclidean k-means problem by using
simple reductions to weighted deterministic clustering problems. For the assigned
metric k-median problem, they achieved a constant factor approximation by first
computing the 1-median of each probabilistic input point and then clustering the
1-medians. For the unassigned metric k-center problem, they proposed a bicriteria
approximation algorithm which results in a constant factor approximation but uses
2k instead of k cluster centers.

In a follow-up work, Guha and Munagala [33] improved the last-mentioned result
of Cormode and McGregor. More precisely, by using a reduction to a “truncated”
version of a deterministic metric k-median problem, they obtained a constant factor
approximation for both the unassigned and assigned metric k-center problem that
preserves the number of allowed cluster centers k.

A survey of uncertain data mining and management applications can be found
in [2].

5 Database Approaches to High-Dimensional Near-
est Neighbor Searching

Nearest neighbor searching (NNS), also known as similarity searching or similarity
retrieval, is a fundamental computational problem that has significant applications
in many fields of computer science. In this section we summarize the most efficient
methods for NNS that have been developed by the database community.

The problem in its general form is defined as follows. Let U be a set of elements
and let d be a distance function that maps each pair of elements from U to some
positive real number. Typically d is a metric distance function (i.e., it satisfies the
triangle inequality) although this need not always be the case [45]. Given a set S of
n elements from U, the goal is to find fast for any query element ¢ in U the closest
element to ¢ among the elements of S, that is an element minimizing the distance
d(q,e) over all e in S. If besides the closest element we wish to report the k closest
elements to ¢ for 1 < k < n we have the so called k-NN problem.

In the following we will consider a somewhat restricted version of NNS, which
is however the standard version studied in Computational Geometry, and to which
many instances of NNS reduce. Let P be a set of n points in R% and let d(p,p’)
denote the Euclidean distance between any two points p and p’. We want to pre-

12

process P into an external memory data structure or index so that given any query
point ¢ in R? we can efficiently report a nearest neighbor (NN) to ¢ among the
points in P. We say that a point p in P is a nearest neighbor of ¢ if for any point
p’ € P, it holds that d(q,p) < d(g,p’).

Since an exact solution to high-dimensional NNS requires heavy resources many
techniques focus on the less demanding task of computing an approximate nearest
neighbor. Given a parameter ¢ > 1, a c-approzimate nearest neighbor (c-NN) to a
query ¢ is a point p in P with d(q,p) < ¢-d(q,p’) where p’ is a NN to ¢q. Hence,
under approximation, the answer can be any point whose distance from ¢ is at most
c times larger than the distance between ¢ and its NN.

There is a large literature on indexes for NNS [11, 59, 60]. The subsections
below present three kinds of indexes, selected on the following criteria: they are
the state-of-the-art in the field and they are efficient in high dimensions, they give
provably correct results, and they represent different paradigms.

Some of these indexes are based on a standard data structure, the B*-tree [16].
This is a variant of the B-tree [59, appendix A], where the internal nodes store
just the keys, and the leaves are linked together as in a sorted doubly-linked list.
It occupies O(n/B) pages of space and has query time of O(logg n) page accesses,
where B is the page size. Predecessor/successor queries beginning at a leaf require at
most one page access. BT -trees are used to implement R-trees [60, sec.6.3], employed
to store spatial objects more general than points. The latter were modified to define
R*-trees (cf. [7], [59, sec.2.1.5]), which are considered state-of-the-art among object-
based hierarchical interior-based representations of spatial objects.

5.1 Clustering and the iDistance Method.

Jagadish et al. [39] proposed the iDistance method which offers a solution to the
k-NN problem. The index is built as follows. First m points are chosen as centers,
where m is a user-defined parameter. The authors study various schemes for select-
ing the centers which could depend or not on the data distribution. For instance,
for clustered datasets they successfully use the cluster centers that the k-means al-
gorithm computes. After picking the centers, set P is partitioned into m subsets P;
for 1 < 57 < m commonly by associating each point in P to its closest center. Each
point p in P is assigned a one-dimensional real value v, that is equal to its distance
from its associated center. Finally these n values are stored in a B -tree [59] after
appropriate translation so that for any j the values of the points in P; and those of
the points in P;y; lie in consecutive intervals.

