

Deliverable D 3.4.3

Documentation of Infrastructure

Author(s): Juli Bakagianni (ILSP)
 Aljoscha Burchardt (DFKI)
 Arle Lommel (DFKI)
 Stelios Piperidis (ILSP)
 Kashif Shah (USFD)
 Lucia Specia (USFD)
Dissemination Level: Public
Date: 30.June 2014 (original)
 05.December 2014 (revised)

This work is licensed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

Grant agreement no. 296347

Project acronym QTLaunchPad

Project full title Preparation and Launch of a Large-scale Action for Quality Transla-
tion Technology

Funding scheme Coordination and Support Action
Coordinator Prof. Hans Uszkoreit (DFKI)

Start date, duration 1 July 2012, 24 months

Distribution Public

Contractual date of delivery June 2014

Actual date of delivery June 2014

Deliverable number 3.4.3

Deliverable title Documentation of Infrastructure
Type Report

Status and version Version 2.0 (December 2014), see change log

Number of pages

Contributing partners ILSP, USFD

WP leader DFKI

Task leader DFKI
Authors Juli Bakagianni, Aljoscha Burchardt, Arle Lommel, Stelios Piperidis,

Kashif Shah, Lucia Specia
EC project officer Aleksandra Wesolowska

The partners in
QTLaunchPad are:

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI),
Germany

Dublin City University (DCU), Ireland

Institute for Language and Speech Processing, R.C. “Athena”
(ILSP/ATHENA RC), Greece

The University of Sheffield (USFD), United Kingdom
For copies of reports, updates on project activities and other QTLaunchPad-related information, con-
tact:

DFKI GmbH
QTLaunchPad
Dr. Aljoscha Burchardt aljoscha.burchardt@dfki.de
Alt-Moabit 91c Phone: +49 (30) 23895-1838
10559 Berlin, Germany Fax: +49 (30) 23895-1810

Copies of reports and other material can also be accessed via http://www.qt21.eu/launchpad
© 2014, The Individual Authors

This work is licensed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

Table of Contents

1	
 Executive Summary ... 4	

2	
 translate5 ... 4	

2.1	
 License .. 4	

2.2	
 translate5 API Documentation .. 5	

3	
 QT21 META-SHARE Repository ... 11	

3.1	
 Overview ... 11	

3.2	
 Introduction ... 11	

3.3	
 Getting Started .. 12	

3.3.1	
 Logging	
 In	
 ..	
 12	

3.3.2	
 Repository	
 services	
 ..	
 12	

3.3.3	
 Input	
 Specifications	
 ..	
 13	

3.3.4	
 Processing	
 a	
 Language	
 Resource	
 ...	
 13	

3.4	
 Appendix A .. 18	

4	
 QuEst ... 19	

4.1	
 Feature extractor ... 19	

4.1.1	
 Installation	
 ...	
 19	

4.1.2	
 Dependencies	
 ...	
 20	

4.1.3	
 To	
 compile	
 ...	
 20	

4.1.4	
 Running	
 ..	
 20	

4.1.5	
 Advanced	
 Features	
 ..	
 21	

4.2	
 Machine learning pipeline ... 21	

4.2.1	
 Installation	
 ...	
 21	

4.2.2	
 Dependencies	
 ...	
 21	

4.2.3	
 Running	
 ..	
 22	

4.2.4	
 Configuration	
 file	
 ...	
 22	

4.2.5	
 Available	
 algorithms	
 ..	
 23	

4.2.6	
 Parameter	
 optimization	
 ...	
 25	

4.2.7	
 Feature	
 selection	
 ...	
 26	

4.3	
 Learning with Gaussian Process .. 27	

4.3.1	
 Installation	
 ...	
 27	

4.3.2	
 Dependencies	
 ...	
 27	

4.3.3	
 Running	
 ..	
 27	

4.4	
 License .. 28	

5	
 Scorecard ... 28	

5.1	
 License .. 28	

6	
 Workflows .. 28	

7	
 Change log ... 29	

1 Executive Summary
This Deliverable provides user documentation for the Infrastructure developed in the
QTLaunchPad project. It provides guidelines and instructions for using these resources.
More details about these resources may be found in D3.3.1 (Adapted tools for the
QTLaunchPad infrastructure), D3.5.2 (User report about the system), and D3.4.2 (MT-speific
infrastructure). In particular, it contains documentation for translate5 (section 2), the QT21
META-SHARE Repository (section 3), QuEST (section 4), and the Scorecard and Metric
Builder (section 5).

