Deliverable D1.4

Moses Version 3.0
Release Notes

Work Package: WP1: Moses Coordination and Integration
Author: Hieu Hoang
Internal Reviewer: Nicola Bertoldi
Due Date: January 31st, 2015

Public

Dissemanation Level:

May 28, 2015

Moses Version 3.0 Release Notes

Overview

The document contains the release notes for the Moses SMT toolkit, version 3.0. It describes
the changes to the toolkit since version 2.0 from January 2014.

In the previous version, the internal feature function framework was updated. This framework
allows arbitrary feature functions to be easily added that can score partial and completed
translations during decoding. This was a major undertaking which we hope will serve the
Moses community well into the future by giving researchers and developers a framework with
which they can easily extended Moses.

Moses 3.0 will be the last tested release for the forseeable future. Therefore, the theme of this
release is consolidation of the existing codebase to ensure that it will be stable and useable
once the MosesCore project finishes. The feature function framework has proven popular with
developers and has been extended according to requests. The two mainline decoder
executables, moses and moses_chart, have been merged and duplicate code removed.

We have also taken over the maintenance of the mgiza project. This project implements the
fast multi-thread version of GIZA++ which produces word alignment, an essential step in the
Moses training pipeline. By adding mgiza as a sister project to Moses under the same
administrative umbrella, we hope that it will be maintained and be useful to the community for
many years to come.

New Features

The following is a list of the major new features in the Moses toolkit since version 2.0, in
roughly reverse chronological order.
1. Faster decoder when using sparse features by Matthias Huck. Prior to the
change, scores for all language models were copied to new hypotheses when a
hypothesis is extended. This is suitable for a small number of dense scores but
the copying is inefficient a large number of sparse scores. Now, only the total
weighted scores are copied during hypothesis expansion and only changes in
the score as stored in each hypothesis.
2. Faster, more memory efficient synchronous context-free grammar (SCFG)
decoding (Sennrich, 2014) by Rico Sennrich. The decoding algorithm, CYK+
(Chappelier, 1998), requires intermediate data structures which consume a lot
of memory. By changing the order in which subphrases of the input sentence

1

are decoded, it is possible to get rid of these data structures. This not only
result in less memory consumption but increase decoding speed as less
memory has to be allocated.

3. Merging moses and moses_chart by Hieu Hoang. As per the MosesCore WP1,
Task 1.6, the two mainline decoder executables, moses and moses_chart,
have been merged. This creates one executable for both phrase-based and
SCFG models. However, we have gone beyond the deliverable by creating a
framework to enable other translation models and decoding algorithms to be
easily added. This will make unnecessary the divergence which caused the
split between the phrase-based and SCFG models. The framework has been
put to immediate use as more complex STSG (Synchronous Tree Substitution
Grammar) have recently been added to Moses.

4. Synchronous Forest and Tree Substitution Grammar (STSG) models by Phil
Williams. The existing syntactic translation models in Moses are based on
SCFG. Following (Huang et al, 2006), STSG models have been added to
Moses. These are richer syntactic models which it is hoped will lead to better,
syntactically correct output.

5. Smaller phrase-table by pruning according translation model scores only by
Philipp Koehn. Many low scoring translation rules are created due to
misalignments and non-parallel text in the parallel corpora. These rules are
very rarely used but consume a large amount of disk space and cause
degradation in decoding speed. These problems are easily solved by
discarding them at training time.

6. Simulated post editing tools by Ulrich Germann (German, 2014). This simulates
the updating of the dynamic suffix array phrase-table that occurs when Moses
is used in a computer-aided translation (CAT) tool.

7. Hypergraph batch-mira by Barry Haddow. Following (Cherry and Foster, 2012),
the search graph from the decoder can be used as the input to the batch-mira
tuning algorithm.

8. Dynamic Suffix-Array phrase-table by Ulrich Germann (German, 2014). The
standard Moses training regime creates a phrase-table containing all
translation rules that have been extracted from an aligned parallel corpus. By
contrast, a suffix array phrase-table stores the aligned corpus and extracts the
rules on-demand for a given input sentence. This reduces the training time and
reduces memory consumption required to store the full size phrase-table. Also,
the dynamic feature of the suffix array allows new parallel sentences to be
incorporated into the corpus and which can then update the translation rules
that can be extracted.

