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Executive summary

This report is the �nal version of the deliverable on “Terminal node processing for ad-
vanced scenarios”. It serves two main purposes: (i) it provides a comprehensive tech-
nical overview of selected physical layer (PHY) techniques and algorithms, which have
been successfully implemented by the hardware (HW) and system level simulator (SLS)
demonstrators (as reported in the WP5 deliverables), and (ii) it summarises additional
promising PHY techniques and algorithms developed in the last stage of the project.

Partners have collaborated to support the demonstration activities (WP5), building upon
the scenarios agreed in WP2 to implement selected algorithms developed in WP4. In
addition, this report introduces several novel algorithms and techniques which were
devised by project partners in the last year of the project. Due to time constraints, these
solutions could not be integrated on the HW/SLS platforms.
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1 Introduction

1.1 Goals and context of the report

This WP4 deliverable includes all techniques related to terminal node processing, includ-
ing the Wireless Physical Layer Network Coding (WPLNC). It introduces all functional-
ities related to the output signal generation, e.g. modulation or channel coding, and to
the processing of the received signal at the particular nodes’ input(s).

The main goal of this WP4 deliverable is two-fold:

• It provides a comprehensive technical overview of selected physical layer tech-
niques and algorithms which has been successfully implemented by the HW and
SLS demonstrators (as reported in the WP5 deliverables).

• It summarises additional promising physical layer techniques and algorithms de-
veloped in the last stage of the project.

1.2 Background and related work

1.2.1 Wireless physical layer network coding

A major part of the work in this report is based on the WPLNC principles. A compre-
hensive overview od WPLNC and related theory is beyond the scope of this report. The
structured list of references related to the WPLNC technique is summarised below:

• Layered design of Network Coded Modulation (NCM) and fundamental limits for
Hierarchical Decode & Forward (HDF) Multiple-Access (MAC) phase [1, 2],

• HDF Broadcast (BC) phase with partial hierarchical side-information [3–5],

• Parametric NCM design [6–8],

• Denoising and optimised symbol decision maps [9–11],

• Relaying PHY technique [12, 13],

• Lattice based NCM design [14–19],

• General [20, 21].
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16 1 Introduction

1.2.2 Compute and forward

In addition to a general WPLNC, several contributions in this report refer to a Compute
and Forward (CaF) [22] strategy, which is a form of WPLNC based on the nested lattice
codes. The lattices codes can be based on di�erent types of underlying code. In this case
the hierarchical network code mapping functions applied at each relay rely on integer
coe�cients chosen at each relay. CaF can be considered as a good candidate for dense
wireless networks such as the DIWINE cloud.

1.3 Structure of this report

The main technical content of this report is presented in two separate parts:

Part II: ’Network coded modulation’ presents techniques for modulation and cod-
ing design for partial hierarchical side information (Chapter 2), Compute and For-
ward (Chapter 3), design of Hierarchical Network Code (HNC) maps for large scale
scenarios (Chapter 4) and Apmlify and Forward-based NCM design (Chapter 5).

Part III: ’Signal processing and decoding strategies’ covers the topics related to sig-
nal processing and relay/destination decoding operations, including the processing
of hierarchical interference (Chapter 6), analysis of the pairwise-error probability
of hierarchical decoders (Chapter 7) and practical implementation of compute and
forward techniques (Chapter 8)

The particular WP4 techniques/algorithms (denoted as Technical Elements (TE) in this
report) developed in the DIWINE project are presented separately in (relatively stand-
alone) sections. We believe that this approach can help the reader to get easily acquainted
with a desired technique/algorithm, without the necessity to delve into the details of the
complete report.

In the rest of this section we provide an overview of all TE implemented by the DIWINE
demonstrators (both HW and SLS) and we summarise the additional TE, which were
developed in the last stage of the project, and thus were not considered for demonstrator.

1.3.1 DIWINE technical elements implemented by demonstrators

Coded superposition modulation presented in sections 2.1, 2.2 provides a system-
atic design tool for a practical adaptive coded constellation for relaying in a 5-node,
single-relay butter�y network. The proposed technique allows to match the con-
stellation and channel encoder parameters to the actual channel conditions, and
thus it provides a reliable practical communication scheme for various channel
conditions. The SMN HW demonstrator implementation of this TE is reported in
[D5.42].

D4.03 DIWINE



1.3 Structure of this report 17

Cloud access node scheduling techniques treated in Section 4.3 interprets the cloud
as a macro-relay network with Cloud Access (CA) nodes as gateways where pack-
ets are queued and �ooded adaptively according to the queue state toward the
macro-relay. The tra�c and interference within the macro-relay is modelled using
an approximation for parallel and mutually interacting �ows that is appropriate
to be validated within the SLS. The most e�cient scheduler that complies with
delay sensitive applications (such as in CIMC applications) when tra�c is hetero-
geneous needs to o�oad the packets among CA nodes. The SLS demonstration of
this TE appeared in [23].

1.3.2 Additional DIWINE technical elements

Non-cooperative compute-and-forward strategies treated in Section 3.1 deal with
outage probability caused by local optimisation of computation rate at each relay.
We propose new non-cooperative techniques on how to choose the desired equa-
tions and enforce linear independent equations at the destination. This allows to
solve the optimisation problem in a localised and distributed manner.

Multilevel la�ice network code design framework based on an algebraic construc-
tion called Elementary Divisor Construction (EDC) which subsumes commonly-
used Constructions A and D is described in Section 3.2. It enables a multilevel
lattice construction which allows higher rate lattice codes (and hence also CaF
schemes) to be implemented without using higher order codes, which would re-
quire much more complex decoders. Alternative decoding algorithms are also de-
scribed.

Network transfer function and stage scheduling are developed in Sections 4.1 and
4.2. In order to properly design the NCM transmitted by network nodes and the
relay processing, a formal description of the global network processing function is
required. Any practical implementation also implies the half-duplex constrained
relays which imposes the network to work in multiple stages. A polynomial based
formalism de�ning the Hierarchical Network Transfer Function (H-NTF) captures
all phenomena related to the stage dependent transmit and receive activity over
the network. A half-duplex stage scheduling algorithm is developed using the
polynomial formalism of H-NTF.

n-largest eigenmode relaying techniques are introduced in Section 5.1 to guarantee
capacity-achieving transmission in the relay nodes. The performance of a dual-
hop amplify-and-forward MIMO relay network wherein the relay node has access
to partial channel knowledge is studied. It is pointed out that relays with multiple
antennas are an essential part of advanced communication systems, in particular,
dense networks such as the DIWINE cloud and that due to the dense nature of the
network, assuming perfect channel state information is unrealistic in practice.

DIWINE D4.03



18 1 Introduction

Successive decoding in WPLNC systems presented in Section 6.1 discusses the prob-
lem of interference cancellation in WPLNC systems, where only a function of user
data can be decoded instead of separate user data. We show that that even in this
case the knowledge of hierarchical data can be e�ciently exploited in the decoding
process to signi�cantly reduce the impact of interfering signal on the subsequent
decoding operations in WPLNC systems.

Hierarchical interference cancellation using successive CaF decoding is addressed
in Section 6.2. This technique allows increasing the number of degrees of freedom
in lattice misalignment equaliser while using all available hierarchical (many-to-
one function) auxiliary equations. This technique is not constrained to use only
integer linear map combinations and allows more freedom in choosing a given de-
sired codeword map (equation) at the relay in a complicated multi-stage network.

Hierarchical pairwise error probability reported in Section 7.1 provides an essen-
tial tool allowing to design practical optimised coding schemes. It reveals the con-
nection between the performance and the decoding metric that is directly related
to the codeword and/or constellation properties. Unlike for the single-user case,
the hierarchical pairwise error probability reveals a complicated dependence on
the structure of the hierarchical codeword/constellation.

Complex low density la�ice codes and their application to lattice network coding is
described in Section 8.1. Complex low density lattice codes, unlike other lattices,
are designed directly in the complex Euclidean space, and de�ned by a generator
matrix whose inverse in sparse. It may therefore be decoded using a message-
passing algorithm, similar to the decoding algorithm for LPPC codes. The section
describes practical codes and decoding algorithms, and gives simulation results for
example codes.

Convolutional la�ice encoding and decoding is investigated in Section 8.2, emphas-
ising on constructing lattices from convolutional codes based on Construction A
and D and analysis of the error performance. We show that practical implementa-
tion of physical layer network coding using CaF in dense relay networks requires
practical lattice codes with reasonable decoding complexity. The focus is on lattice
decoding methods that exploit the trellis structure of the lattice, ensuring a�ord-
able complexity in dense relay networks.
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2 Layered NCM for partial HSI scenarios

ï»¿

2.1 Superposition constellation design

The WPLNC techniques exploit the inherent nature of wireless channels to improve the
performance of wireless communication systems. Unlike conventional network coding,
in WPLNC the transmitted signals constructively interact directly in the constellation
space, thus inducing speci�c requirements on the source constellation design. Suitable
multi-source constellations should enable direct decoding of WPLNC functions of user
data (from the observed superimposed constellations at receiving nodes) and simultan-
eously they should allow delivery of partial information to nodes with worse channel
conditions (exploiting the natural broadcast property of wireless channels). Source con-
stellations possessing both the aforementioned attributes simultaneously can be desir-
able in a WPLNC-based system, and thus proper constellation design can become a re-
latively challenging task. In this report we focus on this problem and we introduce a
systematic constellation design algorithm for a 5-node Wireless Butter�y Network (WBN)
with WPLNC processing, where the basic principles of multi-source constellation design
for WPLNC systems can be demonstrated. We show that the proposed constellations
outperform the conventional approaches over the whole range of SNR conditions in the
system.

2.1.1 Introduction

The invention of WPLNC techniques has indeed provided a means for a signi�cant en-
hancement of wireless system performance [21, 24]. However, WPLNC processing has
also revealed several non-trivial research problems which do not have their counter-
parts in conventional point-to-point or multi-user systems, like the sensitivity to chan-
nel parameterisation [8, 9, 25, 26] or challenging multi-source transmission synchronisa-
tion [27–29]. Furthermore, the speci�c characteristics of WPLNC systems also call for a
novel constellation design.

WPLNC relaying techniques exploit the inherent superposition nature of wireless chan-
nels to enable direct decoding of speci�c WPLNC functions of user data from the received
(superimposed) signals [1, 30]. In addition WPLNC aims to exploit the speci�c broad-
cast property of wireless channels [24] to reduce the consumption of channel resources.
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22 2 Layered NCM for partial HSI scenarios

MAC phase

BC phase

HSI

HSI

Figure 2.1: Symmetric WBN model with half-duplex constraint. In the �rst step (Multiple
Access – MA) the relay R receives a noisy superimposed constellation x =
hARsA+hBRsB+wR, while destinationDA (respectivelyDB) overhears zA =
hBAsB+wA (respectively zB = hABsA+wB) from the sourceSB (respectively
SA). Scalar complex channel coe�cients hij , i, j ∈ {A,B,R}, i 6= j are
assumed to be constant during the communication round and known at the
respective receiving node. Zero mean i.i.d. complex Gaussian noise sample
wi, i ∈ {A,B,R} has variance σ2

i . Source constellations have unit energy per
symbol and consequently the source→relay MAC channel ((SA, SB) → R)
has SNR γMAC = |hAR|2/σ2

R = |hBR|2/σ2
R, the unintended source→destination

(HSI) channels (SA → DB , SB → DA) have SNR γHSI = |hBA|2/σ2
A = |hAB |2/σ2

B

and the relay output broadcast channel (BC) has SNR γBC = |hRA|2/σ2
R =

|hRB |2/σ2
R.

Source constellations possessing both the aforementioned attributes1 simultaneously can
be desirable in a WPLNC-based system and thus a proper constellation design can become
a relatively challenging task.

In this report we focus on the constellation design problem in the 5-node Wireless Butter-
�y Network (WBN), see Figure 2.1, where the basic principles ofmulti-source constellation
design for WPLNC systems can be demonstrated. We provide the following results and
contributions:

1. We introduce a systematic constellation design algorithm, capable of producing a
suitable constellation for arbitrary channel conditions in WBN.

1The ability to compose a suitable superimposed constellation at a receiving node (allowing direct decod-
ing of speci�c functions of user data) and the ability to respect the broadcast nature of wireless channels
(allowing delivery of partial information to nodes with worse channel conditions).
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2. We analyse the performance of the proposed constellations and we compare it
with the state-of-the-art constellation design.

3. We provide SNR mapping regions, de�ning the optimal (in the sense of overall
throughput) constellation design parameters for adaptive WBN relaying.

4. We compare the numerical performance results with a real-world HW evaluation.

2.1.2 WPLNC relaying in wireless bu�erfly networks

We assume a symmetric WBN model [4,31] with a half-duplex constraint (see Figure 2.1).
Since the direct channels between the intended source→destination pairs are not avail-
able, the help of the intermediate relay node is necessary to enable end-to-end communic-
ation. In this section we focus on the constellation design for an uncoded system2. The
signal space representations of the transmitted channel symbols in the uncoded system
are directly sA = AA

s (dA), sB = AB
s (dB), where Ai

s (�) is the memoryless constellation
mapper and di is the source i ∈ {A,B} data symbol.

Each communication round can be divided into two steps. In the �rst step both sources
SA, SB simultaneously transmit their signal to the relay, while their transmission is
overheard by the "unintended" destinations (SA → DB , SB → DA) due to the broad-
cast nature of wireless channels. Even though the overheard information does not carry
the desired data for the respective destination, it can be e�ciently exploited to enable
WPLNC-based processing in WBN [4]. Since the WPLNC-encoded signal is sometimes
denoted as the hierarchical signal [1], we denote this overheard "complementary" inform-
ation as the Hierarchical Side Information (HSI) [31].

The relay performs WPLNC-based decoding [1] of the received signal and broadcasts the
decoded WPLNC (hierarchical) information as sR to DA, DB in the second step. Both
destinations are able to decode the desired data using the relay’s (hierarchical) signal
and the HSI that it overhears, if proper WPLNC processing is employed in the system.

A suitable information-theoretic relaying strategy (based on the Superposition Coding
(SC) [32,33]) for WBN was proposed in [4,31]. The fundamental idea of the SC approach
is to split each data symbol di at source i ∈ {A,B} into the basic dbi = [dbi,0, . . . , d

b
i,Nb−1]

and superposed dsi = [dsi,0, . . . , d
s
i,Ns−1] parts (dki,n ∈ {0, 1}, k ∈ {b, s}) and process each

of the resulting data streams separately throughout the system. A simpli�ed description
of the SC-based relaying in an uncoded WBN system is summarised in Table 2.1 and
depicted in Figure 2.1.

2In Section 2.2 we show that an arbitrary binary error protection code can be readily used with the
proposed constellations in a practical system.
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Step 1: Source transmission

• Source Si, i ∈ {A,B} maps its data symbol di =
[
dbi ; d

s
i

]
into a

(Nb +Ns)-bit superposition modulation symbol

si = Ai
s

([
dbi ; d

s
i

])
, (2.1)

• SA, SB simultaneously transmit their signals to the relay and unintended
destinations (Figure 2.1).

• Relay receives

x = hARA
A
s

([
dbA; dsA

])
+ hBRA

B
s

([
dbB; dsB

])
+ wR (2.2)

and decodes
[
dsA; dsB; f(dbA,d

b
B)
]
, where f is a hierarchical WPLNC

function [1].

• Dj receives
zj = hijA

i
s

([
dbi ; d

s
i

])
+ wj, (2.3)

where i, j ∈ {A,B} , i 6= j and stores the signal for further processing.

Step 2: Relay broadcast

• Relay sends 2Ns +Nb-bit modulation symbol to both destinations:

sR = AR
s

([
dsA; dsB; f(dbA,d

b
B)
])
. (2.4)

• Dj decodes:

–
[
dsA; dsB; f(dbA,d

b
B)
]

(from the relay signal (2.4))
– dbi (from the stored signal zj (2.3), after interference cancellation of

known dsi )
– dbj (from dbi and f(dbA,d

b
B), using a standard WPLNC decoding [1])

• Dj merges dbj with dsj to obtain
[
dbj; d

s
j

]
.

Table 2.1: SC relaying scheme in uncoded WBN.
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2.1.3 Superposition modulation design

A direct implementation of a practical modulation-coding scheme based on the SC ap-
proach is unfortunately non-trivial. The simplest approach is to �rstly design a suitable
constellation mapper Ai

s (including proper bit-mapping) which produces the output con-
stellation symbols si = Ai

s

([
dbi ; d

s
i

])
, si ∈ C1 and then append individual error correc-

tion encoders separately for basic and superposed data streams.

Since an arbitrary error protection code suitable for single-user channels can be readily
used in this case, we focus on the design of the constellation mappers AA

s , A
B
s . We

follow the basic idea of Superposition Modulation (see e.g. [34] and references therein) to
produce the output constellation as

s = As(
[
db; ds

]
) =

Ns−1∑

n=0

Lsn(2dsn − 1) +

Nb−1∑

n=0

Lbn(2dbn − 1), (2.5)

where Lbn, Lsn are the scaling coe�cients.

Generally in superposition modulation [34], the scaling coe�cients Lbn, Lsn (2.5) are
taken from the set of complex numbers, which allow the joint optimisation of both the
power level and signal space angle of the resulting constellation points. In this report
we follow a slightly simpli�ed approach, and we choose the scaling coe�cients Lbn, Lsn
from a set of purely imaginary or real numbers.

As shown in Table 2.1, the basic and superposed parts of the source information are pro-
cessed in a di�erent way through the system, and hence we will discuss the constellation
design for these two speci�c information streams separately. We brie�y introduce the
incentives and main ideas of the design for the superposed and basic parts, and then we
summarise the complete multi-source constellation design in a systematic algorithm.

Constellation design: Superposed part

The superposed information given by dsA, dsB has to be jointly decoded by the relay
(Table 2.1), and hence a source constellation avoiding all potential overlaps in the super-
imposed constellation (observed by the relay node) is desirable. In an AWGN channel
(hAR = hBR = 1 in Figure 2.1) this can be simply achieved by mapping the information
bits to the real-valued ASK constellation at SA and purely imaginary-valued ASK con-
stellation at SB (or vice versa). The resulting superimposed constellation at the relay will
then form a regular QAM superimposed constellation without any overlapping of con-
stellation symbols. This can be easily achieved by setting the coe�cients3 as LsA,n = 2n

and LsB,n = j · 2n.
3A smaller average number of nearest neighbours in the resulting constellation at the unintended des-
tination can be achieved by altering the real and imaginary domains between the consecutive scaling
coe�cients at SA, SB .
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+

sbA,0

sb A
,1

ssA,0

sA
+

sbB,0

sb B
,1

ss B
,0

sB

+

Figure 2.2: Source constellation design example for Nb = 2, Ns = 1. Resulting constel-
lations are depicted as blue circles (SA output constellation), red circles (SB
output constellation) and squares (received superimposed constellation atR).
Hierarchical function is f

(
dbA, dbB

)
= dbA ⊕ dbB .

Constellation design: Basic part

Unlike the superposed part, only a speci�c WPLNC function of the basic information
dbA, dbB has to be decoded by the relay (Table 2.1), and hence some overlapping of sym-
bols in the superimposed constellation (observed by the relay node) can be allowed4.
More precisely, two (or more) pairs of basic information symbols

(
dbA, dbB

)
,
(
d′bA, d′bB

)

can be allowed to fall into the same point in the superimposed constellation:

sA
(
dbA
)

+ sB
(
dbB
)

= sA

(
d′
b
A

)
+ sB

(
d′
b
B

)
, (2.6)

i� they belong to the same WPLNC function output, i.e. i� f(dbA,d
b
B) = f(d′bA,d

′b
B).

In this case the overlapping symbols produce the same hierarchical output, which can
be successfully resolved by the destination, if a matching HSI information is available
(Table 2.1).

The particular choice of the scaling coe�cients LbA,n, LbB,n depends on the particular
choice of the hierarchical WPLNC function. In the following subsections we discuss the
modulation design for two common choices of WPLNC function, namely the bit-wise
XOR [21] and Modulo-sum [35] operations.

4This in turn results in a superimposed constellation with improved Euclidean distance properties.
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Bitwise-XOR hierarchical function. Suitable overlapping of constellation symbols
at the relay is provided by letting both sources transmit at the same level, i.e.LbA,n = LbB,n.
It can be easily shown that if these coe�cients are chosen as LbA,n = LbB,n = 3bn/2c (for
even n) and LbA,n = LbB,n = j 3bn/2c (for odd n), the received superimposed constel-
lation at the relay will have overlaps only among the constellation symbols

(
dbA, dbB

)
,(

d′bA, d′bB

)
which have the same hierarchical WPLNC output i.e.

f(dbA,d
b
B) = f(d′

b
A,d

′b
B) = dbA ⊕ dbB,

where ⊕ is the bit-wise exclusive OR operation.

Modulo-sum hierarchical function. The speci�c constellation indexing proposed in
[35] enables decoding of the Modulo-sum5 hierarchical function from the superimposed
constellation observed by the relay. This allows us to choose the coe�cients as LbA,n =

LbB,n = 2bn/2c (for even n) and LbA,n = LbB,n = j 2bn/2c (for odd n), which would not be
possible for the bitwise-XOR hierarchical function6.

Systematic constellation design algorithm

The constellation scaling principles for the basic and superposed parts can be combined,
if the scaling coe�cients of basic information streams (Lbn) are pre-scaled by a factor 2Ns

to ensure that they lie above the largest scaling coe�cient of the superposed part. This in
turn allows to design a multi-source superposition modulation (possessing both desired
properties) for arbitrary Nb, Ns, or, equivalently, to design the constellation mappers
AA
s (�), AB

s (�) for arbitrary quality of HSI channels in WBN. The proposed systematic
constellation design is summarised in Algorithm 1. An example design of source con-
stellations for Nb = 2, Ns = 1 is presented in Figure 2.2.

2.1.4 Performance analysis

For the sake of simplicity of the theoretical performance analysis, we assume that all
channels in WBN are AWGN, i.e. hij = 1 for i, j ∈ {A,B,R}, i 6= j. We will evaluate
the throughput given by (Nb + Ns) · (1 − PFER

e ), where PFER
e denotes the frame error

rate. Due to the system symmetry we evaluate the throughput of SA → DA only. We set
the frame length to M = 768 symbols and the relay output mapper AR

S will be de�ned
as a conventional (2Nb+2Ns)-QAM constellation.

5For the purpose of this report, the Modulo-sum function is de�ned as f
(
dbA, d

b
B

)
=

D−1
([
D
(
dbA
)

+ D
(
dbB
)]

mod 2Nb
)
, where D (d) represents a decimal integer representation of

a binary vector d and D−1(m) represents a binary vector representation of a decimal integer m.
6We will show that the system with Modulo-sum hierarchical function potentially outperforms the sys-
tem with bit-wise XOR function. However, unlike the bit-wise XOR, implementation of error correction
coding could become quite challenging for Modulo-sum mapping at the relay.
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Algorithm 1 Constellation design for �xed Nb, Ns.
1: Input: (Nb, Ns)
2: for n ∈ {0, . . . , Ns − 1} . "superposed levels"
3: LsA,n ← 2n, LsB,n ← j 2n, for even n
4: LsA,n ← j 2n, LsB,n ← 2n, for odd n
5: end
6: for n ∈ {0, . . . , Nb − 1} . "basic levels"
7: switch hierarchical function f :
8: case "bitwise-XOR":
9: LbA,n = LbB,n ← 2Ns · 3bn/2c for even n

10: LbA,n = LbB,n ← j 2Ns · 3bn/2c for odd n
11: case "Modulo Sum":
12: LbA,n = LbB,n ← 2Ns · 2bn/2c for even n
13: LbA,n = LbB,n ← j 2Ns · 2bn/2c for odd n
14: end
15: end
16: for i ∈ {A,B} and ∀di =

[
dbi ; d

s
i

]
, dbi,n, dsi,n ∈ {0, 1}:

17: for n1 ∈ {0, Ns − 1}, n2 ∈ {0, Nb − 1}
18: ssi,n1

= Lsi,n1

(
2dsi,n1

− 1
)

19: sbi,n2
= Lbi,n2

(
2dbi,n2

− 1
)

20: end
21: α2 =

∑Ns−1
n=0 (Lsi,n)2 +

∑Nb−1
n=0 (Lbi,n)2 . "norm. coe�cient"

22: si = Ai
s

([
dbi ; d

s
i

])
= α−1

(∑Ns−1
n=0 ssi,n +

∑Nb−1
n=0 sbi,n

)
. "const. symbols"

23: end
24: Output: Constellation alphabets AA

s , A
B
s .
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Throughput analysis

Since all constellations points lie on a regular QAM grid, it is straightforward to eval-
uate the exact Symbol Error Rate (SER) for all channels analytically. The symbol er-
ror probability P SER

e can be approximated7 by its upper-bound8 P SER
e,UB = 1 − ((1 −

PMAC
e )(1−PHSI

e )(1−PBC
e )), where PMAC

e , PHSI
e and PBC

e are the probabilities of symbol
error in the MAC, HSI and BC channels (respectively). Since the system is memoryless,
the overall FER is given by PFER

e = 1 − (1 − P SER
e )M which can be approximated by

PFER
e,UB = 1− (1−P SER

e,UB)M . Nearest neighbour pairwise error approximation can be used
for an e�cient error rate evaluation.

To compare the performance of the proposed constellations, we evaluate analytically the
lower-bound of the throughput as TLB = (Nb + Ns) · (1 − PFER

e,UB) for �xed γMAC, γBC

as a function of γHSI. We analyse all permissible constellations for Nb + Ns = 2 (see
Figure 2.3) and compare their performance with the throughput Tref of the reference
“conventional" multi-user detection with regular QAM constellation (see Figures 2.4, 2.5
and 2.8, 2.9). The hierarchical function was set to the bit-wise XOR f

(
dbA, dbB

)
= dbA⊕

dbB in all relevant examples. In addition, the analytically evaluated throughput (lower-
bound) we also include the result of a numerical Monte-Carlo evaluation of throughput
Tsim over a 104 frames in all four �gures. For Nb 6= 0, the lower-bound TLB is relatively
tight in all cases, and hence it provides a reasonable approximation of the numerically
evaluated throughput Tsim.

The reference scenario with 4-QAM fails to provide a non-zero throughput (Tref ) in the
whole range of analysed SNRs in all four plots9. For (Nb, Ns) = (2, 0) the proposed
constellations are identical to 4-ary constellations used for conventional WPLNC, see [9].
However, conventional WPLNC requires perfect HSI to enable the decoding of WPLNC
functions at destinations, limiting its operation to high γHSI regions in WBN. On the
contrary, the novel proposed constellations provide a non-zero throughput even in the
low-to-medium SNR region of HSI channels. The resulting SNR and throughput gains
are highlighted in Figures 2.4, 2.5 and 2.8, 2.9.

SNR mapping regions

As shown in Figures 2.4, 2.5 and 2.8, 2.9 the throughput of the system depends heavily on
the actual SNR conditions. This observation calls naturally for an adaptive constellation
design. The proposed constellation design (Algorithm 1) can be readily used in this case,

7Unless stated otherwise, we consider the error probability of the overall single-user transmission chain
SA → DA.

8The evaluated PSERe,UB is an upper-bound of P SER
e , since an error in MAC/BC channels does not neces-

sarily induce an error in the overall communication chain. This is especially true if the error occurs in
the superposed bits dsB used for interference cancellation processing at DA.

9This is a direct consequence of the fact that the resulting superimposed constellation have too many
overlaps, preventing successful multi-user decoding of both of the separate user data streams.
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sA sB sA + sB
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Ns = 2 Re [ · ]

Im [ · ]
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sA = AAS ([dbA;dsA]) sB = ABS ([dbB ;dsB ]) sbi , i ∈ {A,B} ssi , i ∈ {A,B} sA + sB → [dsA;dsB ; f(dbA,d
b
B)]

Figure 2.3: Proposed constellation design for (Nb, Ns) = {(2, 0) ; (1, 1) ; (0, 2)}.
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Figure 2.4: Comparison of throughput as a function of γHSI for γMAC = 16 dB, γBC =
20 dB and given (Nb, Ns).
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Figure 2.5: Comparison of throughput as a function of γHSI for γMAC = 17 dB, γBC =
17 dB and given (Nb, Ns).

D4.03 DIWINE



2.1 Superposition constellation design 33

if an optimal (in the sense of maximal throughput) choice of Nb, Ns for given SNR con-
ditions is provided. We introduce these optimal SNR mapping regions for the case where
the relay→destination channels throughput is limited by the maximum number of bits
which can be reliably transmitted from the relay node to both destinations10 (Nr = 8 in
our case). The optimal SNR mapping regions, including the resulting throughput for the
optimal choice of (Nb, Ns), are shown11 in Figure 2.6 (respectively 2.7) for the bit-wise
XOR (respectively Modulo-sum) hierarchical functions. The particular pairs of Nb, Ns

achieving the maximum throughput for a given SNR are highlighted in both �gures.

2.1.5 Hardware implementation

In addition to the analytical and numerical Monte-Carlo evaluation of throughput, we
validate the results of Figures 2.8, 2.9 in a real-world setup. The hardware performance
is evaluated using Ettus Research Universal Software Radio Peripherals (USRPs) which
are computer-hosted SDRs. For a more detailed description of the HW setup please see
the DIWINE deliverable D5.42.

In the USRP results the HSI is passed via UDP such that the HSI SNR can be strictly
controlled by adding noise. This also avoids the issue of node visibility where direct
links SA → DA and SB → DB exist in the laboratory environment. The throughput
evaluated by the HW real world setup TUSRP is shown in Figures 2.8, 2.9, including
the comparison with the analytical lower-bound TLB, Monte-Carlo evaluation Tsim and
reference scenario Tref . Extremely close agreement can be seen in all cases.

2.1.6 Discussion, conclusions and future work

We have proposed a systematic algorithm for the design of two-source constellations in the
5-node WBN. Algorithm 1 is capable of producing a multi-source constellation for HSI
channels of arbitrary quality in WBN. We have shown that the proposed constellations
outperform the conventional approaches over the whole range of SNR conditions in the
system.