Because of the nature of the respective infrastructure components, the documentation for
translate5, the QT21 META-SHARE Repository, and the Scorecard and Metric Builder is
focused on high-level user tasks, while the documentation for QuEst is focused much more
on configuration and set-up and requires more technical knowledge than do the other com-
ponents.

Additional information about translate5 and the MQM scorecard and how they compare is
available in the QTLaunchPad supplemental report Practical Guidelines for the Use of MQM
in Scientific Research on Translation Quality. This report is available from the following link:
http://qt21.eu/downloads/MQM-usage-guidelines.pdf

2 translate5
This section provides a guide for using the translate5 infrastructure. The translate5 system
incorporates many of the features described in D3.4.1 and provides an easy-to-use interface
for annotating data with MQM issues, as well as for post-editing, ranking, and other common
translation research tasks.

UPDATE: The content of this section has been moved to the following URL:

http://www.qt21.eu/launchpad/node/1337

Instructions for installing translate5 may be found at the following URL:

http://www.qt21.eu/launchpad/node/1344

2.1 License
translate5 is available under the GLP 3.0 license, with the exception that the Ext JS frame-
work used for UI components is only available for non-commercial development unless a
separate license is obtained. Details of the license exceptions are available online.1 Note
that all components funded by the QTLaunchPad project are available under the terms of the
GPL 3.0 license.

1 https://bitbucket.org/mittagqi/translate5_released/src/1d032dda6a703b6c1c10574843ddc88fb688c17a/floss-
exception.txt?at=master

2.2 translate5 API Documentation
This section contains a description of the translate5 API

General REST API
translate5 provides a REST API to create, read and manipulate all stored data. REST is a
HTTP based, resource-oriented architecture.

For further information see: http://en.wikipedia.org/wiki/Representational_state_transfer

The data format is normally JSON. On PUT requests not all data fields must be given, only
the fields with changed data are sufficient.

To see the use of the REST API in action, a developer may have a look on the way trans-
late5 JS-GUI frontend uses the REST API through tools like Firebug. This way it is easy for a
programmer, to understand the way it works and to see, which values are used for which
resources in which situations.

REST Resource Description

Task
Provides access to the tasks stored in translate5.

URL: /editor/task/[ID]

Available Methods: GET / POST / PUT / DELETE

Specialities: Since on a POST request the import data is given, the POST must be
transmitted as “multipart/form-data”.

By setting the userState to the value “edit” the task is registered as to be
edited by the current user.

Setting it back to the userState “open” means that the the task is open again
for all users.

Special Task Export URLs
URL to get the edited task data in a
ZIP container:

/editor/task/export/id/[ID]/

As above, but with diff tags: /editor/task/export/id/[ID]/diff/1

MQM Statistic Export: /editor/qmstatistics/index/taskGuid/[GUID]/?type=[TYPE]

Where [ID] is the value of the mysql-id field, [GUID] the mysql-taskGuid and [TYPE] a valid
field type of the task (field type refers to the column the MQM has been used on in the edi-
tor).

Task Resource Layout
Name Type Info

id int GET only

taskGuid string GET only

entityVersion integer GET only, set by server

taskNr string

taskName string

sourceLang integer

targetLang integer

relaisLang integer

locked date GET only

lockingUser string GET only

lockingUsername string GET only

state string

workflow string

pmGuid string

pmName string

wordCount integer

targetDeliveryDate date

realDeliveryDate date

referenceFiles boolean GET only

terminologie boolean GET only

orderdate date

edit100PercentMatch boolean POST only

enableSourceEditing boolean POST only

qmSubEnabled boolean GET only

qmSubFlags auto GET only

qmSubSeverities auto GET only

userState string As defined by the workflow.

userRole string GET only

userStep string GET only

users auto GET only

userCount integer GET only

defaultSegmentLayout boolean GET only

importUpload HTTP Upload POST only

Task User Associations
Provides the associations between users and tasks.