A query ¢ is processed as follows. The search for the k-NNs starts with a ball b,
of radius r centered at q. The radius r is given a default value that is increased by
a fixed amount whenever b, is found to contain less than k points. The algorithm
considers one by one each subset P;. For each j it computes v,, the distance of ¢
from the center of P;. By a simple descent in the BT-tree, it locates the predecessor
of g, that is the point p in P; having the largest value v, smaller than v,, and it
computes the actual distance d(q,p). The algorithm maintains a set S of at most k
points that are potential k&-NNs to ¢. Depending on d(q, p) and S, it checks whether
S should be updated with p. After this the search continues similarly to check the
points in P; to the left of p.

To limit unnecessary calculations, some well-known but very effective pruning
heuristics are used [59]: By the triangle inequality, for any p in P; it holds that
lvg — vp| < d(q,p). If for some p it holds that vy — v, > r, then p and all the points
left of p in P;, which have values < v,, lie outside b, and thus they can be omitted.
At some point the search towards left of ¢ stops. Then the search continues to the
right of g. Here the symmetric stop condition is v, — v, > r. Once the search on set
P; has been completed, ¢ is located among the points in P;;; and the same type

13

of bidirectional linear scan is executed on Pjy;. After visiting all m subsets, the
algorithm checks if S contains k points inside ball b,. If so, the search finishes and
S is reported as the solution. Otherwise the radius r is increased, and the sets P;
are revisited with the search resuming from where it stopped in the last round.

Experiments showed that the iDistance method is faster by a factor from 2 to
6 compared to other indexes such as the M-tree [13] and the Omni-sequential [25]
or the internal memory based BD-tree [50]. One drawback is that for uniform
data distributions as the dimension increases the method becomes not competitive
to linear scan. Poor query performance also occurs in the worst-case, when for
example a large number of points lie at roughly the same distance from a center. On
the positive side, if the centers are carefully selected iDistance gives good results for
clustered datasets, it always returns the exact k-NNs, and it relies on the commonly
used BT -tree.

5.2 Rank Aggregation and the Medrank Method.

Fagin et al. [24] give a solution to NNS by relating it to rank aggregation. Rank
aggregation is the following problem: Suppose that there are d voters and n can-
didates, and that each voter ranks all the n candidates. The goal is to determine
based on these rankings which of the candidates should be the winner of this voting.
The authors show how NNS can be reduced to a certain kind of rank aggregation.
First using standard dimension reduction results [41, 38] (see Section 2), the query
q and the points in P are projected down to O(logn/(c—1)?) dimensions. Without
ambiguity we denote the projected query, the projected point set and the reduced
dimensions by ¢, P and d respectively as well. Let ¢ = (q1,¢2,...,qq4). The d coor-
dinates play the role of the d voters and the n points that of the n candidates. For
each i, ¢; ranks the n points according to the distance of their ith-coordinate from
gi- Thus the point with the closest ith-coordinate to ¢; (ties broken arbitrarily) is
set first in the rank, the point with the second closest ith-coordinate second, and
so on. The question is what the overall ‘closeness’ rank of a point p for ¢ should
be based on all the d independent coordinate rankings. The authors propose as
a good overall ranking the medrank(p) which is defined as the median of all the d
coordinate rankings for p. The winner of the voting, which is the estimated near
neighbor to ¢, is then the point having the minimum medrank over all points in P.

The estimated near neighbor is not a ¢-NN in all cases. However if the rank for
a point with respect to g; is replaced by a score that takes into account the absolute
distance from ¢; and medrank is replaced by medscore, the median of these scores,
then with high probability the point that minimizes medscore is guaranteed to be
a ¢-NN [4].