The particular SNR mapping regions, suggesting the optimal choice of the superposition
modulation parameters Nb, Ns (Table 2.1) were identi�ed, providing a valuable tool for
the adaptive constellation design in WBN. Even though we have focused on the pure
uncoded constellation design, the proposed constellations can be readily combined with
an arbitrary binary encoder, thus providing additional protection against transmission
10This in turns imposes a limit on the choice ofNb, Ns, sinceNr has to be greater or equal than 2Ns+Nb

(see Figure 2.1 or Table 2.1) to enable successful decoding of relay information at both destinations.
11An analytically evaluated lower bound (Section 2.1.4) was used for the throughput evaluation in this

section due to the numerical complexity of the Monte-Carlo simulations. To further simplify the eval-
uation, we assume an error-free BC channel PBCe = 0 for Nr ≤ 8.
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Figure 2.6: Throughput performance TLB and SNR mapping regions: bit-wise XOR hier-
archical function.

Figure 2.7: Throughput performance TLB and SNR mapping regions: Modulo-sum hier-
archical function.
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Figure 2.8: Comparison of throughput as a function of γHSI for γMAC = 20 dB, γBC =
20 dB and given (Nb, Ns).
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Figure 2.9: Comparison of throughput as a function of γHSI for γMAC = 20 dB, γBC =
16 dB and given (Nb, Ns).
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errors. The viability of the proposed constellation design was veri�ed in a real-world
HW setup, based on Ettus Research USRPs.

In the next section we show how the error-protection coding can be implemented into
the proposed constellation design to provide a reliable adaptive coded modulation pro-
cessing for practical wireless systems.

2.2 Channel coding extension for the superposition constellation
design

In this section we show that forward error correction (channel coding) can be readily
appended to the the constellation designed by the Algorithm 1 to provide a reliable
physical-layer processing for communication in a real-world environment.

Since it is more straightforward to design a binary channel coding scheme, in this section
we discuss the channel coded adaptive modulation scheme for a bit-wise exclusive-or
(XOR) WPLNC function (f(dbA,d

b
B) = dbA⊕dbB , where⊕ is the bit-wise XOR operation).

Note that the presented scheme forms the cornerstone of the SMN HW demonstrator
evaluation, as reported in [D5.42].

2.2.1 Introduction

We have shown that Algorithm 1 is a strong tool for the design of source constellations
suitable for arbitrary channel SNRs in the WBN system. However, even though the
proposed constellations provide promising performance in the uncoded scenario, the
extension to a coded system is desirable for practical wireless applications.

Considering the communication in uncoded WBNs (see Section 2.1), there are many
ways to improve its reliability through channel coding. In this section we introduce one
particular solution, based on the assumption that each source node splits its data into the
basic and superposed part and then encodes these parts separately by two constituent
channel encoders12. We believe that this approach provides the best insight into the
channel-coding extension of WBN systems, and hence we focus on its development in
the rest of this section.
12In a more general approach, each source data word is split into Nb + Ns parallel data sub-words that

are encoded separately using the principles of multilevel coding, see [36]. However, the development
of a general multilevel coding scheme for WBN is beyond the scope of this report.
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2.2.2 Per-link channel coding scheme for symmetric WBN with superposition
modulations

In general, it is desirable to protect all individual transmissions in the system with error
correction coding13. Accordingly, the relay node has to decode the desired data (includ-
ing the particular WPLNC function) from its observation and then it should perform
an additional re-encoding in order to protect the subsequent relay→destinations trans-
mission. The resulting channel coding scheme (see Figure 2.10) is introduced in the
following text.

Source processing

Source SA (likewise for SB) wants to transmit a binary data word DA of length |DA| =
|DB| = kD to its respective destination DA. Each data word DA is split into the basic
and superposed part (similarly as in the uncoded case), i.e.:

DA = [Db
A,D

s
A] = [dbA,0, d

b
A,1, . . . d

b
A,kbD−1, d

s
A,0, d

s
A,1, . . . d

s
A,ksD−1],

where dbA,n, dsA,n ∈ {0, 1} and kbD, ksD are the lengths of the basic and superposed data
sub-words Db

A, Ds
A (respectively).

Subsequently, individual Db
A, Ds

A are encoded by two separate linear binary encoders
Cb(�), Cs(�) (assumed identical at both sources), producing the constituent codewords
as:

Cb(D
b
A) = Cb

A = [cbA,0, c
b
A,1, . . . , c

b
A,N−1], (2.7)

Cs(D
s
A) = Cs

A = [csA,0, c
s
A,1, . . . , c

s
A,N−1], (2.8)

where N is the number of codeword symbols (equivalently the number of channel uses
required to transmit the codeword) and

cbA,j = [cbA,j0 , . . . , c
b
A,jNb−1

], (2.9)
csA,j = [csA,j0 , . . . , c

s
A,jNs−1

] (2.10)

are codeword symbols of length Nb (respectively Ns) bits. The dimensionality of binary
codewords is thus

∣∣Cb
A

∣∣ =
∣∣Cb

B

∣∣ = nbC = N ·Nb, |Cs
A| = |Cs

B| = nsC = N ·Ns.

The constituent codewords Cb
A, Cs

A are then forwarded to the joint constellation mapper
AA (�) (provided by Algorithm 1), which produces a sequence of (Ns+Nb)-bit constella-
tion symbols sA,j = AA

([
cbA,j; c

s
A,j

])
. Note that in the encoded system it is the codeword

13Alternatively, a primitive end-to-end coding scheme can be designed, performing the channel coding
solely at sources SA, SB and channel decoding (potentially computationally intensive) solely at destin-
ations DA, DB , while leaving the relay R to operate on a symbol-by-symbol basis (as in the uncoded
system). Unfortunately, this approach is only sub-optimal, as in this case the particular transmissions
on source→relay and relay→destination channels are not individually protected by channel coding.
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symbols that are mapped to the desired constellation (instead of data symbols), but since∣∣cbA
∣∣ =

∣∣cbB
∣∣ = Nb and |csA| = |csB| = Ns, it is su�cient to formally substitute the code-

word symbol ci =
[
cbi ; c

s
i

]
for the data symbol di =

[
dbi ; d

s
i

]
in Algorithm 1 (lines 16, 22).

The resulting constellation symbols are successively transmitted by SA (simultaneously
with sB,j from SB) towards the relay node.

Relay processing

The crucial part of the encoded WBN system processing is based at the relay node.
Like the uncoded case, the relay has to decode jointly the superposed data sub-words
(Ds

A, Ds
B) along with the WPLNC function of basic data sub-words (f(Db

A,D
b
B) = Db

A⊕
Db
B).

Whilst both Ds
A, Ds

B can be decoded straightforwardly by the relay (using conventional
single user decoders C−1

s ), the fundamental question is how to decode the WPLNC func-
tion f(Db

A,D
b
B) since both Db

A, Db
B are encoded separately at sources SA, SB14. Fortu-

nately, as proven in [1], the WPLNC function f(Db
A,D

b
B) can be decoded directly from

the relay observation, if the particular source data words are encoded by the same linear
encoder Cb. The linearity of the code then implies:

Cb
(
f(Db

A,D
b
B)
)

= Cb
(
Db
A ⊕Db

B

)

= Cb(D
b
A)⊕ Cb(D

b
B)

= Cb
A ⊕Cb

B, (2.11)

where Cb
A ⊕Cb

B again is a valid codeword, and hence the WPLNC function f(Db
A,D

b
B)

can be decoded directly from the relay observation (using a conventional single user
decoder C−1

b ).

After decoding all required data streams (D̂s
A, D̂s

B, f̂(Db
A,D

b
B)), the relay creates a joint

data word DR = [D̂s
A, D̂

s
B, f̂(Db

A,D
b
B)] and re-encodes it as

CR(DR) = CR = [cR,0, cR,1, . . . , cR,N−1]

. The encoded data are then mapped to the output 2NR-QAM (where NR = 2Ns + Nb)
constellation symbols sR,j = AR (cr,j), j ∈ {0, 1, . . . ,N− 1} and broadcast by the relay
to both destination nodes.

14Note that separate decoding of Db
A, D

b
B and subsequent evaluation of f(Db

A,D
b
B), i.e. conventional

joint/multi-user decoding concatenated with traditional network coding [37], can signi�cantly limit the
performance of the system [1].
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HSI

HSI

Figure 2.10: Relaying scheme in the encoded WBN system. SODEM stands for a soft-
output demodulator, IC is the interference canceller. The channel en-
coders/decoders which are appended to the uncoded system are emphasised.

Destination processing

Similarly as in the uncoded case, destinationsDA, DB �rstly store the signal received in
the MA phase, and then, after decoding the relay data word DR (from the signal received
in the BC phase), both destinations can perform IC to remove the unintended superposed
codewords from the MA phase signal to get the desired HSI and then �nally recover the
desired data (see Figure 2.10 for the details).

2.2.3 Analysis of transmission rates

The last step in the design of a feasible modulation-coding scheme for WBN (see Fig-
ure 2.10) is to identify the range of permissible transmission rates for the basic (rb), su-
perposed (rs) and relay output (rR) data streams. To achieve this goal, we analyse the
Constellation Constrained (CC) capacities [38] of the proposed source constellations, in-
cluding the CC capacity of the conventional relay output 2NR-QAM alphabets (used in
the BC phase of communication).

The transmission rates are de�ned in bits per channel use, and hence ri = Ni · kiD/niC,
whereNi is the number of bits per channel symbol/use in the data stream i, i ∈ {b, s, R}.
In accordance with the de�nition of source and relay codewords, we assume that each
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communication round requires 2N channel uses, where the length of both MA and BC
phase is set to N channel uses. Note that the assumption that BC and MA phases have
identical length is generally only suboptimal, see [24,31], but nevertheless it is a common
assumption in practical systems, and hence we limit our attention to this particular case.

Relay observation

After splitting the source data streams, the whole system can be interpreted as a 4-user
system where the relay has to decode the data Ds

A, Ds
B, f(Db

A,D
b
B) from the virtual 3-

user (SsA, SsB, SbAB) multiple-access channel observation (see Figure 2.10). Unfortunately,
since one of the users (SbAB) is only virtual, we cannot simply claim that the region of
achievable rates in this virtual channel can be derived directly from the conventional cut-
set bound analysis, see [32,39,40], but a careful information-theoretic analysis would be
required to identify the exact rate region. However, such analysis is far beyond the scope
of this report, and hence, for simplicity reasons, we only conjecture that the eligible
source rates (rb, rs) are limited by the conventional CC multiple-access capacity region15,
which can be de�ned by the following set of mutual information I(�; �):

2rs + rb ≤ I(x; csA, c
s
B, f(cbA, c

b
B)), (2.12)

2rs ≤ I(x; csA, c
s
B|f(cbA, c

b
B)), (2.13)

rs + rb ≤ I(x; csA, f(cbA, c
b
B)|csB), (2.14)

rs + rb ≤ I(x; csB, f(cbA, c
b
B)|csA), (2.15)

rs ≤ I(x; csA|csB, f(cbA, c
b
B)), (2.16)

rs ≤ I(x; csB|csA, f(cbA, c
b
B)), (2.17)

rb ≤ I(x; f(cbA, c
b
B)|csA, csB), (2.18)

where (2.12), (2.13)-(2.15) and (2.16)-(2.18) are the corresponding third, second and �rst
order cut-set bounds (respectively). As we show later, the CC MAC region (as de�ned
by (2.12)-(2.20)) provides a reasonable estimate of the maximal achievable source trans-
mission rate pair (rb, rs) in WBN.

Now, since the superposed data sub-words Ds
A, Ds

B are mapped to orthogonal ASK sets
(Algorithm 1), the 2nd order cut-set bound I(x; csA, c

s
B|f(cbA, c

b
B)) (2.13) is equivalent to

I(x; csA|csB, f(cbA, c
b
B)) + I(x; csB|csA, f(cbA, c

b
B)) (de�ned in eqs. (2.16) and (2.17)), which

can be proven easily by the chain rule for mutual information of orthogonal signal sets
(see [32]). Moreover, due to the assumed WBN system symmetry, the cut-set bounds
de�ned in equations (2.16), (2.17) are identical, and the same is true for the pair of cut-
set bounds de�ned in (2.14), (2.15). Consequently, the CC multiple-access capacity region
is completely de�ned by the four inequalities in (2.12), (2.14), (2.16) and (2.18).
15For a detailed discussion on the cut-set bound evaluation of MAC capacity regions see [32, 39, 40].
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Figure 2.11: Numerically evaluated cut-set bounds (mutual information for �nite input
constellations) for (Nb = 2, Ns = 1) source constellations and 16-QAM at
the relay. The particular SNR conditions are available in the titles of both
sub-�gures.

E�ective HSI channels

In addition to the successful relay decoding, the transmission rate of the basic informa-
tion stream rb has to guarantee that the HSI (given by the unintended data sub-words
Db
A at DB and Db

B at DA) can be decoded at both destinations (after perfect IC of super-
posed data codewords Cs

A at DB and Cs
B at DA from the stored MA phase signal). Note

that since we assume that the relay has already successfully decoded f(Db
A,D

b
B) at this

step, it can be e�ciently exploited in the decoding process, resulting in the following
upper-bounds on the source rate rb:

rb ≤ I(zIC
B ; cbA|f(cbA, c

b
B)), (2.19)

rb ≤ I(zIC
A ; cbB|f(cbA, c

b
B)), (2.20)

where zIC
A , z

IC
B are the e�cient HSI observations (after perfect IC) at DA, DB (respect-

ively) – see Figure 2.10. Both (2.19), (2.20) are identical in the symmetric WBN system.

Relay broadcast channel

The relay rate rR has to guarantee that its data word DR = [D̂s
A, D̂

s
B, f̂(Db

A,D
b
B)] with

length |DR| = 2ksD+kbD = N(2rs+rb) can be sent to both destinations inN channel uses.
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In addition to this, to enable successful decoding of the relay data at both destinations,
the relay transmission rate rR has to be below the CC capacities of the corresponding
relay→destination channels. Thus, the relay rate should be set to rR = rb + 2rs, which
gives us the last two inequalities for rb, rs:

rR = 2rs + rb ≤ I(yA; cR), (2.21)
rR = 2rs + rb ≤ I(yB; cR), (2.22)

where both cut-set bounds (2.21), (2.22) are identical due to the system symmetry.

2.2.4 Transmission rate region for fixed source constellation

To identify the region (rb, rs) ∈ R(Nb,Ns) of eligible transmission rates for a �xed (Nb, Ns)
source constellation, we can evaluate numerically16 the set of relevant cut-set bounds, i.e.
(2.12), (2.14), (2.16), (2.18), (2.19) and (2.21), for given SNR conditions in the symmetric
WBN system (γMAC, γBC, γHSI).

An example analysis of the source transmission rate region R(2,1) for the (Nb = 2, Ns =
1) source constellation is visualised in Figure 2.11 for two di�erent SNR setups. The
cut-set bound rate region R(Nb,Ns) is emphasised by the shaded area and the rate pair
with maximal rb + rs is identi�ed in the �gure. We have assumed that the source→relay
channels are AWGN (or equivalently that perfect source phase prerotation [11,41, 42] is
implemented) in the numerical evaluation.

2.2.5 Performance of the adaptive encoded system

As shown in Figure 2.11, the performance of the encoded WBN system is, like in the
uncoded case, in�uenced by the immediate SNR conditions (given by γMAC, γBC, γHSI),
and hence an adaptive modulation-coding scheme is again of interest. However, before
we introduce the SNR mapping operation for the encoded system, we show that the
cut-set bound rate regions R(Nb,Ns) (as introduced in the preceding section) provide a
reasonable approximation of achievable source transmission rate pairs in the symmet-
ric WBN system. In the whole section we assume (for simplicity reasons) that perfect
source phase prerotation [11, 41, 42] is implemented in the system, virtually reverting
the source→relay channels to the AWGN case.

16The (conditional) probability density function p(x|csA, csB , f(cbA, c
b
B)) which is required for the eval-

uation of particular mutual information in (2.12)-(2.20) can be obtained by a proper marginalisation
operation p(x|csA, csB , f(cbA, c

b
B)) = Pr

{
f(cbA, c

b
B)
}
·
∑

cb
A,c

b
B :f(cb

A,c
b
B) p

(
x|csA, csB , cbA, cbB

)
, where

p(x|csA, csB , cbA, cbB) is the likelihood function. For more details on the evaluation of CC capacity for
�nite input constellations see [1, 39, 40].
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Numerical simulation of encoded WBN system throughput

We implement all constituent channel encoders in the WBN system (see Figure 2.10)
as parallel concatenated turbo codes with random interleavers of length N = 105 sym-
bols. By a proper puncturing [43] of the channel encoders’ outputs we are able to set
the source transmission rates (separately for the basic and superposed streams) to an
arbitrary value.

We set the initial source transmission rates to the maximum rb + rs ∈ R(Nb,Ns) (as
evaluated in Figure 2.11) and by proper adjustment of the puncturing operation we suc-
cessively decrease the source transmission rates rb, rs until the SER performance drops
to zero. As one can see in Figure 2.11, the achieved transmission rate pairs are relatively
close to the maximal permissible values, and hence we can consider the cut-set bound
rate region R(Nb,Ns) (as discussed in Section 2.2.4) to be a reasonable approximation of
the achievable source transmission rate region.

Maximal throughput of the adaptive modulation-coding scheme

The source nodes SA, SB in the adaptive modulation-coding WBN system has to be
aware of the particular mapping operation:

(γ̂MAC, γ̂BC, γ̂HSI) 7→
(
N II
b , N

II
s ; rII

b , r
II
s

)
, (2.23)

providing the set of optimal (in the sense of maximal throughput) constellation/encoder
parameters for the given SNR conditions (γ̂MAC, γ̂BC, γ̂HSI). Note that, in general, all
adaptive system parameters are functions of the actual SNR conditions in the system.
However, we mostly omit the explicit notation in the following text for a better readab-
ility.

The desired adaptive system parameters can be obtained in the following two-step pro-
cedure. First of all, we analyse the cut-set bound rate regions R(Nb,Ns) (as discussed in
Section 2.2.4) to identify the maximal encoded system throughput T (Nb,Ns)

C for a �xed
source constellation (Nb, Ns):

T
(Nb,Ns)
C (γMAC, γBC, γHSI) = max

rb,rs∈R(Nb,Ns)
(rb + rs), (2.24)

= rmax
b (Nb, Ns) + rmax

s (Nb, Ns). (2.25)

Then, an exhaustive search over the constellation parameters Nb, Ns can be performed
to �nd the maximum encoded system throughput Tmax

C for the given SNR conditions
(γMAC, γBC, γHSI):

Tmax
C (γMAC, γBC, γHSI) = T

(N II
b , N

II
s )

C = max
(Nb,Ns)

T
(Nb,Ns)
C , (2.26)
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Figure 2.12: Maximal encoded system throughput Tmax
C for γBC = 7.5 dB and γBC =

15 dB.

where (N II
b , N

II
s ) are the optimal source constellation parameters. The corresponding

optimal source transmission rates (2.25) are given simply by rII
b = rmax

b (N II
b , N

II
s ), rII

s =
rmax
s (N II

b , N
II
s ).

The SNR mapping regions (including the throughput Tmax
C ) for the adaptive modulation-

coding scheme in WBN are evaluated as a function of γMAC, γHSI in Figure 2.12 for
γBC ∈ {7.5 dB, 15 dB}. The optimal source transmission rates rII

b , r
II
s of the basic and

superposed data streams are depicted in Figures 2.13 and 2.14, respectively. The optimal
constellation parameters (N II

b , N
II
s ) are emphasised in all �gures.

As one can see in Figure 2.15, the increased reliability of transmissions on all individual
channels in WBN (as compared to the uncoded system) translates directly into a signi�c-
ant enhancement of throughput performance in the whole range of observed SNRs. This
observation justi�es the viability of the proposed channel coding scheme (Figure 2.10).

2.2.6 Conclusions

In this section we have introduced a channel coding scheme for source constellations
designed in Section 2.1. Even in the uncoded scenario, the constellations designed in
Section 2.1 are able to signi�cantly boost the WBN system throughput, and hence their
implementation could be interesting especially in some basic wireless networks, where
the channel coding operation is avoided due to simplicity requirements, e.g. sensor
networks. Furthermore, in this section we have shown that the proposed source con-
stellation design can be readily extended with appropriately designed channel encod-
ing/decoding operations, signi�cantly improving the reliability (and maximum through-
put) of the resulting adaptive modulation-coding scheme.
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Figure 2.13: Optimal rate rII
b of the basic data stream for γBC = 7.5 dB and γBC = 15 dB.
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Figure 2.14: Optimal rate rII
s of the superposed data stream for γBC = 7.5 dB and γBC =

15 dB.

D4.03 DIWINE



2.2 Channel coding extension for the superposition constellation design 47

0 5 10 15 20 25

γMAC [dB]

0

5

10

15

20

25
γ
H
S
I 
[d

B
]

γBC=7.5 dB

0.75

0.90

1.05

1.20

1.35

1.50

1.65

1.80

1.95

0 5 10 15 20 25

γMAC [dB]

0

5

10

15

20

25

γ
H
S
I 
[d

B
]

γBC=15.0 dB

0.75

0.90

1.05

1.20

1.35

1.50

1.65

1.80

1.95

Figure 2.15: Throughput enhancement ∆TC = Tmax
C −TLB in the coded WBN system for

γBC = 7.5 dB and γBC = 15 dB. Note that 0.75 ≤ ∆TC ≤ 2 in the analysed
range of channel SNRs.

In future work, we would like to analyse the robustness of the proposed adaptive sys-
tem in a full HW setup, where the impact of several parameters (e.g. MAC channel
fading, asymmetry of channel gains, imperfect source phase pre-rotation or a direct
source→destination visibility) can signi�cantly a�ect the system performance and pos-
sibly even require modi�cation of the adaptive system design.
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3 Compute and forward based NCM

3.1 Non-cooperative CaF

Network coding has been a very promising topic since introduced by Ahlswede et al.
in [44]. The concept of network coding in wired networks is very well investigated
and �rst implementations for industrial usage are emerging [45, 46]. Wireless networks
on the other hand are still subject of intensive research. The properties of the wireless
channel allow network coding on di�erent layers. The superposition property can be
exploited by the relays and enables WPLNC. Since the introduction of physical layer net-
work coding [47], di�erent schemes have been developed, e.g. [41,48–50]. A framework
that has drawn a lot of attention is compute-and-forward [22]. It uses lattice codes and
exploits their structure to allow the decoding of linear equations of codewords without
decoding the codewords themselves. This enables the relaying nodes to decode the equa-
tions at higher rates than it would be possible by decoding the individual messages, e.g.
by decode-and-forward. A further important advantage compared to e.g. amplify-and-
forward is the possibility to avoid noise accumulation, which reduces the performance
in large networks. Also this has a lot of advantages and high rates are achievable, this
comes with the need for network diversity. The �nal destination needs to collect enough
independent equations to jointly decode the transmitted data.

The performance of compute-and-forward highly depends on the alignment of the chan-
nel coe�cients with the coe�cients of the decoded equation. Several algorithms have
been proposed to solve for the optimal equation in terms of achievable computation
rate [51–53]. While most of these algorithms perform a local optimisation, they ignore
the network structure and the possible linear dependence of the equations at the �nal
destination. This will result in outages because the destination is not able to decode
the messages if it has not enough linear independent equations. This is a very serious
problem in real applications, especially in large networks with several hops because re-
transmissions from all sources to the destination are not applicable. The delay might
be extremely large and the signalling will pollute the network. This problem can be
overcome by allowing cooperation between nodes [53]. In realistic setups however, this
might not be applicable due to the large signalling overhead to allow this kind of co-
operation. Further, it is not very robust against channel state changes. Therefore, the
question arises if it is possible to exploit the network structure such that no cooperation
between nodes is needed except for a network initialisation phase.

In this section we introduce some non-cooperative schemes which enforce linear inde-
pendence of the decoded equations at the destination. We compare the performance of
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these schemes in multi-source multi-relay networks and show that correlation between
channel coe�cients plays a crucial role. We �nd that correlation can decrease the achiev-
able sum-rate of compute-and-forward by 1.5 bit/cu whereas our proposed schemes are
robust against correlation and can achieve twice the sum-rate. The section is organised
as follows. We de�ne the system model in Section 3.1.1 and introduce the di�erent re-
laying schemes in Section 3.1.4. We discuss the performance of these schemes with the
help of simulation results in Section 3.1.5 and conclude this work in Section 3.1.7.

Notation

Let log+(x) , max{0, log(x)} and Fp a �nite �eld of size p, where p is a prime. We
denote by xT the transpose of vector x and by ei the unit vector with a one at position i
and zeros elsewhere.

In the following we recall some lattice de�nitions that are used throughout the paper.
For further details on lattice codes see [17, 48, 54, 55]. An n-dimensional lattice Λ ⊂ Rn

is a group under addition with generator matrix G ∈ Rn×n, i.e. Λ = {Gc : c ∈ Zn}. A
lattice quantiser is a mapping QΛ : Rn → Λ that maps a point x to the nearest lattice
point in Euclidean distance, i.e.,

QΛ(x) = arg min
λ∈Λ
‖x− λ‖. (3.1)

Let the modulo operation with respect to the lattice Λ be de�ned as [x] mod Λ = x −
QΛ(x). We call V = {x : QΛ(x) = 0} the fundamental Voronoi region of the lattice Λ
and denote by VolV the volume of V.

Two lattices ΛC and ΛF are called nested, if ΛC ⊆ ΛF . We call ΛC the coarse lattice
and ΛF the �ne lattice. A nested lattice code L is formed by taking all of the points of
the �ne lattice ΛF in the fundamental Voronoi region VC of the coarse lattice ΛC , i.e.
L = ΛF ∩ VC . The rate of a nested lattice code is given by

r =
1

n
log |L| = 1

n
log

VolVC
VolVF

. (3.2)

3.1.1 System model

We investigate an L ×M relay network consisting of L source nodes, M relay nodes
and one destination node as depicted in Figure 3.1 and in more detail in Figure 3.2. Each
source node ` has a message w` that has to be transmitted to the destination node. Be-
cause there are no direct links between the source nodes and the destination, the trans-
mission has to use the help of several relays. For the ease of simplicity we assume that all
M relays are used. The relays can apply several relaying strategies which are explained
in detail in Section 3.1.4. The used relaying strategy is common to all relays and a system
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Figure 3.1: System model of a L×M relay network
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Figure 3.2: System model of a L×M relay network

design parameter. We will investigate which relaying strategy is best to use for certain
system parameters.

We want to stress that we assume no cooperation between the relays because this would
drastically increase the complexity in realistic scenarios. The cost for network providers
in terms of infrastructure complexity is much less when the nodes are independent. For
example we have less signalling overhead. Further, node independence increases the
robustness of the network against topology changes.

We will focus our work on the communication between source and relay nodes and the
decoding at the relay nodes. There might be other layers or networks after the relays
which are beyond the scope of the investigation. Therefore, we assume that the channels
between the relays and the destination are bit-pipes with large enough capacity. They
are error-free and do not interfere with each other. This might be achieved by FDMA or
similar techniques.

3.1.2 General definitions

De�nition 3.1 (Messages). Each source node ` chooses a length-k message vector w` ∈
Fkp i.i.d. from a uniform distribution over the index set {1, 2, . . . , 2bnR`c}. Because we
will build linear combinations of these messages, we zero-pad them to a common length
k , max` k`.

De�nition 3.2 (Encoders). Each source node is equipped with an encoder,

E` : Fkp → ΛF ∩ VC , (3.3)
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that maps length-k messages over the �nite �eld to length-n real-valued codewords of
a lattice code L = ΛF ∩ VC , i.e. x` = E`(w`). Each codeword is subject to the power
constraint ‖x`‖2 ≤ nP . Therefore, ΛC is chosen such that the second moment of ΛC

equals P .

De�nition 3.3 (Channel model). Each relay receives a noisy linear combination of the
transmitted signals through the channel, i.e.,

ym =
L∑

`=1

hm`x` + zm, (3.4)

where hm` ∈ R are the channel coe�cients and zm is i.i.d. Gaussian noise, i.e. zm ∼
N(0, In). Let hm = (hm1, . . . , hmL)T denote the vector of channel coe�cients to relay
m and let H = {hm`} denote the entire channel matrix. With this notation the m-th
row in H is hTm.

De�nition 3.4 (Desired equations). The goal of each relay is to reliably recover a linear
combination of lattice codewords

vm =

[
L∑

`=0

am`x`

]
mod ΛC . (3.5)

The desired equation is represented by a coe�cient vector am = (am1, . . . , amL)T .

De�nition 3.5 (Message rate). The message rate of each source node is the length of its
message normalised by the number of channel uses,

R` =
k`
n

log2 p. (3.6)

De�nition 3.6 (Computation rate). The computation rate R(hm, am) is achievable if for
any ε > 0 and n large enough, there exist encoders and decoders, such that all relays
can recover their desired equations with average probability of error ε so long as the
underlying message rates R` satisfy

∀` ∈ {1, . . . , L} : R` < min
m:am` 6=0

R(hm, am). (3.7)

3.1.3 Decoding at the destination

The destination node receives M linear combinations of the lattice codewords from the
relay nodes, i.e.,

yD = A ·x, (3.8)
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where x = (x1, . . . , xL)T is the vector of transmitted lattice codewords from all source
nodes and

A =




a11 a12 · · · a1L

a21 a22 · · · a2L

...
...

. . .
...

aM1 aM2 · · · aML


 (3.9)

is the coe�cient matrix of the linear combinations. Please note that the m-th row in A
is equal to the coe�cient vector am of the linear combination decoded at relay m. The
destination can solve the system of linear equations in Equation (3.8) via matrix inversion
if the coe�cient matrix A has full rank, i.e. rank(A) ≥ m. Otherwise an outage occurs.