URL: /editor/taskuserassoc/[ID]

Available Methods: GET / POST / PUT / DELETE

Specialities:

Resource Layout
Name Type Info

id int GET only

entityVersion int GET only, set by server

taskGuid string

userGuid string

login string GET only, set by server

surName string GET only, set by server

firstName string GET only, set by server

state string

role string

Segment
Provides access to the data of a single segment.
URL: /editor/segment/[ID]

Available Methods: GET / PUT

Specialities: Only possible with a task in edit mode. Resource Layout is dynamic.

Resource Layout
Name Type Info

id int GET only

fileId int GET only, set by import

segmentNrInTask int GET only, set by import

userName string GET only, set by server

timestamp date GET only, set by server

editable boolean GET only, set by import

autoStateId int GET only, set by server

Name Type Info

workflowStep string GET only, set by server

matchRate int GET only, set by import

durations object

comments string GET only, set by server

qmId string

stateId int

[FIELD] string GET only

[FIELD]Edit string Optional, only if field is editable.

Segments contains dynamic fields, defined on import. This dynamic fields contain the seg-
ment payload.

Segment Fields
Provides the segment fields of one task.
URL: /editor/segmentfield/[ID]

Available Methods: GET

Specialities: Only possible with task in edit mode. Returns the available segment fields in
this task.

Resource Layout
Name Type Info
id int

taskGuid string

name string

label string

type string

rankable boolean

editable boolean

Comment
Provides access to comments of segments.
URL: /editor/comment/[ID]

Available Methods: GET / POST / PUT / DELETE

Specialities: Only possible with a task in edit mode and filtered by GET Parameter
segmentId.

Resource Layout
Name Type Info
id int

segmentId int

userName string GET only, set by server

comment string

isEditable boolean GET only, set by server

modified date GET only, set by server

created date GET only, set by server

File
Provides the files of a task, and the possibility to reorder the files in the filetree.
URL: /editor/file/[ID]

Available Methods: GET / PUT

Specialities: Only possible with a task in edit mode.
GET returns a JSON tree of file metadata

Resource Layout of a single file node
Name Type Info

id int GET only

filename string GET only

path string GET only

cls string GET only

children array GET only

parentId int GET / PUT

index int PUT only

MQM Statistics
Provides access to the MQM Statistics.
URL: /editor/qmstatistics/index/taskGuid/[GUID]/?type=[TYPE]

[GUID] is the taskGuid of the task to get the statistics from.
[TYPE] is the fieldname of the datafield to get the statistics from

Available Methods: GET (list only)

Specialities: returns a XML file

Reference File
Provides the reference files of a task.
URL: /editor/referencefile/[FILEPATH]

[FILEPATH] is the whole path to the file, as given on import.

Available Methods: GET

Specialities: Only possible with a task in edit mode.
GET without a [FILEPATH] returns a JSON tree of reference files in the
same format as described under “Files”.
GET with a [FILEPATH] provides the desired file as a download.

User
Provides access to the users available in the application.

URL: /editor/user/[ID]

Available Methods: GET / POST / PUT / DELETE

Specialities: If an empty password field is given on PUT, password will be reset and user
is requested by email to set a new password.

Resource Layout
Name Type Info

id int GET only

userGuid string GET only, set by server

firstName string

surName string

gender string

login string

email string

roles string

passwd string

editable boolean GET only, set by server

locale string GET only, set by server

Workflow User Preferences
Provides access to the workflow based preferences a user can have for a task.
URL: /editor/workflowuserpref/[ID]

Available Methods: GET / POST / PUT / DELETE

Specialities:

Resource Layout
Name Type Info
id int GET only

entityVersion int GET only, set by server

taskGuid string

workflow string A valid workflow name

workflowStep string A valid workflow step to the above defined workflow

anonymousCols boolean

visibility string

userGuid string

fields string

Filtering
All GET calls without an ID provides a list of resources. With the GET Parameter “filter” this
list can be filtered. In general all fields are filterable. Exceptions in single cases.

Authentication
A dynamic authentication by API is currently not implemented. API calls by a non-browser-
based software must have the roles and rights of a hardcoded dedicated user. Access re-
striction is done by network access restriction. For all requests the authenticated user must
have the right to access the resource in the requested context.