The point of minimum medrank is computed by the following algorithm. At
preprocessing d doubly-linked lists are formed, where the i-th list contains all the
i-coordinates from all the points in P in increasing order. With each coordinate a
pointer to the corresponding point is also stored. For large n the lists can be stored
with B -trees. When a query ¢ arrives, ¢ is located in each of the d lists. Then a
bidirectional scan is initiated from ¢’s position in each list. At each step the scan
progresses in the direction and in the list that has the next point with the smallest
rank among all the 2d possible current points. Thus each step requires O(1) time
and at each step a new point is examined. The first point that appears more than
d/2 times can be shown to be the point with the minimum medrank. If this process
continues the points with the top-k medranks are similarly found. Interestingly
the above algorithm despite its simplicity is instance optimal. This means that it
checks at most a constant factor more points than any algorithm does which also
computes the point of minimum medrank by sequential or random accesses in the
d sorted lists.

14

According to the experimental results the Medrank method for NNS is practical
for dimensions as high as 200. The dimension reduction is important for this.
Moreover even though in theory the approximation factor is not guaranteed, in
most cases it turns out to be small.

5.3 Locality Sensitive Hashing and the LSB-Tree Method.

The locality sensitive B-tree (LSB-tree) by Tao et al. [62] is based on locality sen-
sitive hashing (LSH) [18, 38]. It improves significantly upon an earlier external
memory implementation of LSH for NNS by Gionis et al. [29]. The index is con-
structed as follows. Each point p in P is projected to a point p’ in d’ = O(log(dn/B))
dimensions. Specifically, for 1 < i < d’ the i-th coordinate of p’, denoted by pf, is
given by d; - P+ b; where d; is a random d-dimensional vector and b; is a random
number chosen uniformly from a interval of fixed length. The space region occupied
by the n projected points is then partitioned into hypercube grid-cells of equal size
(we simply call them cells) so that there are (25)% cells in total, where s is a large
enough integer constant. Thus each projected point p’ lies in a cell which can be
identified by d’ s-bit coordinates with each coordinate giving the order of the cell
in the corresponding dimension.

In [29, 38] the locality sensitive properties of the projection ensure that a query
q is likely to be mapped in the same cell with one of its ¢-NNs. In this method
a different approach is followed in the sense that either the cell containing ¢’ or a
nearby nonempty cell is likely to contain a ¢-NN to g. To locate efficiently neigh-
boring cells the well-known Z-order curve is used [27]. Let ¢, be the cell containing

a point p in the projected space. Let bl(»j) denote the j-th bit of the i-th coordinate
of ¢p. Then the Z-order value assigned to p and ¢, is the binary number

s 5)7(s—1);(s—1 s—1 1 1 1
O S SR St Y At N Al S A2

The Z-order values impose a linear ordering on all the n points and their associated
cells. The benefit of this ordering is that neighboring points and cells are likely to
receive close Z-order values. Finally these n values are stored for fast location in
BT -tree which gives the LSB-tree. Along the lines of [29], the same construction
is repeated £ = O(y/dn/B) times (each time with different random vectors a@; and
values b;) which guarantees with constant probability that a 4-NN is returned. The
set of these ¢ LSB-trees is called LSB-forest.

The query processing starts by computing the Z-order of ¢ (more accurately of its
projection ¢’ but for simplicity we keep the same notation) and locating the leaf that
contains it in each of the ¢ LSB-trees. Then a bidirectional scan is initiated much
like in the Medrank method (see previous subsection). In this method however
the point that is examined at each step is the one maximizing the length of the
longest common prefix (LLCP) among the 2¢ current points in the ¢ trees. The
LLCP for a point p is computed between the binary strings of the Z-order of p and
that of the query point ¢q. Roughly speaking, the larger the value of LLCP, the
closer the two points are. Moreover, as the search continues the LLCP values of
points examined are decreasing. The scanning stops when either O(¢{B/d) points
have been checked or when there is proof based on the current LLCP value that no
subsequent point can be much closer than the best NN found so far. The method
can be extended to compute also the approximate k-NNs to ¢. The space of the
LSB-forest is O((dn/B)3/?) and the query time is O(/dn/B - loggn), which is
sublinear. Compared to the previous LSH scheme [29], the LSB-forest bounds have
no dependence on the largest integer coordinate T' of the points in P and in fact
the space bound is better by a factor O(log(dT)).