De�nition 3.7 (Outage probability). The outage probability Pout is the probability that
the destination node is not able to decode each single codeword x` transmitted by source
node `, ` ∈ {1, . . . , L}.

De�nition 3.8 (Achievable sum-rate). The achievable sum-rate is de�ned as the good-
put of all source nodes to the destination,

Rsum = (1− Pout) ·
L∑

`=1

R`, (3.10)

where Pout is the outage probability.

3.1.4 Relaying strategies

In this subsection we introduce the relaying strategies. All of them are based on compute-
and-forward as introduced in [22]. This means each relay decodes a linear combination
of lattice codewords with coe�cient vector am. The achievable computation rate at relay
m is given by

R(hm, am) =
1

2
log+

2

(
1

aTm ·GCF · am

)
, (3.11)

where
GCF = IL×L −

P

1 + P‖hm‖2
·hmhTm. (3.12)

Compute-and-Forward is able to achieve a high computation rate due to the fact that it
decodes a linear combination of messages and not each single message like for example
decode-and-forward. However, this does not take the network structure into account. In
a large network with multiple hops we get outages due to linear dependent equations at
the destination. Even for a single hop with multiple relays the outage probability is very
high (see Figure 3.3). This motivates us to modify the optimisation problem of �nding
the best equation such that the network structure is exploited. Therefore, we introduce
some modi�ed compute-and-forward schemes which di�er in the way am is chosen.
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Figure 3.3: Probability of rank failure in classical compute-and-forward for 3 source
nodes and M relay nodes.

Classical compute-and-forward

With the term classical compute-and-forward we refer to the unaltered scheme intro-
duced in [22]. In the classical compute-and-forward scheme each relay solves the fol-
lowing optimisation problem individually to maximise the achievable computation rate,

RCCF
CF,m = max

am∈ZL\{0}
R(hm, am). (3.13)

This can be solved by several algorithms, e.g. [51–53].

Because we assume no cooperation between the relays, it is not guaranteed that the
relay nodes decode linear independent linear combinations. Therefore, the destination
node cannot always decode all codewords. The outage probability Pout in this case is the
probability that the coe�cient matrix A does not have full rank, i.e.,

Pout , Pr{rank(A) < m}. (3.14)

A possible method to reduce the outage probability is to decode only non-zero equations
am [22, Sec. X]. However, this will signi�cantly reduce the achievable rate and does not
guarantee zero outage probability.

In real world applications we have to ensure that the transmitted data is decodable at
the destination. In a point-to-point channel with outages this is usually done by an ARQ
protocol. In the compute-and-forward framework one would have to re-transmit the
codewords from all sources. In multi-hop networks this is usually not applicable due to
large delays and large overhead.

Single user decoding

By single user decoding we refer to a special case of compute-and-forward, where relay
m decodes the linear combination am = em. This means each relay decodes only a single
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codeword and treats all other signals as noise. Because each relay decodes a di�erent
codeword, it is guaranteed that the coe�cient matrix A at the destination node has full
rank. Therefore, we do not have outages, i.e. Pout = 0. However, this comes at the cost
of achievable computation rate because we choose a sub-optimal coe�cient vector in
Equation (3.13). The achievable computation rate at relay m is given by

RSU
CF,m = R(hm, em). (3.15)

Subspace compute-and-forward

In the following we introduce subspace compute-and-forward. We reduce the feasible
set of possible coe�cient vectors in the optimisation problem in Equation (3.13) for each
relay such that the subsets are linearly independent. We get the following optimisation
problem at relay m

RSCF
CF,m = max

am∈Sm
R(hm, am), (3.16)

where Sm ⊂ ZL. For the construction of the subsets we restrict ourselves to the case
where L = M , i.e. the number of relay nodes equals the number of source nodes. It
is obvious that in the case of M > L we get M − L linear dependent equations at
the destination which are not necessary for decoding. This becomes a problem of relay
selection and is beyond the scope of this paper.

Let B ∈ ZL×L be a basis matrix for ZL. We de�ne Bm to be a sliced version of B
containing only the �rst m rows of B. The subset Sm is then constructed by

Sm = {BT
m · βm : βm ∈ Zm, βmm 6= 0}. (3.17)

The achievable computation rate at relaym is the solution to the following optimisation
problem

RSCF
CF,m = max

βm∈Zm
βmm 6=0

R(hm, B
T
mβm), (3.18)

which can be written as

RSCF
CF,m = max

βm∈Zm
βmm 6=0

1

2
log+

2

(
1

βTm ·GSCF · βm

)
, (3.19)

where
GSCF = BmB

T
m −

P

1 + P‖hm‖2
·Bmhmh

T
mB

T
m. (3.20)

Please note that the optimisation problem has the same structure as the one for classical
compute-and-forward (see Equation (3.13)). If a sorted channel vector hm is assumed,
then the constraint sets are also equivalent (see [51] for details). Therefore, we can use
the same algorithms to solve this optimisation problem.
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Hierarchical compute-and-forward

Hierarchical compute-and-forward has been introduced independently and from di�er-
ent points of view in [56] and [57]. This scheme �xes the equations that are decoded
at each relay independently from the channel realisations. Therefore, the equation coef-
�cients can be chosen such that linear independence at the destination is guaranteed.
This comes at the price of a lower performance because the channel coe�cients and
the equation coe�cients are not well aligned. The key technique used to improve the
performance is interference cancellation. The decoder at relay m decodes an auxiliary
equation ãm and subtract this from the received signal to create a new virtual channel

h̃m = hm − ηãm. (3.21)

The auxiliary equation has to be chosen such that the decoding performance of the de-
sired equation am is increased for this virtual channel. The coe�cient η ∈ R has to be
chosen such that the mean squared error between the virtual channel h̃m and the desired
coe�cients am is minimised. To obtain the optimal auxiliary equation one has to solve
the following optimisation problem at relay m,

RHCF
CF,m = max

ã∈Am
min{R(hm, ãm),R(h̃m, am)}, (3.22)

where Am = {ãm : R(hm, ãm) > R(hm, am)} is the set of all auxiliary equations which
improve the performance. So far the optimisation problem in Equation (3.22) lacks an
e�cient algorithm to solve this problem. It is basically a combinatorial problem which
can be solved by an exhaustive search with high complexity.

Please note that hierarchical compute-and-forward can be combined with single user
decoding as well as subspace compute-and-forward to improve the performance of the
respective scheme. However, one has to keep in mind that this will increase the com-
putational complexity for solving the respective optimisation problems drastically and
might not be worth the performance increase.

3.1.5 Simulation results

In this section we provide simulation results showing the performance of the relaying
schemes introduced above. We use the algorithm in [51] to obtain the coe�cients for
classical and subspace compute-and-forward. Further we use an exhaustive search for
hierarchical compute-and-forward. Please note that we measure the performance solely
in terms of achievable sum-rate. Some practical concerns about signalling overhead and
delay are already raised in Section 3.1.4. In addition to the non-cooperative schemes, we
also plot the achievable sum-rate for compute-and-forward with cooperation between
the relays as an upper bound. Therefore, we use the algorithm provided in [53].
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Figure 3.4: Achievable sum-rate for i.i.d. Gaussian channel coe�cients. 10,000 channel
matrices per SNR value.

3.1.6 No correlation

In the following we compare the achievable sum-rate of the di�erent schemes in a 3× 3
relay network, where the channel coe�cients are i.i.d. according to a Gaussian distri-
bution, i.e. hm` ∼ N(0, 1). As one can see in Figure 3.4 the classical non-cooperative
compute-and-forward scheme achieves approximately half a bit less sum-rate than the
cooperative scheme. The subspace compute-and-forward strategy performs well for low
SNR but losses its performance bene�t in the high SNR regime.

The performance of hierarchical compute-and-forward highly depends on the chosen
desired equations as one can see in Figure 3.4 where we plotted the achievable sum-rate
for two di�erent desired coe�cient matrices, i.e. A = I3×3 and

A = AHCF =

(
1 1 0

0 1 1

1 0 1

)
. (3.23)

A good choice for the desired coe�cient matrix is A = I . One might think that this
should results at least in the same achievable sum-rate as single user decoding. Unfortu-
nately this is not true as one can see from Equation (3.7). The achievable computation
rate of relay m only constraints the rate of the source nodes whose codewords are de-
coded with a non-zero coe�cient. If relay m decodes with am = ei it would only e�ect
the achievable rate of source node i. If relay m decodes additionally an auxiliary equa-
tion with more non-zero entries, the computation rate of that auxiliary equation e�ects
more relays. Because each source node is constrained by the minimum achievable com-
putation rate of all relays, it is possible that the sum-rate is reduced by using an auxiliary
equation at a relay although the individual computation rate at the relay bene�ts from
using an auxiliary equation. This is one side-e�ect of having no cooperation between
the relays.
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Figure 3.5: 3× 3 indoor relay network.

The optimal desired coe�cient matrix A for hierarchical compute-and-forward for a
given channel distribution is still an open question and will be subject of future research.

Correlation

In this subsection we want to show the in�uence of correlation on the achievable sum-
rate. Therefore, we model the channel between source nodes and relay nodes by the
Kronecker model,

H = R
1/2
R ·W ·R1/2

T , (3.24)

whereW ∼ N(0, IM×L) andRR andRT are the receive and transmit correlation matrices,
respectively. For the simulations we assume a 3× 3 relay network with di�erent correl-
ation scenarios:

• strong correlation between two sources and two relays:

RR =

(
1.0 0.9 0.1

0.9 1.0 0.1

0.1 0.1 1.0

)
RT =

(
1.0 0.9 0.1

0.9 1.0 0.1

0.1 0.1 1.0

)
(3.25)

• weak correlation between two sources and strong correlation between two relays:

RR =

(
1.0 0.9 0.1

0.9 1.0 0.1

0.1 0.1 1.0

)
RT =

(
1.0 0.1 0.1

0.1 1.0 0.1

0.1 0.1 1.0

)
(3.26)

Equation (3.25) is motivated by an indoor set-up as depicted in Figure 3.5.

As one can see in Figure 3.6 the correlation in the network plays an important role.
Strong correlation even between only two source nodes or relay nodes signi�cantly de-
creases the achievable sum-rate of the classical compute-and-forward scheme (compare
to Figure 3.4 without correlation). This is due to the fact that a strong correlation in-
creases the probability that the relay nodes will decode a linear dependent equation.
Subspace compute-and-forward and single user decoding however are robust against
correlation and do not show a decrease in performance. In fact subspace compute-and-
forward shows a superior performance for high correlation.

D4.03 DIWINE



3.1 Non-cooperative CaF 59

0 2 4 6 8 10 12 14
0

1

2

3

4

SNR [dB]

R
su

m
[b

it/
cu

]

Cooperative CF Classical CF
Hierarchical CF (A = I) Subspace CF
Single User Decoding

Figure 3.6: Strong receive and transmit correlation between source 1 and 2 as well as
relay 1 and 2 according to Equation (3.25).
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Figure 3.7: Strong receive and weak transmit correlation according to Equation (3.26).
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Figure 3.8: Achievable sum-rate with receive correlation ρ according to Equation (3.27).

To get a better impression on the dependency between achievable sum-rate and correl-
ation, we plot the achievable sum-rate over the correlation in Figure 3.8. We consider
two scenarios:

• receive correlation between relay 1 and relay 2, i.e.,

RR =

(
1.0 ρ 0.1

ρ 1.0 0.1

0.1 0.1 1.0

)
RT =

(
1.0 0.1 0.1

0.1 1.0 0.1

0.1 0.1 1.0

)
(3.27)

• transmit correlation between source 1 and source 2, i.e.,

RR =

(
1.0 0.1 0.1

0.1 1.0 0.1

0.1 0.1 1.0

)
RT =

(
1.0 ρ 0.1

ρ 1.0 0.1

0.1 0.1 1.0

)
(3.28)

One can see in Figure 3.8 that a large correlation factor decreases the performance of
classical compute-and-forward drastically. On the other hand it can be seen that the
non-cooperative schemes show a stable performance.

3.1.7 Conclusion

Because cooperation is an obstacle in large networks we focused on non-cooperative
versions of compute-and-forward and proposed new strategies for choosing the desired
equations at the relay nodes. We show that the choice of these equations is essential for
the performance of the complete network and analysed the impact of correlated signals
in the network on the achievable sum-rate. The results can be summarised as follows:

• In networks with several hops, where re-transmissions from source to destination
are not applicable, one should use subspace compute-and-forward. The decrease of
achievable sum-rate compared to classical compute-and-forward is approximately
1 bit/cu for an SNR of 10 dB.
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Figure 3.9: Achievable sum-rate with transmit correlation ρ according to Equation (3.28).

• Hierarchical compute-and-forward can increase the performance of subspace compute-
and-forward as well as single user decoding in the high SNR regime but comes at
the cost of high computational complexity.

• Correlation plays an important role on the performance of classical compute-and-
forward and can reduce the achievable sum-rate to 0 bit/cu. Subspace compute-
and-forward, hierarchical compute-and-forward as well as single user decoding
are robust against correlation.

• If a high correlation between two or more nodes in the network occurs, subspace
compute-and-forward shows a superior performance.

As one can see subspace compute-and-forward looks like the winning strategy. It has no
increase in computational complexity compared to classical compute-and-forward. It is
robust against correlation and has a good performance in almost all scenarios.

3.2 A multi-level framework for la�ice network coding

Nazer and Gastpar’s work on compute-and-forward (CaF) generalises the traditional
WPLNC of a two-way-relay channel to wireless multiuser relay networks by utilising
structured nested lattice codes, giving essentially an information-theoretic approach for
improving the network throughput and for the network energy saving compared to the
traditional routing. Especially to dense wireless cloud networks, the theory behind CaF
is appealing, and it is of great interest to investigate the practical design approach based
on CaF. We formulated a general algebraic framework, termed multilevel lattice network
coding (MLNC), which subsumes the CaF and lattice network coding (LNC), and inher-
ently provides the engineering-applicable design guideline for wireless cooperative net-
works. MLNC lays the theoretical foundations for solving the ring-based LNC problem
in practice, with greatly reduced decoding complexity. It generalises the traditional LNC

DIWINE D4.03



62 3 Compute and forward based NCM

and CaF by exploiting the rich ring features over the algebraic module, providing a prac-
tically feasible solution to the open problem of LNC and CaF. The technique proposed
breaks the bottleneck of high-throughput transmission with feasible complexity restric-
tions over CaF and LNC, which is the most powerful way so far available to manage the
complexity, and hence is promising to be engineering-applicable in the dense wireless
cloud network.

3.2.1 Introduction

There has recently been a resurgence in research on lattice codes for wireless communic-
ations, as a result of two recent developments. The �rst is recent work [16,58] which has
shown that lattice codes with lattice decoding are capable of approaching channel capa-
city. The second is their application to WPLNC [47] for ultra-dense wireless multihop
networks [59]. In particular Nazer and Gastpar have developed CaF [22], which applies
structured nested lattice codes to WPLNC for multiuser relay networks. However it is
di�cult to increase the transmission rate using previous lattice constructions such as
construction A lattices, since this requires linear channel codes over large �nite �elds,
for which the decoding complexity is typically una�ordable. In this section, we lay the
foundations for a multilevel structure for lattice codes, and uses it to introduce a general
lattice construction approach and two multistage decoding approaches which greatly
simplify decoding, and which can exploit iterative techniques to approach capacity.

Previous work, e.g. in [49, 60, 61], has given LNC design guidelines when quotient lat-
tices are constructed from existing channel codes using complex construction A. In this
section, we consider a multilevel structure for lattice network coding, which provides a
practical solution to the ring-based network coding problem. We also propose an e�-
cient lattice construction approach (which we term the elementary divisor construction
(EDC)) based on the theorems developed, which also subsumes the most important pre-
vious lattice constructions. The EDC lattice has a multilevel algebraic structure, and is
well suited for multistage decoding. Note that the recently proposed product construc-
tion [62] used in CaF is a special case of EDC. The EDC approach is a straightforward
result of the theoretic framework developed in Section 3.2.3. We give explicit represent-
ation of the generator matrix for the EDC lattice, propose a new concept of the primary
sublattice, and derive the nominal coding gain and kissing numbers for the EDC lattice
in all forms. The main contributions of this section are summarised below:

1. We develop a generic multilevel lattice network coding scheme based on some
algebraic theorems. This approach keeps bene�cial compatibility of the traditional
LNC scheme, whereas enabling more �exible coding design techniques. Note that
MLNC makes also no particular assumption about the structure of the underlying
nested lattice code.

2. We propose a novel lattice network decoding approach based on MLNC, termed
layered integer forcing (LIF), which
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• improves the overall throughput for network coding with greatly reduced
decoding complexity.

• decodes lattices which are no longer a vector space.

• allows �exible linear labelling design for additional performance enhance-
ment.

3. We develop a modi�ed Viterbi algorithm which implements LIF.

4. Building on the algebraic framework developed for MLNC, we present a novel
lattice construction approach (EDC approach), show its good structure properties,
e.g. the explicit form of the generator matrix, in reducing the decoding complexity,
and derive its nominal coding gain and kissing numbers. Mathematically we also
prove that EDC lattices subsume the most important complex lattice constructions.

5. We propose a soft detector speci�cally designed for EDC lattices (as an alternative
to LIF for decoding EDC lattices). We evaluate its non-binary extrinsic information
transfer characteristics, and propose an iterative multistage decoding approach for
EDC lattices, which shows a substantial improvement in decoding performance.

6. We show how multistage detection, iteration-aided multistage detection, and LIF
can be applied to MLNC. We also show, by simulation, that iterative decoding
performs better than the Viterbi detection approach used in the traditional LNC.
This provides the basis for further work, and opens a new research area of iterative
decoding for lattice network coding.

The remainder of this paper is organised as follows. In Section 3.2.2 we review some
algebraic preliminaries which will be useful in setting up our multilevel framework. Sec-
tion 3.2.3 studies the algebraic properties of MLNC and presents the practically feasible
encoding and decoding solutions. Section 3.2.4 presents a new general lattice construc-
tion approach based on MLNC theorems developed and proves that it subsumes some
important lattice constructions that have been widely known. Section 3.2.5 presents
the soft detector for MLNC and studies the iterative decoding and multistage decoding
approaches designed for MLNC. Section 3.2.6 presents the simulation results based on
di�erent decoding modes. Section 3.2.7 concludes the paper and presents the future
work.

Notations

Notations used throughout this paper are de�ned as follows. N, Z andC denote the �elds
of natural numbers, integers and complex numbers, respectively. Fq, q > 1, q ∈ Z de-
notes the �nite �eld of size q. Fnq denotes an n-tuple �nite �eld where the �eld size for the
ith dimension i ∈ {1, 2, · · · , n} is determined by qi ∈ Z. We also use boldface lower-case
to denote a vector, i.e. a = [a1, a2, · · · , an]. V\i , [V 1, V 2, · · · , V i−1, V i+1, · · · , V n]
represents a set including all elements except the ith one. The upper-case letter, e.g. V ,
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represents a random variable and its realisation is denoted by the lower-case v. The
direct sum and direct product are denoted as ⊕ and ×, respectively.

3.2.2 Algebra preliminaries

We present some de�nitions and theorems in abstract algebra, which can be found in
relevant textbooks, e.g. [63].

Ideal and principal ideal domain

Let R be a commutative ring with identity 1, and R∗ = R\0. A unit U(R) in R refers
to any element x in R such that xr = rx = 1 for some r ∈ R. Any root of unity in a
ring R is a unit. An element x in R is called a zero divisor Z(R) if xr = rx = 0 for some
r ∈ R∗. An element p ∈ R, p /∈ Z(R), p /∈ U(R), is called a prime in R when p | ab for
some a, b ∈ R∗, then either p | a or p | b.

An ideal I ofR is a non-empty subset ofR that is closed under subtraction (which implies
that I is a group under addition), and is de�ned by:

1. ∀a, b ∈ I, a− b ∈ I.

2. ∀a ∈ I, ∀r ∈ R, then ar ∈ R and ra ∈ R.

IfA = {a1, · · · , am} is a �nite non-empty subset ofR, we use 〈a1, · · · , am〉 to represent
the ideal generated by A, i.e.

〈a1, · · · , am〉 = {a1r1 + · · ·+ amrm : r1, · · · , rm ∈ R}

Note that R has at least two ideals {0} and {R}.

An ideal I ofR is said to be proper if and only if 1 /∈ I. An ideal Imax is said to be maximal
if Imax is a proper ideal and the only ideals that include Imax are R and Imax itself. We
say that an equivalence relation a ∼ b on the setR is de�ned by I if and only if a−b ∈ I.

An ideal I ofR is principal if I is generated by a single element a ∈ I, written as I = 〈a〉.
A principal ideal ring is a ring whose every ideal is principal. IfR is a principal ideal ring
without zero divisors, then R forms an ideal domain, and more precisely, a principal
ideal domain (PID). Examples of PIDs include the ring of integers, the ring of Gaussian
integers Z[i] and the ring of Eisenstein integers Z[ω].
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Modules over PID and structure theorem

Again, let S be a commutative ring with identity 1. An S-moduleM over S is an Abelian
group (M,+) under a binary operation +, together with a function F : S ×M 7−→M
which satis�es the same conditions as those for vector space. Note that modules over a
�eld are the same as vector spaces. An S-submodule of M is a subgroup N of M which
is closed under the action of ring elements, and hence the submodule N forms also an
S-module under the restricted operations.

An S-module is said to be �nitely generated (f.g.) if M has a �nite basis {m1, · · · ,mn}
such that

∑
iRmi = M .

The annihilator of an element m ∈ M is the set of elements s ∈ S such that sm = 0.
The annihilator of M is the elements s ∈ S such that {sm = 0|∀m ∈ M}, denoted by
AnnS(M) =

⋂{AnnS(m)|m ∈M}. If M is a free S-module, then AnnS(M) = 〈0〉.
If M is annihilated by ideal I of S, we can make M into a quotient S-module M/N by
de�ning an action on M satisfying,

m(s+ I) = ms, ∀m ∈M

The torsion submodule MTor of M is de�ned by:

MTor = {m ∈M : AnnS(m) 6= {0}}

A torsion free module is trivial.

Let M and N be two S-modules. An S-module homomorphism is a map φ : M 7−→ N ,
which respects the S-module structures of M and N , i.e.,

φ(s1m1 + s2m2) = s1φ(m1)� s2φ(m2)

∀s1, s2 ∈ S, ∀m1,m2 ∈ M . An S-module homomorphism φ : M 7−→ N is called an
S-module isomorphism if it is both injective and surjective, which is denoted byM ∼= N .
The kernel of φ denotes the elements in M which makes the image of φ equal to zero.

3.2.3 Multilevel la�ice network coding

Algebraic approach for multilevel structure

Brie�y if there is a matrix GΛ ∈ Cn′×n, n′ ≤ n such that all its n′ row vectors

gΛ,1, · · · ,gΛ,n′ ∈ Cn

are linearly independent, the set of all S-linear combinations of gΛ,1, · · · ,gΛ,n′ forms
an S-lattice Λ ∈ Cn, written by, Λ = {sGΛ : s ∈ Sn′}, where GΛ is called the lattice
generator.
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Following the explanation in Section 3.2.2, an n-dimensional S-lattice is precisely an S-
module over PID, and similarly the sublattice Λ′ in Λ forms aS-submodule. The partition
of the S-lattice, denoted by Λ/Λ′ represents |Λ : Λ′| <∞ (the index of Λ′) equivalence
classes. Assume S is a PID, we have the following theorem.

Theorem 3.1. Let Λ and Λ′ be S-lattices and S-sublattices, Λ′ ⊆ Λ, |Λ : Λ′| < ∞ such
that Λ/Λ′ has nonzero annihilators. Then Λ/Λ′ is the direct sum of a �nite number of
quotient sublattices,

Λ/Λ′ = Λp1/Λ
′
p1
⊕ Λp2/Λ

′
p2
⊕ · · · ⊕ Λpm/Λ

′
pm (3.29)

where Λpi/Λ
′
pi
, {λ ∈ Λ/Λ′ : pγi λ = 0} for some γ > 1, and every pi, i = 1, 2, · · · ,m is

a distinct prime over S.

Proof: The quotient S-lattice Λ/Λ′ has non-zero annihilators; this implies that Λ/Λ′

forms a f.g. torsion module. Let λ ∈ Λ/Λ′ and suppose that AnnS(Λ/Λ′) = Sa, where
a ∈ S and a 6= 0 (the property of the torsion module). Since S is also a unique factor-
isation domain, so a = pγ1

1 p
γ2

2 · · · , pγmm . We now write ai = a/pγii which is the product
of irreducible factors that are relatively prime to pi. There must exist s1, s2, · · · , sm in
S such

∑m
i=1 siai = 1 since gcd(a1, a2, · · · , am) = 1; Now we have

sip
γi
i aiλ = 0 (3.30)

since a annihilates Λ/Λ′. Theorem 3.1 states that the sublattice Λpi/Λ
′
pi

has to satisfy
the condition pγii λ = 0 for some γis. Hence, if λ is annihilated by some powers of pi,
then siaiλ ∈ Λpi/Λ

′
pi

. Based on the statements above,
∑m

i=1 siaiλ = λ, this proves that
the S-lattice

λ ∈ Λp1/Λ
′
p1

+ Λp2/Λ
′
p2

+ · · ·+ Λpm/Λ
′
pm (3.31)

We suppose λi ∈ Λpi/Λ
′
pi

and
∑m

i=1 λi = 0. Then

ai

m∑

j=1

λj = aiλi = 0 (3.32)

where (3.32) follows from the fact that aiλj = 0 for i 6= j. Since ai is non-zero, λi has
to be zero. Based on the same proof, we can conclude that {λi = 0|∀i = 1, 2, · · · ,m}
provided that

∑m
i=1 λi = 0. This suggests that every λ ∈ Λ/Λ′ can be uniquely expressed

as the summation of the primary sublatticeλi, i = 1, 2, · · · ,m. It implies that there exists
a map π:

Λp1/Λ
′
p1
⊕ Λp2/Λ

′
p2
⊕ · · · ⊕ Λpm/Λ

′
pm

7−→ Λp1/Λ
′
p1

+ Λp2/Λ
′
p2

+ · · ·+ Λpm/Λ
′
pm (3.33)
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de�ned by

π(Λp1/Λ
′
p1
⊕ Λp2/Λ

′
p2
⊕ · · · ⊕ Λpm/Λ

′
pm)

=Λp1/Λ
′
p1

+ Λp2/Λ
′
p2

+ · · ·+ Λpm/Λ
′
pm (3.34)

which is an S-module isomorphism, and also that

Λpi/Λ
′
pi
∩

m∑

j=1,j 6=i
Λpj/Λ

′
pj

= 0 (3.35)

This proves that the sum
∑m

j=1 Λpj/Λ
′
pj

is direct, and hence the map π is an identity map
which belongs to automorphism. Theorem 3.1 is thus proved.

Theorem 3.1 proves that Λ/Λ′ can be decomposed into the direct sum of m sublattices
Λpi/Λ

′
pi

(the primary sublattices) which itself forms a new lattice system. Hence, Λ/Λ′

can be regarded as an m layer quotient lattice.
Theorem 3.2. Every primary sublattice Λpi/Λ

′
pi
is isomorphic to a direct sum of cyclic

pi-torsion modules:

Λpi/Λ
′
pi
∼= S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (3.36)

for some integers 1 ≤ θ1 ≤ θ2 ≤ · · · ≤ θt which are uniquely determined by Λpi/Λ
′
pi
.

Proof: Theorem 3.1 implies that Λpi/Λ
′
pi

is an f.g. torsion module. Here we write Mpi =
Λpi/Λ

′
pi

; let x1, · · · , xf be generators for Mpi where f is minimal. This means that
Mpi/Sx1 is generated by f − 1 elements, and hence it is a direct sum of ≤ f − 1
cyclic torsion modules. Thus, if λ ∈ Mpi satis�es pθti λ = 0 and pθt−1

i λ 6= 0, then
Mpi = Sλ ⊕ N ∼= (S/〈pθti 〉)k ⊕ N , where N is the submodule which is not annihil-
ated by pθti although it is annihilated by some other powers of pi. Given this, we have
Mpi/pMpi

∼= (S/〈p〉)k ⊕ N/pN (if S/〈p〉 exists), the dimension of the second term,
dim(N/pN) = dim(Mpi/pMpi)− k. It is clear that the dimension is reduced when the
power of pi increases, until the process ends. This proves that Λpi/Λ

′
pi

consists of a dir-
ect sum of cyclic torsion modules, and hence has to be isomorphic to a direct sum of
quotient rings over some powers of pi. This proves the existence of (3.36).

There exists a chain 0 = pθti Mpi ⊂ · · · ⊂ p2
iMpi ⊂ piMpi ⊂ Mpi . Consider that

pθ−1
i Mpi

∼= pθ−1
i S/pθ1i S ⊕ · · · ⊕ pθ−1

i S/pθti S
∼= S/〈pθt−θ+1

i 〉 ⊕ · · · ⊕ S/〈pθs−θ+1
i 〉. This

follows from the third isomorphism theorem and that for those θ ≥ θi, pθi (S/〈pθii 〉) = 0.
Hence, pθ−1

i Mpi/p
θ
iMpi

∼= (S/〈pi〉)k forms a vector space over S/〈pi〉 where k is the
number of elementary divisors pαi withα ≥ θ. Thus, dim(pθ−1

i Mpi/p
θ
iMpi) is the number

of elements in (3.36) whose θi ≥ θ. This proves that the dimension of pθ−1
i Mpi/p

θ
iMpi is

invariant withMpi , and the number of summands in a particular formS/〈pθii 〉 is uniquely
determined by Mpi . This proves the uniqueness of (3.36).