3 QT21 META-SHARE Repository

3.1 Overview
This section is a guide for the users of the prototype of the QT21 repository. The repository
constitutes an extension of the META-SHARE infrastructure, providing an additional lan-
guage processing mechanism for processing language datasets (essentially language cor-
pora) with appropriate natural language processing tools. Thus, this document describes the
language processing functionality and provides the users with step-by-step explanations of
how to exploit it.

3.2 Introduction
The QT21 repository (http://qt21.metashare.ilsp.gr/) is a repository of language resources
(LRs), including both language data and language processing tools and services, described
through a set of metadata, allowing for uniform search and access to resources. LRs can be
both open and with restricted access rights, either for free or for-a-fee. More specifically, the
QT21 repository offers to the user the possibility to:

• have access as a registered user
• search and browse the catalogue

• view details about a LR
• view general statistics
• download a LR dataset
• process a LR with appropriate services
• access the community forum

3.3 Getting Started
In the QT21 repository the user can process language resources (LRs) with language ser-
vices, where both are described in the repository and thus all the functionalities that are of-
fered from the infrastructure are applicable to them. The output of the processing procedure
is stored and indexed in the repository.

3.3.1 Logging In
The processing service is provided only to the logged in users. If the user is not registered
yet, she can register following the steps provided in section 3.1.1. If the user has already an
account, she can log in to the QT21 repository following the steps described in section 3.1.2

3.3.1.1 Register as a new user
In order to register to the QT21 repository and get an account:

1. Click the “Register” button at the top right of the QT21 repository home page.
2. Fill in the “Create Account” form with an Account Name of your choice, your First

Name, Last Name, your Email address and the password of your choice.
3. Click the “Create Account” button.
4. The following message appears in the QT21 repository home page: “We have re-

ceived your registration data and sent you an email with further activation instruc-
tions.”

5. The system generates a message asking for a confirmation of the registration and
sends it to the address provided when registering.Click on the link provided in the
message to confirm the registration (this has also the effect of logging in the user for
the first time).

6. A confirmation message appears in the QT21 repository home page as follows: “We
have activated your user account.”

3.3.1.2 Log In
Registered users can use their credentials to log in to the QT21 repository:

1. Click the “Login” button at the top right of the home page.
2. Fill in the “User Authentication” form with Username and Password.
3. Click the “Login” button.

3.3.2 Repository services
The language resources sharing services (provision and consumption oriented services) of
the QT21 repository, are described in detail at https://github.com/metashare/META-

SHARE/tree/master/misc/docs. In what follows, we focus on the new processing layer of the
QT21 repository.

3.3.3 Input Specifications
This section defines the specifications of the input for the processing mechanism. The input
is:

• a text corpus,
• bilingual or monolingual, which
• represents one (for the monolingual LRs) or two (for the bilingual LRs) of the

following languages:

◦ German,
◦ Greek, Modern (1453)
◦ English
◦ Portuguese

• has either raw data or is consistent with one of the following annotation levels:

◦ segmentation in token segments
◦ segmentation in sentence segments
◦ morphosyntacticAnnotation, posTagging
◦ lemmatization
◦ morphosyntacticAnnotation, bPosTagging

• has data that are consistent with one of the following formats:

◦ for monolingual text corpora:
▪ text,
▪ XCES,
▪ XML

◦ for bilingual text corpora:
▪ TMX,
▪ MOSES,
▪ XCES

• is distributed with public licence that accepts derivatives, and
• is downloadable from the repository storage.

On the provider’s side, the steps to follow to accurately document a dataset intended to be
processable, are described in Appendix A.

3.3.4 Processing a Language Resource
The user can process the LRs of the QT21 repository that fill the above specifications. Thus,
the user can either use the faceted browse (see Figure 1) or the simple search to detect the
processable resources.

The user can click on the name of a LR from the results page obtained by any type of search
to open the page with the details for that LR (see Figure 2). If the resource is processable,
the button “Process” gets activated, and by a click from the user the processing mechanism
starts.

Figure 1. Search Language Resources

Figure 2. View Language Resources

The processing mechanism needs to be configured to the needs of the user. It begins with a
form that requests from the user to select the annotation level of the to-be-annotated LR.
Depending on the input specifications, the available annotation levels can vary from input
resource to input resource. The user can select the annotation level of her choice and submit
the form (see Figure 3).