9. OxLM, a log-bilinear language model, by (Baltescu et al, 2014). Neural network
feature functions have been gaining popularity in the SMT community in the
past few years. The OxLM implement a neural network language model for the
Moses decoder.

10. Bilingual language model (Devlin et al, 2014) by Nikolay Bogoychev, Paul

2

Baltescu, Rico Sennrich, and others. Building on OxLM and the other neural
network language models such as by (Vaswani, 2013), feature functions have
been created which scores the translation, given both source and target
context.

11. Vowpal Wabbit (VW) Classifier-based feature function by Ales Tamchyna and
Marcin Junczys-Dowmunt. Extending (Carpuat, 2012), feature functions were
added to the decoder that scores translation rules, conditioned on other
possibles rules for the same input subphrase.

12. Cache-based Translation Model and Language Model by Nicola Bertoldi
(Bertoldi, 2014). These features can be dynamically modified by adding,
removing, and re-scoring entries according to a time-decay function, without
the need of re-starting the decoder. They are suitable for an online translation
framework like the Computer Assisted Scenario CAT scenario and aim at
rewarding or penalizing some options according to any external feedback. In
particular, the Cache-based Translation Model works like any other phrase
table providing the decoder with new translation rules.

13. Daily speed testing framework. Described in Section Speed Testing, below.

Extensions to the Feature Function Framework

The feature function framework implemented in release 2.0 has been extended, based on
user feedback.

1. A method, ChangeSource(), can be overridden by any feature function in order
arbitrarily change the input sentence. For example, by integrating a tagger or
parser into the decoder, a feature function can add linguistic information to the
input.

2. Feature functions return scores which are used by the decoder to assess the
quality of the translation. This assessment is done in combination with many
other feature functions, it is the decoder which decides whether a translation
should be used. However, in some circumstances, a feature function can
unilaterarly decide to prune a particular translation. Example of uses include
feature functions which consults blacklists or terminology databases to prune
inappropriate translations.

3. Feature functions typically evaluate translation rules independently of
alternative rules that can translate the same source words. We have extended
the feature function framework to allow feature functions to score rules, given
knowledge of alternative rules. This has been used by a new feature function
which is discriminatively train to pick the best rules.

End-to-End Testing and Pre-Made Models

As with version 1.0 and 2.0, a number of full-scale experiments were run. This is the final test
to ensure that the Moses pipeline can run from beginning to end, uninterrupted, with
‘real-world’ datasets. The translation quality is noted, as measured by BLEU, to ensure that
there is no significant variation in performance due to any interaction between components in
the pipeline.

The end-to-end tests produce a large number of tuned models. The models, as well as all
configuration and data files, are made available for download. This is useful as a template for
users setting up their own experimental environment, or for those who just want the models
without running the experiments.

The URL for downloading the pre-made models is:
http://www.statmt.org/moses/RELEASE-3.0/models/

To use the pre-made model, the following steps need to be taken:
1. Download the tuned moses ini file should from the directory tuning/
2. Download the model files referenced in the ini file.
3. Binarize the model files according to documentation on the Moses website
(http://www.statmt.org/moses/)
4. Change the ini file to use the binary model files, instead of the initial text models
Download the corresponding recaser from the directory recasing/
6. Tokenize and lower case your input, translate with the decoder, then recase and
detokenize your output.

o

Performance

The Moses regression tests were run to ensure that the output remained constant despite the
major refactoring changes. 22 new regression tests were created to improve the test
coverage.

End-to-end testing of the Moses pipeline was run for 9 European language pairs, trained on
the Europarl corpus, to ensure that translation quality had been maintained. The tests were
initiated for Moses 0.91 and have been expanded to test new features in version 2.1. There
seems to be no consistent degradation in the translation quality, besides random variation.

The results are shown in Appendix A.

