
Engineering the Policy-making Life Cycle

Deliverable D8.3
Functional and Performance Evaluation

of the integrated decision support
system

Document type: Deliverable
Dissemination Level: Public
Editor: Ambra Molesini and Federico Chesani
Document Version: 1.0
Contributing Partners: UNIBO
Contributing WPs: WP8
Estimated P/M (if applicable): A number
Date of Completion: 30 September 2014
Date of Delivery to EC 30 September 2014
Number of pages: 26

ABSTRACT
Deliverble D8.3 consists of the evaluation of the prototype of the decision support system by investigating
technical aspects, exploiting classical software engineering techniques like coverage of the functional/ non
functional requirements identified within Task 2.1. Also performance evaluations of the overall prototype
will be analysed, to provide a comprehensive evaluation of the system as a whole.

The project is co-funded by the European Community under the Information and Communication Technologies
(ICT) theme of the Seventh Framework Programme (FP7/2007-2013). Grant Agreement n◦288147.

Authors of this document:

Ambra Molesini1, Federico Chesani1, Michela Milano1

1: DISI, University of Bologna
email: {ambra.molesini, federico.chesani, michela.milano }@unibo.it

Copyright c© by the ePolicy Consortium
The ePolicy Consortium consists of the following partners: University of Bologna; University College Cork, National University
Ireland, Cork; University of Surrey; INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto, Fraunhofer –
Gesellschaft zur Foerderung der Angewandten Forschung E.V.; Regione Emila-Romagna; ASTER – Società Consortile per Azioni;
Università degli Studi di Ferrara.

Possible inaccuracies of information are under the responsibility of the project team. The text reflects solely the views of its authors.
The European Commission is not liable for any use that may be made of the information contained therein.

Contents

1 Introduction 4

2 Evaluation of Functional Requirements 6
2.1 Requirements derived from the Roles management: the “Login page” and

the security issues . 6
2.2 Requirements derived from the “policy maker” view 9
2.3 Requirements derived from the “Domain Expert” view 10
2.4 Requirements derived from the “Administrator” view 11
2.5 Functional Requirements Matching . 17

3 Performance Evaluation 19
3.1 DSS Architecture: brief recap . 20
3.2 Performance comparison . 22

A Changes from previous versions 26

3

Section 1

Introduction

Work Package 8 is devoted to the integration of the single ePolicy components into a com-
prehensive framework. While the single components advance the state-of-the-art in their
respective research field, a key aspect of ePolicy is to merge these components into a uni-
fied framework, so as to provide the policy maker a single and unique perspective on the
policy process model.

WP8 addressed a number of key challenges. On one side, there was the need of allowing
each project’s partner to pursue the best research direction, without posing unnecessary
technical constraints. On the other side, there was the need to “merge” the components in
a comprehensive framework able to guide the policy maker towards informed decisions.
Moreover, the application of software engineering practices has beenmade difficult by the
research flavor of ePolicy, and (non-)functional requirements have been often revised on
policy makers’ inputs: once made aware of new possibilities opened up by the projects’
partial results, policy makers suggested new possibilities and goals for the project, in
an iterative process. The outcome of WP8 research activities is the integrated decision
support system documented in D8.21.

This deliverable has a two-fold aim: on one hand, it shows how functional and non-
functional requirements of the integrated architecture have been addressed; on the other
hand, it provides some performance evaluation about the integrated framework.

Regarding the requirements, deliverable D2.32 proposed a number of objectives to be
achieved within the project. Among them, a number of those objectives have been spec-
ified in terms of functional and non functional requirements, enlisted in the Deliverable
D8.21. Section 2 enlists the requirements, together with some discussion explaining how
they have been addressed.