15

Extensive experimental results were provided comparing the LSB-tree and the
LSB-forest with the iDistance method, the Medrank method and the LSH methods
in [29]. LSB-tree offers good quality results with faster query times and about the
same or less space in comparison to all the other methods in dimensions up to 100.
LSB-forest achieves a theoretical approximation error of 4 and in practice of at most
1.5 at the cost of increased space.

5.4 Discussion

We juxtapose the previous presentation with a brief mention of the most relevant
approaches and software coming from the Computational Geometry community,
which can efficiently treat high-dimensional data. These methods put the empha-
sis on robustness and theoretical guarantees, and assume the space dimension is
constant when analyzing space and time complexity; nonetheless, in practice space
dimension can be quite large.

An important instance is the work of Arya et al. on approximate nearest neigh-
bors (ANN), e.g. [6]. This approach, implemented on Balanced Box-Decomposition
(BBD) trees [6], led to ANN, one of the state-of-the-art software packages [50]. An-
other successful package is FLANN (Fast Library for Approximate Nearest Neigh-
bor), which contains a collection of algorithms and data-structures among which
the software automatically chooses the most appropriate for the input dataset, while
optimizing the parameters [51].

Another geometric approach for ANN searching relies on Approximate Voronoi
Diagrams, which are shown to establish a tradeoff between the space complexity of
the data structure and the query time it supports [5]. They are implemented on a
hierarchical quadtree-based subdivision of space into cells, each storing a number
of representative points, such that for any query point lying in the cell, at least one
of the representatives is an approximate nearest neighbor.

6 Summary and Conclusion

The fields of Computational Geometry, Computational Learning, and Databases
have an overlap where they study high-dimensional data. We have seen that many
basic tools are in common to these areas. Research in Databases focuses of running
systems, and many papers report impressive experimental results. On the other
hand, Computational Geometry has a strong emphasis on getting a thorough un-
derstanding, trying to explain what works and what can be proved. In this respect,
the approaches in the different fields are complementary, but they can cross-fertilize
and learn from each other by studying their various approaches and techniques.

Acknowledgement. Partially supported by the IST Programme of the EU (FET
Open) Project under Contract No IST-25582 — (CGL - Computational Geometric
Learning)

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss
with binary coins. Journal of Computer and System Sciences, 66:671-687,
2003.

[2] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms
and applications. IEEE Trans. Knowl. Data Eng., 21(5):609-623, 2009.

16

3]

[15]

R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. Foundations of Data Organization and Algorithms, pages 69-84,
1993.

A. Andoni, R. Fagin, R. Kumar, M. Patrascu, and D. Sivakumar. Corrigendum
to “Efficient similarity search and classification via rank aggregation” by R.
Fagin, R. Kumar and D. Sivakumar (SIGMOD 2003). In Proc. ACM SIGMOD
Intern. Conf. Management of Data, pages 1375-1376, 2008.

S. Arya, T. Malamatos, and D.M. Mount. Space-time tradeoffs for approximate
nearest neighbor searching. J. ACM, 57:1-54, 2009.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J.
ACM, 45:891-923, 1998.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proc. ACM
SIGMOD Intern. Conf. Management of Data, pages 322-331, Atlantic City,
NJ, 1990.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373-1396, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based
manifold methods. Journal of Computer and System Sciences, 74(8):1289—
1308, 2008.

E. Bingham and H. Mannila. Random projection in dimensionality reduc-
tion: applications to image and text data. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 245-250. ACM, 2001.

C. Béhm, S. Berchtold, and D.A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Comput. Surv., 33:322-373, 2001.

Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain data
mining: An example in clustering location data. In Proceedings of the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2006), volume 3918 of Lecture Notes in Computer Science, pages 199-204.
Springer, 2006.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proc. 23rd Intern. Conf. Very Large Data
Bases, pages 426435, 1997.

R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and
S. Zucker. Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps. Proc. of Nat. Acad. Sci., 102:7426-7431,
2005.