Speed Testing

In order to make sure that commits to Moses do not adversely affect speed (such as the bug
that was discovered between Release 2.1 and 2.1.1), a testing regime was implemented to
monitor the speed performance of critical components in the Moses training and decoding

4

pipeline. The testing is automatically carried out on a daily basis, on a dedicated server to
reduce the variation caused by other tasks running on the same machine.

The results of the tests are available online:

http://www.statmt.org/speed-test/
Appendix B shows the speed test results for the codebase as of the 28th January, 2015, close
to Moses version 3.0. From 45 tests, 16 improved by 5% or more over Release 2.1.1, 28
showed less than 5% change either way, and only 1 slowed by more than 5%.

Cross-Platform Compatibility

As with previous releases, we ensured that Moses, IRSTLM, and MGIZA compile on a
number of operating systems commonly used by the community. We test them on the
following platforms:
i. Windows 8 (32-bit) with Cygwin 6.1
ii. Windows 10 (64-bit Preview edition) with Cygwin 6.1
ii. Mac OSX Yosemite with MacPorts
iii. Ubuntu 14.04 (32 and 64-bit)
v. Fedora 20 (64-bit)
vi. Fedora 21 (64-bit)
Binaries for all platforms are made available for download for users who do not wish to
compile their own version. The URL for downloads is
http://www.statmt.org/moses/RELEASE-3.0/binaries/
We also make available the 32 and 64-bit Linux virtual machines with Moses, IRSTLM, and
MGIZA pre-installed at the following URL:
http://www.statmt.org/moses/RELEASE-3.0/vm

There are a number of Issues on some platforms:

1. Regression tests are only guaranteed to pass on Ubuntu 12.04 (64-bit), since different
compiler versions and different versions of the standard library can lead to differences
in the way floating point numbers are rounded. See, for example
http://www.exploringbinary.com/correctly-rounded-conversions-in-gcc-and-glibc/
End-to-end testing only tested on Linux (Ubuntu 12.04 64-bit).

3. Unit test for BackwardLM fails on Windows/Cygwin (32-bit and 64-bit). This is because
the test as written relies on the shared boost testing libraries, which are not available
on Cygwin.

no

MGIZA

MGIZA is the multi-threaded version of the GIZA++, the popular word alignment tool. It is able
to make the most of modern multi-core servers by parallelizing the workload. In addition, it

b}

also has unique features such as forced alignment using an existing model. It is the
recommended word alignment tool for most users.

The core developer can no longer maintain the code, therefore, we have taken over its
maintenance. MGIZA is now a sister project of Moses, administered by the same developers.
The impact has been immediate. By enabling the user-feedback and transparency as has
always been the case with Moses, we have identified and fixed several long-standing usability
and performance issues, boosting word alignment speed by a factor of four.

Bibliography

Baltescu, Paul and Phil Blunsom and Hieu Hoang (2014), OxLM: A Neural Language
Modelling Framework for Machine Translation, vol 102, pp81-92, The Prague Bulletin of
Mathematical Linguistics

Bertoldi, Nicola (2014), Dynamic Models in Moses for Online Adaptation,, The Prague
Bulletin of Mathematical Linguistics, vol. 101, 2014 , pp. 7 - 28

Carpuat, Marine, Hal Daume lll, Alexander Fraser, Chris Quirk, Fabienne Braune, Ann
Clifton, Ann Irvine, Jagadeesh Jagarlamudi, John Morgan, Majid Razmara, Ales
Tamchyna, Katharine Henry and Rachel Rudinger (2012). Domain Adaptation in Machine
Translation: Final Report. 2012 Johns Hopkins Summer Workshop Final Report
Chappelier, J. C. and M Rajman (1998). A Generalized CYK Algorithm for Parsing
Stochastic CFG. TAPD, 98(133-137), 5.

Cherry, Colin and George Foster (2012), Batch Tuning Strategies for Statistical Machine
Translation, in Proceedings of NAACL

Devlin, J., R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul (2014). Fast and
robust neural network joint models for statistical machine translation. In Proceedings of ACL
Germann, Ulrich (2014). Dynamic Phrase Tables for Machine Translation in an Interactive
Post-editing Scenario, In Proceedings of the Workshop on Interactive and Adaptive Machine
Translation, pages 20-31, 2014.