About the performance evaluation of the integrated framework, Section 3 focuses on the
impact that the technical choices have on the single components. While the performances

1 D8.2 “Integrated Policy Decision Support System Implementation”
2D2.3 “Means of Project Evaluation”

4

http://www.epolicy-project.eu/sites/default/files/public/D8.2.pdf
http://epolicy-project.eu/sites/default/files/public/D2.3.pdf

of each component have been addressed in the relatedwork packages3, in this deliverable
we aremore interested to document how the technological and architectural choices have
an impact over the single components. From the performance viewpoint, the most im-
portant choice is related to the decision of having each component running in a server,
plus (a) a server acting as a central orchestrator and offering a security layer and authen-
tication services; and (b) a dedicated server running the web-based graphical front-end
and the visualization tools. Such architecture implies that an important amount of data
is transferred via network connections. Section 3 provides some evaluation of how the
distribution of data across a network increases the time delays: the comparison has been
done by confronting the average time of using each component as a stand-alone service
(locally invoked directly on a server), rather than be used across the network. Also, the
delay introduced by the use of Visual Interface documented in Deliverable D7.44 has been
assessed.

In this document we do not provide any evaluation about the scalability of the integrated
framework. The current technological solution envisages a server for each component,
plus an orchestrating server. The envisaged business model foresees one installation of
the whole architecture for each public body (being it a European region, a city council
or a nation-wide body). For each installation, a limited number of users are expected
(no more than ten, let’s say). The server-side communication has been build using the
Spring Framework5, and services have been exposed following a REST approach. This
architecture has been proved to be overly sufficient and robust for the identified business
model, and it can easily support the scaling up to hundreds of users. Given such premises,
we did not consider meaningful to investigate the scaling up issues.

3See for example Deliverable D3.3, Section 2.2, for some figures about performances and scalability of
the Global Optimizer component.

4D7.4 “Evaluation of Visual Analytics Prototypes (Version 2)”
5http://spring.io/

5

http://epolicy-project.eu/sites/default/files/public/D3.3.pdf
http://www.epolicy-project.eu/sites/default/files/public/D7.4.pdf
http://spring.io/

Section 2

Evaluation of Functional Requirements

In this chapter we enlist the functional requirements that emerged both from the discus-
sion based on D2.1, and from the GUIs mockup presented in D8.2.

2.1 Requirements derived from theRolesmanagement: the
“Login page” and the security issues

The principal aim of the ePolicy Decision Support System is to aid policy makers to de-
velop plans and implementation policies for specific aspects. This prototype in particular
will be fitted for the energy related field, and for alternative energy sector in specific.
Beside the policy maker, we envisage at least other two possible type of users that are
involved within the policy making process: the administrator, responsible for the correct
functioning of the whole prototype, and a domain expert.

Due to the nature of the ePolicy prototype, themain security issue that has beenmanaged
is the user authentication. In particular, since the data managed in the system might
be considered as sensible data (thus not public available), the access to the services will
be controlled and restricted to authenticated users. Generally speaking, access control
is aimed at allowing authorised users to access the system resources they need, while
preventing un-authorised users to do the same. In the case of the ePolicy prototype the
suitable access control model is the Role Base Access Control (RBAC).

RBAC is a NIST standard [6] and specifies security policies in terms of organisational
abstractions (users, roles, objects, operations, permissions, and sessions) and their rela-
tionships [1]. In particular, users are assigned to roles, and roles to permissions. A role is
understood as a job function within the context of an organisation with some associated
semantics regarding the authority and responsibilities conferred to the user which plays
the role at a given time. A permission is an approval to perform an operation on some pro-
tected objects: the exact semantics of “operation” and “object” depends on the specific
case. A session is a mapping between a given user and the subset of its currently active

6

roles: so, each session is associatedwith a single user, while a user can be associated to one
or more sessions. Organisation rules are defined in terms of relationships between the
above elements—namely, between roles and permissions, and between roles and users;
inter-role relationships are also introduced to specify separation of duties. More precisely,
static separation of duty (SSD) is obtained by enforcing constraints on the assignment of
users to roles, while dynamic separation of duty (DSD) is achieved by placing constraints
on the roles that can be activated within or across the given users’ session(s).

This discussion leads to the definition of a number of requirements tied to the users au-
thentication and roles assignment. In particular:
FR1. Support for an authentication mechanism based on the concept of username and

password.
FR2. Support for the concept of user role, where to different roles correspond different set

of rights for executing actions.
FR3. Support for the role of policy maker.
FR4. Support for the role of domain expert.
FR5. Support for the role of administrator.
FR6. Support for a dummy user.