Following the submission of the annotation levels form, the user is directed to the services
form. For the selected input LR and the annotation level of the to-be-annotated LR, all the
available services are presented in the services form. The user can choose the service of

her preference and submit the form (see Figure 4). If the input LR is bilingual, then distinct
lists of services will be available for each language side of the data (see Figure 5).

Figure 3. Annotation levels form

Figure 4. Language services form for monolingual input data

Figure 5. Language services form for bilingual input data

With the submission of the services form, the processing settings are configured and the
input LR will be dispatched to the selected language services for processing. When the pro-
cessing finishes, the user will be informed via email. The email will contain the link of the
new annotated LR on the QT21 repository (see Figure 6) and the user can download the
annotated data from the platform (see Figure 7).

If the user requests to process a LR with a specific web service, the result of which has al-
ready been provided for another user, then the user will be just forwarded to the annotated
LR that has been created in the repository (see Figure 8).

Figure 6. Email sent to the user

Figure 7. Output LR

Figure 8. Forwarded output LR

3.4 Appendix A
This Appendix concerns the providers of Language Resources who wish to deposit their LRs
to the QT21 repository and make them processable. A LR can be input to the processing
mechanism offered by the QT21 repository, if it complies with the specifications described in
Section 3.3. The provider can deposit her LR to the QT21 repository, by referring to the doc-
umentation in the provider’s manual of the META-SHARE application
(https://github.com/metashare/META-SHARE/tree/master/misc/docs). Additionally, the pro-
vider can upload the actual data of her LR to the QT21 repository storage (see Figure 9).
The data must be compressed and must not exceed 20MB in size. The provider must addi-
tionally select the data format of her LR. Information regarding every data format is available
by clicking the help buttons, which accompany each data format choice (see Figure 10).

Figure 9. Upload data to the QT21 repository

Figure 10. Information about data formats

4 QuEst
The QuEst open source software is aimed at quality estimation (QE) for machine translation.
It was developed by Lucia Specia's team at the University of Sheffield. This particular re-
lease (October 31, 2013) was made possible through the QuEst project and QTLaunchPad
projects (http://www.quest.dcs.shef.ac.uk/). The code has two main parts: a feature extractor
and a machine learning pipeline.

4.1 Feature extractor
This code implements a number of feature extractors, including most commonly used fea-
tures in the literature, as well as many of the features used by systems submitted to the
WMT2012 shared task on QE. Extractors for new features can be easily added (see the
documentation under dist/).

4.1.1 Installation
The program itself does not require any installation step. It requires the Java Runtime Envi-
ronment, and depending on the features to be extracted, a few additional libraries (see be-
low). If you change the code, it can be easily rebuilt using NetBeans, as a NetBeans project
is distributed in this release.

4.1.2 Dependencies
The libraries required to compile and run the code are included in the "lib" directory in the
root directory of the distribution. The Java libraries should be included there when possible.
Here is a list of libraries that should be downloaded and placed in the "lib" directory:

• Stanford POS Tagger
• Berkeley Parser

Apart from these lib files, QuEst requires other external tools / scripts to extract the specified
features. The paths for these external tools are set in configuration file under config folder:

• TreeTagger (http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/)
• SRILM (http://www.speech.sri.com/projects/srilm/download.html)
• Tokenizer (available from moses toolkit)
• Truecaser (available from moses toolkit)

Please note that above list is not exhaustive. Advance sets of features require external tools,
see details in corresponding section.

4.1.3 To compile
ant -f build.xml

OR

rebuild using NetBeans (NetBeans project files are distributed in this release)

To prepare:

• We provide the system some language resources. These are copied to
lang_resources folder. Resources are available from here:
http://www.quest.dcs.shef.ac.uk/

• You copy these to: lang_resources/[language]/
• Edit the configuration file (i.e. config/config_en-es.properties)

4.1.4 Running
We tested our software on Linux and Mac OS. We have not tested it on Windows yet. We
provide shell scripts to call the feature extractor for a pre-defined list of features.

For black box features:

./runBB.sh or bash runBB.sh

For glass box features:

./runGB_with_txt.sh or bash runGB.sh

Or

./runGB_with_xml.sh or bash runGB_with_xml.sh

More information about these scripts and the code itself can be found on the development
guide (dist/MTFeatures.pdf).