Theorem 3.2 implies that the quotient primaryS-sublattice system Λpi/Λ
′
pi

is isomorphic
to a cyclic pi-torsion module. The right-hand side of (3.36) can be viewed as the message
space of Λpi/Λ

′
pi

which is detailed in Lemma 3.1.
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Lemma 3.1. There exists a map:

φi : Λpi 7−→
⊕

j

S/〈pθji 〉 (3.37)

which is a surjective S-module homomorphism with kernel K(φi) = Λ′pi . To ease the
abstract representation, we consider Λ′pi = Λ′ in the sequel. Thus, K(φi) = Λ′ for i =
1, 2, · · · ,m. If the message space is taken as the canonical decomposition of (3.36), i.e.
wi =

⊕
j S/〈p

θj
i 〉, there exists a surjective homomorphism φ and also an injective map

φ̃ : (w1, · · · ,wm) 7−→ Λ such that

φ(φ̃(w1 ⊕ · · · ⊕wm)) = w1 ⊕ · · · ⊕wm (3.38)

Proof: The statement of (3.37) follows immediately from Theorem 3.2 and the �rst iso-
morphism theorem. The statement of (3.38) follows from Theorem 3.1, Theorem 3.2 and
the �rst isomorphism theorem.

Lemma 3.2. The generator matrix of the S-sublattice Λpi at the i
th layer can be expressed

in the form of:

GΛpi
=




Diag(pθ11 · · ·pθi−1

i−1 , It,p
θi+1

i+1 · · ·pθmm︸ ︷︷ ︸
k

) 0

0 In−k


GΛ (3.39)

and

φi(wGΛpi
) =

(
wi,1 + 〈pθ1i 〉, · · · , wi,t + 〈pθti 〉

)
(3.40)

where wi,t ∈ S/〈pθti 〉 and w ∈ w1 ⊕ · · · ⊕ wm. GΛ is the generator matrix of the �ne
lattice Λ, p

θj
j , j = 1, 2, · · · ,m is a vector, with all elements being the same elementary

divisor pθjj over S, and t = dim(Λpi/Λ
′).

Proof: Every matrix over a PID has to have a Smith normal form (SNF) with unique
invariant factors up to multiplication by units. This complies with the structure theorem
of modules over PID in invariant factor form. Hence, there exists an equivalent SNF
matrix MSNF such that MSNFGΛpi

is the generator matrix of the lattice Λ̃′ which is
isomorphic to the kernel K(φi) = Λ′. Based on the theorems mentioned above and the
fact that the invariant factors are uniquely determined, the invariant factors in MSNF

has to be some powers of pi which naturally satis�es the divisibility relations, and we
claim that, now Λ̃′ = Λ′. The statement of (3.40) follows from Lemma 3.1.

Lemma 3.2 shows a way to produce the quotient S-sublattice of each layer de�ned in
Theorem 3.1. Λpi/Λ

′ forms an independent lattice system, and the direct sum of all
Λpi/Λ

′, i = 1, 2, · · · ,m is equal to Λ/Λ′.
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Figure 3.10: System diagram of the multilevel lattice network coding and multistage decoding.
The right-hand side of H represents the decoding for a single relay.

Construction of multilevel la�ice network coding

Based on the theorems developed in Section 3.2.3, we show in this subsection the detailed
description of the MLNC scheme, and a way of multilevel network decoding (named
layered integer forcing), which provides an e�cient way of decoding the linear combin-
ation of the multi-source messages with greatly reduced complexity.

Traditional approach. Lemma 3.1, Theorem 3.1 and Theorem 3.2 imply that the mes-
sage space with large cardinality may be expressed as a set of smaller message spaces
over the hybrid �nite �eld and �nite chain ring. Figure 3.10 depicts a multilevel lattice
network coding architecture, with L sources and a single relay. The encoder E` at the
`th source maps the original message w` = w1

` ⊕ · · · ⊕ wm
` to a �ne lattice point Λ

(assuming n-dimension) via the injective map φ̃ de�ned in Lemma 3.1. Then we add a
dither d` ∈ Cn which is uniformly distributed over the fundamental Voronoi region VΛ′

of Λ′. The dithered lattices pass through a nested shaping operator in order to restrain
the power consumption. This operation is performed via the sublattice quantisation:

λ′` = QΛ′(φ̃(w1
` ⊕ · · · ⊕wm

` ) + d`) (3.41)

where λ′` ∈ Λ′, and QΛ′( · ) : Cn 7−→ Λ′ is a coarse lattice quantiser. The output of the
`th source is given by:

x` = E`(w
1
` ⊕ · · · ⊕wm

` )

= φ̃(w1
` ⊕ · · · ⊕wm

` ) + d` − λ′` (3.42)

Note that x` is uniformly distributed over VΛ′ due to the e�ect of the dither. The average
power of the transmitted signal x` is given by:

P =
1

nVol(VΛ′)

ˆ
VΛ′
‖ x` ‖2 dx` (3.43)
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which is the second moment per dimension of x` over VΛ′ . The message space at each
source consists of a direct sum of m small message spaces (assuming there are m levels)
over di�erent �nite �elds or chain rings. The encoder E` constructs a one-to-one relation
between the message space and the coset system Λ/Λ′.

At the relay, given the received signals y and anS-integer vector ã = [ã1, ã2, · · · , ãL]T ∈
SL, the decoder aims at computing a new lattice point which is regarded as an S-linear
combination of transmitted lattice points from all sources. The homomorphism designed
for the coset system will be used for decoding the lattice point to a linear combina-
tion of the original messages. We assume in this paper that the fading coe�cients
h = [h1, h2, · · · , hL], and dithers are perfectly known at the relay. The decoder can
be described, generally, by:

D : (Cn,CL, SL,C,Cn×L) 7−→ W (3.44)

Thus, the output of D(y|h, ã, α,d) is the estimates of the linear combination of the ori-
ginal messages of each source. Here α is a scaling factor [22] which maximises the com-
putation rate. Note that the aforementioned decoder (3.44) may vary according to the
speci�c problem. There may be additional information available to the decoder, and the
decoder may also have extra outputs. However, basically the core idea for the decoding
remains the same. Based on the quotient lattice Λ/Λ′, we have:

û = D(y|h, a, α,d)

(a)
= φ

(
QΛ

(
αy −

L∑

`=1

ã`d`

))
(3.45)

(b)
= φ

(
QΛ

( L∑

`=1

ã`
(
φ̃(w`)− λ′`

)
+ neff

))
(3.46)

(c)
= φ

( L∑

`=1

ã`φ̃(w`) + QΛ(neff)

)
(3.47)

(d)
=

L⊕

`=1

a`w` � φ (QΛ(neff)) (3.48)

where (a) follows from the fact that we expect to quantise a set of scaled received signals
which are subtracted from the corresponding dithers. (b) follows from the manipulation
of:

αy =
L∑

`=1

ã`x` +
L∑

`=1

ã`d` +

neff︷ ︸︸ ︷
L∑

`=1

(αh` − ã`)x` + αz (3.49)

(c) follows from the de�nition of the lattice quantiser, and (d) follows from the properties
of a surjective module homomorphism, and also Lemma 3.1. Note that here φ(ã`) = a` ∈
w1 ⊕ · · · ⊕wm.
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Equations (3.45) – (3.48) reveal the decoding operations for the traditional lattice-based
WPLNC. We are able to decode a linear combination of messages

⊕L
`=1 a`w` over all

sources without errors provided that φ (QΛ(neff)) = 0. Thus, the successful decoding is
guaranteed i� the e�ective noise is quantised to the kernel of φ, K(φ).

The problems left unsolved are: 1. How to exploit rich ring features in order to make
it practically applicable in lattice-based network coding. 2. When the cardinality (the
coset representatives) of Λ/Λ′ is large, the complexity of the lattice quantiser becomes
unmanageable, which restricts the application of LNC. What is the practical lattice net-
work decoding approach that could greatly relieves the decoding load in LNC. We study
a new decoding solution which is speci�cally designed in terms of MLNC, and which
relaxes the two problems mentioned.

Layered integer forcing. The breakthrough of MLNC (based on theorems and lem-
mas in Section 3.2.3) is that

• The original message space over Λ/Λ′ can be decomposed into a direct sum of m
smaller message spaces in terms of Λpi/Λ

′, i = 1, 2, · · · ,m.

• The relay can decode each layer independently, thus the decoder tries to infer
and forward a linear combination of messages of each layer separately over the
message subspace de�ned in Theorem 3.2.

Let us recall the traditional decoding operations explained in (3.45) – (3.48). If we are
only concerned with the linear combination of a particular layer, the quantisation of the
e�ective noise need not necessarily be the kernel of φ. There has to exist other lattice
points in Λ/Λ′ such that the homomorphism of these points does not interfere with the
linear combination of that layer following the aforementioned theorems.

Theorem 3.3. There exists a quotient S-lattice Λ/Λ′i with generator matrices GΛ for Λ,
and GΛ′i for Λ′i, which satis�es:

GΛ′i =




Diag(I, pθ1i , · · · , pθti , I︸ ︷︷ ︸
k

) 0

0 In−k


GΛ (3.50)

and there is a surjective S-module homomorphism ϕi:

ϕi : Λ 7−→ S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (3.51)

whose kernel K(ϕi) = Λ′i. The quotient S-lattice Λ/Λ′i is isomorphic to the direct sum of
cyclic modules:

Λ/Λ′i
∼= S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (3.52)
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Proof: By applying the equivalent SNF explained in the proof of Lemma 3.2, we can prove
(3.50) in similar way. Now we begin the proof of (3.51). The sublattice Λ′i can be written
as:

Λ′i = {wGΛ : wi ∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉}
in terms of the generator matrix for Λ′i in (3.50). It is clear that:

ϕi(wGΛ) = 0 iff wi ∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉
and hence, the kernel of ϕi, K(ϕi) has to be Λ′i. It is also obvious from (3.51) that ϕi
is indeed surjective and S-linear. The proof of (3.52) follows immediately from the �rst
isomorphism theorem.

Note that although both Λpi/Λ
′ and Λ/Λ′i are isomorphic to S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕

S/〈pθti 〉, they belong to di�erent coset systems. Λpi/Λ
′ is related to the construction of

lattices that have multilevel structure, whereas Λ/Λ′i is related to the decoding issues,
i.e. LIF.

Theorem 3.3 de�nes a new sublattice Λ′i which plays a key role in decoding MLNC, as it
is the kernel of the quotient S-lattice that possesses a surjective homomorphism ϕi for
the ith layer. Hence, it is possible to decode an S-linear combination of �ne lattice points
to an S-linear combination of the original messages of the ith layer. This is explained in
Lemma 3.3.
Lemma 3.3. Given the embedding injective map φ̃ : (w1, · · · ,wm) 7−→ Λ, there exists a
surjective S-module homomorphism ϕi, i = 1, 2, · · · ,m, de�ned in (3.51), satisfying:

ϕi
(
φ̃(w1 ⊕ · · · ⊕wm)

)
=

{
wi,wi /∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉
0, wi ∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉

(3.53)

Proof: The injective mapping φ̃ is an inverse operation of the homomorphism φ de�ned
in terms of the quotient S-lattice Λ/Λ′, which maps the messages into a lattice point
Λ, as explained in Lemma 3.1. Following the second statement of Theorem 3.3, the S-
module homomorphismϕi of the ith layer indeed maps the lattice point Λ to the message
subspace. When wi ∈ 〈pθ1i 〉⊕ · · ·⊕ 〈pθti 〉, φ̃(w1⊕· · ·⊕wm) maps to the lattice point Λ′i
which is the kernel of ϕi. Hence, according to (3.50), the linear labelling of the new coset
system in Λ/Λ′i coincides with the labelling of the ith layer of φ̃. This proves Lemma 3.3.

Based on Lemma 3.3, it is now possible to decode the linear combination of the messages
of each layer separately and independently. Assuming the messages at the ith layer is of
interest, the relay computes:

ûi = Di(y|h, ai, αi,d) (3.54)

= ϕi

(
QΛ

(
αiy −

L∑

`=1

ãi`d`

))
(3.55)
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where

Di : (Cn,CL, SL,C,Cn×L) 7−→ W i (3.56)

and αi ∈ C and ai are scaling parameter and S-integer coe�cients of the ith layer, re-
spectively, which are determined by some optimisation criterion in terms of the quotient
S-lattice Λ/Λ′i.

Theorem 3.3 and Lemma 3.3 lay the foundation of the layered integer forcing. The linear
combination of ûi can be recovered in terms of LIF by:

ûi
(d)
= ϕi

(
QΛ

( L∑

`=1

ãi`
(
φ̃(w1

` ⊕ · · · ⊕wm
` )− λ′`

)
+ neff

))

(e)
= ϕi

( L∑

`=1

ãi`φ̃(w1
` ⊕ · · · ⊕wm

` )− λ′` − λ′i,` + QΛ(neff)

)

(f)
= ϕi

( L∑

`=1

ãi`φ̃(w1
` ⊕ · · · ⊕wm

` )

)
� ϕi

(
QΛ(neff)

)

(g)
=

L⊕

`=1

ai`w
i
` � ϕi

(
QΛ(neff)

)
(3.57)

where (d) follows from (3.42) and basic arithmetic manipulations; (e) follows from the
de�nition of the lattice quantiser QΛ, and also the S-linear combination of the lattice
points is restricted in VΛ′i ; (f) follows from the property of a surjective S-module homo-
morphism, and also the fact that λ′ ⊆ λ′i and K(ϕi) = λ′i. (g) follows from Lemma 3.3,
and note that ϕi(ãi`) = ai` ∈ W i.

Lemma 3.4. The linear combination of the messages at the ith layer ûi =
⊕L

`=1 a
i
`w

i
` can

be recovered i� QΛ(neff) ∈ Λ′i. Thus, Pr(ûi 6= ui) = Pr(QΛ(neff) /∈ Λ′i).

Proof: Following (3.57), it is clear that ûi =
⊕L

`=1 a
i
`w

i
` can be decoded correctly i�

ϕi

(
QΛ(neff)

)
= 0. According to Theorem 3.3, the kernel of ϕi, K(ϕi) = Λ′i, thus the

quantisation of the e�ective noise QΛ(neff) ∈ Λ′i. This proves Lemma 3.4.

Lemma 3.4 reveals that the lattice Λ′i de�ned in Theorem 3.3 plays a key role in decoding
the messages of the ith layer.

The message space of the traditional CaF scheme is determined by the size of the lattice
partition. Hence, to increase the network throughput, the sublattice Λ′ needs to be more
sparse in order to allow the messages to be over a larger �eld or commutative ring (LNC).
In this case, the decoding complexity is normally una�ordable.

One example is associated with a group of lattice codes directly designed in the Euc-
lidean space, e.g. complex low density lattice codes (CLDLC). It has prohibitive compu-
tational complexity when the cardinality of the quotient lattice is too large, since the
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decoding metrics are continuous functions (a mixture of multiple probability density
functions), and the periodic extension that occurs at the variable nodes [59] runs over a
large S-integer set, which seriously increases the overall computational costs over the
iterative parametric belief propagation decoding, even if the Gaussian mixture reduction
algorithm is employed.

The S-lattices can also be constructed through the existing channel codes based on some
lattice construction approaches, e.g. Construction A or D. However, the decoding com-
plexity of the channel codes over a large algebraic �eld increases rapidly, e.g. a small
increase of the memory for convolutional codes gives rise to an exponential increase in
the number of trellis states, making the codes eventually undecodable. When the cardin-
ality of the quotient lattices become larger, the decoding complexity for convolutional
codes with even small memory is unmanageable, but the performance is still very poor.

MLNC together with LIF provides a realistic solution to this problem. Being supported by
the theorems and lemmas in Sections 3.2.3 and 3.2.3, the quotient S-lattice having large
cardinality can be decomposed into some primary quotient S-sublattices which have
smaller cardinalities. Each primary quotient sublattice forms a layer, and determines
the message subspace over this layer. With the aid of the lattices Λ′i, we can perform
multilevel lattice decoding at the relay, where the linear combination of the messages of
all sources at each layer can be independently recovered over the message subspace. In
this case, the overall computational loads are greatly relaxed.

LNC [49] shows the possibility of ring-based linear network coding, extending the tradi-
tional linear network coding de�ned over the �nite �eld to a more general notion. Fur-
thermore, MLNC leads to a practically feasible encoding and decoding design approach
for lattice network coding over commutative rings, thus, with greatly reduced decoding
complexity. MLNC inherently gives an appealing solution for this since now we are able
to construct multiple layers based on the decomposition theory mentioned above, with
each layer operating over a �nite �eld or chain ring in a new coset system. Note that
the elements in a �nite chain ring can be uniquely represented by ν + 1 elements over
a �xed residue �eld where ν is the nilpotency index of this �nite chain ring. We will
introduce this in the subsequent sections.

Achievable rates and probability of error

As discussed in Section 3.2.3, the message of the ith layer corresponds to the decomposed
quotient S-sublattice Λpi/Λ

′, which should be decoded separately at each layer, based
on a new S-lattice partition Λ/Λ′i. Suppose that each layer is given an S-integer coe�-
cient vector ai ∈ SL, and A = [a1|a2| · · · |am] ∈ SL×m, we can obtain the achievable
rate following Nazer and Gastpar’s method, under the assumption of that S is Gaussian
integers Z[i]
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Theorem 3.4. Given channel fading vectorh ∈ CL, non-zeros S-integer coe�cient matrix
A /∈ {0}, and the message subspaceW i =

(
Z[i]/〈pi〉

)k, the probability of decoding error
Pr(ûi 6= ui|h,A) can be arbitrarily small if the overall message rate R satis�es:

R < R(h,A) =
m∑

i

log2

((
‖ ai ‖2 − P i|h†ai|2

1 + P i ‖ h ‖2

)−1
)

(3.58)

for su�ciently large lattice dimension n and prime factor pi. P (i) is de�ned by

P (i) =
1

nVol(VΛ/Λ′i)

ˆ
VΛ/Λ′

i

‖ x` ‖2 dx` (3.59)

Proof: Suppose there are m layers, we can construct a quotient Z[i]-lattice Λ/Λ′i which
is isomorphic to the message subspace W i. The computation rate of each layer follows
from Nazer and Gastpar’s method in [22]. Since each layer is decoded independently,
the sum of computation rate of all layers is the overall achievable rate.

Recall Lemma 3.4, the error probability of decoding a linear combination u in terms of
ai for the ith level is equal to the probability of Pr(QΛ(neff) /∈ Λ′i). The union bound of
the error probability for MLNC is given by:

Theorem 3.5. Given h ∈ CL, non-zeros S-integer coe�cient matrix A /∈ {0}, and the
optimal scaling factor αopt, the union bound of the error probability in decoding the linear
combinations of all levels in MLNC is given by:

Pr

(
û 6= u|h,A, αopt

)

=Ep(Z)

[
Pr(ûi 6= ui|h,A, αopt)

]

/Ep(Z)

[
N(Λ/Λ′i) exp

( −d2(Λ/Λ′i)

4(N0|αopt|2 + P i||αopth− ai||2)

)]
(3.60)

where Z is a random variable with its outcomes taking on {r = dim(ui)
dim(u)

|i = 1, 2, · · · ,m}.

Proof: At the ith layer, the decoding operates over the lattice partition of Λ/Λ′i = {Λ \
Λ′i} ∪ {0}. d(Λ/Λ′i) is the minimum inter-coset distance of the lattice partition Λ/Λ′i
de�ned by

d(Λ/Λ′i) = min ||ϑ1 − ϑ2||2,ϑ1,ϑ2 ∈ Λ/Λ′i,ϑ1 6= ϑ2

We denote N(Λ/Λ′i) as the number of d(Λ/Λ′i) in the ith layer coset system. Following
the steps in [49], we can prove that the probability error of e�ective noise quantisation
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is bounded by the probability of e�ective noise which is not within the Voronoi region
V0:

Pr
(
QΛ(neff) /∈ Λ′i|h, ai, αopt

)
≤ Pr

(
neff /∈ Vi0|h, ai, αopt

)

with

Vi0 = {ϑ ∈ Cn : ||ϑ− 0||2 ≤ ||ϑ− λ||2,∀λ ∈ Λ \ Λ′i}

The probability of Pr(neff /∈ Vi0h, a
i, αopt) is upper bounded by the term within the

bracket of (3.60). The proof closely follows from the method given in [49], based on the
Cherno� inequality, the moment generating function of a complex Gaussian random
vector, and hypercube Voronoi region Λ′i. We refer to [49] for the detailed proof, and
also [60] for the proof under Eisenstein integers. Since each layer decodes the linear
combination independently, the average error probability is the expectation of Pr(ûi 6=
ui|h,A, αopt) over the probability function p(Z). According to Lemma 3.3, we know
that the probability Pr(ûi 6= ui|h,A, αopt) ≤ Pr(neff /∈ Vi0|h, ai, αopt); this gives (3.60).

One way to design the homomorphism of Λ/Λ′i at the ith layer is implied in Theorem 3.5.
Thus, N(Λ/Λ′i) should be minimised and d(Λ/Λ′i) is maximised such that the probability
of error is as small as possible at the ith layer. It is clear that MLNC has good �exibility in
the design of the homomorphism, which determines the achievable rate at some levels.

3.2.4 Elementary divisor construction

In this section, we study a new lattice construction approach, based on the theorems and
lemmas developed in Section 3.2.3.

Lemma 3.5. Let Λ and Λ′ be S-lattices and S-sublattices, Λ′ ⊆ Λ, |Λ : Λ′| <∞ such that
Λ/Λ′ has a nonzero annihilator$ which can be uniquely factorised into distinct powers of
primes in S, $ = U(S)pγ1

1 p
γ2

2 · · · pγmm . Then Λ/Λ′ is the direct sum of a �nite number of
quotient sublattices, Λpi/Λ

′ = {λ ∈ Λ/Λ′ : pγii λ = 0}, i = 1, 2, · · · ,m, and given by,

Λ/Λ′ = Λp1/Λ
′ ⊕ Λp2/Λ

′ ⊕ · · · ⊕ Λpm/Λ
′ (3.61)

Proof: Lemma 3.5 is a special case of Theorem 3.1 where the annihilator of Λ/Λ′ is a
single S-integer. Therefore, Λ/Λ′ has to be the direct sum of some new quotient S-
lattices. The annihilator of the Λpi/Λ

′ is precisely pγii .
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Elementary divisor construction

We outline a possible lattice construction solution based on Lemma 3.5 and the state-
ments in Section 3.2.3.

Elementary Divisor Construction (EDC): Let p1, p2, · · · , pm be some distinct primes in a
PID S, and $ = U(S)pγ1

1 p
γ2

2 · · · pγmm is a unique factorisation, γi ≥ 1. Let C1,C2, · · · ,Cm
bem [n, ki] linear codes over S/〈pγ1

1 〉, S/〈pγmm 〉, · · · , S/〈pγmm 〉, respectively. The element-
ary divisor construction lattice is de�ned by:

Λ , {λ ∈ Sn : σ̃(λ) ∈ C1 ⊕ C2 ⊕ · · · ⊕ Cm} (3.62)

and the sublattice is:
Λ′ , {$λ : λ ∈ Sn}

where σ̃ : Sn 7−→ (S/〈pγ1

1 〉)n⊕ (S/〈pγ2

2 〉)n⊕· · ·⊕ (S/〈pγmm 〉)n is a natural map obtained
by extending the ring homomorphism σ : S 7−→ S/〈pγ1

1 〉 ×S/〈pγ2

2 〉)× · · · ×S/〈pγmm 〉 to
multiple dimensions. Apparently Λ′ ⊆ Λ. The message space under EDC is

W = (S/〈pγ1

1 〉)k1 ⊕ · · · ⊕ (S/〈pγmm 〉)km (3.63)

where ki is the message length of the ith layer which sums up to k =
∑m

j=1 kj .

The elementary divisor construction is a straightforward extension of Lemma 3.5, which
de�nes a class of lattices constructed by m linear codes, with each operating over either
a �nite �eld or a �nite chain ring. Hence, the quotient Λ/Λ′ has to consist of m primary
sublattices Λpi/Λ

′, with each constructed by the ith linear code. The primary sublattices
Λpi of the ith layer is de�ned by:

Λpi , {λpi ∈ δiS : σ̃i(λpi) ∈ Ci)} (3.64)

where σ̃i is a natural map:

σ̃i : (δiS)n 7−→ (δiS/p
γi
i δiS)n ∼= (S/〈pγii 〉)ki (3.65)

obtained by extending the ring homomorphism σi : δiS 7−→ δiS/〈pγii δiS〉 to multiple di-
mensions. The scaling factor δi = $

p
γi
i

can be proved in terms of the proof in Theorem 3.1.

We consider three scenarios based on di�erent algebraic �elds which the linear codes
may belong to.

Scenario 1. Assume that the primary sublattice at each layer is constructed by a linear
code over a �nite �eld, thus, γ1 = γ2 = · · · = γm = 1. Then, Ci ∈ (δiS/〈piδi〉)n. Since
the coarse lattice Λ′ is generated by a single element $, Λ/Λ′ forms a cyclic torsion
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(b) Layer 2

Figure 3.11: Layer structure of a 2-layer EDC lattice. The green points and blue lines represent
the primary sublattices and Voronoi region of VΛ′i

for the corresponding layers,
respectively. Dotted lines represent the Voronoi region of the �ne lattice.

module which allows us to produce the generator matrix of the ith layer lattice Λpi . It
will have a form described in Lemma 3.2, given by:

GΛpi
=

[
Diag

(
p

(k1)
1 · · ·p(ki−1)

i−1 , Iki ,p
(ki+1)
i+1 · · ·p(km)

m

)
0

0 Imn−k

]
G (3.66)

where p
(ki)
i is a length-ki vector with each element pi. GΛpi

in (3.66) gives the generator
matrix for the ith layer lattices, when the message input

w = [w1,w2, · · · ,wm, d̃1 · · · d̃m︸ ︷︷ ︸
mn−k

] (3.67)

where wi ∈ (δiS/〈piδi〉)ki , d̃i ∈ Sn−ki .

Since EDC lattices are constructed by some linear codes, the matrix G has to include the
generator matrix of each linear code Ci. Let σ̃i([Iki Bi

ki×(n−ki)]) be a generator matrix for
a linear code Ci (without loss of generality, we consider that the linear code is systematic
in this case.), then G is an n× n matrix de�ned below,

G =




Ik1 B1
k1×(n−k1)

Ik2 B2
k2×(n−k2)

... ...
Ikm Bm

km×(n−km)

0 $In−k1

... ...
0 $In−km




(3.68)
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Equation (3.68) follows from Lemma 3.5 and part of the proof of Theorem 3.1, i.e. (3.34).
The generator matrix of the coarse lattice Λ′ is therefore given by,

GΛ′ =

[
Diag

(
I∑i−1

j=1 kj
,p

(ki)
i , I∑m

j=i+1 kj

)
0

0 Imn−k

]
GΛpi

(3.69)

It can be easily observed that these generator matrices are consistent with the theorems
and lemmas proposed in Section 3.2.3. Note that the generator matrix for linear code Ci

is σ̃i([Iki Bi
ki×(n−ki)]) where σ̃i is de�ned in (3.65). Theorem 3.3 establishes the theoretic

fundamental for low-complexity lattice decoding, i.e. LIF, of MLNC, and states that there
exists a surjective S-module homomorphism ϕi which satis�es Lemma 3.3, with kernel
K(ϕi) = Λ′i, which plays a key role in decoding the ith layer linearly combined messages.
Its generator matrix has a form:

GΛ′i =




Diag(I,p
(ki)
i , I︸ ︷︷ ︸
k

) 0

0 Imn−k


G (3.70)

We can easily verify Λ/Λ′i
∼= (S/〈pi〉)ki in terms of these generator matrices.

Scenario 2. When ∀i = 1, 2, · · · ,m, γi 6= 1, the primary sublattice Λpi at each layer is
constructed by a linear code over a �nite chain ring T = δiS/〈pγii δi〉 [64]. A �nite chain
ring is a �nite local principal ideal ring, and the most remarkable characteristic of a �nite
chain ring is that its every ideal (including 〈0〉) is generated by the maximal ideal, which
can be linearly ordered by inclusion, and hence, forms a chain. The �nite chain ring T
has a unique maximal ideal, and hence the resultant residue �eld is Q = δiS/〈piδi〉 with
size q = |δiS/〈piδi〉|. The chain length of the ideals is indeed the nil-potency index of pi
which is, in this case γi. We refer to T a (q, γi) chain ring.

At the ith layer, the generator matrix Gi
FCR of a linear code over T has a standard

form given in (3.71), where Ik′i,t denotes an identity matrix with dimension k′i,t,1 i =

1, 2, · · · ,m and t = 0, 1, · · · , γi − 1. Hence, Gi
FCR has a dimension k′i × n where

k′i =
∑γi−1

t=0 k′i,t. Here Zt,l, l = t + 1, 2, · · · , γi, denotes a k′i,t × k′i,t+1 (k′i,γi = n − k′i)
matrix which is unique modulo pγi−ti [65]. In (3.71), I∗pγii is an upper triangular matrix
with dimension k′i × k′i, and Bk′i,n−k′i has a dimension of k′i × (n − k′i). Note that the
codeword is row spanned by Gi

FCR and all rows of Gi
FCR are linearly independent.

To study the message space of the linear codes over the �nite chain ring, we �rst examine
the kernel of the generator matrix Gi

FCR. This is equivalent to �nding the null space for
the encoderEi : wi 7−→ Ci, whereEi(wi) , wiGi

FCH and wi = [wk′i,0 ,wk′i,1 , · · · ,wk′i,γi−1
].