FR1. Requirement: Today, access control is typically designed by clearly separating
the definition of a suitable access policy – i.e., the set norms for granting / refusing access
to resources – from the hardware & software mechanisms used to implement and enforce
it. This requirement specifies the kind of mechanism adopted for the ePolicy prototype
access control. In order to satisfy this requirement, we have developed two different login
pages. The first one, showed in Figure 2.1, represents the main login page, while the
second, showed in Figure 2.2, represents the login page for the administration services.
Both pages collect the user credentials and send them to the ePolicy server, where a Spring
Security [5] mechanism checks the user credentials and associates the right role to the
authorized user .

FR2. - FR6. Requirements: These requirements specify an high level access control pol-
icy. We implement these policies through a Spring Security mechanism: for each service
provided by the ePolicy Web Service we have specified an RBAC permission that associate
the authorisation for doing a certain operation on some protected resource. Then, these per-
missions have been associated to the different roles according to the specific necessities,
and each role is associated to an user. The dummy user (Requirement FR6.) can navigate
and query the ePolicy DSS through the specification of the data in suitable fields such
as data for the social simulator or data for the global optimisation, but this user cannot
access to the reserved data and policies introduced/ created by the authorised roles/
ePolicy DSS.

7

Figure 2.1: Login page of the ePolicy Decision Support System

Figure 2.2: Login page of the ePolicy Decision Support System Administration

8

The following code represents and extract of the ePolicy Web Services. In particular, the
code manages the getAccounts request. The red line represents a Spring Security check
for verifying the authorisation. When the getAccounts service is requested, the Spring
Security mechanism takes several actions:

• it recovers the user from the session,
• it recovers the role and all the permissions associated to the user that are stores in a
chain of so called GranthedAuthority

• if the user has the requested permission the getAccounts service is invoked and a
result is returned, otherwise the ePolicyWeb Service notify the security violation to
the browser.

1 @PreAuthorize("hasRole(’/admin/getAccounts’)")
2 @RequestMapping (value = "/admin/getAccounts " ,
3 method={RequestMethod .GET, RequestMethod .POST })
4 publ ic @ResponseBody Lis t <Account> getAccounts () {
5 log_db ("/admin/getAccounts ") ;
6 logger . in fo (" getAccounts invoked ! ") ;
7 re turn userServ i ce . getAccounts () ;
8 }

2.2 Requirements derived from the “policy maker” view

The following requirements have been identified:
FR7. Access to a page presenting user’s information.
FR8. Support to the notion of a user profile.
FR9. Save generated plans.

FR10. Load and inspect previously saved plans.
FR11. Delete previously saved plans.
FR12. Inspect saved plans.
FR13. Save, load, inspect and delete information about the social simulation and best in-

centive/rewarding mechanism about a specific plan.

FR7. - FR13. Requirements: These requirements allows policy maker to view his/her
profile and to manage the Energy plans. We have addressed these requirements provid-
ing several different APIs for storing, retrieving and changing the data from a suitable
DataBase. In order to do this, we have exploited the Spring framework functionalities
that allow both to easily manage the Database access, and, as said previously, to manage
the system security.

9

2.3 Requirements derived from the “Domain Expert” view

The following requirements have been identified, in addition to the requirements identi-
fied for the policy maker role:

FR14. For each service, the domain expert must be able to access, modify, save and delete
configurations/models.

FR15. Data saved by domain expert should be related to the configuration/model used,
and comparison between data computed with different “current models” should
not be supported.

In the following paragraph we discuss the different requirements.

FR14. Requirement: The domain expert should be able to access to all services accessed
by the policy maker.

We accomplish this requirement assigning to domain expert the same access permissions
already assigned to the policy maker.