R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and
S. Zucker. Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Multiscale methods. Proc. of Nat. Acad. Sci., 102:7432—
7437, 2005.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137,
1979.

17

[17]

[25]

[26]

[27]

Graham Cormode and Andrew McGregor. Approximation algorithms for clus-
tering uncertain data. In Proceedings of the 27th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS 2008), pages
191-200, 2008.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proc. SoCG, pages 253—
262, 2004.

V. de Silva, J.C. Langford, and J.B. Tenenbaum. Graph approximations to
geodesics on embedded manifolds. Technical report, Pomona College, 2000.

V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear di-
mensionality reduction. In Advances in Neural Information Processing Systems
15. MIT Press, Cambridge, MA, 2003.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American society for

information science, 41(6):391-407, 1990.

D. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of
Sciences, 100(10):5591-5596, 2003.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 1996), pages 226-231, 1996.

R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classi-
fication via rank aggregation. In Proc. ACM SIGMOD Intern. Conf. Manage-
ment of Data, pages 301-312, 2003.

R. Filho, A. Traina, C. Traina, and C. Faloutsos. Similarity search without
tears: The OMNI-family of all-purpose access methods. In Proc. 17th Intern.
Conf. Data Engineering, pages 623-632, 2001.

E. W. Forgy. Cluster analysis of multivariate data: Efficiency versus inter-
pretability of classifications. Biometrics, 21:768-780, 1965.

V. Gaede and O. Guenther. Multidimensional access methods. ACM Comput-
ing Surveys, 30:170-231, 1998.

J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of
manifolds with high co-dimension. In Proc. 19th Annual Symp. Computational
Geometry, pages 329-337, 2003.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In ACM, editor, Proc. Conf. VLDB, pages 301-312, 1999.

G. H. Golub and C. F. van Loan. Matriz Computations. Johns Hopkins Uni-
versity Press, 3rd edition, 1996.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 15(3):515-528, Jan-
uary/February 2003.

18

[32]

[33]

[43]

[44]

[45]

[46]

Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clus-
tering data streams. In Proceedings of the 41st Symposium on Foundations of
Computer Science (FOCS ’00), pages 359-366. IEEE Computer Society, 2000.

Sudipto Guha and Kamesh Munagala. Exceeding expectations and clustering
uncertain data. In Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 2009), pages 269-278,
2009.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient clus-
tering algorithm for large databases. Inf. Syst., 26(1):35-58, 2001.

Stephan Gilinnemann, Hardy Kremer, and Thomas Seidl. Subspace clustering
for uncertain data. In Proceedings of the SIAM International Conference on
Data Mining (SDM 2010), pages 385-396, 2010.

Matthias Hein and Markus Maier. Manifold denoising. In Neural Information
Processing Systems, pages 561-568, 2006.

G.M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):145—
153, 1979.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. STOC, pages 604—613, 1998.

H.V. Jagadish, B. Chin Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An
adaptive B*-tree based indexing method for nearest neighbor search. ACM
Trans. Database Systems, 30(2):364-397, 2005.

Leonard Kaufman and Peter J. Rousueeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

J.M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In Proc. 29th Annual ACM Symp. Theory of Computing, pages 599-608, New
York, 1997. ACM.

Hans-Peter Kriegel and Martin Pfeifle. Density-based clustering of uncertain
data. In Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2005), pages 672-677, 2005.

Hans-Peter Kriegel and Martin Pfeifle. Hierarchical density-based clustering
of uncertain data. In Proceedings of the 5th IEEE International Conference on
Data Mining (ICDM 2005), pages 689-692, 2005.

S. Lafon and A.B. Lee. Diffusion maps and coarse-graining: A unified frame-
work for dimensionality reduction, graph partitioning and data set parameter-
ization. IEEE PAMI, 28(9):1393-1403, 2006.

Y. Lifshits and S. Zhang. Combinatorial algorithms for nearest neighbors,
near-duplicates and small-world design. In Proc. SODA, pages 318-326, 2009.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129-137, March 1982.

J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281-297. University of California
Press, 1967.