Along with the code, we have provided configuration files and toy resources (SMT training
corpus, language models, Giza files, etc) that should make the scripts above run without any
problem. The actual resources used for the WMT12 shared task on QE You can download
them from: http://www.quest.dcs.shef.ac.uk/

NOTE: One need to adapt the configuration file by providing the paths to the scripts where
they are installed on your own system, i.e config/config_en-es.properties

4.1.5 Advanced Features
For these features more information about the input resources and how they can be created
for new language pairs can be found in specific readme files under the relevant resource
folders (all under 'lang_resources') which could be downloaded from:
http://www.quest.dcs.shef.ac.uk/

4.2 Machine learning pipeline
The function of this package of Python scripts is to build models for machine translation (MT)
quality estimation (QE). The input files are a set of instances with features that describe sen-
tence pairs (source and target sentences). The features can be extracted using the
FeatureExtractor program as explained above.

4.2.1 Installation
The program itself does not require any installation step, it is just a matter of running it pro-
vided that all the dependencies are installed.

4.2.2 Dependencies
All the machine learning algorithms are implemented by the scikit-learn library. This program
provides a command-line interface for some of the implementations contained in this toolkit.
In order to be able to run, the program requires that the following packages are installed in
your Python distribution:

• numpy (http://scipy.org/Download)
• scikit-learn (http://scikit-learn.org/stable/install.html)
• pyyaml (http://pyyaml.org/)

4.2.3 Running
Note: Following commands are based on the assumption that all files are under the 'learning'
directory.

The program takes only one input parameter, the configuration file. For example:

python src/learn_model.py config/svr.cfg

4.2.4 Configuration file
The configuration uses the YAML format (http://www.yaml.org/). Its layout is quite straight-
forward. It is formed by key and value pairs that map directly to dictionaries (in Python) or
hash tables with string keys. One example is as follows:

``` 
learning: 
    method: LassoLars 
    parameters: 
        alpha: 1.0 
        max_iter: 500 
        normalize: True 
        fit_intercept: True 
        fit_path: True 
        verbose: False 
``` 

Each keyword followed by a ":" represents an entry in a hash. In this example, the dictionary
contains an entry "learning" that points to another dictionary with two entries "method" and
"parameters". The values of each entry can be lists, dictionaries or primitive values like floats,
integers, booleans or strings. Please note that each level in the example above is indented
with 4 spaces.

For more information about the YAML format please refer to http://www.yaml.org/.

The configuration file is composed of three main parts: input and generic options, feature
selection, and learning.

Input comprises the following four parameters:

``` 
x_train: ./data/features/wmt2012_qe_baseline/training.qe.baseline.tsv 
y_train: ./data/features/wmt2012_qe_baseline/training.effort 
x_test: ./data/features/wmt2012_qe_baseline/test.qe.baseline.tsv 
y_test: ./data/features/wmt2012_qe_baseline/test.effort 
``` 


The first two are the paths to the files containing the features for the training set and the re-
sponses for the training set, respectively. The last two options refer to the test dataset fea-
tures and response values, respectively.

The format of the feature files is any format that uses a character to separate the columns.
The default is the tabulator char (tab, or '\t') as this is the default format generated by the
features extractor module.

Two other options are available:

``` 
scale: true 
separator: "\t" 
``` 

'scale' applies scikit-learn's scale() function to remove the mean and divide by the unit
standard deviation for each feature. This function is applied to the concatenation of the train-
ing and test sets. More information about the scale function implemented by scikit-learn can
be found at http://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.scale.html

'separator' sets the character used to delimit the columns in the input files.

Configuration files for some of the implemented algorithms are available in the config/
directory.