FR15. Requirement: The domain expert will be granted the possibility of configuring
the various components. This will do through the specification of a domainmodel where
several data such as the budget, the amount of electric power, and a lot of general con-
straints will be specified. We accomplish this requirement allowing to the domain expert
to upload a file where all the data and constraints will be specified. Figure 2.3 shows an
example of the GUI adopted for the file upload. In particular, in the top of the page it
is possible to choose the file and upload it, while in the bottom a list of all the uploaded
files is showed, and the domain expert can also download the different files previously
uploaded.

When a new file is uploaded, it is analysed by the ePolicy DSS and the contained data are
used for the initialisation of the system variables. If the file contain errors the browser
will be notified.

From a technological point of view, the accepted files are excel file formatted according to
a specific style provided by the Emilia-Romagna Region (in attached at this Deliverable
we provide an example of the file format). The format of the excel file has been decided by
the partners involved in the domain modelling activities. Such partners have specifically
requested that the excel headers’ columns are in Italian.

10

Figure 2.3: The file upload service

2.4 Requirements derived from the “Administrator” view

The administrator is person in charge of the ePolicy DSS. In the case of ePolicy DSS, all
the permissions are associated to the administrator role. This because the administrator
must manage the RBAC policy and must be able to check the right running of the differ-
ent services composing the DSS. Here, we discuss only the requirements deriving from
the RBAC policy management, since the other requirements are already discussed in the
previous Subsection.

For themanagement of the RBACpolicy, the following requirements have been identified:
FR16. Support for adding / deleting / modifying users.
FR17. Support for adding / deleting / modifying roles.
FR18. Support for adding / deleting / modifying permissions.
FR19. Support for adding / deleting / modifying services.
FR20. Identification of a precise set of permissions, i.e. a list of actions that can/can not be

executed depending on the role assumed by an authenticated user.
FR21. Logging of the actions executed within the system.
FR22. Access to the logs.
All these requirements lead us to design a proper data base in order to store the RBAC
data. This DB refers the RBACmodel structure. In Figure 2.4 we show a simply version of
the Entity-Relationship diagram used for designing the real DB. In particular, we report
only the entities, the relationships among them and their cardinalities. From a techno-
logical point of view, we chose the Mysql [3] as Database Management System (DBMS).
The integration between the java-based components and the persistence layer is based on
Object-Relational Mapping (ORM) technologies, and in particular by exploiting the Java

11

Figure 2.4: The User DB ER Diagram

Persistence Annotation (JPA [2]) standard. Hibernate[7] is the preferred implementation
of the JPA standard in the current implementation of the ePolicy Framework. Finally we
adopt the Google Web ToolKit (GWT) as a framework for developing the Administration
Interface showed in Figures 2.5 - 2.9.

In the following paragraph we discuss the different requirements.

FR16. Requirement: This requirement implies that the administrator should be able
to add users and modify users information, and to add/remove users to roles. The ad-
ministrator should be able also to delete a specific user. We accomplish this requirement
through several operations over the DB. In particular, before doing the insertion, mod-
ification and deletion of a user, the system verify the actual presence of such a user. In
case of insertion, if a user already exists – i.e., the same email and password are already
presented in the DB – the insertion is aborted and the browser is notified.

We also developed a specific GUI for the usermanagement. Figure 2.5 shows an example.
In particular, this page shows the list of registered users with their relative data (name,
surname, email and password) and the role assigned to the user. For security reason the
password is not sent from web service to the browser, so the field is empty. Through two
different buttons it is possible to store (the save button) the usermodification or delete (the
Delete button) the user. In the bottomof the page the insert button allows the administrator
to insert a new user with respective data and role.

12

Figure 2.5: The users management service

Figure 2.6: The roles management service

13

Figure 2.7: The permissions management service

FR17. Requirement: This requirement implies that the administrator should be able to
add/delete roles andmodify roles’ permissions. The administrator should be able also to
shows the list of roles. We accomplish this requirement through several operations over
the DB. In particular, before doing the insertion and modification of a role, the system
verify the actual presence of such a role. In case of insertion, if a role already exists – i.e.,
the role name is already presented in the DB – the insertion is aborted and the browser is
notified. The delete operation is critical, since if a role is associated to an user the deletion
is aborted and anotification is sent to the browser: the administrator should remove all the
associations user-role before delete a role. This choice might affect the usability for expert
administrators, but we deem it as necessary for preventing the accidental role deletion.
In addition, only the human administrator is able to choose a new right role for the user.