19

[48]

[49]

[50]

[51]

52

[54]

Jifi Matousek. Lectures on Discrete Geometry. Springer-Verlag New York,
2002.

F. Memoli and G. Sapiro. Distance functions and geodesics on point clouds,
2005.

D.M. Mount and S. Arya. ANN: A library for approximate nearest neigh-
bor searching. In Proc. 2nd Center for Geometric Computing Workshop on
Computational Geometry, 1997.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In Proc. Intern. Conf. Computer Vision Theory &
Appl. (VISSAPP), pages 331-340. INSTICC Press, 2009.

Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for
spatial data mining. In Proceedings of 20th International Conference on Very
Large Data Bases (VLDB 1994), pages 144-155, 1994.

Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael Chau, and
Kevin Y. Yip. Efficient clustering of uncertain data. In Proceedings of the 6th
IEEF International Conference on Data Mining (ICDM 2006), pages 436—445,
2006.

Liadan O’Callaghan, Adam Meyerson, Rajeev Motwani, Nina Mishra, and
Sudipto Guha. Streaming-data algorithms for high-quality clustering. In Pro-
ceedings of the 18th International Conference on Data Engineering (ICDE "02),
pages 685-696. IEEE Computer Society, 2002.

K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559-572, 1901.

KV Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for
similarity searching in dynamic databases. ACM SIGMOD Record, 27(2):166—
176, 1998.

S. T. Roweis and L. K. Saul. Non linear dimensionality reduction by locally
linear embedding. Science, 290:2323-2326, 2000.

S. T. Roweis and L. K. Saul. Think globally, fit locally: Unsupervised learning
of low dimensional manifolds. Journal of Machine Learning Research, 4:119—
155, 2003.

H. Samet. Foundations of Multidimensional and Metric Data Structures. Mor-
ganKaufmann, 2006.

H. Samet. Multidimensional data structures for spatial applications. In M.J.
Atallah and M. Blanton, editors, Algorithms and Theory of Computation Hand-
book, chapter 6. CRC Press, Boca Raton, Florida, 2010.

Shokri Z. Selim and Mohamed A. Ismail. k-means-type algorithms: A gen-
eralized convergence theorem and characterization of local optimality. IFEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 6(1):81—
87, January 1984.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate nearest neighbor
and closest pair search in high-dimensional space. ACM Trans. Database Syst.,
35:1-46, 2010.

20

[63]

[64]

[68]

[69]

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.

Alex Thomasian, Vittorio Castelli, and Chung sheng Li. RCSVD: Recur-
sive clustering with singular value decomposition for dimension reduction in
content-based retrieval of large image/video databases. Technical Report RC
20704, IBM Research Division, T. J. Watson Research Center, 1997.

L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimensional-
ity reduction: a comparative review. Technical Report TiCC-TR 2009-005,
Tilburg University, 2009.

Kilian Q. Weinberger and Lawrence K. Saul. Unsupervised learning of image
manifolds by semidefinite programming. In Proc. Conf. Computer Vision and
Pattern Recognition (CVPR), pages 988-995, 2004.

K.Q. Weinberger and L.K. Saul. An introduction to nonlinear dimensional-
ity reduction by maximum variance unfolding. In Proceedings of the National
Conference on Artificial Intelligence, pages 1683-1686. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

K.Q. Weinberger and L.K. Saul. Unsupervised learning of image manifolds
by semidefinite programming. International Journal of Computer Vision,
70(1):77-90, 2006.

Huajie Xu and Guohui Li. Density-based probabilistic clustering of uncertain
data. In Proceedings of the 2008 International Conference on Computer Science
and Software Engineering - Volume 04, CSSE ’08, pages 474-477, Washington,
DC, USA, 2008. IEEE Computer Society.

Hao Zhang, Oliver van Kaick, and Ramsay Dyer. Spectral mesh processing.
Computer Graphics Forum, 29(6):1865-1894, 2010.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A new data clus-
tering algorithm and its applications. Data Mining and Knowledge Discovery,
1(2):141-182, June 1997.

21