4.2.5 Available algorithms
Currently these are the algorithms available in the script:

4.2.5.1 SVR: epsilon Support Vector Regression
The parameters exposed in the "Parameters" section of the configuration file are:

• C
• epsilon
• kernel
• degree
• gamma
• tol
• verbose

Documentation about these parameters is available at
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR

4.2.5.2 SVC: C-Support Vector Classification
The parameters exposed in the "Parameters" section of the configuration file are:

• C
• coef0
• kernel

• degree
• gamma
• tol
• verbose

Documentation about these parameters is available at
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

4.2.5.3 LassoCV: Lasso linear model with iterative fitting along a regularization
path.

The best model is selected by cross-validation. The parameters exposed in the "Parameters"
section of the configuration file are:

• eps
• n_alphas
• normalize
• precompute
• max_iter
• tol
• cv
• verbose

Documentation about these parameters is available at
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#
sklearn.linear_model.LassoCV

4.2.5.4 LassoLars: Lasso model fit with Least Angle Regression (Lars)
The parameters exposed in the "Parameters" section of the configuration file are:

• alpha
• fit_intercept
• verbose
• normalize
• max_iter
• fit_path

Documentation about these parameters is available at
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html#
sklearn.linear_model.LassoLars

4.2.5.5 LassoLarsCV: Cross-validated Lasso using the LARS algorithm
The parameters exposed in the "Parameters" section of the configuration file are:

• max_iter
• normalize
• max_n_alphas
• n_jobs

• cv
• verbose

Documentation about these parameters is available at
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#
sklearn.linear_model.LassoLarsCV

4.2.6 Parameter optimization
It is possible to optimize the parameters of the chosen method. This option is set by the "op-
timize" setting under "learning" in the configuration file. The script uses the scikit-learn's
GridSearchCV implementation of grid search to optimize parameters using cross-validation.
To optimize the C, gamma and epsilon parameters for the SVR, the learning section of the
configuration file could look as follows:

``` 
learning: 
    method: SVR 
optimize: 
    kernel: [rbf] 
    C: [1, 10, 2] 
    gamma: [0.0001, 0.01, 2] 
    epsilon: [0.1, 0.2, 2] 
    cv: 3 
    n_jobs: 1 
    verbose: True 
``` 

The parameter kernel is a list of strings representing the available kernels implemented by
scikit-learn. In this example only the "RBF" kernel is used.

• The SVR parameters C, gamma and epsilon are set with lists with 3 indexes:
o the beginning of the range (begin value included)
o the end of the range (end value included)
o the number of samples to be generated within [beginning, end]

• The remaining parameters modify the behavior of the GridSearchCV class:
o cv is the number of cross-validation folds
o n_jobs is the number of parallel jobs scheduled to run the CV process
o verbose is a boolean or integer value indicating the level of verbosity

For more information about the GridSearchCV class please refer to
http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#
sklearn.grid_search.GridSearchCV

4.2.7 Feature selection
Another possible option is to perform feature selection prior to the learning process. To set
up a feature selection algorithm it is necessary to add the "feature_selection" section to the
configuration file. This section is independent of the "learning" section:

``` 
feature_selection: 
    method: RandomizedLasso 
    parameters: 
        cv: 10 
 
learning: 
    ... 
``` 

Currently, the following feature selection algorithms are available:

4.2.7.1 RandomizedLasso
Works by resampling the training data and computing a Lasso on each resampling. The fea-
tures selected more often are good features. The exposed parameters are:

• alpha
• scaling
• sample_fraction
• n_resampling
• selection_threshold
• fit_intercept
• verbose
• normalize
• max_iter
• n_jobs

These parameters and the method are documented at:
http://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.RandomizedLasso.html#sklearn.linear_model.RandomizedLasso

4.2.7.2 ExtraTreesClassifier:
Meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various
sub-samples of the dataset and use averaging to improve the predictive accuracy and con-
trol over-fitting. The exposed parameters are:

• n_estimators
• max_depth
• min_samples_split
• min_samples_leaf
• min_density

• max_features
• bootstrap
• compute_importances
• n_jobs
• random_state
• verbose

Documentation about the parameters and the method can be found at:
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
#sklearn.ensemble.ExtraTreesClassifier

4.3 Learning with Gaussian Process
The function of this package of Python scripts is to build models for machine translation (MT)
quality estimation (QE) using Gaussian Process. The input files are a set of instances with
features that describe sentence pairs (source and target sentences).

4.3.1 Installation
The program itself does not require any installation step, it is just a matter of running it pro-
vided that all the dependencies are installed.