We also developed a specific GUI for the role management. Figure 2.6 shows an exam-
ple. In particular, this page shows the list of roles with their associated list of permissions
Through two different buttons it is possible to store (the save button) the usermodification
or delete (the Delete button) the role. In the bottom of the page the insert button allows
the administrator to insert a new role with respective permissions. Currently, only three
roles have been identified for the ePolicy DSS—policy maker, domain expert, and admin-
istrator. However, we provided the insertion operation. In this way, if a new role will be
necessary, the administrator will be able to add it without stopping the system.

FR18. Requirement: This requirement implies that the administrator should be able to
add / delete permissions and modify their information.

14

Figure 2.8: The resources management service

We accomplish this requirement through several operations over the DB. In particular,
before doing the insertion, modification and deletion of a permission, the system verify
the actual presence of such a permission. In case of insertion, if a permission already
exists – i.e., the permission name is already presented in the DB – the insertion is aborted
and the browser is notified. In addition, we have developed another functionality: the
administrator should be able also to specify a specific permission type. This functionality
is not a requirement, but in a design for change perspective, the administrator should be
able to specify the kind of operation tied to the permission. Currently, the only permission
type presents in the DB is Invoke, that specify if a service can be invoked. However, in a
future other permission types – such as read or write – could be useful.

We developed a specific GUI for the permission management, and another for the per-
mission type management. Figure 2.7 shows an example of the first one. In particular,
this page shows the list of permission with their relative data (name, permission type)
and the associated resource. Through two different buttons it is possible to store (the save
button) the user modification or delete (the Delete button) the permission. In the bottom
of the page the insert button allows the administrator to insert a new permission with
respective data.

FR19. Requirement: This requirement implies that the administrator should be able to
add resource and modify resource information. The administrator should be able also to
delete a specific resource.

We accomplish this requirement through several operations over the DB. In particular,

15

before doing the insertion, modification and deletion of a resource, the system verify the
actual presence of such a resource. In case of insertion, if a resource already exists – i.e.,
the same resource name is already presented in the DB – the insertion is aborted and the
browser is notified. In addition, the delete operation is critical, since if a permission is as-
sociated to the resource, the deletion is aborted and a notification is sent to the browser:
the administrator should remove all the associations permission-resource before delete
a resource. This choice is necessary for preventing the accidental resource deletion. We
also developed a specific GUI for the resource management. Figure 2.8 shows an exam-
ple. In particular, this page shows the list of resources with their relative data (name,
web address). Through two different buttons it is possible to store (the save button) the
resource modification or delete (the Delete button) the resource.

FR20. Requirement: This requirement implies that the administrator should able to
choose the more suitable set of permissions for each role. We accomplish this require-
ment showing to the administrator the complete list of all the permissions for each role
(see Figure 2.6), then the administrator should choose the set of the permissions he/she
wants to associate to the role. There is not a pre-determined set of permissions associated
to a role when this is inserted. The only assumption we have done during the develop-
ment is the assumption of closed-world security environment: all operations on protected
resources are implicitly denied until authorisation policies grant specific operation. This
provides security that errs on the side of caution. For example, if the administrator for-
gets to deploy an authorisation policy, someone will be denied access. While this might
be problematic, from a security view it is a preferable approachw.r.t. inadvertently allow-
ing access to resources that should be protected instead. Users who are denied required
access will almost certainly ask for corrective action, while users inadvertently granted
unauthorised access are unlikely to bring this to the attention of administrators—with
potentially disastrous consequences [4].

FR21. Requirement: This requirement implies that the administrator should be able
to investigate all the operation inside the ePolicy DSS. We accomplish this requirement
providing two types of log. The following code shows an example of the logs. The first log
is a command line log printed in theWeb server log (line red in the code), while the other
(blu line) is stored in the DB and it should be visualised in a browser by the administrator.