Here wi is grouped into blocks of size wk′i,t which corresponds to the row blocks de�ned

1Here, the index i used in k′i,t is the indicator of layer.
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Gi
FCR =




Ik′i,0 Zi
0,1 Zi

0,2 · · · Zi
0,γi−1

Zi
0,γi

0 piIk′i,1 piZ
i
1,2 · · · piZ

i
1,γi−1

piZ
i
1,γi

0 0 p2
i Ik′i,2 · · · p2

iZ
i
2,γi−1

p2
iZ

i
2,γi

... ... ... · · · ... ...
0 0 0 · · · pγi−1

i Ik′i,γi−1
pγi−1
i Zi

γi−1,γi




=
[
I∗pγii

Bk′i,n−k′i

]

(3.71)

in (3.71). In order to obtain the all-zero codeword Ci = 0, we solve the homogeneous
system wiGi

FCH = 0, which gives wk′i,t ∈ p
γi−t
i T k

′
i,t , t = 0, 1, · · · , γi − 1. This result is

based on the fact that if d ∈ T n, then ptid = 0 =⇒ d ∈ pγi−ti T n. The null space of the
encoder Ei is therefore:

w′ = [pγii T
k′i,0 , · · · , piT k

′
i,γi−1 ] (3.72)

According to the �rst isomorphism theorem, the codeword Ci is isomorphic to a direct
summation:

Ci ∼= (T/pγii T )k
′
i,0 ⊕ (T/pγi−1

i T )k
′
i,1 ⊕ · · · ⊕ (T/piT )k

′
i,γi−1

∼= (δiS/〈pγii δi〉)k
′
i,0 ⊕ (δiS/〈pγi−1

i δi〉)k
′
i,1 ⊕ · · · ⊕ (δiS/〈piδi〉)k

′
i,γi−1 (3.73)

The right-hand side of (3.73) denotes the message space W i of the linear code over the
�nite chain ring T in terms of the generator matrix Gi

FCR. Note that each component
in the direct sum of (3.73) forms another module or vector space, and the size of the tth

component is q(γi−t)k′i,t . This leads to the overall message size |C| = q
∑γi−1
t=0 (γi−t)k′i,t .

Of course, we can obtain this result directly from the kernel of Gi
FCR, thus, |C| =∏γi−1

t=0 (ptiT )k
′
i,t which gives the same result.

Let p̃γii be a length-k′i vector:

p̃γii , [pγii,(k′i,0),p
γi−1
i,(k′i,1), · · · ,pi,(k′i,γi−1)]

where pγii,(k′i,0) denotes a length-k′i,0 vector, with each component being pγii . Note that p̃γii
is closely related to (3.72). Following Lemma 3.2, the generator matrix of the primary
sublattice Λpi of the ith layer in this scenario has a form:

GΛpi
=

[
Diag

(
p̃γ1

1 · · · p̃γi−1

i−1 , Ik′i , p̃
γi+1

i+1 · · · p̃γmm
)

0

0 Imn−k′

]
G (3.74)
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3.2 A multi-level framework for lattice network coding 81

where k′ =
∑m

i=1 k
′
i. The EDC lattices in this scenario are constructed by some linear

codes over di�erent �nite chain rings, and the matrix G has to be be associated with the
generator matrix of each linear codeCi over the �nite chain ring. Let σ̃i(d · [Ĩ∗pγii B̃k′i,n−k′i ])

be the codeword of Ci = wiGi
FCR over the �nite chain ring T , d ∈ δiSk′i . Then, G in

(3.74) is an mn× n matrix de�ned below:

G =




Ĩ
∗
p
γ1
1

B̃k′1,n−k′1
Ĩ
∗
p
γ2
2

B̃k′2,n−k′2... ...
Ĩ
∗
pγmm

B̃k′m,n−k′m
0 $In−k′1... ...
0 $In−k′m




(3.75)

Hence, we are able to construct Λpi , and hence the EDC lattice Λ for this scenario based
on the generator matrices presented above. Note that message space of each layer fol-
lows from (3.73), and k′i,t should be selected such that

γiki =

γi−1∑

t=0

(γi − t)k′i,t (3.76)

in order to guarantee the consistency to the message size of the ith layer EDC lattices
de�ned in (3.63). It is easy to prove that there exists k′i,t ∈ Z+, ∀t = 0, 1, · · · , γi − 1,
satisfying (3.76).

The generator matrix of the coarse lattice Λ′ is given by,

GΛ′ =

[
Diag

(
I∑i−1

j=1 k
′
j
, p̃γii , I

∑m
j=i+1 k

′
j

)
0

0 Imn−k

]
GΛpi

(3.77)

Following (3.77), it is obvious that Λ/Λ′ ∼= W 1 ⊕ · · · ⊕Wm. The generator matrix for
Λ′i has a form:

GΛ′i =

[
Diag

(
I∑i−1

j=1 k
′
j
, p̃γii , I

∑m
j=i+1 k

′
j

)
0

0 Imn−k

]
G (3.78)

which will be used for LIF detection.

Every ideal of T is generated by the maximal ideal, which forms a chain with chain
length γi. Hence, the residue �eld Q plays an important role in producing the linear
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codes over T . We now consider a matrix in the form of:

Gi
D = Diag

(
p0
i,(k′i,0), · · · ,pγi−1

i,(k′i,γi−1)

)




gik′i,0
gik′i,1

...
gik′i,γi−1




(3.79)

where gik′i,t
∈ Q∗k′i,t×n

, and Q∗k′i,t×n is a k′i,t × n matrix with each entry over the coset
representative of the residue �eld Q = δiS/〈piδi〉. Each row of Gi

D has to satisfy the
condition that none of its rows are linear combinations of the other rows. The mes-
sage space of Gi

D could be partitioned into γi − 1 levels. We �rst de�ne the vector
β

(j)

k′i,t
= [β

(j)
1 , β

(j)
2 , · · · , β(j)

k′i,t
], when t = 0, where j = 0, 1, · · · γi− 1, is the level indicator,

and β(j)

k′i,t
= [β

(j)

k′i,t−1+1, β
(j)

k′i,t−1+2, · · · , β
(j)

k′i,t
] when t = 1, 2, · · · , γi − 1. Accurately β(j)

k′i,t

represents a length-k′i,t segment of the jth level message over the vector spaceQk′i,t . The
full message space of the jth level is given by,

β(j) = [pjiβ
(j)

k′i,0
, pj−1

i β
(j)

k′i,1
, pj−2

i β
(j)

k′i,2
, 0 · · ·0︸ ︷︷ ︸
k′i−

∑j
t=0 k

′
i,t

] (3.80)

where the powers of pi cannot be negative integers. Hence, the message space of Gi
D is

W i = β(0) + β(1) + · · ·+ β(γi−1). The codewords Ci can be produced by

Ci = W iGi
D =

(
β(0) + β(1) + · · ·+ β(γi−1)

)
Gi

D

= ci0 + ci1pi + · · ·+ ciγi−1p
γi−1
i (3.81)

Since none of the rows of Gi
D are linear combinations of the other rows, cit is therefore

row spanned by

gcit
=
[
gik′i,0

; gik′i,1
; · · · ; gik′i,t

]
(3.82)

It is obvious that cit, t = 0, 1, · · · , γi−1 forms a set of nested codes ci0 ⊆ ci1 ⊆ · · · ⊆ ciγi−1

overQ∗. Following theQ-adic decomposition theorem of �nite chain rings [65] [64], we
assert that the codeword Ci in (3.81) generated by Gi

D is indeed over T .

In terms of (3.79) and (3.80), the message space corresponding to gik′i,t
should be written

as:

W i
t =

γi−1∑

j=t

pj−ti β
(j)

k′i,t
(3.83)

this complies with the Q-adic decomposition and leads to the result that the message
space corresponding to gik′i,t

is (T/〈pγi−ti 〉)k′i,t . This implies that the right-hand side of
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3.2 A multi-level framework for lattice network coding 83

(3.73) is precisely the message space of Gi
D. Mathematically the primary sublattices Λpi

can also be represented in the form below:

Λpi =
⋃





γi−1∑

j=0

K i
j∑

`=1

pjiβ
(j)
` gi`

︸ ︷︷ ︸
(52)

+pγii S
n|gi` ∈ Q1×n





(3.84)

where K i
j = k′i,0 + · · ·+ k′i,j . It is interesting to see that (3.84) has the same structure as

complex construction D. Now we conclude that the primary S-sublattices constructed
by a linear code over a �nite chain ring subsumes construction D.

Based on this result, we may now construct EDC lattices for this scenario using a set of
nested linear codes over a �nite �eld. Let gi(n−k′i)

∈ Q∗n−k′i×n be an (n− k′i)× n matrix,
then the G matrix is:

G =
[
G1

D
T
, · · · , Gm

D
T , $g1

(n−k′i)
T
, · · · , $gm(n−k′i)

T
]T

(3.85)

Scenario 3. This corresponds to a hybrid case of Scenario 1 and 2, and we give the
following summaries:

1. m = 1, γ1 = 1, then the EDC lattice in (3.62) is a complex construction A lattice
which is indecomposable.

2. m = 1, γ1 > 1, γ1 ∈ Z+ then the EDC lattice in (3.62) is a complex construction
D lattice which is indecomposable.

3. m > 1,m, γi ∈ Z+, i = 1, 2, · · · ,m, then the EDC lattice in (3.62) is decomposable,
and consists of some sublattices constructed by either construction A or D.

Note that in 3), a new class of lattices over S is generated by a number of linear codes
over either �nite �eld or chain ring, which generalises the scenario 1 and 2. Scenario 3
suggests that the design of EDC lattices is very �exible, and we also give more detailed
discussion about why EDC lattices are good at low-complexity decoding and throughput
improvement for WPLNC in the next sections.

Nominal coding gain and Kissing number

In this section, we study the nominal coding gain and kissing number of the EDC lattices
for all three scenarios. The de�nition such as the minimum-norm coset leaders and
minimum Euclidean weight of the codeword follows from [49].
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84 3 Compute and forward based NCM

Scenario 1. We �rst study the nominal coding gain and kissing number of the ith
layer primary sublattices in this scenario. Following (3.64) and (3.65), we know that Ci is
a linear code of length n over δiS/piδiS. Thus, ci = (ci1 + 〈$〉, · · · , cin + 〈$〉) ∈ Ci. We
denote ω(i)(ci) the Euclidean weight of a codeword ci in Ci, and ω(i)

min(Ci) the minimum
Euclidean weight of non-zero codewords in Ci. Let ϑ be a scaling factor depending on
which PID is used, andN(ω

(i)
min(Ci)) be the number of codewords inCi with the minimum

Euclidean weight ω(i)
min(Ci).

Proposition 3.1. Let Ci be a linear code over δiS/piδiS, and Λpi/Λ
′ the primary quotient

lattice system of the ith layer constructed by Ci, Λpi ⊇ Λ′, then the nominal coding gain is
given by:

%(Λpi/Λ
′) =

ω
(i)
min(Ci)

ϑ|pi|2(1− ki
n

)|δi|2
(3.86)

and the kissing number is:

K(Λpi/Λ
′) =





N(ω
(i)
min(Ci))

(
NU(S)

|pi|2−1

)ω(i)
min

(Ci)

|δi|2 , |pi|2 − 1 ≤ NU(S)

N(ω
(i)
min(Ci)), Otherwise

(3.87)

Proof: See Section 3.2.8.

Here NU(S) represents the number of units in S.

It is of interest to study the nominal coding gain and kissing number of Λ/Λ′ in terms
of the m linear codes Ci. Following the proof of Theorem 3.1, and the descriptions in
Section 3.2.4, c̃ = c1 + c2 + · · · + cm, c̃ ∈ C̃ and C̃ ∈ (S/〈$〉)n. Thus, the nominal
coding gain of EDC lattices is determined by the m linear codes Ci over δiS/piδiS, i =
1, 2, · · · ,m.

Proposition 3.2. Let C1, · · · ,Cm be m linear codes over δiS/piδiS, i = 1, 2, · · · ,m, re-
spectively. Let c̃ = c1 + c2 + · · ·+ cm, c̃ ∈ C̃ and ci ∈ Ci. The nominal coding gain of the
EDC lattices Λ/Λ′ in scenario 1 is given by

%(Λ/Λ′) =
ωmin(C̃)

∏m
`=2 |pj|

2(k`−k1)

n

ϑ|p1|2(1− k1
n

)|δ1|2
(3.88)

where k1 ≤ k2 ≤ · · · ≤ km.

Proof: See Section 3.2.8.
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Scenario 2. This corresponds to the case where γi > 1, γi ∈ Z for i = 1, 2, · · · ,m.
The primary sublattice of the ith layer can be constructed by a linear code Ci over a �nite
chain ring δiS/〈$〉, where δi = $

p
γi
i

. This follows immediately from (3.64) and (3.65).
Here, we are more concerned with the nominal coding gain and kissing number when the
ith primary sublattice is constructed by a set of nested linear codes over the residue �eld
Q, since the linear code over a �nite �eld is easier to generate. Let Ci,0 ⊆ · · · ⊆ Ci,γi−1

be nested linear codes of length-n over Q, where Ci,t is an [n,
∑t

`=0 k
′
i,`] linear code for

the tth nested code at the ith layer, and we denote ω(i,t)
min (Ci,t) the minimum Euclidean

weight of non-zero codewords in Ci,t. We have:

Proposition 3.3. Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be γi nested linear codes of length-n over
Q, and Λpi/Λ

′ be the primary quotient lattice of the ith layer constructed from Ci,t, t =
0, 1, · · · , γi − 1, then the nominal coding gain of the ith layer is lower bounded by

%(Λpi/Λ
′) ≥ |pi|

2
n

∑γi−1
t=0 (γi−t)k′i,t min0≤t≤γi−1{|pi|2tω(i,t)

min (Ci,t)}
ϑ|$|2 (3.89)

and the kissing number is upper bounded by:

K(Λpi/Λ
′) ≤





∑γi−1
t=0 Nt(ω

(i,t)
min (Ci,t))

(
NU(S)

|pi|2−1

)ω(i,t)
min

(Ci,t)

|δi|2 , |pi|2 − 1 ≤ NU(S)∑γi−1
t=0 Nt(ω

(i,t)
min (Ci,t)), Otherwise

(3.90)

Proof: See Section 3.2.8.

It is of interest to study the nominal coding gain of Λ/Λ′ in this scenario. If each primary
sublattice is constructed via a set of nested linear codes over a �nite �eldQ = δiS/〈piδi〉
for the ith layer, the nominal coding gain %(Λ/Λ′) will be related to overall

∑m
i=1 γi linear

codes since there are γi nested linear codes for each i. Let C̃ be a composite code such that
c̃ = c1 + · · ·+ cm where ci = ci,0 + pic

i,1 + · · ·+ pγi−1
i ci,γi−1. Hence, Ci ∈ δiS/〈$〉 and

C̃ ∈ S/〈$〉. We denote ωmin(C̃) the minimum Euclidean weight of non-zero codewords
in C̃, then:

Proposition 3.4. Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be γi nested linear codes of length-n over Q,
and let C̃ be a composite code such that c̃ = c1 + · · ·+ cm where ci = ci,0 + pic

i,1 + · · ·+
pγi−1
i ci,γi−1. The nominal coding gain for Λ/Λ′ in scenario 2 is given by:

%(Λ/Λ′) =
ωmin(C̃)

(V (V(Λ)))
1
n

=
ωmin(C̃)

∏m
i=1 |pi|2

∑γi−1
t=0 (γi−t)

k′i,t
n

ϑ|$|2 (3.91)

Proof: See Section 3.2.8.
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Scenario 3. As explained in the preceding section, in this case, γi ≥ 1, γi ∈ Z, and
hence the EDC lattice consists of a number of primary sublattices which can be con-
structed by linear codes over either �nite �eld or �nite chain ring. The nominal cod-
ing gain and kissing number of the primary sublattices in each case have been derived
in Proposition 3.1 and Proposition 3.3. We are more interested in the nominal coding
gain of Λ/Λ′ in this scenario. Again, we consider the primary sublattices of scenario
2 is constructed over a set of nested linear codes. Let C̃ be a composite code such that
c̃ = c1 + · · ·+ cm where

ci =

{
ci, Ci ∈ δiS/piδiS, γi = 1

ci,0 + pic
i,1 + · · ·+ pγi−1

i ci,γi−1; Ci,t ∈ Q, γi > 1

We can easily prove that %(Λ/Λ′) has similar form as (3.91) if we set k′i,0 = ki for γi = 1.

3.2.5 Iterative detection of EDC and the EXIT chart analysis

In this section we present an iteration-aided multistage decoding approach speci�cally
designed for EDC, which provides a feasible way of improving the performance of decod-
ing the linear combinations, and also of increasing the overall rate with low decoding-
complexity. In the remainder of the paper, we consider S to be a ring of Eisenstein
integers Z[ω]. However, the results can be readily extended to other PIDs.

Section 3.2.4 clearly reveals the possible encoding structure for EDC. Recalling the de�n-
ition for EDC, we know that the map σ̃ : Sn 7−→ (S/〈pγ1

1 〉)n ⊕ (S/〈pγ2

2 〉)n ⊕ · · · ⊕
(S/〈pγmm 〉)n is a natural projection of a surjective ring homomorphismσ : S 7−→ S/〈pγ1

1 〉×
S/〈pγ2

2 〉 × · · · × S/〈pγmm 〉 ←→ Fp̃1 × · · · × Fp̃m by applying it element-wise [66] (γi = 1,
∀i = 1, 2, · · · ,m). Note that in this case, σ is actually an f.g. Abelian group homomorph-
ism. It is easy to see that each level S/〈pi〉 is coded by an [n, ki] linear code Ci over Fp̃i
(a �nite �eld or �nite chain ring determined by p̃i).

The Type-1 Eisenstein primes are those primes p ∈ Z which either have a form 6j + 5,
j ∈ Z, or p = 2. Their associates are also categorised as Type-1. The Type-2 Eisenstein
primes have the form τ = a + bω, a, b 6= 0 where the norm N(τ) of τ is a prime p ∈ Z
satisfying p ≡ 1 mod 6. Note that if τ = a+ bω is a prime in Z[ω], τ ′ = b+ aω is also a
prime in Z[ω]. Hence, τ and τ ′ are distinct primes categorised as Type-2. Together with
the Type-3 Eisenstein primes, $ ∈ Z[ω] can be uniquely decomposed into:

$ = U(Z[ω])2%
κ1∏

i=1

τµii

κ2∏

j=1

τ ′j
ηj

κ3∏

k=1

pβkk · (1 + 2ω)ς (3.92)

Accordingly, Z[ω]/〈2〉 ∼= F22 , Z[ω]/〈τ〉 ∼= FN(τ), Z[ω]/〈p〉 ∼= Fp2 , Z[ω]/〈1 + 2ω〉 ∼= F3.
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So� detector for EDC

Section 3.2.3 gives a general decoding method LIF for MLNC, based on the optimised
scaling factor α, S-integer coe�cient vectors ãi, and a good EDC lattice quantiser, e.g. a
Viterbi decoder with modi�ed metrics (see Section 3.2.8). Thus, when EDC is employed
in MLNC, LIF is also feasible. In this section, we explore another detection approach
designed speci�cally for the EDC-based MLNC (which follows from the structure of the
EDC lattices). Especially an iterative detector is developed, which exploits the multilevel
structure gain of EDC by using multistage decoding.

First, we consider the non-iterative multistage decoding. The detector tries to decode
the linear function of each level stage-by-stage, with the aid of the a priori information
from the preceding layers. The detection structure is similar to the point-to-point multi-
level codes, e.g. [67, 68] whereas here the a priori information is the soft estimation. We
develop a layered soft detector (LSD) which calculates the a posteriori L-vector (a vector
of Log-likelihood ratio) for each layer with the aid of the multiple a priori L-vectors. The
detailed derivation is given in Section 3.2.8.

The LSD decodes the linear function of each layer over the corresponding non-binary
�nite �eld, and hence the a priori information of each layer is no longer a scalar value. We
de�ne the a priori information Ai to be a vector-based random variable with realisation:

ai =

[
log

(
Pr(ξ|V i = vi1)

Pr(ξ|V i = 0)

)
· · · log

(
Pr(ξ|V i = vip̃i−1)

Pr(ξ|V i = 0)

)]
(3.93)

where V i denotes the possible linear combinations at the ith level, which is a uniformly
distributed random variable whose kth realisation is vik ∈ Fp̃i , k = 1, 2 · · · p̃i − 1.
Pr(ξ|V i = vik) is the probability of the a priori channel outputs Ξ = ξ given the event
V i = vik. Assume that wij ∈ Fp̃i , i = 1, 2, · · · ,m, j = 1, 2, · · · , L to be the message
of the ith level and the jth source, the linear function is de�ned by f i(wi1, · · · , wiL) =⊕L

`=1 a
i
`w

i
` over Fp̃i . Note that the integer coe�cient ai` can be determined either by the

lattice reduction approach as introduced in [49, 69] over the ith quotient lattice Λ/Λ′i as
de�ned in Theorem 3.3, or by the maximum mutual information criterion as described
later.

In the multistage iterative decoding, the proposed LSD outputs the extrinsic L-vector
ei for the ith level, based on the a priori L-vector aj, j ∈ {1, · · · ,m}, j 6= i. Assume
that there is a two level EDC and the decoding proceeds from layer 1 (which is regarded
as the 1st stage decoding) to layer 2 (the 2nd stage decoding). The extrinsic outputs of
layer 1 feed into layer 2 to assist the 2nd stage decoding. With the aid of the a priori
L-value, layer 2 estimates and forwards the extrinsic information (which serves as the
a priori information of layer 1) to layer 1. The process is repeated and all layers are
activated in turn for the second and subsequent iterations. We refer to this approach as
the iterative MSD (IMSD) scheme for MLNC. The detection process is similar to iterative
decoding of multilevel codes, e.g. [70] whereas the nature of the detection is di�erent. As
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Figure 3.12: (a) The EXIT function for each layer. (b) Achievable information rates of the linear
combinations at each layer; h1 = h2 = 1. (c) Achievable rates of the linear com-
binations at each layer with �xed fading coe�cients h1 = −1.17 + 2.15 ∗ 1i and
h2 = 1.25− 1.63 ∗ 1i. (d) Achievable rates of the linear combinations at each layer
with Rayleigh fading.

the iteration proceeds, each layer will produce more reliable extrinsic L-vector ei which
also serves as the a priori information of the soft-in soft-out non-binary decoder for the
corresponding Ci.

Non-binary EXIT chart analysis

We now evaluate the extrinsic information transfer characteristics of the soft detector
developed in Section 3.2.5, based on the non-binary case. Alexei et al. [71] has proved,
based on the binary iterative system, that the extrinsic information Ek (the kth time
instant) of an a posteriori probability (APP) decoder contains the same amount of in-
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IE = H(V ) + E
[ 1

N

N∑

k=1

∑

∀v
Pr(Vk = v|y, z\k) · log(Pr(Vk = v|y, z\k))

]
(3.94)

formation as the physical channel outputs Y and the outputs of the a priori channel
Z\k. We can prove that when the extrinsic outputs are non-binary-based, this theorem
also holds. In this case, Ek becomes the vector-based random variable Ek, and can be
expressed as:

I(Vk|Ek) = I(Vk|Y,Z\k)

The proof [72] is based on the fact that Pr(Vk = v|ek) = Pr(Vk = v|y, z\k). The average
extrinsic information IE = 1

N

∑N
k=1 I(Vk; Ek) can be obtained by:

Figure 3.12(a) illustrates the extrinsic transfer characteristics for a two-level EDC lattice
over the 2-WRC, where $ = 2 + 4ω = 2(1 + 2ω). Based on the de�nition of EDC and
(3.92), the linear codesC1 andC2 are overF3 and a binary extension �eldF22 , respectively.
The extrinsic information I1

e for the linear combinations of the 1st level depends only on
the a priori information I2

a from the 2nd level, and similarly for I2
e . It can be observed in

Figure 3.12(a) that there is an increase of the average extrinsic information I1
e around 0.8

at 10dB when the soft detector has the ideal a priori information at the 2nd level, com-
pared to the non-iterative case. Hence, the iteration-aided multistage detection implies
a large potential to improve the reliability of decoding the linear combinations at each
level. Due to space limitation for this paper, we show here results only for h1 = h2 = 1.
However the results can be easily extended to the faded MAC. Note that the optimal
linear functions f 1, · · · , fm should be selected in terms of:

f 1 · · · fm = arg max
f1···fm

I(Y ;V 1V 2 · · ·V m) (3.95)

which maximises the achievable rate. Note that V i is a random variable with its out-
comes from the linear function f i. Hence, the conditional probability density Pr(Y |V i)
is a function of the messages wij, j = 1, 2, · · · , L. Figure 3.12(b) gives the numerical in-
tegration results for the achievable rates at each level. It can be observed that the mutual
information chain rule is satis�ed, which gives theoretical support for multistage iterat-
ive decoding. Figure 3.12(b) also well matches the EXIT chart results in Figure 3.12(a),
e.g. the extrinsic information of the linear combinations for the �rst level is around
I(Y ;V 1) = 0.8 and I(Y ;V 1|V 2) = 1 at 10dB which precisely match the black line
in Figure 3.12(a). Figure 3.12(c) and 3.12(d) give the achievable information rates of the
linear combinations at each level based on the �xed fading and Rayleigh fading, respect-
ively. The detailed calculation of the these are described in Section 3.2.8.

It is seen that the maximum achievable rates for the network coded linear combinations
are R(1) = log2 3 and R(2) = log2 4 for level 1 and 2. The allowable rate at a certain
level is higher when the a priori information from another layer is available. We assume
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two memory 3, 1/2-rate convolutional codes are used at both levels (over F3 and F22

respectively). EDC lattices achieve overall rate 1
2

log2(12), with the number of trellis
states 27 and 64 at the corresponding levels. However, a single convolutional code over
ring R12 needs 1728 trellis states. The complexity reduction is obvious.

3.2.6 Simulation results

In this section, we evaluate the performance of the MLNC scheme, based on the detection
approaches proposed. These results give strong support for the theorems and lemmas
developed in previous sections. In this paper, we focus mainly on the applications of EDC
lattices in MLNC. However, it is not necessarily limited to EDC lattices since MLNC
design applies in principle to the general case. For example, high coding gain lattice
codes (e.g. complex low density lattice codes [59, 73] and signal codes [74]) which are
directly designed in the geometric space can be used in the MLNC framework. This is
interesting and will be investigated in our later work.

We are mainly concerned (in this paper) with the performance of the multiple access
channel (MAC) of the 2-WRC, which can be viewed as the building block for more com-
plicated network topologies. All simulations are based on a two-layer EDC lattice which
has the same con�guration. Thus, the two layers are constructed via linear codesC1 ∈ F3

and C2 ∈ F22 . The linear codes at both layers are non-binary convolutional codes, with
their generator polynomials de�ned in Table 3.1. Note that the decoder of the non-binary
convolutional codes is based on the maximum a posterior (MAP) probability criteria and
modi�ed BCJR algorithm, where the soft output of the component symbols is produced.
We do not give detailed explanation of the decoding in this paper since it is not our main
concern, but we will provide the algorithm when requested. Unless otherwise stated,
the convolutional decoder employs the same algorithm in the sequel.

Table 3.1: Code type and code rate assigned for each level.

i g(D)

1 [−2ω2 + 2ω2D3, 2ω2 + (−2ω2)D + 2ω2D3]

2
[ −2 + (1− ω)D2 + (−2)D3

−2 + (−2)D + (−2)D2 + (1− ω2)D3

]

Figure 3.13 depicts the symbol-error rates and frame-error rates for EDC-based MLNC
as a function of SNR, where the soft detection approach is used. We examine the per-
formance with and without multistage decoding when iterations and fading are not con-
sidered. The convolutional code at the ith level is de�ned as a [2(ιi + νi), ιi] linear block
code, where ιi and νi denote the data and memory length, respectively. Therefore, the
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Figure 3.13: SER and FER performance for an MLNC constructed from a two layer
EDC lattice; Soft detection; Multistage decoding/Non-multistage decoding;
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overall message rate is given by:

Rmes ≈
1

2
(log2 3 + log2 4) bits/symbol

Note that we use the approximation sign here since the actual coding rate is smaller than
1
2

due to the tail e�ect of memory. When the block length is su�cient large, this e�ect
can be ignored. Without multistage decoding, it is observed from Figure 3.13 that the
SER gap between layer 1 and 2 is around 0.8 dB at BER=10−4, and layer 1 is 8 dB from the
capacity of layer 1. When multistage decoding is performed from layer 1 to layer 2, we
expect that the SER performance of layer 2 can be improved as a result of the additional
a priori soft information from layer 1. Note that layer 2 operates over F22 whereas its
a priori soft information is over F3. The simulation results con�rm this anticipation in
that the SER of layer 2 has 2 dB gain over non-MSD at 10−5. However this leads to only
slightly better overall performance. When multistage processing starts from layer 1, it
is obvious that MSD and non-MSD should give approximately the same performance at
layer 1. The overall performance is dominated by the layer which has the worst SER
performance over all layers, and in this case, it is layer 1. This explains the reason why
the performance improvement of layer 2 gives small contribution in the overall SER.

To further increase network throughputs, and examine the performance of MSD based
on the asymmetric coding rates over each level, the rate of layer 2 is set to R(2) = 3

4
.

Thus, the sublattice Λp2 is constructed via a higher rate linear code. The overall message

DIWINE D4.03



92 3 Compute and forward based NCM

rate is given by

Rmes ≈
1

2
log2 3 +

3

4
log2 4 bits/symbol

Note that the SER curve of level 1 (red dashed circle) without MSD should closely match
that with MSD (red solid circle) when multistage decoding is used in layer 1. Simulations
in Figure 3.14 con�rm this. Based on the increased coding rate, we are more concerned
with the SER performance of layer 2. It is observed from Figure 3.14 that the SER per-
formance of layer 2 is greatly degraded if MSD is not employed, with approximately 3 dB
loss at 10−5 compared to the half-rate code used at this level. However, when MSD is
used, the SER (blue solid square) of layer 2 has more than 3 dB gain over the non-MSD
case (blue dashed square) as a result of the reliable a priori feedback from layer 1. The
overall performance of MSD-based detection is determined mainly by layer 1, whereas
for non-MSD-based detection, the overall performance is dominated by layer 2. That
is the reason why the overall SER of the MSD-based scheme performs better than the
non-MSD scenario, with 2 dB gain obtained at 10−5. It is interesting to note that when
the decoding of the Λpi/Λ

′ which is constructed from a higher rate linear code occurs
at a later stage of MSD, the overall SER performance of MSD over non-MSD performs
better. Hence, MSD is particularly suitable for the detection of EDC lattices in terms of
MLNC design, since each layer of EDC operates over an asymmetric �nite �eld or �nite
chain ring. Now the overall SER is 4.5 dB from the capacity. Note that the measure of
SER is based on the correct recovery of the linear combinations of original messages at
each source over the respective algebraic �eld.