Huang, L., K. Knight, and A. Joshi (2006). A syntax-directed translator with extended
domain of locality. In Proceedings of the Workshop on Computationally Hard Problems and
Joint Inference in Speech and Language Processing, pages 1-8, New York City, New York.
Association for Computational Linguistics.

Sennrich, Rico (2014). A CYK+ Variant for SCFG Decoding Without a Dot Chart In: Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8). Doha,
Qatar, pp. 94-102.

Vaswani, Ashish, Yinggong Zhao, Victoria Fossum, and David Chiang, (2013). Decoding
with large-scale neural language models improves translation.In Proceedings of EMNLP

Appendix A - Comparison of BLEU scores with
previous versions of Moses

e Red numbers refer to the best performance
e Since online MIRA is no longer available in V3.0 (it was superseded by k-best MIRA) it
was not tested.

RELEASE 0.91| RELEASE 1.0 RELEASE-2.1 | RELEASE-3.0

En-es| 1 pb 24.70 24.81 24.61 24.66
2 hiero 24.18 24.20 23.74 24.45

3 (1) + placeholders 24.80 24.59

41(1) + CreateOnDiskPt 24.67 2474

Es-en| 1 pb 22.87 23.01 22.97 22.97
2 hiero 22.32 22.37 22.20 22.26

3 (1) + placeholders 22.78 22.65

4 (1) + CreateOnDiskPt 23.06 22.83

En-cs| 1 pb 10.98 11.04 11.16 11.03
2 hiero 10.92 10.93 10.90 10.80

3 (1) + placeholders 10.57 10.67

41(1) + CreateOnDiskPt 11.12 10.88

5] (2) + Ken's incre algo 10.76 10.42

Cs-en| 1 pb 16.00 15.72 15.81 15.76
2 hiero 15.89 15.68 15.66 15.68

3 (1) + placeholders 15.65 15.58

41(1) + CreateOnDiskPt 15.80 15.83

5((2) + Ken's incre algo 15.43 15.70

En-de| 1 pb 11.72 11.87 11.71 11.61
2 hiero 11.59 11.62 11.45 11.44

31 (1) + CreateOnDiskPt 11.64 11.80

4 (1) + POS de 11.55 11.67 11.75 11.71

5 (4) + POS en 11.64 11.75 11.69 11.79

De-en| 1 pb 15.71 15.75 15.80 15.75
2 hiero 15.74 15.53 15.56 15.91

3 (1) + POS de 15.71 15.84 15.70 15.91

4 (3) + POS en 15.84 15.93 15.94 15.80

5](1) + CreateOnDiskPt 15.70 16.01

6| (3) + CreateOnDiskPt 15.76 15.92
7] (4) + CreateOnDiskPt 15.79 15.88
En-fr| 1 pb truecase 24.43 24.38 24.45 24.44
2 pb recase 22.95 22.94 22.67 22.64
3 (2) + hiero 22.35 22.28 22.11 22.36
4 (2) + POS en 23.34 23.05 23.06 22.93
5 (2) + kbmira 22.81 23.00
6 (2) + pro 22.52 22.37
7 (5) + mira 21.59 n/a
8| (2) + CreateOnDiskPt 22.89 n/a
9 (2) + CompactPt 22.67 22.69
Fr-en| 1 pb truecase 24.09 24.06 23.87 23.88
2 pb recased 22.40 22.41 2243 22.42
3 (2) + hiero 18.19 18.05 17.78 17.94
4 (2) + en POS 22.51 22.55 22.47 22.48
5 (2) + kbmira 22.46 22.52
6 (2) + pro 22.44 22.56
71(2) + CreateOnDiskPt 22.50 n/a
8 (2) + CompactPt 22.58 22.50

Appendix B - Speed test results as of 28th January,
2015

The naming of the speed tests generally follows a common pattern, with several fields
separated by underscores. The fields are:

Phrase table type - can be “ondisk”, “binary” or “minpt” - the last is for the compact
phrase table.

Reordering model type - If the translation system is phrase-based, the reordering

model can be “reord” (for the original binarised version) or “minreord” (for compact) .