1 @PreAuthorize (" hasRole (’/admin/getAccounts ’) ")
2 @RequestMapping (value = "/admin/getAccounts " ,
3 method={RequestMethod .GET, RequestMethod .POST })
4 publ ic @ResponseBody Lis t <Account> getAccounts () {
5 logger.info("getAccounts invoked!");
6 log_db("/admin/getAccounts");

16

Figure 2.9: The ePolicy DSS logs page

7 return userServ i ce . getAccounts () ;
8 }

FR22. Requirement: This requirement implies that the administrator should be able
to list all the operation inside the ePolicy DSS. We developed a specific GUI for the logs.
Figure 2.9 shows an example. In particular, this page shows the list of log with their
relative data: the date of the operation, the user that has requested such operation, and
the service invoked.

From a technological point of view, we chose the Mysql [3] as Database Management
System (DBMS). The integration between the java-based components and the persistence
layer will be based on Object-Relational Mapping (ORM) technologies, and in particular
by exploiting the Java Persistence Annotation (JPA [2]) standard. Hibernate[7] will be the
preferred implementation of the JPA standard. Finally we adopt the Google Web ToolKit
(GWT) as a framework for developing the Administration Interface showed in Figures 2.5
- 2.9

2.5 Summary

The ePolicy prototype provides access to the unified framework of services developed
within the project by the consortium. The main requirements are already discussed both
in Deliverable D2.1 and D8.2. Here, we have discussed how those requirements have

17

been addressed in the prototype. In particular, starting from the general requirements
presented in D2.1, we have identified a set of roles – policy maker, domain expert, and
administrator – and assigned to them the main requirements. We have also developed a
specific RBAC model in order to assign to each role the more suitable set of access per-
missions. Then, we have designed and developed the ePolicy Architecture in order to
accomplish the requirements. The ePolicy Architecture will be widely discussed in the
next chapter.

The following Table presents a match between the functional requirements and the pro-
totype implementation.

Table 2.1: Requirements Matching

Requirement Current prototype
FR1. supported
FR2. supported
FR3. supported
FR4. supported
FR5. supported
FR6. supported
FR7. supported
FR8. supported
FR9. supported
FR10. supported
FR11. supported
FR12. supported
FR13. supported
FR14. supported
FR15. supported
FR16. supported
FR17. supported
FR18. supported
FR19. supported
FR20. supported
FR21. supported
FR22. supported

18

Section 3

Performance Evaluation

The purpose of this Section is to provide an evaluation of the performances of the ePolicy
integrated framework. While the performances of the single ePolicy components have
been addressed in the specific Work Packages (and the related deliverables), this section
focuses in particular on how the performances have been affected by the network-based
communication infrastructure.

The framework has been organized as a Service Oriented Architecture, where each com-
ponent runs as a stand-alone, independent service, while an additional service plays the
role of orchestrator, providing the security layer and persistence facilities. Moreover, the
web interface offering visualisation techniques has been implemented as a further stand-
alone service. Each component, aswell as the orchestrator, have beenwrapped into aWeb
Service exposing facilities and following a REST approach, by exploiting the well known
Spring Framework1; the web-based user interface instead has been built using the GWT2

framework.

Each component, the orchestrator, and the user interface run in a separated server. The
choice of having a server for each component is motivated by the different needs of each
ePolicy component. Being based on advances to the state of the art in their respective re-
search field, each component presents its own specific requirements in terms of memory,
storage, computational power, operating system and installed libraries. Having separated
servers allowed us to overcome possible problems deriving by conflicting requirements,
and to adopt a simple yet very neat distributed architecture. However, the coordination
and the integration of the components has been achieved through intense network-based
communication.

Given the premises above, an important question is if, and how much the choice of a dis-
tributed architecture afflicts the performances of the integrated framework. In particular,
delays introduced by the network communication might affect the user experience, thus
hindering the usability of the framework. After a brief recap of the modules compos-
ing the ePolicy integrated framework (Section 3.1), in Section 3.2 we present and discuss

1http://spring.io/
2http://www.gwtproject.org/

19

http://spring.io/
http://www.gwtproject.org/

the figures about the time required to invoke the services as stand-alone components or
rather as part of a distributed system.