Iterative multistage decoding: We believe that there is room to improve SER and FER
performance further. Based on the soft detector developed in Section 3.2.5, and also the
soft decoder developed for the non-binary convolutional codes, we propose to apply the
iterative technique to EDC-lattice-based MLNC.

Figure 3.14 depicts the result when IMSD is used. It is observed that with 5 iterations,
the SER curve (black solid thick line) has a sharp turbo cli� reaching SER = 10−5 at
10 dB, which is only 1.4 dB from the capacity. Thus, iterative decoding gives 3.3 dB gain
over the traditional MSD decoding, and 5.3 dB gain over non-MSD decoding, as shown
in the �gure. Note that the simulation result is well consistent with the EXIT functions
in Figure 3.12(a). When su�cient iterations are given, the L-value outputs from the soft
detector at both layers are su�ciently reliable that the decoder can make the estimation
with small probability of error. The simulation result also validates the soft detector
algorithm speci�cally developed for EDC-based MLNC, and implies that there is large
potential in employing iterative decoding in the multilevel lattice network coding.

Layered Integer Forcing: We have presented a general framework for the multilevel lat-
tice network coding in Section 3.2.3. The work implies that any lattices with multilevel
structure can be used in MLNC, and the essence of MLNC is to decode each layer separ-
ately such that the lattice decoder at each layer operates over smaller �nite �eld or chain
ring. The layered integer forcing is a network decoding technique developed in terms of
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the algebraic structure of MLNC and hence, is generally applicable to any MLNC design.
Thus, LIF is in principle capable of decoding EDC-lattice-based MLNC. According to
Theorem 3.3, each layer forms a new quotient S-lattice Λ/Λ′i, and there exists a surject-
ive S-module homomorphism ϕi for the ith layer such that K(ϕi) = Λ′i. The general
form of the generator matrix for Λ′i based on the EDC lattice is given in (3.70). Note that
Λ′i is the coarse lattice for the new coset system Λ/Λ′i.

In order to implement the LIF decoding for EDC lattices, we develop a modi�ed Viterbi
detector (see Section 3.2.8) which can be viewed as a lattice quantiser based on the quo-
tient S-lattice Λ/Λ′i for the ith layer, i = 1, 2, · · · ,m.

Figure 3.15 illustrates the SER and FER performance based on LIF. It is observed (black
solid line) that the overall SER has a good slope which validates the correctness of LIF
and the modi�ed Viterbi quantiser designed for the EDC lattice. The SER performance of
LIF has approximately 0.8 dB loss at 10−5 in comparison to the soft detection approach.
This is what we anticipate. First, the soft detection approach employs the BCJR algorithm
for the convolutional decoding, which typically slightly outperforms Viterbi detection.
Then, the soft detector developed in Section 3.2.5 and (3.96) – (3.99) outputs the soft
information that the BCJR decoder uses to produce more reliable estimation than that
for the Viterbi decoder.

The soft detection approach is designed speci�cally for EDC lattices, and it is not strange
to see that it gives better performance than LIF. Despite of this, we emphasise that LIF
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is universally applicable to any lattices having multilevel structure as detailed in Sec-
tion 3.2.3, rather than just EDC lattices. For example, LIF is capable of solving MLNC
problem when the lattices are directly designed in the Euclidean space, e.g. LDLC and
signal codes. In summary, the application of the soft detection approach is more restrict-
ive (which applies only to EDC lattices) and has relatively large complexity, but gives
the best performance compared to LIF with Viterbi detection. However, LIF provides a
solution for any kind of MLNC problem. Which method is preferable depends on the
trade-o� of factors relevant to a particular scenario.

In Figure 3.16, we also show the performance of the LSD when the �xed fading is con-
sidered. The channel fading vector is set to h = [−1.17 + 2.15i, 1.25− 1.63i], which is
the same as the fading vector used in scenario 1 of [74]. We employ a half-rate code for
layer 1, and 3

4
-rate code for layer 2. The optimal S-integer vector for the two layers are

selected in terms of (3.95). We employ multistage decoding with 5 iterations between the
two layers. A sharp turbo cli� occurs, which reaches SER = 10−5 at 3.9 dB, approxim-
ately 1.7 dB from the capacity. When no iteration is employed, there is more than 5 dB
loss. This implies that small number of additional iterations to generate more reliable
values is worthwhile in improving the overall SER performance. The iterative multistage
soft detection for EDC lattices achieves the overall rate of Rmes ≈ 2.29 bits/symbol at
3.9 dB. This demonstrates the potential of iterative decoding in improving the perform-
ance of physical layer network coding.
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3.2.7 Conclusions

The paper has laid the foundations for a new research area in multilevel lattices for LNC,
and built on the theoretic work for MLNC which inherently allows practically feasible
decoding design for network coding, and correspondingly we have developed a layered
integer forcing approach which plays such a role. We have proposed a general lattice
construction, i.e. EDC, based on MLNC theorems, given the generator matrix forms and
shown its merits, especially for complexity reduction and code design �exibility. We
have considered three possible EDC lattice structures, and mathematically proved that
EDC subsumes the most important previous complex constructions, e.g. A and D. We
have laid the foundations for another new research area in iteration-aided multistage
decoding for EDC-based MLNC, which is based on the layered soft detector developed
in Section 3.2.5, and have explored its extrinsic information transfer characteristics. The
results well support our viewpoint that LSD works well with multistage iterative decod-
ing in MLNC, and provides better performance than the traditional non-iterative system.
We have developed a modi�ed Viterbi decoder based on LIF for EDC-based MLNC, and
made performance comparison between iterative decoding, multistage decoding and LIF.

We expect that all of these will provide the basis for extensive further work, both to ex-
plore the rich algebraic features of the new construction and the homomorphism design,
and to exploit it in practical implementations of LNC in 5G wireless systems.
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3.2.8 Appendices

Layered so� detector for EDC-based MLNC

We show here the calculation of mutual information/ conditional mutual information
between the received superimposed signals (faded and noisy) and the network coded
symbols at the jth level. We denote by wj = [w1

j , · · · , wmj ], j = 1, 2, · · · , L the realisa-
tions of a vector-based random variable Wj representing the messages of all m levels
at the jth source, and wi = [wi1, · · · , wiL], j = 1, 2, · · · ,m the realisations of a vector-
based random variable W i representing the messages of all L sources for the ith level.
We refer to w = [w1, · · · ,wL] as the realisations of another vector-based random vari-
able W. Note that wij ∈ Fp̃i is the message of the ith level and the jth source, which is
uniformly distributed over Fp̃i . V i is a random variable which takes on a set of possible
values of f i(wi1, · · · , wiL) ∈ Fp̃i , and vi is the corresponding realisation of V i for the ith
layer.

The a posteriori probability of the event V i = vi at the ith level conditioned on the MAC
outputs Y = y and the a priori channel outputs Ξ = ξ = [ξ1, · · · , ξm], is given by

Pr(V i = vi|y, ξ) =
∑

V i=vi

∑

V\i∈Fm−1
q\i

Pr(Y |V 1 · · ·V m, ξ)Pr(ξ|V 1 · · ·V m)Pr(V 1 · · ·V m)

Pr(Y, ξ)

= Pr(ξi|V i = v)

∑

V i=v

∑

V\i∈Fm−1
q\i

Pr(Y |V 1 · · ·V m)Pr(ξ\i|V \i)Pr(V 1 · · ·V m)

Pr(Y, ξ)

=
Pr(ξi|V i = v)

Pr(Y, ξ)

∑

∀(wi1,··· ,wiL):

f i(wi1,··· ,wiL)=v

∑

∀V \i∈Fq\i

∑

∀(w\i1 ,··· ,w
\i
L ):

f1(w1)=v1,··· ,fm(wm)=vm

Pr(Y |W = w)Pr(ξ\i|V \i)Pr(W = w) (3.96)

where Fm−1
p\i , [Fp̃1 · · ·Fp̃i−1

,Fp̃i+1
· · ·Fp̃m ] consists of a set of �nite �eld and �nite chain

ring. Fp̃i is de�ned in Section 3.2.4. Note that if p̃i is not a prime number, Fp̃i can be de-
composed furthermore in terms of the p-adic decomposition theorem [64], and small
modi�cations of (3.96) are required accordingly. The conditional probability density
function is given by,

Pr(Y |W = w) = Pr(Y |w1, · · · ,wL)

=
1√
πN0

e
− |h1σ

−1(w1
1×···×wm1 )+···+hLσ−1(w1

L,×···×wmL )−y|2
N0 (3.97)

The a posteriori L-value dik for the event V i = vik is de�ned in (3.98) which can be further
separated into two terms in (3.99), where aik is an element in (3.93) which serves as the
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a priori L-value. Note that vik is the kth realisation of the random variable V i. Following
(3.93), we have

Pr(ξ|V = vik) =
ea

i
k

1 +
∑

k:∀vik∈Fp̃i ,vik 6=0 e
aik

The second term of (3.99) serves as the extrinsic L-value eik for the ith level and the kth

realisation of the vector-based random variable Ei which is the extrinsic information of
the ith level.

dik = log

(
Pr(V i = vik|y, ξ)

Pr(V i = 0|y, ξ)

)
(3.98)

= aik + eik, (3.99)

where

eik = log




∑
∀(wi1,··· ,wiL):

f i(wi1,··· ,wiL)=vik

∑
∀V \i∈Fq\i

∑
∀(w\i1 ,··· ,w

\i
L ):

f1(w1)=v1,··· ,fm(wm)=vm

Pr(Y |W = w)Pr(ξ\i|V \i)

∑
∀(wi1,··· ,wiL):

f i(wi1,··· ,wiL)=0

∑
∀V \i∈Fq\i

∑
∀(w\i1 ,··· ,w

\i
L ):

f1(w1)=v1,··· ,fm(wm)=vm

Pr(Y |W = w)Pr(ξ\i|V \i)


 .

Mutual information for linear combinations

The mutual information between the received signal and the decoded linear combination
at the ith layer is:

I(Y,H;V i) = E(Y,V i,H)

[
log2

P (Y |V i, H)

P (Y )

]

=
∑

vi

Pr(V i = vi)

ˆ
C
P (H)

ˆ
C
P (Y |V i, H) log2

P (Y |V i, H)

P (Y )
dY dH

(3.100)

The probability density function P (Y |V i, H) conditioned on V i = vi should be calcu-
lated by:

P (Y |V i = vi, H) =
1

Pr(V i = vi)

∑

∀v\i

∑

∀(w1,··· ,wL):
f1(w1)=v1,··· ,fm(wm)=vm

P (Y |W = w, h)P (W = w)

(3.101)
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The conditional mutual information I(Y ;V i|V 1 · · ·V i−1) gives the maximum achiev-
able rate at the ith layer when the linear combinations of the preceding stages are per-
fectly known, which can be calculated by:

I(Y ;V i|V 1 · · ·V i−1) = E(Y,V 1,··· ,V i,H)

[
log2

P (Y |V 1 · · ·V i, H)

P (Y |V 1 · · ·V i−1, H)

]

=
∑

v1···vi−1

Pr(V 1 = v1, · · · , V i = vi−1) ·

∑

vi

ˆ
C
P (H)

ˆ
C
P (Y, V i|V 1 · · ·V i−1, H) ·

log2

P (Y |V 1 · · ·V i, H)

P (Y |V 1 · · ·V i−1, H)
dY dH

where the conditional probability density function P (Y, V i|V 1 · · ·V i−1, H) should be
calculated in terms of the random variables of the messages, which is given by:

P (Y, V i|V 1 = v1, · · · , V i−1 = vi−1, H)

=
1

Pr(v1, · · · , vi−1)

∑

∀v/∈(v1···vi)

∑

∀(w1,··· ,wL):
f1(w1)=v1,··· ,fm(wm)=vm

P (Y |W = w, h)Pr(W = w)

(3.102)

where P (Y |W = w, h) is given in (3.97). Note that V i, i = 1, 2, · · · ,m is a random
variable de�ned by the linear function of the ith layer over Fp̃i . Every V i operates over
di�erent �nite �led or chain ring.

LIF quantiser

We show here a LIF quantiser Q
(i)
LIF implemented via a modi�ed Viterbi decoder. The

quantisation problem for the ith layer can be mathematically expressed as:

arg min
ci
||αiy − (σ̃−1(ci) + λ′i)||2 (3.103)

= arg min
ci
||(αiy − σ̃−1(ci))− QΛ′i((α

iy − σ̃−1(ci))||2 (3.104)

subject to : ci ∈ Ci, λ′i ∈ Λ′i, (3.105)
σ̃(λ) ∈ C1 ⊕ · · · ⊕ (Ci = ci)⊕ · · ·Cm (3.106)

where QΛ′i(x) is the coarse lattice quantiser for the ith layer and can be expressed as a
modulo operation x mod Λ′i (as de�ned in Theorem 3.3). σ̃−1( · ) is the inverse operation
of σ̃ which produces a set of lattice points λ.

We can construct trellis for the non-binary convolutional code Ci. Assume that the states
of the kth and (k + 1)th time slots are sk and sk+1, respectively. The codeword of the
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3.2 A multi-level framework for lattice network coding 99

branch that exists from sk and arrives at sk+1 is denoted as cisk→sk+1
. The metric for each

branch is given by

||(αiy − σ−1(cisk→sk+1
))− QΛ′i((α

iy − σ−1(cisk→sk+1
))||2 (3.107)

where σ−1( · ) is the inverse operation of σ( · ) de�ned in Section 3.2.4. We employ Viterbi
algorithm to estimate the best possible outcome ci. This implements the LIF quantiser
Q

(i)
LIF for EDC-based MLNC.

Proof of Proposition 3.1 and Proposition 3.2

The codeword of the ith layer is ci = (ci1 + 〈$〉, · · · , cin + 〈$〉) ∈ Ci. Ci is a linear code
over δiS/〈$〉which is generated by σ̃i([Iki Bi

ki×(n−ki)]) where [Iki Bi
ki×(n−ki)] is a ki×n

matrix over δiS. These are de�ned in (3.64) and (3.65). The minimum-norm coset leader
in the ith layer primary sublattice system is given by:

σ̃i,4(ci) =
(
ci1 − Qi(c

i
1/piδi)piδi, · · · , cin − Qi(c

i
n/piδi)piδi

)

=
(
ci1 −$Qi(c

i
1/$), · · · , cin −$Qi(c

i
n/$)

)
(3.108)

where Q(z) is a quantiser which sends z ∈ C to the closest point in S. We denote
d2(Λpi/Λ

′) as the length of the squared shortest vectors in the set Λpi \ Λ′, then

d2(Λpi/Λ
′) = min

ci 6=0,ci∈Ci
||σ̃i,4(ci)||2 = ω

(i)
min(Ci) (3.109)

The volume of the Voronoi region of Λ′ is V (V(Λ′)) = ϑn|$|2n, where ϑ is a scaling
factor depending on which PID is used, e,g., ϑ =

√
3/2 when S is Eisenstein integer.

The nominal coding gain for the ith layer primary sublattices is:

%(Λpi/Λ
′) =

ω
(i)
min(Ci)

(V (V(Λpi)))
1
n

=
ω

(i)
min(Ci)

(ϑn|pi|2(n−ki)|δi|2n)
1
n

=
ω

(i)
min(Ci)

ϑ|pi|2(1− ki
n

)|δi|2
(3.110)

We now prove the kissing number for the ith layer primary sublattices. Let N(ω
(i)
min(Ci))

be the number of codewords in Ci with the minimum Euclidean weight ω(i)
min(Ci), and

NU(S) be the number of units in S, e.g. NU(Z([ω])) = 6. When |pi|2−1 ≤ NU(S), recall that
Ci is a linear code over δiS/〈$〉. The number of non-zero elements of coset leaders in
δiS/〈$〉 is |pi|2 − 1, and these elements have to be a subset of δiU(S). Hence, there are
NU(S)

|pi|2−1
elements in the coset leaders which are formed by the same codeword and give
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100 3 Compute and forward based NCM

the shortest vector. This means the number of the non-zero elements in a codeword
is precisely ω

(i)
min(Ci)

|δi|2 . When |pi|2 − 1 > NU(S), every neighbour point is represented by
di�erent codewords, and hence the kissing number of the ith layer primary sublattices
is given by:

K(Λpi/Λ
′) =





N(ω
(i)
min(Ci))

(
NU(S)

|pi|2−1

)ω(i)
min

(Ci)

|δi|2 , |pi|2 − 1 ≤ NU(S)

N(ω
(i)
min(Ci)), Otherwise

(3.111)

and now Proposition 3.1 is proved.

From the proof of Theorem 3.1, we have c̃ = c1 +c2 + · · ·+cm, c̃ ∈ C̃ and C̃ ∈ (S/〈$〉)n.
The minimum-norm coset leader for Λ/Λ′ can be represented by codewords used for all
layers, thus:

σ̃4(c̃) =

(
c̃1 −$Q

(
c̃1

$

)
, · · · , c̃n −$Q

(
c̃n
$

))
(3.112)

where c̃j = c1
j + c2

j + · · · + cmj and cij , j = 1, 2, · · · , n, i = 1, 2, · · · ,m, denotes the jth

element of the codeword ci. Then, the squared shortest vectors in the set Λ \ Λ′ can be
represented by the m linear codes used at each layer,

d2(Λ/Λ′) = min
c̃ 6=0,c̃∈C

||σ̃4(c̃)||2 = ωmin(C̃)

The nominal coding gain for Λ/Λ′ is

%(Λ/Λ′) =
ωmin(C̃)

(V (V(Λ)))
1
n

=
ωmin(C̃)

∏m
`=2 |p`|

2(k`−k1)

n

ϑ|p1|2(1− k1
n

)|δ1|2
(3.113)

where we assume k1 ≤ k2 ≤ · · · ≤ km in (3.113). Let N(ωmin(C̃)) be the number of
codewords in C̃ with the minimum Euclidean weight ωmin(C̃), the kissing number of
this kind of lattices is:

K(Λ/Λ′) = N(ωmin(C̃)) (3.114)
Proposition 3.2 is thereby proved.

Proof of Proposition 3.3 and Proposition 3.4

As explained in Section 3.2.4, the codeword Ci of the ith layer operates over the �-
nite chain ring Ci ∈ δiS/〈$〉, where δi = $/pγii . Following (3.71), σ̃i(wiGi

FCR) 7−→
(δiS/〈$〉)n, here the message space of the ith layer is de�ned as:

Wi ∼= (δiS/p
γi
i δiS)k

′
i,0 ⊕ · · · ⊕ (δiS/piδiS)k

′
i,γi−1
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Then the minimum-norm coset leader of Λpi/Λ
′ has similar form as (3.108) with ci ∈

Ci. The nominal coding gain %(Λpi/Λ
′) can be obtained based on the same derivation

in (3.109) and (3.110). We are more interested in constructing the primary sublattices
with some linear codes over the �nite �eld. This can be implemented via the complex
construction D approach, based on a set of nested linear codes, as proved in Section 3.2.4.
The residue �eld is now de�ned as Q , δiS/〈piδi〉. Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be nested
linear codes of length n overQ, where Ci,t is an [n,

∑t
`=0 k

′
i,`] linear code for the tth level

of the ith layer, t = 0, 1, · · · , γi − 1. Note that Ci,t is row spanned by the vector space:

gCi,t =




gik′i,0
gik′i,1

...
gik′i,t




(3.115)

where gik′i,t
∈ Qk′i,t×n. None of the rows of gCi,t are linear combination of the other rows.

It is obvious that the primary sublattice point λpi ∈ Λpi \ Λ′ is given by:

λpi = pγii δis + pγi−1
i ci,γi−1

︸ ︷︷ ︸
Λ
γi−1
pi

+ · · ·+ pic
i,1

︸ ︷︷ ︸
Λ1
pi

+ci,0

︸ ︷︷ ︸
Λ0
pi

(3.116)

where ci,t has to not be zero for all possible t values. The outer lattice Λγi−1
pi

= {pγi−1
i (piδis+

ci,γi−1) = pγi−1
i Λ⊥i,γi−1 : s ∈ Sn, ci,γi−1 ∈ Qn \0}. Here Λ⊥i,γi−1 forms a lattice which has

the same structure as the one in scenario 1, with Λ⊥
′

i,γi−1 = {piδis : s ∈ Sn}. Thus, ci,t =

(ci,t1 +〈piδi〉, · · · , ci,tn +〈piδi〉) ∈ Ci,t. The minimum-norm coset leader for Λ⊥i,γi−1/Λ
⊥′
i,γi−1

and the minimum Euclidean weight ω(i,γi−1)
min (Ci,γi−1) can be readily obtained in the same

way as (3.108) and (3.109). It is obvious that λγi−1
pi
∈ pγi−1

i Λ⊥i,γi−1 \ pγi−1
i Λ⊥

′
i,γi−1 and we

have ‖ λγi−1
pi
‖2≥ |pγi−1

i |2ω(i,γi−1)
min (Ci,γi−1). The squared shortest vectors of the inner lat-

tice, e.g. ‖ λ0
pi
‖2 has to be at least larger than ‖ λ⊥i,0 ‖2 where Λ⊥i,0 , {λ⊥i,0 = piδis+ci,0 :

s ∈ Sn, ci,0 ∈ Qn \ 0}, and we have ‖ λ0
pi
‖2≥ ω

(i,0)
min (Ci,0). The squared shortest vectors

in the set Λpi \ Λ′ is therefore lower bounded by

d2(Λpi/Λ
′) ≥ min

0≤t≤γi−1
{|pi|2tω(i,t)

min (Ci,t)}

where ω(i,t)
min (Ci,t) is referred to as the minimum Euclidean weight of non-zero codewords

in Ci,t ∈ Qn (an [n,
∑t

`=0 k
′
i,`] linear code) for the tth level of the ith layer. The nominal
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102 3 Compute and forward based NCM

coding gain for the ith layer primary sublattices in scenario 2 is lower bounded by:

%(Λpi/Λ
′) ≥ min0≤t≤γi−1{|pi|2tω(i,t)

min (Ci,t)}
(V (V(Λpi)))

1
n

=
|pi|2

∑γi−1
t=0 (γi−t)

k′i,t
n min0≤t≤γi−1{|pi|2tω(i,t)

min (Ci,t)}
ϑ|$|2 (3.117)

Let Nt(ω
(i,t)
min (Ci,t)) be the number of codewords in Ci,t with the minimum Euclidean

weight ω(i,t)
min (Ci,t) for the tth level and the ith layer. The kissing number of the ith layer

primary sublattice is upper bounded by

K(Λpi/Λ
′) ≤





∑γi−1
t=0 Nt(ω

(i,t)
min (Ci,t))

(
NU(S)

|pi|2−1

)ω(i,t)
min

(Ci,t)

|δi|2 , |pi|2 − 1 ≤ NU(S)∑γi−1
t=0 N(ω

(i,t)
min (Ci,t)), Otherwise

(3.118)

This completes the proof of Proposition 3.3.

We now de�ne the code Ci such that ci = ci,0 + pic
i,1 + · · · + pγi−1

i ci,γi−1, and hence
Ci ∈ δiS/〈$〉. From the theorems developed in sections 3.2.3 and 3.2.4, we are able to
generate a new code C̃ such that c̃ = c1 + · · ·+ cm which makes C̃ ∈ S/〈$〉. Thus, the
codeword of C̃ is generated by the nested linear codes Ci,t of all layers. The minimum-
norm coset leader for Λ/Λ′ can be represented by:

σ̃4(c̃) =

(
c̃1 −$Q

(
c̃1

$

)
, · · · , c̃n −$Q

(
c̃n
$

))
(3.119)

where c̃j = c1
j + c2

j + · · · + cmj and cij , j = 1, 2, · · · , n, i = 1, 2, · · · ,m, denotes the jth

element of the codeword ci. Then, the squared shortest vectors in the set Λ \ Λ′ can be
represented by the m linear codes used at each layer,

d2(Λ/Λ′) = min
c̃ 6=0,c̃∈C

||σ̃4(c̃)||2 = ωmin(C̃)

The nominal coding gain for Λ/Λ′ is

%(Λ/Λ′) =
ωmin(C̃)

(V (V(Λ)))
1
n

=
ωmin(C̃)

∏m
`=1 |p`|2

∑γ`−1
t=0 (γ`−t)

k′i,t
n

ϑ|$|2 (3.120)

The nominal coding gain of the EDC lattice in scenario 2 is related to the minimum
Euclidean weight of the composite code C̃ and the code rates of all nested linear codes
at each layer.
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4 HNC maps and node operations in large scale
scenarios

WPLNC based communication networks deliver the information from sources to des-
tinations through the complex relay network. In order to properly design the Network
Coded Modulation (NCM) transmitted by network nodes and the relay processing in-
cluding the Hierarchical Network Code (HNC) maps, we need a formal description of
the global network processing function. Any practical implementation also implies the
half-duplex constrained relays which imposes the network to work in multiple stages.
We present a polynomial based formalism de�ning the Hierarchical Network Transfer
Function (H-NTF). It captures all phenomena related to the stage dependent transmit
and receive activity over the network, including potential bu�ering, and mainly the hier-
archy of forming the local HNC maps into the global hierarchical �ow description. Us-
ing the polynomial formalism of H-NTF, we develop the half-duplex constrained stage
scheduling algorithm. It starts with �nding a causal minimal latency (or close to min-
imal) critical sequence with subsequent doubly (�rst Rx then Tx) greedy mapping of the
node activity compliant with the half-duplex constraint.

4.1 Hierarchical network transfer function

4.1.1 Introduction

WPLNC based communication networks deliver the information from sources to destin-
ations through the complex relay network. Each node demodulates, decodes, processes
and re-encodes the hierarchical information (many-to-one function of the component
data) directly in the constellation space. Various aspects of the design ranging from
the NCM (in many �avors: Compute and Forward, Denoising, Hierarchical Decode and
Forward, etc.) over the relay node strategies (decode, compress) to the Hierarchical In-
formation (HI) and Hierarchical Side Information (HSI) decoding strategies are discussed
in number of works, e.g. [22, 75–79].

This paper deals with a speci�c problem of WPLNC design related to the half-duplex
stage scheduling. In order to properly design the NCM transmitted by network nodes
and the relay processing (including the Hierarchical Network Code (HNC) maps), we
need a formal description of the global network processing function. Any practical im-
plementation also implies the half-duplex constrained relays which imposes the network
to work in multiple stages.
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104 4 HNC maps and node operations in large scale scenarios

It appears that all works on WPLNC assume either quite simplistic (e.g. two-way relay-
ing) or at least a priori given and �xed stage scheduling. At the best, the given �xed
scheduling is parameterised by adjusting the time proportions of the stages. The �xed
scheduling is then followed by either purely ad-hoc choice of HNC maps or some sort of
the optimisation but only inside a very limited constraints of the selected stages schedul-
ing, e.g. compute-and-forward requires “layered” type of scheduling. The uniting gen-
eric model capable of describing the hierarchy of the WPLNC processing for arbitrarily
complicated network is still missing. Also the generally applicable synthesis of the stage
scheduling in complicated topologies is unsolved. The scheduling of network resources
is, indeed, a wide and deeply investigated area of the theory of networks. Its main target
is however rather aimed on data/packet �ows in the network. It should not be confused
with network stage scheduling. It is rather physical layer related and de�nes how the
network should be split into its per-state (stage) de�ned sub-networks and what type
of activity are nodes supposed to do and how the local edge/node properties/behaviour
unfolds into the global network description.

The background theory frequently used to solve the tasks of global network description
is the graph theory, e.g. [80]. The graph theory gives the global view and properties
of the network (the graph) based on its structure description typically represented by
the adjacency matrix. The local edge or node properties are represented by scalars only.
They represent node adjacency by 0 or 1, or are extended to scalar integer or real values
describing the multiplicity of capacity of the edges. This local description is however
insu�cient for describing complex behaviour of WPLNC networks. On the other side,
the coding theory uses polynomial formalism frequently for the analysis of trellis free
path properties of codes that can be described by the �nite state machine, e.g. convolu-
tional and turbo codes [43]. A speci�c situation when the network (graph) changes in
time appears to have received only limited attention, and if so, it still remains within a
perspective of simple scalar local description on the edges. The work [81] introduces the
graph unfolding but still tightly bound to scalar edge description, in this particular case
even using Boolean operations.

This paper builds on these ideas and develops a network graph model that can handle (i)
complex local description of the edge and node properties using polynomial formalism,
and, at the same time, (ii) allows for time dependent network graph with discrete ordered
causal states (stages). The local and per-stage description is unfolded into the global
description capturing the whole hierarchy of local properties. The model is then used
to synthesise half-duplex constrained stage scheduling. The motivation and goals are
outlined here.

(1) The design of a WPLNC network involves the synthesis and optimisation of re-
lay strategies that process many-to-one functions (hierarchical information) of the data
streams represented in the constellation space. At the same time, we have to guarantee
the end-to-end solvability for the desired data at the destination based on the observation
of multiple hierarchical information carrying signals. Having a description connecting
the local and the global behaviour is a �rst step in this design.
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4.1 Hierarchical network transfer function 105

(2) Let us assume that the building blocks of the WPLNC cloud are half-duplex con-
strained relays performing their front-end strategy (multiple stage Hierarchical Multiple
Access Channel (H-MAC)), back-end strategy (Hierarchical Broadcast Channel (H-BC))
and relay processing strategy described by HNC map χ and it corresponding processing
metric µ. We are also given a connectivity map of the network.

(3) The goal is to develop a technique that will allow to build the whole encapsulation
hierarchy of the information �ow between the source and its target destination respect-
ing all involved HNC maps, Tx activity stages, received signals participating in a given
HNC map, mixed stages �ows and potential bu�ering at nodes.