For a hierarchical (hiero) translation model the reordering type is “hierarchical”.

Number of cores used, e.g. “4core” for 4 cores. If this is missing, assume all cores (8).

Whether or not the experiment was run with the models already in the operating

system’s disk cache. This was achieved by running the experiment twice, and timing
the second run, and such tests are marked as “vanilla_cached”. If the experiment was
just run once with no caching, it is marked as “vanilla”.

In addition, there are two types of test which do not fit this naming convention:
memory_string2tree_* - Testing of a string to tree model with an in-memory phrase

table.

score.hiero_* - Testing of hiero scoring code.

8

(Bracketed, red numbers refer to a worsening of speed.)

Test name Master Release 2.1 | Change (%)
(sec) (sec)

ondisk_reord_4core_vanilla_cached 37.08 36.62 (1.26)%
ondisk_reord_1core_vanilla_cached 104.58 104.71 0.12%
binary_minreord_4core_vanilla_cached 43.31 45.34 4.48%
binary_reord_4core_vanilla 44.96 45.59 1.38%
ondisk_minreord_vanilla 34.72 40.86 15.03%
ondisk_minreord_4core_vanilla_cached 35.52 36.42 2.47%
minpt_reord_vanilla_cached 17.98 17.92 (0.33)%
minpt_reord_4core_vanilla_cached 21.38 20.84 (2.59)%
ondisk_reord_4core_vanilla 37.07 36.23 (2.32)%
ondisk_hierarchical_vanilla_cached 771 133.72 42.34%
ondisk_hierarchical_vanilla 77.28 254 .45 69.63%
ondisk_minreord_4core_vanilla 35.88 36.26 1.05%
ondisk_hierarchical_4core_vanilla 91.29 115.47 20.94%
binary_reord_vanilla 39.25 51.17 23.29%
binary_minreord_1core_vanilla_cached 110.98 113.31 2.06%
ondisk_minreord_vanilla_cached 35.05 35.08 0.09%
ondisk_hierarchical_1core_vanilla 250.36 273.77 8.55%
ondisk_minreord_1core_vanilla_cached 105 104.37 (0.60)%
binary_minreord_vanilla 35.13 48.8 28.01%

score.hiero_vanilla_cached 129.99 130.97 0.75%
binary_reord_4core_vanilla_cached 44 .91 45.85 2.05%
ondisk_minreord_1core_vanilla 103.78 104.03 0.24%
minpt_reord_1core_vanilla_cached 61.6 60.42 (1.95)%
binary_reord_vanilla_cached 39.03 44 .51 12.31%
minpt_minreord _1core_vanilla_cached 60.88 61.27 0.64%
memory_string2tree_vanilla 34.71 93.43 62.85%
minpt_reord_vanilla 18.19 25.77 29.41%
ondisk_hierarchical_1core_vanilla_cached 250.29 274.83 8.93%
minpt_minreord_vanilla 15.21 21.29 28.56%
minpt_reord_1core_vanilla 61.53 60.09 (2.40)%
ondisk_reord_vanilla 37.72 44.5 15.24%
minpt_minreord_vanilla_cached 15.37 17.74 13.36%
minpt_minreord_1core_vanilla 60.81 60.93 0.20%
minpt_minreord_4core_vanilla 19.82 20.39 2.80%
binary_reord_1core_vanilla_cached 111.2 113.6 211%
ondisk_reord_vanilla_cached 37.21 34.85 (6.77)%
score.hiero_vanilla 129.91 131.26 1.03%
ondisk_hierarchical_4core_vanilla_cached 90.99 115.54 21.25%
ondisk_reord_1core_vanilla 104.17 104.4 0.22%
minpt_reord_4core_vanilla 21.72 20.77 (4.57)%
binary_minreord_vanilla_cached 36.17 43.91 17.63%
binary_minreord_4core_vanilla 43.6 45.28 3.71%
binary_minreord_1core_vanilla 109.91 112.63 2.41%

10

binary_reord_1core_vanilla

111.92

113.99

1.82%

minpt_minreord_4core_vanilla_cached

20.2

20.25

0.25%

11