The current ePolicy demo is running in a distributed environment: component’s servers
and the orchestrator are running as virtual servers in a physical node at the University of
Bologna, Bologna, Italy, while the user interface and the visualization tools are running in
a virtual server in the Fraunhofer IGD research center inDarmstadt, Germany. Hence, the
figures discussed in Section 3.2 represent an effective case of a distributed system across
Europe.

3.1 DSS Architecture: brief recap

The ePolicy DSS prototype is a distributed system composed by several components de-
veloped by projects partners. Figure 3.1 presents a general overview of the prototype
architecture. In particular, the components developed by partners have been wrapped by
RESTful Web Services orchestrated by a central Web Service (ePolicySecured in the Figure
3.1) that ensures the system security.

In detail:
• ePolicySecured: it is the main web services that ensures the system security and dis-
patches the service requests to the specific web service. This server provides also
the administrative functionalities allowing the administrator to manage the RBAC
policies and the users. The incoming requests are dispatched to the specific web
service only if the role associated to the request has the right access permissions.

• ePolicyDomainSecured: it represents the domain classes of the prototype. This com-
ponent is shared among the others in order to provide to all components the same
domain entities. This simplifies the interactions among them components.

• ePolicyClient: it represents a common interface used by the two GUIs. In particu-
lar the GUIs component invoke the ePolicySecured services through the services
provided by ePolicyClient.

• SSimWSRest: it represents the web service wrapping the Social Simulator compo-
nent. As it is showed in Figure 3.1 the SSimWSRest uses an external component in
order to provide the service. This because the Social Simulator needs a long compu-
tation time for producing the simulation results, so the Social Simulator works on
a separate virtual machine and it is invoked by SSimWSRest through the java RMI3

protocol. In particular, the SSimWSRest uses the SocialSimulator component that is
an RMI client. SocialSimulator, in turn, dispatches the request to SocialSimulator-
Libs, the RMI server, that generates the simulation.

• OpinionMiningWS: it represents theweb servicewrapping theOpinionMining com-
ponent.

• GOWSRest: it represents the web service wrapping the GlobalOpt component.
3http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/

20

Figure 3.1: ePolicy DSS Architecture

21

• AdministratorInterface: it represents the GUI component for the administration ser-
vices.

• EPolicy_Interface: it represents the main GUI component for the policy maker and
the domain expert.

3.2 Performance comparison

Table 3.1 presents the results of our evaluation of the response times of the ePolicy DSS.
The values presented in the Table are medium values. For each service, we have con-
ducted several tests (ten tests) in theworst cases – i.e., themore expensive services respect
to the response time – and here we provide the medium values.

In particular, in the columns we have:
• first column: the service name;
• second column: the response time of the stand-alone component;
• third column: the response time of the wrapped component, i.e. the component
wrapped by the RESTful Web Service, in order to understand how the the network
communication impacts the response time;

• fourth column: the response time of the component with the security layer. In this
case we have invoked the service through the ePolicySecured Web Service (see Fig-
ure 3.1) in order to establish how the security layer impacts the response time;

• fifth column: the response time of the component invoked by the GUIs. In this case
we have invoked the service through the ePolicySecuredWeb Service and the GUIs
(show Figure 3.1) in order to assess how the GUIs impact the response time.

Table 3.1: Response Times Evaluation

Component Component
Invocation

Component
Invocation
by net

Component
Invocation
by net +
security

Component
Invocation
by GUI

Social
Simulator

111.16 min no significant
difference

no significant
difference

1122 ms

Global
Optimizer

1813 ms 1926 ms 2106 ms 2186 ms

Opinion
Mining

742 ms 766 ms 948 ms 2754 ms

Admin 249 ms 267.5 ms 270 ms 460 ms

The first row of Table 3.1 shows the response times of the Social Simulator component.
The presented data show important discrepancies. In particular, the medium value of the
response time of the stand-alone component is 111.16 minutes. This time is composed by
the simulation time and by the calculation and aggregation of a lot of different variables

22

values. We have not investigate beyond the response times for columns three and four,
since the delays introduced by both the network communication and the security layer
are not appreciable – the delays are around milliseconds — comparing to the response
time of the stand-alone component. The value presented in column five, indeed, seems
very low. This because, the GUI does not invoke directly the Social Simulator component.
In fact, due the long time requested for running the simulations, we have decided to run
the simulations off-line and to store the calculated data into a data base. So, the results
provided by the GUI are already calculated and the response time is acceptable, since
accessing it means to query the database with the precomputed solutions. Currently, the
GUI provides the results only for a certain subset of input values, but we are working for
populating the data base with data covering all the space solution.