The paper provides the following contributions and results.

(1) We develop a polynomial formalism describing all node activities (involved HNC
maps, Tx activity stages, participating Rx signals, bu�ering). This will be used to de�ne
Hierarchical Network Transfer Function (H-NTF) capturing the whole encapsulation of
these phenomena in the network. It can be used to identify the end-to-end solvability for
the information �ow including all hierarchical encapsulations, scheduling of the stages
and it will help identifying the critical bottlenecks. Since complex networks usually
have a high diversity potential and also the processing and scheduling provide many
possible options, it will also set the model for optimising the node operations. The name
“hierarchical” emphasises that the NTF captures the encapsulation hierarchy rather than
the input-output transfer [82].

(2) Using the H-NTF formalism, we develop the doubly greedy half-duplex constrained
stage scheduling algorithm. It starts with �nding a minimal latency (or close to minimal)
causal critical sequence with subsequent doubly (�rst Rx then Tx) greedy mapping of
the node activity compliant with half-duplex constraint.

4.1.2 Polynomial formalism

Assume WPLNC cloud network with nodes numbered by integers S = {1, . . . , K}.
Sources and destinations are included in this set. Let the set of source nodes indices
be SS = {i1, . . . , iKS} ⊂ S and corresponding (correctly ordered) destination nodes
SD = {̂i1, . . . , îKS} ⊂ S. Indices in SD can repeat if a given node is a destination for mul-
tiple sources. We also (additionally over the numerical indices) denote the sources and
destinations with letter indices, Si1 ≡ SA, Si2 ≡ SB . . . and Dî1

= DA, Dî2
= DB, . . ..

Nodes participating in `-th stage have indices from the set S` ⊂ S, ` ∈ {1, . . . , L}.
A directed connectivityK×K matrix for `-th stage is H` where columns correspond to
Tx activity and rows to Rx activity. Its i-th row j-th column entriesH`,ij are equal to 1 if
i-th node receives the signal from j-node in the `-th stage, otherwise they are 0. Notice,
that the connectivity matrix under the half-duplex constraint has zeros on the main
diagonal. We also de�ne a global directed connectivity matrix H0 which describes the
connectivity regardless of the stage and its entries areH0,ij = U

(∑L
`=1H`,ij

)
, whereU(�)
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is a unit step function. Entries are equal to 1 if any of the per-stage directed connectivity
element is 1.

For each stage, we de�ne per-stage K ×K network transfer matrix

G` = W` (X`H`V` + B`) (4.1)

. The polynomial formalism denotes the passing of the network �ow through `-th stage
byW`. TheK×K diagonal matrix X` represents the event of the network �ow passing
through the i-th receiver’s HNC map in `-th stage by the polynomial variable X`,i,
i.e. X` = diag[X`,1, X`,2, . . . , X`,K ] where diag[a1, . . . , an] denotes a diagonal matrix
with a1, . . . , an on main diagonal. Similarly, the K × K diagonal matrix represents
the transmit activity of j-th node in the `-th stage by the polynomial variable V`,j , i.e.
V` = diag[V`,1, V`,2, . . . , V`,K ]. The diagonal K ×K matrix B` represents the bu�ering
at j-th node at stage `. It adds diagonal entries on G` matrix, i.e. the node virtually re-
ceives what it has transmitted B` = diag[B`,1, B`,2, . . . , B`,K ]. In summary, the matrix
G` has nonzero entries (1) on main diagonal W`B`,j which represent bu�ering, and (2)
on i-th row and j-th column W`X`,iV`,j if node i receives the signal from node j in `-th
stage.

4.1.3 Hierarchical network transfer function

The Hierarchical Network Transfer Matrix (H-NTM) is de�ned as a compound network
transfer matrix over all stages1

F =
L∑

`=1

∏̀

m=1

Gm = G1 + G2G1 + · · ·+ GLGL−1 . . .G2G1. (4.2)

The Hierarchical Network Transfer Function (H-NTF) is multi-stage network response
z on the excitation from the sources s evaluated at the proper destination indices z =
[z̃ î1 , . . . , z̃ îKS

]T where destination nodes have indices SD = {̂i1, . . . , îKS} ⊂ S, the full
response for all nodes is z̃ = Fs and s is the source excitation vector with entries Si on
positions i ∈ SS = {i1, . . . , iKS} ⊂ S otherwise zeros.

Hierarchical network transfer matrix is the network response combining the results from
all stages, e.g. G1s is the response after �rst stage with source excitation s, G2G1s is the
response after �rst and second stage, etc. The H-NTF contains a complex information
about the network �ows. It can be simpli�ed and interpreted in various was as we explain
later. The example of the polynomial formalism and H-NTF is in Figure 4.1.

1This follows similar ideas as [81] unfolding accessibility principle but with generalised polynomial
entries. Also, in the per-stage network transfer matrix product, the subsequent states (the later stages)
are left-hand matrix multiplications. We however do not use an explicit notation for this in the product
operator. We also assume a �nite number L of stages and no pipelining over several repetitions of
L-stage sequence.
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The complete H-NTF z contains complex information about the data �ow in the WPLNC
network. For speci�c purposes, we can simplify it in order to reveal what we want. Also
we can optimise the cloud operation by selectively switching on/o� various functional-
ities and subsequently analysing the result.

The most important aspect is whether the desired source found its way to the intended
destination. This is ful�lled if the source appears in the corresponding destination H-
NTF. However it, on its own, does not guarantee the solvability (generalised exclusive
law), it is only a necessary condition. Bu�ering can be switched o� by simply setting all
B̃ = 0. We can also do that selectively for individual nodes and/or stages. We de�ne zero-
bu�ering H-NTF zB̄ = z|B̃=0. The hierarchical encapsulation of the WPLNC network is
revealed by identifying the HNC maps at particular nodes and particular stages where
the source participates in. For this purpose we evaluate zB̄,X = zB̄|W̃=1,Ṽ=1. If the net-
work has high hierarchical information path diversity, we can selectively switch o� some
nodes’ transmission by setting V`,j = 0 for a given `, j, i.e. zB̄,X,V̄`,j = zB̄|W̃=1,Ṽ=1,V`,j=0.

In the network with high diversity of the end-to-end �ows having a non-uniform number
of stage activity over the paths, we need a tool to recognise the role of signals in terms
of HI and HSI. Components (or sub-components) of H-NTF can be HI or HSI only if they
have the same number of W` variables. It indicates that the source data come from the
same epoch (de�ned by the stages) and therefore have a chance to support themselves
(HI) or help resolve a friendly interference (HSI). Otherwise the data comes from di�erent
epochs and they are independent (if the source data are IID).

4.2 Doubly greedy stage scheduling

The polynomial formalism of the network transfer matrices can be used for the design of
the half-duplex constrained scheduling. There are many possible half-duplex scheduling
possibilities. Apart of the half-duplex constraint, we impose additional requirements to
reduce the number of possible solutions. A natural additional requirement is to minimise
the latency while keeping the multi-stage data �ow causal.

The forthcoming algorithm solves the half-duplexing systematically while the latency
and causality is solved by enforcing an ad-hoc solution which, however, in many case
gives the minimum latency solution. Essentially, we will identify the per-stage network
transfer matrices G` ful�lling the half-duplex constraint while enforcing the critical
transmission sequence. It guarantees that the data �ow on the critical path (typically the
longest path) will causally �nd its way to the desired destination with minimal latency.
The algorithm is doubly greedy in a sense that (1) all receivers that can hear transmitters
on critical path are set to the reception mode on a given stage, (2) all transmitters that
do not violate the half-duplex constraint (dictated by the previous point) are allowed to
transmit. We can later switch them o� selectively after analysing and optimising the
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1 2 3

4

5

7

6

H0 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0




Gcr =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 W1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 W2 0 0 0
0 0 0 0 0 W3 0




rcr = Gcri =




0
0
0

W1
0

W2
W3




vhd =
(∑L

ℓ=1 Wℓ

)
i − rcr =




W1 + W2 + W3
W1 + W2 + W3
W1 + W2 + W3

W2 + W3
W1 + W2 + W3

W1 + W3
W1 + W2




G̃ =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

W1 + W2 + W3 W1 + W2 + W3 0 0 0 0 0
W1 + W2 + W3 0 W1 + W2 + W3 0 0 0 0

0 0 W1 + W2 + W3 W2 + W3 0 0 0
0 0 0 0 W1 + W2 + W3 W1 + W3 0




zABC = SAW1W2

(
W3B1,1V2,1V3,5X2,5X3,7 + V1,1

( (
1 + W3B3,7

)
V2,5X1,5X2,7 + W3

(
B2,5V3,5X1,5 + V2,4V3,6X1,4X2,6

)
X3,7

))

+SBW1W2W3V1,2V2,4V3,6X1,4X2,6X3,7

+SCW1W2

(
W3B1,3V2,3

(
V3,5X2,5 + V3,6X2,6

)
X3,7 + V1,3

( (
1 + W3B3,7

)
V2,5X1,5X2,7 + W3

(
B2,5V3,5X1,5 + B2,6V3,6X1,6

)
X3,7

))

Figure 4.1: 3-source 3-relay 1-destination example network. Sources are SS = {1, 2, 3},
s = [S1, S2, S3, 0, 0, 0, 0]T , destinations are SD = {7, 7, 7}, S1 ≡ SA, S2 ≡
SB, S3 ≡ SC , D7 ≡ DA, D7 ≡ DB, D7 ≡ DC . H-NTF at �nal destination is
zABC .

H-NTF. Putting �rst the greedy reception before the greedy transmission attempts to
minimise the number of interacting signals in the WPLNC cloud.

Half-duplex constrained stage Rx-Tx greedy scheduling algorithm with enforced latency-
critical causal sequence is given by the following steps.

1. Global directed connectivity. The node global radio visibility is de�ned by global
directed connectivity matrix H0 and we assume that it is known.

2. Minimum latency causal path. We identify the minimum latency causal path. It
is the longest directed and sequentially numbered path in the network graph between
any of the sources and their corresponding destinations. Thus, it is the minimum num-
ber of hops if we respect only the directed connectivity regardless of the half-duplex
constraint. This can be obtained by observing the source �ow propagation through the
network with increasing number of the hops. We observe the response (H0Vm)×· · ·×
(H0V2)(H0V1)s with sequentially increasing m = 1, 2, . . .. The smallest m (denoted
byMmin) such that all sources �nd their way at least for somem ≤Mmin to their corres-
ponding destinations becomes the longest path ensuring causal delivery of source �ow
to the destination. The sequential multi-hop and causality principle also guarantees
that the nodes on one individual path of given source �ow (ignoring other sources and
paths) are consistent with half-duplex constraint. The corresponding ordered set Smin

of transmitting nodes can be easily identi�ed from the set of variables {V1,i1 , . . . , Vm,im}
associated with given source variable Si. It will be the minimum latency causal path
and it de�nes mandatory transmit activity of the nodes. If there are multiple of them,
we choose randomly (or the one which is better for WPLNC used on top of the stage
scheduling) one and cross-check the end-to-end �ow for all sources in the following
steps. If it fails, we choose a di�erent one until all options are exploited. The complexity
of this step is O(K2Mmin).
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3. Critical sequence. The previous step however does not generally guarantee, when
we later impose the half-duplex constraint, that the all other sources �nd their way to
their destinations in the number of half-duplex hops limited byMmin. If this happens, we
have to ad-hoc choose another enforced and possibly longer sequence of the transmitting
nodes (not violating the half-duplex) and cross-check that the subsequent half-duplex
schedule guarantees the end-to-end �ow. This sequence Sc of transmitting nodes will be
called enforced latency-critical causal sequence, or simply the critical sequence. The crit-
ical sequence guarantees the minimum latency causal network if the step #2 succeeded.
Otherwise the minimum latency network does not exist and the critical path becomes ad-
hoc solution. However, if the minimum latency path from the step #2 remains a subset
of the critical path we get a solution which is close to the minimum latency one.

4. Mapping the critical sequence on stages. The critical sequence of transmitting
nodes Sc = {m1,m2, . . . ,mL} de�nes the stages. The node m` belongs to the stage
` ∈ {1, . . . , L}. It means that the nodem` mandatory (by the critical sequence) transmits
in stage `. This mandatory transmission is represented by multiplying m`-th column
(corresponding to the m`-th Tx activity) of the matrix H0 by the stage variable W`. The
critical sequence transfer matrix is Gcr = H0 diag[w1, w2, . . . , wK ] where wi = W` if
m` = i otherwisewi = 0, i ∈ {1, . . . , K}, ` ∈ {1, . . . , L}. Columns of Gcr that belong to
mandatory transmissions are labeled by the corresponding W`. Columns which do not
participate in mandatory critical sequence transmission are set to zero. Since the critical
sequence was set as a causal Tx activity sequentially mapped on the stages, each stage
appears only once in the matrix Gcr.

5. Critical sequence Rx nodes (greedy Rx). All nodes that can receive the signals
from the critical sequence are set to the receive mode in the corresponding stage. These
nodes, regardless whether they are on the critical path, i.e. greedy Rx, can be found by
evaluating rcr = Gcri where i = [1, 1, . . . , 1]T . The i-th component of rcr contains the
sum of variables W` of the stages received by the i-th receiver. The complexity of this
step is O(KL).

6. Half-duplex constrained Tx (greedy Tx). Nodes that do not receive in the given
stage are allowed to transmit in that stage (greedy Tx). The set of allowed transmis-
sion half-duplex stages is simply get by subtracting (in polynomial representation) the
reception vector rcr from the vector containing all stages vhd =

(∑L
`=1W`

)
i − rcr.

The allowed Tx stages are then mapped onto the half-duplex transfer generating matrix
G̃ = H0 diag(vhd). The generating matrix has nonzero entries on the positions inher-
ited from the directed global connectivity matrix H0 and each nonzero entry is a sum of
W` variables representing the half-duplex consistent allowed Tx stages. The complexity
of this step isO(KL). The half-duplex generating matrix only guarantees that the critical
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path nodes comply with the half-duplex constraint and otherwise it gives doubly-greedy
freedom of Rx/Tx which can but does not have to be utilised.

7. Per-stage connectivity matrices. Per-stage directed connectivity matrix H` is
simply get by taking the generator matrix and setting W`′ = 0 for all stages `′ 6= `
H` = G̃|W`=1,W`′=0 for `′ 6=`.

Algorithm needs to performed by the centralised entity with H0 knowledge and then
subsequently the nodes are informed.

4.2.1 Example application.

The half-duplex Rx-Tx greedy scheduling procedure with enforced latency-critical causal
path is demonstrated on example network in Figure 4.1. Minimum latency causal path is
obtained from evaluating (H0Vm)×· · ·× (H0V2)(H0V1)s and observing the response
at node 7, i.e. the 7-th component of the responses

[(H0V2)(H0V1)s]7 = S1V1,1V2,5 + S3 (V1,3V2,5 + V1,3V2,6) , (4.3)

[(H0V3)(H0V2)(H0V1)s]7 = S1V1,1V2,4V3,6 + S2V1,2V2,4V3,6. (4.4)
We see that S1, S3 reach the destination in two steps while S2 needs three steps. Then
the minimum latency causal path (and also the critical sequence) is dictated by S2 and it
is Sc = {2, 4, 6} (there is no other option) and the number of stages is L = 3. The cross-
check of the end-to-end �ow is simpli�ed by the fact that all source have a common
destination and therefore only one component zABC of H-NTF needs to evaluated. All
three sources reach the destination and we can use the H-NTF to analyse and optimise
stage activity, bu�ering and HNC maps.

4.3 Cloud access node scheduling and validation

A large body of research has been recently devoted to the problem of wireless multi-user
communications. Traditional approaches of multi-hop relay networking use the ortho-
gonal separation of resources. However, in dense multi-relay ad-hoc networks these
approaches scale poorly with network size due to the increase of the overall interfer-
ence [83]. Recently the dense WCN architecture has been proposed [84–87] as a prom-
ising paradigm for multi-user communications based on the use of intermediate relay
nodes. The key feature of this architecture is low latency and high reliable multi-user
communication enabled by interference mitigation techniques at the PHY layer of the
relay nodes. This is referred as cloud-relaying and it is a cluster of densely deployed
relay nodes with the same ad-hoc properties. In order to accelerate the proliferation
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Figure 4.2: Super dense wireless cloud network (WCN) reference architecture.

of such a high throughput and reliable communications consistent with 5G vision the
quest for some required technologies is started in terms of: (i) introducing novel system
architectures and resource allocation schemes, (ii) advance transmission techniques and
strategies, (iii) new relays or new functions in current relays.

In the WCN, transmitted signals from multiple �ows are �ooded from the source CA
nodes to destinations through densely deployed relay nodes, in a layered architecture as
shown in Figure 4.2. Relay nodes (generally decode or amplify or compute and forward
relays) are cooperating directly at the PHY layer, creating a compound virtual macro-
relay that employs advanced interference processing [85]. The fundamental goal of the
relay nodes is to deal with the interference of simultaneous �ows by adopting interfer-
ence processing techniques such as interference neutralisation [88], wireless network
coding [11], and successive interference cancellation [89]. The performance of the dense
WCN strictly depends on the way multiple �ows coexist within the WCN. Moreover, in-
trinsic heterogeneity of the arrival tra�c, caused by the mobility pattern of end-users, is
another dominant factor in CA nodes binary (ON/OFF) mode. While some CA nodes are
inactive (OFF mode) due to the lack of tra�c, other CA nodes might be overwhelmed
with a high burst of tra�c. Despite of the fact that WCN can perfectly mitigate the
interference impairment and accommodate all the CA nodes in active (ON) mode, this
barely happens due to the heterogeneity of arrival rates. Since the WCN capacity scales
with the number of simultaneously active CA nodes, this leads to waste resources and
decrease the cloud e�ciency in handling multiple �ows in parallel.

The purpose of this section is the design of CA nodes scheduling mechanism and an
o�oading mechanism in the backhaul of the WCN. CA node scheduling is inspired by the
adoption of the scheduling approach proposed in [90]. Two optimal scheduling solutions,
so-called one-at-a-time and all-at-once modes and their general optimality conditions are
discussed in [90]. Intuitively, one-at-a-time is optimal if the transmitted �ows pose heavy
interference to each other, such that the rate reduction due to interference is signi�cant.
In fact, one-at-a-time is the cloud mode when baseline TDMA is the optimal transmission
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scheme. Conversely, all-at-once mode is preferable for mitigated-interference scenario,
where simultaneous transmissions have virtually no impact on each others’ transmission
rate. Considering the interference mitigation capability of the dense WCN, all-at-once
mode is the preferable scheduling solution for the CA nodes in the WCN if interfering
signals are perfectly canceled by the WCN’s internal processing. We further enhance this
scheduling mechanism through an ad-hoc o�oading mechanism devised in the backhaul
of the WCN (among CA nodes) to maximise its utility, i.e. multiple �ows transmission
with the minimal cloud duty-cycle. The proposed scheme is evaluated via Matlab and
also simulations at the System Level Simulator (SLS).

4.3.1 System model

The WCN consists of a set of N CA nodes acting as N × N MIMO system toward N
destinations through a macro-relay node. We have L layers from source to destination
CA nodes. The macro-relay is a cascade of [M × M × · · · × M ] MIMO system with
L− 2 layers and M relays in each layer, equipped with speci�c interference mitigation
capability that can provide parallel orthogonalised communication channels for the act-
ive �ows (up to N ) originated from CA nodes. Notice that N ≤ M and each �ow can
be relayed with one or more relay nodes in each layer.

Basically, in each layer l, relay nodes are assigned to the transmission �ows to provide a
robust virtual communication tunnel for each �ow. We de�ne Dil as relay set consisting
of relays (here decode and forward) dedicated to the i-th transmission �ow at the l-th
layer. All relays in Dil receive their signal from i-th �ow, decode (or denoise [11]) and
forward it to the next layer, while treating the signals from other �ows as noise that are
assumed to be mitigated through functionality enabled at the PHY. This internal layered
architecture provides redundant copies of desired signals in each layer, resulting reliable
communication links between source and destination CA nodes [91]. Obviously, �ows
with more stringent QoS requirements will be allocated with larger number of relays in
each layer.

Packets originated from geographically distributed clients with a Poisson-Like arrival
rates {λi}Ni=1, accumulated in �nite size queues at CA nodes. Each CA node transmits
the packets stored in its queue through the WCN to the destination CA nodes. The
service rates experienced by CA nodes {µi}Ni=1, as o�ered by the WCN, are random
and exponentially distributed with a rate that depends on the state of the cloud s and
the internal processing gain α. Cloud state s refers to the number of simultaneously
activated CA nodes (ON mode), and the internal processing gain α ∈ [0, 1] depicts the
ratio of the interfering signals that reach the destination after being suppressed by the
interference mitigation capability of the WCN. Just to exemplify, if α = 0 the WCN
mitigates all the interference impairments in relaying multiple �ows, while for α = 1
the WCN has no interference mitigation capability. When the interfering signals are
perfectly mitigated, more CA nodes can transmit simultaneously via cloud. Potentially,
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in each transmission round, up toN CA nodes can simultaneously transmit their queued
packets to N receiver CA nodes (Namely cloud acts in "all-at-once mode, providing for
a point to point communication model through orthogonalised channels as for α = 0).
cloud utilisation factor is de�ned as (Ttdma

Tcloud
), where Ttdma is the entire transmission time

of all the CA nodes in the baseline time-division-multiple-access scheme (TDMA) where
one CA node at a time is using the WCN in a Round Robin (RR) approach, and Tcloud is
the entire transmission time of all the CA nodes via WCN (namely, WCN duty-cycle).

We de�neWcloud andWb as portions of the total bandwidth allocated to the WCN and its
backhaul communication respectively. More in detail, cloud bandwidthWcloud is used for
the source to destination CA nodes communication through the WCN, and the backhaul
bandwidth Wb is used for the backhaul communication so that CA nodes can exchange
their queue state information and o�oad their backlogged packets to each other (if bene-
�cial). Basically, the use of the WCN as a macro-relay with simultaneous transmissions
is bene�cial, if Tcloud ≤ Ttdma. The scope of this section is designing the CA nodes
scheduling and its enhancement through o�oading in the cloud backhaul, assuming the
WCN resources, e.g. cloud bandwidth Wcloud, backhaul bandwidth Wb and relay sets in
each layer Dil, are granted.

4.3.2 Cloud access node scheduling

In this subsection we address the CA nodes scheduling that is to �nd the minimum
scheduling time for emptying all queued packets at all CA nodes conditioned to the
incoming tra�c {λi}Ni=1, inter-CA nodes coordination and queues o�oading. The ob-
jective of the WCN is simultaneous transmission of as much as �ows compatible with
the transmit capability of the WCN for a given internal interference mitigation gain
α. Although CA node scheduling facilitates the simultaneous transmission, it does not
necessarily guarantee all-at-once mode. In fact, the transmission rate per each �ow is
impaired by increasing the number of simultaneous �ows, depending on the WCN inter-
ference processing gain α. Considering the fact that each CA node has a speci�c service
rate granted by the cloud (which can be decreased when increasing the number of simul-
taneous CA nodes) �nding the optimal sets of CA nodes for simultaneous transmissions
with the minimum WCN time is the focus of this subsection. We model the minimum-
time scheduling problem of CA nodes, and verify the e�ect of the interference processing
gain and heterogeneity of tra�c on the cloud states, in the following.

As introduced, let N = {1, 2, . . . , N} be the set of CA nodes (or equivalently N �ows)
can be activated within t-th round of transmission, these CA nodes are associated with
queues states q = {q1, q2, . . . , qN} where qi represents the accumulated packets at the
i-th CA node before the t-th round of transmission. The set of all possible scheduling
subsets of N is H with cardinality |H| = 2N − 1, excluding the empty set (no usage of
the cloud). We use the term state when referring to sh ∈ H, h = {1, 2, . . . , |H|}, that is
the subset of the CA nodes that are scheduled together (ON mode) with multiple �ows.
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The WCN in h-th state (sh) means that all CA nodes in the subset sh are in ON mode
to transmit their encoded �ows simultaneously. For any given state sh, the rate of each
CA node depends on the composition of CA nodes in sh. Let f(i, sh) denote the rate
function for a �ow originated from i-th CA node when i ∈ sh. These rates represent
feasible rates that are within the capacity region granted by the cloud.

The minimum-time scheduling problem for a given (f ,q), is to select a set of states
(s1, s2, . . . , sH), among the 2N − 1 members of H, along with their respective alloc-
ated transmission times (T1, T2, . . . , TH) such that the total time

∑H
h=1 Th is minimised,

provided that the corresponding data rate {{f(i, s1)}Ni=1, {f(i, s2)}Ni=1, . . . , {f(i, sH)}Ni=1}}
can empty the queues q. Based on the above mentioned points we can write

min
Tsh

∑

sh∈H
Tsh , (4.5)

subject to the constraints
∑

sh∈H
f(i, sh)Tsh = qi, i = 1, . . . , N , (4.6a)

Tsh ≥ 0, h = 1, . . . , |H| . (4.6b)

One optimal solution for (4.5) can be scheduling all N �ows simultaneously, in all-at-
once mode. If we consider sH as the state including all the CA nodes then f(i, sH) ≥
f(i,sh)||sh|=1

N
is the necessary condition for the all-at-once solution, where f(i, sh)||sh|=1

denotes the service rate of i-th CA node in the baseline TDMA scheme. Note that, if sh
denotes the h-th state from H (or equivalently a subset of simultaneous CA nodes) and
i is the index of a CA node so that i ∈ sh, the service rate f(i, sh) ≤ f(i, sk), if sh ⊂ sk.
It means that by increasing the number of simultaneous �ows, throughput of each �ow
can gradually reduce, even if the total cloud throughput might be still good compared
to the baseline TDMA scheme.

Cloud service rate: For the sake of reasoning, we approximate the service rate f(.)
from Signal-to-Noise-and-Interference Ratio (SINR) on links, cloud internal processing
gain α, and the number of hops between source and destination CA nodes. Basically, the
end-to-end service rate for i-th CA node in the h-th state of the cloud can be de�ned as

f(i, sh) =
Wcloud

L− 1
log2

(
1 + min

rl

{∑
r∈Di,l−1

p◦gr,rl

σ2
η + αΓl(i, sh)

})
, (4.7)

where p◦ is the transmission power, gr,rl is the gain of Rayleigh channel for two success-
ive relays (namely, (r, rl) ∈ {Di,l−1 × Di,l}), and σ2

η is the noise term. Γl(i, sh) is the
interference impairment caused by the other simultaneous �ows at the l-th layer, that is
scaled by cloud internal processing gainα. Note that the end-to-end service rate is scaled
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down by the number of hops (L− 1) according to the layered architecture of the cloud
(see Figure 4.2) that allocates orthogonal resources at every hop as for other networks.
The optimal number of layers L with the minimum outage probability is investigated
in [92] with analysis restricted to one relay at each layer. A closed-form expression for
the optimal number of layers incorporating the end-to-end throughput needs further
investigation. Considering a �xed number of layers, cloud service rate f(i, sh) for i-th
CA node in h-th state depends on the internal processing gain α which quanti�es the
e�ciency of the cloud in attenuating the interference impairment. Note that for small
value of α (when α → 0) the number of simultaneous transmissions increases (due to
the perfect interference mitigation capability) while for large values of α (when α→ 1)
the CA nodes will be scheduled closer to the conventional TDMA or one-at-a-time mode.
Finally, the average service rate of i-th CA node can be approximated as

µi =
∑

sh∈H

Tsh
Tcloud

f(i, sh) . (4.8)

In order to have a tractable analysis, the service rate for the i-th CA node is exponentially
distributed with parameter µi.

4.3.3 Distributed o�loading in the cloud backhaul

In this subsection we highlight that the heterogeneous arrival rate can degrade the per-
formance of the cloud scheduler. In fact, even if the cloud sustains the maximum possible
service rate by perfectly mitigating the interference impairment, the tra�c pattern, i.e.
the number of queued packets in each CA node, is a dominant factor in achieving the
optimal solution. Speci�cally, the solution provided by (4.5) depends upon two factors:
(i) the cloud service rate and (ii) CA nodes queue state. The former is a function of cloud
internal processing gain characterised by parameter α (see subsection 4.3.2). The latter
depends on the tra�c rates that are not essentially homogeneous.

Figure 4.3 visualises two di�erent solutions of scheduler (4.5), depicting the evolution of
the queue state on the scheduling and consequently cloud states. As we already men-
tioned, if we assume sH is the state that all CA nodes are activated in all-at-once mode,
with cardinality |sH | = N and f(i, sH) ≥ f(i,sh)||sh|=1

N
for ∀i ∈ sH , the state sH is the

optimal solution of (4.5). However, heterogeneous packet arrival rates can manipulate
the optimal solution by reducing the cardinality of the activated CA nodes, for a period
of time, increasing the cloud duty-cycle (Tcloud).

Despite the fact that the cloud internal processing gain can support the simultaneous
transmission of all the CA node, the cloud state sh strictly depends on the state of the
queues q. As is shown in Figure 4.3 a, when packet arrival rates of CA nodes are hetero-
geneous (here we consider λ3 > (λ1, λ2) > λ4 for a cloud with N = 4 CA nodes and
one layer of relays, i.e. L = 3 hops), the scheduler �rst equalises the queue length by
activating CA nodes in the groups with cardinality of two or three and �nally activates
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Figure 4.3: Cloud processing state sh, depending on the queue states: a) heterogeneous
packet arrival rates (λ3 > (λ1, λ2) > λ4); b) homogeneous packet arrival
rates (λi = λj ∀i, j ∈ N).

all of the CA nodes in all-at-once mode. On the other hand, when queues are almost
balanced with homogeneous arrival rates (qi = qj for i, j ∈ N ) the cloud is activated
in all-at-once mode in a larger portion of the cloud duty-cycle (T(|sh|=N)/Tcloud) such
that the cloud is fully utilised, see Figure 4.3 b. Notice that the cloud is fully utilised
if T(|sh|=N)/Tcloud → 1, as a larger amount of tra�c can be processed and reach the
destination nodes in a shorter period of time.