4.3.2 Dependencies
All the machine learning algorithms are implemented by the GPy library. This program pro-
vides a command-line interface for some of the implementations contained in this toolkit. In
order to be able to run, the program requires that the following packages are installed in your
Python distribution:

• GPy (https://pypi.python.org/pypi/GPy)
• sciPy (http://scipy.org/Download)

4.3.3 Running
Note: Following commands are based on the assumption that all files are under 'learning'
directory.

The program takes only one input parameter, the configuration file. For example:

python src/GP_wmt_regression.py

Please set the path in above script to the input files. e.g
X = np.genfromtxt('train-79-features.qe.tsv')
test_X = np.genfromtxt('test-79-features.qe.tsv')
Y = np.genfromtxt('qe_reference_en-es.train.effort').reshape(-1, 1)
test_Y = np.genfromtxt('qe_reference_en-es.test.effort').reshape(-1, 1)

4.4 License
The license for the Java code and any python and shell scripts developed here is the very
permissive BSD License (http://en.wikipedia.org/wiki/BSD_licenses). For pre-existing code
and resources, e.g., scikit-learn and Berkeley parser, please check their websites.

5 Scorecard
UPDATE: The content of this section has been moved to the following URL:

http://www.qt21.eu/launchpad/node/1343

5.1 License
The Scorecard software is licensed under a Creative Commons Attribution-NoDerivatives
4.0 International License. Feedback and requests for permission to adapt this software
should be sent info@qt21.eu. No warranty is made for the suitability of this software for any
business purpose.

6 Workflows
The tools and resources developed in QTLaunchPad support data acquisition and prepro-
cessing workflows on the one hand using the META-SHARE repository for (crawled) corpora
and preprocessing pipelines (see D3.3.1, D4.3.2, D4.4.1, etc.). On the other hand, it sup-
ports evaluation workflows using QuEst, and translate5/scorecard.

While the usage scenario of corpus acquisition and preprocessing should be known to most
developers, the evaluation pipelines probably need more explanation. In the course of pre-
paring the corpora for the Shared Task (WP5) and error analysis (WP1), conducted together
with GALA and several LSPs, the QTLaunchPad consortium has developed valuable experi-
ence for what could become best practice in evaluation in future work.2

Given MT-translated corpora and initial hypotheses of what issues may be encountered, the
following steps are included in this workflow:

1. Definition of a concrete metric for the given purpose starting from an existing metric
of from scratch.

2. Filtering the translation corpus to be evaluated in a triage step that distinguishes
between:

a. Perfect translations.
b. Almost good translations that need further analysis
c. Bad translations that do not qualify for further use.

These steps can be performed manually, supported by a very basic score card, or per-
formed in a semi-automatic or automated fashion using QuEst. The best method de-

2 Much of this experience is summarized in the QTLaunchPad supplemental report Practical Guidelines for the
Use of MQM in Scientific Research on Translation Quality (http://qt21.eu/downloads/MQM-usage-guidelines.pdf)

pends on the size of the corpus, the available human resources, and the required preci-
sion and recall.

3. Deeper analysis of the segments of type b (almost good) is then conducted. If
information on the segment level is sufficient, the scorecard can be used;
alternatively, for detailed error annotation, translate5 can be used.

4. (Re-)Training of QuEst on the newly annotated data from step 3 and possibly on the
new filtered data from step 2.

5. Inspection of the errors to:
a. Confirm if the system output supports the hypotheses
b. Get a quantitative basis to decide on MT development priorities
c. Get a qualitative idea of remaining barriers

Based on the insights gained in step 5 (and eventually the annotations gained in step 3), the
MT engine can then be improved. If the metric needs to be adjusted, another development
cycle starts at step 1, otherwise, new translations of an improved engine can feed into step 2.

Through the improvement of QuEst over time, automation of the manual steps should be-
come more reliable and reduce the human resources needed.

The procedure outlined above pertains to both MT development in research and in a produc-
tion context. It will be tested and further developed in future research projects such as QT21
and also in cooperation with GALA through a CRISP initiative that seeks to support trans-
late5 and other open source tools that help to implement important workflows needed by
LSPs such as the one outlined above.

7 Change log
This version contains the following changes from the initial version of June 30, 2014:

• Tutorial-type usage guidelines for translate5 and the MQM Scorecard have been
moved to the QT21 website.

• Information on the translate5 API has been added to this document.
• Information on the translate5 license has been added.
• Added section on workflows
• Added reference to supplemental report that describes usage scenarios for

translate5 and the MQM scorecard and describes their respective features.