The second rowof Table 3.1 shows the response times of theGlobalOptimizer component.
The response times have been calculated for the computePlan service, that provides an
energy plan according to the inputs values. The values in all the columns are comparable
among them, and the delays introduced by the network communications, the security
layer and the GUI are contained – around 373 ms – considering the widely distributed
nature of the architecture.

The third row of Table 3.1 shows the response times of the Opinion Mining component.
The response times for the three first columns have been calculated for the getDataDaily
Aggregation service that is the most expensive from the response time point of view. The
tests have been conducted onto a data base already populated—the data are stored in a
off-line way in order to speed the response times. As showed in the Table, the response
times in the firsts three columns are lower respect to the response time in the last column.
This because, in the case of the invocation through GUI, the GUI has to do different in-
vocations to the ePolicySecured in order to collect all the aggregated data and shows the
relative diagrams for a time spectrum covering twelve years. The values in the first three
columns are comparable. The delays introduced by both the network communications
and the security layer are around 206 ms that seems acceptable.

Last row in the Table 3.1) presents the tests conducted for the Administration services
regarding the invocation of the getPermissions service that provides the list of all ac-
cess permissions stored in the DB. We have chosen this service since it has been the
more expensive service from viewpoint of the response time. This because in the ePolicy
DSS there is great number of permissions (one for each service, i.e., about one hundred
permissions) due to the assumption of closed-world security environment (see 2.4). As
showed in the Table, the response times are on average of the order of 250-300 ms in
the firsts three columns, while the response time in the last column is a bite more. This
because, in the case of the invocation through GUI, the GUI has to do three different in-
vocations to the ePolicySecured in order to obtain the list of permissions, and the lists of
permissionTypes, and resources necessary for allowing the administrator to insert new
permissions or modify the existing permissions.

As a final remark, we can highlight that all the tests conducted have shown that the net-

23

work communications and the security layer have a very small impact over the response
times of the services. So, the widely distributed nature of the chosen architecture has
little effect onto the ePolicy DSS performances.

24

Bibliography

[1] D.F. Ferraiolo, R. Kuhn, and R. Sandhu. RBAC standard rationale: comments on a
critique of the ansi standard on role based access control. IEEE Security & Privacy,
5(6):51–53, nov–dec 2007.

[2] Oracle. Jpa home page. https://www.jcp.org/en/jsr/detail?id=317.
[3] Oracle. Mysql home page. http://www.mysql.com/.
[4] Oracle. Security policy overview. http://docs.oracle.com/cd/E12890_01/ales/docs32/policymanager/modeling.html.
[5] Srping Security Project. Spring security homepage. http://projects.spring.io/spring-

security/, 2012.
[6] RBAC. American national standard 359-2004 (Role Base Access Control - home page).

http://csrc.nist.gov/rbac/, 2004.
[7] RedHat. Hibernate home page. http://hibernate.org/.

25

Appendix A

Changes from previous versions

0.0 Creation of the Document
0.1 Finalisation of Section 2
0.2 Section 3.1 added
0.3 Introduction added
1.0 Version submmitted to EU commission

26

	Introduction
	Evaluation of Functional Requirements
	Requirements derived from the Roles management: the ``Login page'' and the security issues
	Requirements derived from the ``policy maker'' view
	Requirements derived from the ``Domain Expert'' view
	Requirements derived from the ``Administrator'' view
	Functional Requirements Matching

	Performance Evaluation
	DSS Architecture: brief recap
	 Performance comparison

	Changes from previous versions