We devise a distributed o�oading mechanism in the backhaul of the cloud to equalise
the number of the queued packets at the source CA nodes. Parallel to the transmission
through the cloud, CA nodes partially useWb to o�oad some queued packets from high-
demanded CA nodes to the low-demanded ones. This scheme implicitly uses CA nodes
as cooperative relay nodes in the backhaul of the cloud and accordingly forces the sched-
uler to activate all the CA nodes as they have approximately equalised queue size. We
pair donor and acceptor CA nodes for cooperation, based on their communication delay
in the cloud backhaul. Although every CA node can potentially communicate with all
the other CA nodes, due to the scarcity of resources, each CA node constructs a group of
three CA nodes to cooperate in the o�oading process. Let rji be the normalised fraction
of packets that i-th CA node forwards to the j-th CA node and ρj = µ

′
j−
∑N

k=1 rjkλk be
the residual service capability of j-th CA node. Note that µ′j = 1/(T cj + T bj ) where T cj is
the average serving time of a packet in the j-th CA node (waiting time in the queue plus
transmission time) and T bj is the o�oading delay in the backhaul of the cloud depend-
ing on the channel quality used in the cloud backhaul. In other words, µ′j is the service
rate of the i-th CA nodes’ packet when it is redirected to the j-th CA node. In compact
notation, ρ = µ

′ −Rλ where R is the N ×N o�oading matrix among CA nodes. Each
row rj = [rj1, rj2, . . . , rjN ] is the incoming portion of tra�c toward j-th CA node and
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each column ri = [r1i, r2i, . . . , rNi]
T is the outgoing portion of tra�c from i-th CA node

to the other CA nodes.

As mentioned earlier, we let every CA node o�oads its packets toward two acceptor CA
nodes with the minimum o�oading time. In fact, each CA nodes �nds the nodes with the
lowest o�oading delay in the cloud backhaul. Every CA node constructs the o�oading
set J = {i, l, k} consists of its own index i and two CA nodes for o�oading, indexed as
l, k. The purpose here is optimising the column vector ri of each CA node based on the
knowledge of the residual service capability ρj for j ∈ J. Therefore, delay for each CA
node for incoming tra�c can be written as

Di(R) =
N∑

j=1

rjiτj(R) , (4.9)

where τj(R) = 1
ρj−rjiλi . Regarding the above mentioned parameters, each CA node

minimises its cost function as
min
ri

Di(R) , (4.10)

subject to the constraints:

N∑

j=1

rji = 1 , (4.11a)

rji ≥ 0 ∀j ∈ J , (4.11b)
rji = 0 ∀j ∈ N\J . (4.11c)

Assuming that CA nodes in J are sorted based on their available capacity (ρ1 ≥ ρ2 ≥ ρ3),
the optimal outgoing portion of backlogged packets from i-th CA node to the j-th CA
node in J is

rji =





1
λi

(
ρj −

√
ρj√
γ

)
if 1 ≤ j < I

0 if I ≤ j
, (4.12)

where
√
γ =

∑I−1
j=1

√
ρj∑I−1

j=1 ρj − λi
, (4.13)

and I is the minimum index that satis�es the inequality

√
ρI ≤

1√
γ
. (4.14)

Proof. In Section 4.3.6.

According to (4.10) every CA node minimises its delay by direct transmission or o�oad-
ing through the other CA nodes. This model implicitly selects neighbouring CA nodes,
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Figure 4.4: Cloud utilisation factor (Ttdma/Tcloud) versus cloud internal gain α ∈ [0, 1]
under heterogeneous arrival rates. N = 4.

or CA nodes with a high quality communication channel for o�oading. Assuming that
the service rate of the cloud is fair to all the CA nodes (α is equal for all �ows) this o�oad-
ing mechanism equalises queue sizes at the source CA nodes. We verify the proposed
minimum-time scheduling and distributed o�oading schemes with some numerical res-
ults in the following subsection.

4.3.4 Numerical results

In this subsection, we evaluate the performance of the proposed scheduling and dis-
tributed o�oading mechanism compared to the conventional baseline TDMA scheme.
Simulation is twofold. We use Matlab to evaluate the cloud utilisation factor when we
use both minimum-time scheduling and o�oading mechanisms. Then we use the SLS
as a more realistic environment to evaluate end-users QoS, e.g. packet delay and packet
loss ratio. The SLS is a �exible tool with a modular object-oriented software architecture,
which allowed the rapid implementation and evaluation of the proposed schemes. It fo-
cuses on Layer-2 protocols, but it also implements the PHY functionalists, i.e. simulating
the underlying wireless channel and the WCN interference mitigation capability.

Figure 4.4 compares the cloud utilisation factor 1 ≤ Ttdma
Tcloud

≤ N versus cloud internal
processing gain α ∈ [0, 1]. For simplicity, N = 4 pairs of transmitter-receiver CA nodes
are considered with heterogeneous arrival rates so that the packet arrival rate of the
second CA node is two times higher compared to the others (say λ2 = 2λ̄ and λi =
λ̄ ∀i 6= 2). As shown for α = 0 (namely when cloud perfectly mitigates the interference)
the minimum-time scheduler joint with distributed o�oading mechanism in the cloud
backhaul fully utilises the cloud under heterogeneous arrival rates and outperforms the
minimum scheduling time solely. Moreover, there is no performance gain compared
to the TDMA scheme when α → 1 as there is no interference mitigation capability
which would facilitate parallel transmissions. Figure 4.5 highlights the e�ect of the cloud
internal interference processing gain α on the dedicated time portion to each state of the
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Figure 4.6: Comparison of packet delay between scheduler joint with o�oading and
TDMA scheme under di�erent average load factors λ̄, N = 4.

cloud, i.e. Tsh as the time dedicated to the state sh, based on the complementary CDF,
under heterogeneous arrival rates. As is shown, cloud behaves di�erently depending
on the value of α. Cloud is operating in TDMA mode (about 70% of the entire duty-
cycle) when α = 1, while the highest percentage of the cloud duty-cycle is spent on the
all-at-once mode when α = 0.

We evaluate the packet delay and packet loss ratio of the cloud equipped with the pro-
posed schemes through the SLS. In all the simulations made by SLS maximum capacity
per each �ow is assumed 54 Mbps, but varying based on the SINR value. Tra�c is gen-
erated with an exponential process, and stored in CA node bu�ers with a capacity of 50
packets, awaiting transmission. The mean rate of the exponential process is derived from
the input load which is an independent parameter, and is expressed relative to the capa-
city. Unbalanced tra�c is assumed in all our experiments, with even-numbered nodes
assigned double tra�c load that the odd-numbered ones. This is to test the e�ective-
ness of the o�oading mechanism. In Figure 4.6, 4.7 we compare the performance of the
scheduling algorithm and o�oading scheme, compared to the baseline TDMA scheme,
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Figure 4.7: Comparison of packet loss ratio between scheduler joint with o�oading and
TDMA scheme under di�erent average load factors λ̄, N = 4.

i.e. round-robin transmission. It can be seen that the proposed schemes signi�cantly out-
perform the baseline, as they allow multiple parallel transmissions. Additionally, it can
be seen that the proposed o�oading scheme further enhances performance, especially
in high tra�c loads. To begin with there is a clear reduction in the packet loss ratio,
which is owed to the fact that without o�oading in e�ect, unbalanced tra�c saturates
the wireless links that correspond to the even-numbered nodes, leaving the rest lightly
loaded. Distributed o�oading mechanism leads to more balanced tra�c pro�les and de-
creased packet loss. It also leads to lower packet delays, by keeping packet bu�ers better
balanced. However, as can be seen, when the WCN saturates, i.e. λ̄ → 1, o�oading
mechanism has no e�ect since all the queues are full.

4.3.5 Conclusion

In this section, we proposed the minimum-time scheduling problem for the cloud access
nodes in the super dense wireless cloud networks. Packets originated from end users are
queues in cloud access nodes to be served through the super dense wireless cloud net-
work that provides the facility of multiple simultaneous transmissions. We modelled the
cloud access node scheduling as a minimum-time scheduling problem for emptying the
queued packets. We evaluated the e�ect of internal processing gain and tra�c heterogen-
eity on the scheduler, and devise an ad-hoc distributed o�oading mechanism to enhance
the cloud utilisation factor. Numerical results prove that the proposed scheduling joint
with distributed o�oading mechanism ties up users QoS at a high level compared to the
baseline TDMA scheme.

4.3.6 Proof of theorem

In order to solve (4.10), we show that the cost function Di is convex in ri and the set
of feasible solutions de�ned by the constraints (4.11a) and (4.11b,c) is convex. It can be
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shown that ∂Di
∂rji
≥ 0 and ∂2Di

∂r2
ji
≥ 0. Therefore, the Hessian matrix ofDi is positive which

means that Di is a convex function of ri. The Lagrangian in a compact notation is

L(ri, α,η) =
N∑

j=1

rji
ρj − rjiλi

− γ(riT1− 1)− ηT ri. (4.15)

where γ and η = [η1, η2, . . . , ηN ] are Lagrange multipliers. Regarding the KKT condition
rji is optimal solution for the i-th CA nodes i�

∂L

∂rji
=

ρj

(ρj − rjiλi)2 − γ − ηj = 0 , j = 1, . . . , N , (4.16)

∂L

∂γ
=

N∑

j=1

rji = 1 , (4.17)

ηjrji = 0, ηj ≥ 0 rji ≥ 0, j = 1, . . . , N . (4.18)

Equivalently,
γ =

ρj

(ρj − rjiλi)2 , if rji > 0 , j = 1, . . . , N , (4.19)

γ ≤ ρj
(ρj − rjiλi)2

, if rji = 0 , j = 1, . . . , N . (4.20)

If we sort the CA nodes based on their available capacity so that (ρ1 ≥ ρ2 ≥ ρ3) then
there might be some CA nodes that o�oading backlogged packets to them is not bene-
�cial due to their heavy load or communication delay in the cloud backhaul. Therefore,
there might be and index I so that rji = 0 for j ≥ I . Regarding this fact and summing
over CA nodes we have

√
γ =

∑I−1
j=1

√
ρj∑I−1

j=1 ρj −
∑I−1

j=1 rjiλi
≤ 1√

ρI
, (4.21)

where I is the minimum index depicting the I-th CA node so that

√
ρI ≤

1√
γ
. (4.22)

Finally, by having the index I for each CA node we solve (4.10) for rji that is

rji =





1
λi

(
ρj −

√
ρj√
γ

)
if 1 ≤ j < I

0 if I ≤ j
. (4.23)
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5 Optimised transmission techniques

5.1 n-largest eigenmode relaying

5.1.1 Introduction

It was proved by van der Meulen in [93] that the capacity of a three node communica-
tion system can, potentially, be larger than the capacity of a point-to-point communica-
tion system. Consequently, analysis of communication systems in which the transceiver
nodes cooperatively transmit their data to an intended �nal receiver has been a rather
active �eld of research in last decade and numerous papers including, e.g. [94–97] have
investigated cooperative communication systems. During the infancy of the concept of
cooperative communications, substantial work was carried out, investigating cooperat-
ing nodes with single antennas. Several promising relaying protocols were proposed;
among them, Amplify and Forward (AF) is intensively studied in the literature; hence,
in this part, we will focus on AF relaying, too.

Employing multiple antennas in communication nodes is another technique proved to
be capable of enhancing transmission rates, see [98]. Employing multiple antennas in
the nodes of a cooperative communication system has been an active research trend
during the last few years. Assuming multiple antennas at the relay, one major task is to
design a suitable ampli�cation matrix in the relay. Indeed, depending on the available
Channel State Information (CSI) at the relay, the ampli�cation matrix can, potentially, be
di�erent. Moreover, di�erent communication systems can demand the optimisation of
di�erent desired performance measure; hence, di�erent “optimal” relaying protocols will
exist: for instance, the non-regenerative relaying matrices, e.g. in [99–102], are designed
to minimise Mean Square Error (MSE) but other relaying matrices, e.g. in [103–107], are
assumed to maximise the achievable rates.

Assuming statistical CSI at a transceiver node is interesting from a practical point of
view; in particular, in rapidly changing channels, assuming perfect CSI in a relay node
is, indeed, unrealistic, hence, a large body of the literature investigates AF cooperative
systems wherein a single antenna relay node has access only to the statistical CSI (see
[108]). Note that single antenna AF relaying systems, with statistical CSI at the relay, are
usually referred to as “�xed gain" AF relaying. In spite of the importance of cooperative
communication systems with statistical CSI knowledge, very few papers consider the
problem when the relay node is equipped with multiple antennas. Moreover, except
[103], we are not aware of any other paper assuming fading correlation in the relay when
only the covariance of the channels is known to the relay. Note that fading correlation at
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a transceiver can be due to an unobstructed node or space limits at the node which forces
the antennas to be closely located. Justi�cations to assume transceivers with fading
correlation can be found in [109, 110].

The �rst contribution of this part is to provide a statistical analysis of the received Signal-
to-Noise Ratio (SNR) at the destination. There are two major motivations for studying
the statistical characteristics of the SNR:

• Outage probability is directly related to received SNR. Indeed, the cumulative dens-
ity function (cdf) of the SNR corresponds to the outage probability, and so, the cdf
of SNR will be derived in this part.

• By deriving the cdf of SNR, the mathematical complexity of direct maximisation
of the achievable rate, i.e. “optimal” power allocation, will be revealed. It will
be an excellent motivation for devising alternative approaches with reasonable
complexity.

Accordingly, the second major contribution of this part is to study the problem of power
allocation in the relay, and hence to devise a new and simple power allocation scheme for
multi-antenna relays. [103,106,107,111] consider the similar problem of the power alloc-
ation in the relay when statistical CSI is available in the nodes (either the source or relay
nodes). However, while [107] considers the high SNR regime of the system, [106, 111]
assumes correlation at the source node. In [103], we study a cooperative communication
system wherein the relay node is equipped with multiple antennas that are spatially cor-
related. The considered system is studied only at low SNR and it is proved that Largest
Eigenmode Relaying (LER) is the optimal transmission method at low SNR; however, the
system is not studied in the moderate and high SNR region. To the best of our know-
ledge, the design of an ampli�cation matrix in an AF cooperative system where only the
statistical CSI is known to the relay is an open problem, and one that will be tackled in
this part. We provide a scheme which operates in the regime beyond that where LER is
optimal, and whose performance is indistinguishable from the benchmark provided by
exhaustive search.

This part is organised as follows: In Section 5.1.2, the system model is introduced and
some preliminary existing results are recalled. Section 5.1.4 deals with characterising
the statistics of the SNR at the destination. In Section 5.1.5, a simple power allocation
algorithm is introduced for a relay with only two antennas; the proposed algorithm is
called “proportional power allocation" and has been extended for a system with multiple
antenna relay node in Section 5.1.6 and 5.1.7 and, �nally, the results are summarised in
Section 5.1.8.
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5.1.2 System model and preliminaries

5.1.3 Notation

Matrices are represented by boldface upper cases (H). Column and row vectors are
denoted by boldface lower cases (h), and hi indicates the i-th element of h. The super-
script ( · )H stands for Hermitian transposition. We refer to the identity matrix by I . The
expectation operation is indicated by E{ · }, the probability of a random variable is in-
dicated by P( · ) and fX(x) is reserved for probability density functions (pdf) of random
variable X ; ΛΣ represents a diagonal matrix with elements organised in descending or-
der and λΣ

i denotes the i-th diagonal element of ΛΣ. For simplicity of notation, (λΣ
i )2 is

abbreviated by λΣ2
i . The trace of a matrix is denoted by Tr( · ).

System model

In this part a dual hop, half duplex MIMO communication system is investigated. As-
sume a source node (equipped with nS antennas) transmits data to a single antenna des-
tination via an intermediate relay node which has nR antennas. The proposed system
models the downlink of a wide range of communication systems in which the user ter-
minal is equipped with single antenna due to space limitation, for instance, cellular net-
works or sensor networks. Moreover, �xed-gain AF cooperative systems with multiple
antennas at the relay is an open problem which has received little attention and so the
proposed system model is a good step forward for understanding �xed gain AF systems.
It is assumed that a direct link between the source and the destination is not available.
The half duplex constraint is accomplished by time sharing between the source and the
relay; i.e. each transmission period is divided into two time slots: the source transmits
during the �rst time slot and the relay during the second one. The relay remains silent
during the source transmission and vice versa. It is assumed that the source does not
have access to any statistical or instantaneous channel state information (CSI). Moreover,
it is assumed that the antennas in the source node are su�ciently far apart and so no
correlation is assumed at the source. The signal received at the relay (yR) due to the
source transmission is given by

yR = H1x+wR (5.1)

where the nR × nS matrix H1 represents the channel between the source and the relay.
WithPS the power constraint of the source, the column vectorx is the signal transmitted
from the source with Q = E(xxH) = PS

nS
InS and the column vector wR represents the

receiver noise in the relay with elements independently drawn from a complex Gaussian
random variable with variance N0. In this part, it is assumed that spatial correlation
occurs at the relay; the correlation can be due to space limit in the relay or due to fading
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correlation due to unobstructed relay node. Σ represents the correlation matrix at the
relay and therefore, using the Kronecker model,H1 can be written as

H1 = Σ
1
2H1w (5.2)

where elements of H1w are i.i.d., zero mean, unit variance complex Gaussian random
variables, independent of each other. The relay multiplies yR by the gain matrix F and
forwards it to the destination. Then, the received signal at the destination is

yD = h2FyR + wD (5.3)
= h2FH1x+ h2FwR + wD

where the row vector h2 indicates the channel between the relay and the destination;
wD represents the receiver noise at the destination. For simplicity, we assume that wD
and wR are statistically independent and identical, i.e. N0,wD = N0,wR = N0.
Due to the spatial correlation Σ at the relay, one can factorise h2 as

h2 = h2wΣ
1
2 (5.4)

where elements of h2w are i.i.d., zero mean, unit variance complex Gaussian random
variables, independent of each other. Justi�cation to assume transceivers with spatial
correlation can be found in [109, 110]. The correlation matrix Σ in the relay is decom-
posed using spectral decomposition as

Σ = UΣΛΣU
H
Σ (5.5)

where UΣ is a unitary matrix whose columns are the eigenvectors corresponding to Σ,
and ΛΣ is a diagonal matrix with the eigenvalues of Σ in decreasing order, i.e.

ΛΣ = diag[λΣ
1 , λ

Σ
2 , · · · , λΣ

nR
],

where λΣ
1 ≥ λΣ

2 ≥ · · · ≥ λΣ
nR
≥ 0. Moreover, some of λΣ

i s can possibly be zero.

Preliminaries

Ergodic capacity is one of the main performance criterion investigated in this part. Using
(5.3), the ergodic capacity of the system is de�ned as

Cav =
1

2
max
Q=

PS
nS
I

F :E{‖FyR‖2}≤PR

E{C(H1,h2,F )} (5.6)

where C(H1,h2,F ) is the conditional transmission rate. For simplicity of notation,
C(H1,h2,F ) is abbreviated by C( · ) in the rest of this part. Assuming perfect CSI of
H1 andH2 at the destination andQ = PS

nS
InS (equal transmit power from each antenna
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in the source, because no channel knowledge is available there), the conditional mutual
information C( · ) for given channel matrices is

C( · ) = log
(
1 +

PS

nS

h2FH1H
H
1 F

HhH2
N0(1 + h2FFHhH2 )

)
(5.7)

where N0(1 + h2FF
HhH2 ) is the total equivalent noise power which is assumed to re-

main constant for coherence time: we make a block fading assumption. In [103], F is
found to be symmetric as

F = G
1
2 (5.8)

where the gain matrixG is derived as

G = UΣΛGU
H
Σ (5.9)

where UΣ is the unitary matrix de�ned in (5.5) and ΛG = diag[λG1 , λ
G
2 , · · · , λGnR

]. Note
that λGi values are to be speci�ed according to the power constraint of the relay so that
the maximisation in (5.6) is accomplished; indeed, this is one of the main tasks to be
handled in this part.

Assuming (5.4), (5.5), (5.8) and (5.9), the power constraint in the relay i.e.

E{‖G 1
2yR‖2} ≤ PR

in (5.6)) is

PSTr(ΛΣΛG) +N0Tr(ΛG) = PR. (5.10)

Note that the capacity will be achieved by consuming the entire power at the relay, and
so, we assume –equality– in (5.10) instead of –inequality–. By combining (5.2), (5.4),
(5.7), (5.8) and assuming γS = PS/N0, one can write (5.7) as follows

C( · ) = log(1 +
γSh2wΛΣΛ

1
2
GH1wH

H
1wΛΣΛ

1
2
Gh

H
2w

nS(1 + h2wΛΣΛGhH2w)︸ ︷︷ ︸
γD

) (5.11)

where γD represents received SNR in the destination which is a function of H1w, h2w,
the correlation eigenvalues matrix ΛΣ and the eigenvalues of the G matrix, i.e. ΛG. γD
can be simpli�ed according to

γD =

γS
nS∑
i=1

| h2wΛ
1
2
GΛΣh1w,i |2

nS(1 + h2wΛGΛΣhH2w)
(5.12)
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where h1w,i represents the ith column ofH1w. Let us assume

Xj = |h2w,j|2 (5.13a)

Y =
1

nS

nS∑

i=1

|h1w,i|2 (5.13b)

It is proved in [103, Appendix 1] that γD in (5.12) can be further simpli�ed to

γD = γSY ×

κ∑
j=1

λGj λ
Σ2
j Xj

1 +
κ∑
j=1

λGj λ
Σ
j Xj

︸ ︷︷ ︸
X

(5.14)

where κ is the minimum of nR and Number of Non-Zero (nnz) λΣ
j , i.e.,

κ = min(nR, nnz(λΣ
j )) (5.15)

Note that Y and Xj correspond to the S-R and R-D channels, respectively. The random
variable

X =

κ∑
j=1

λGj λ
Σ2
j Xj

1 +
κ∑
j=1

λGj λ
Σ
j Xj

(5.16)

in (5.14) incorporates the e�ect of the R-D link as well as the e�ect of power allocation
due to λGj . Furthermore, since we assume Rayleigh fading in both the S-R and R-D links,
hence, Xj is exponentially distributed with unit mean and Y has an Erlang-distribution
with rate and shape parameters equal to nS.

Although it is proposed in [103] that the optimal G should be diagonalised according
to (5.9) where ΛG is a diagonal matrix with its components organised in descending
order, an optimal power allocation method to distribute relay’s transmit power among
di�erent λGj s is not discussed. That is still an open problem but will be addressed in this
part.

Contribution

There are two main problems investigated in the following sections, each leading to
novel contributions:

• We evaluate, for the �rst time, the statistical characteristics of the γD introduced in
(5.14). Due to its mathematical complexity, the exact pdf of γD is not derived but an
approximation to the pdf is provided in this work. The approximated pdf is then

D4.03 DIWINE



5.1 n-largest eigenmode relaying 129

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

0.1

0.2

0.3

0.4

0.5

0.6

x

f X(x
)

 

 

hY1=3, hY2=1: Monte Carlo

hY1=3, hY2=1: Theory

hY1=4, hY2=2, hY3=0.4

hY1=4.5, hY2=3, hY3=2, hY4=0.8

Figure 5.1: Pdf of X with various number of λΣ
j parameters. Monte Carlo simulations

validate the correctness of the theoretical results.

used for calculating the outage probability and it is illustrated, by the simulations,
that the approximated cdf leads to rather accurate results. Moreover, the exact cdf
of γD will be derived for the two asymptotic scenarios of full-correlation and no-
correlation at the relay. Although this novel cdf is helpful for outage analysis of
the system, it is too complicated to be used for the analysis of the ergodic capacity.

• In order to approximate the maximum achievable transmission rate, a very simple
power allocation algorithm at the relay is introduced in this part. As the optimal
power allocation at moderate and high SNR is still an open problem1, for the pur-
pose of comparison, exhaustive search over various discrete values of the rates is
used as a benchmark. The values of the rates are obtained by allocating various
amount of the power among di�erent eigenmodes. According to the simulations,
the proposed power allocation algorithm approximates the benchmark with insig-
ni�cant di�erence.

5.1.4 Statistical analysis of received SNR at destination

The SNR distribution in the relay is directly related to the ergodic capacity of the system
evaluated in this part. In order to maximise E {C( · )} in (5.6), one should distribute the

1The optimal power allocation at low SNR was proposed in [103].
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available relay power appropriately among di�erent λGj s in (5.14) so that E {C( · )} is
maximised. Before we continue with the statistical characterisation of γD, two extreme
scenarios are studied: we will investigate γD when the relay does not experience any
fading correlation and also when the antennas in the relay are fully correlated. These
two scenarios, indeed, provide performance bounds, and so, the performance of a system
with partial correlation will fall between the two bounds.

Statistical characteristics of γD assuming full correlation

Full correlation (FC) at the relay is equivalent to considering a system where all the
elements of the Σ are unity2, i.e. Σ = 1nR×nR . Consequently, it is easy to see that λΣ

1 = nR
and λΣ

j = 0 for j ≥ 2, and so, the random variable X in (5.16) can be written as

XFC =
λG1 λ

Σ2
1 X1

1 + λG1 λ
Σ
1X1

=
n2

Rλ
G
1 X1

1 + nRλG1 X1

= nR
V

1 + V
(5.17)

where, the random variable V = nRλ
G
1 X1 is exponentially distributed with mean nRλ

G
1 .

The following theorem introduces the cdf of γD for a fully correlated relay:

Theorem 5.1. Assuming fully correlated antennas at the relay, the cdf of γD is

FγD−FC (x) = 1− 2(nSw)nSe−nSw

nS−1∑

m=0

(λG1 nSnRw)−(m+1)/2

m!(nS −m− 1)!
Km+1(2

√
nSw

λG1 nR
)

where Kν( · ) is the modi�ed Bessel function of the second kind, ν-th order andw = x
nRγS

.

Proof. See section 5.1.9 for a detailed proof.

The subscript “FC" in FγD−FC (x) indicates the Full Correlation scenario. One can easily
derive the pdf of γD for the full correlation scenario by taking the derivative of (5.18)
with respect to x.

In the next section, we study the statistical characteristics of the system for the non-
correlated fading scenario.

2We assume normalised correlation for simplicity of the notation. Generalisation to a case with non-
unity full correlation is straightforward. Similar normalisation is assumed in Section 5.1.4, too.
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Statistical characteristics of γD assuming no correlation

No correlation (NC) at the relay translates to Σ = I . Such a scenario will occur when
the relay antennas are placed su�ciently far apart and that the relay node is placed in
a rich scattering environment. Assuming Σ = I , it is straightforward to conclude that
λΣ

1 = λΣ
1 = · · · = λΣ

nR
= 1. On the other hand, since all Xj random variables follow

the same distribution (exponential distribution with unit mean) and as all λΣ
j values are

equal to one, therefore all the λGj values should be assigned the same power, and so,
let us assume λG1 = λG2 = · · · = λGnR

= λGeq; consequently, the random variable X will be
written as

XNC =
λGeq
∑nR

j=1Xj

1 + λGeq
∑nR

j=1 Xj

=
V

1 + V
(5.18)

where V follows the Erlang distribution with rate 1
λGeq

and shape nR. By substitutingXNC

in (5.14), the following expression will be derived for the cdf of γD for the non correlated
scenario:

Theorem 5.2. Assuming no correlation at the relay, the cdf of γD is

FγD−NC (x) = 1− 2(nSw)nSe−nSw

nR−1∑

m=0

nS−1∑

n=0

nmS (λGeqnSw)−
m+n+1

2

m!n!(nS − n− 1)!wm
Km−n−1(2

√
nSw

λGeq
)

with w = x
γS

.

Proof. Following the same lines of the proof for (5.18), one can easily prove (5.19), too.

Assuming single antennas at the source and the relay nodes, i.e. nS = nR = 1, the MIMO
scenario of this part reduces to a conventional single antenna relay system wherein the
relay node has access to the variance of its channels; consequently, as expected, the two
expressions in (5.18) and (5.19) are identical according to

FγD(x) = 1− 2

√
(1 + γS)x

γSγR
e
− x
γS K1(2

√
(1 + γS)x

γSγR
) (5.19)

Note that FγD(x) for a single antenna scenario similar to (5.19) has been reported in
numerous parts including, e.g. [112].

As discussed earlier, FγD (and fγD) for arbitrary correlation should follow an expression
that at the extreme case reduces to (5.19) and (5.18).

On the other hand, statistical characteristics of X are also of essential importance for
understanding the distribution γD. Assuming full correlation and no correlation at the
relay, characterisingX was simple, however, characterisingX with arbitrary correlation
is, actually, more complicated and will be derived in the next section.
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Figure 5.2: Approximation of FγD(z) as obtained in (5.26) where λΣ
1 = 4, λΣ

2 = 1 and
λG1 = λG2 = λGeq = 2.

Statistical characteristics of X for arbitrary correlation

The statistical characteristics of the random variable X are not studied in the literature
but will be derived in this part.

Considering that λΣ
1 ≥ λΣ

2 ≥ · · · ≥ λΣ
κ ≥ 0, the cdf of X in (5.16) is

FX(x) =





0 x ≤ 0

1−
j∑
i=1

κ∏
m=1
m6=j

cm
cm−cj e

cix λΣ
j+1 < x < λΣ

j

1 λΣ
1 ≤ x

(5.20)

where
cj =

1

λGj λ
Σ
j (λΣ

j − x)
. (5.21)

A sketch of the proof for (5.20) is provided in Section 5.1.10. To provide a better un-
derstanding of the statistical characteristics of the random variable X , the FX(x) for
κ = 2 and 3 is provided in the following. Assuming κ = 2, we have

FX(x) =





0 x ≤ 0

1− c2
c2−c1 ec1x − c1

c1−c2 ec2x 0 < x < λΣ
2

1− c2
c2−c1 ec1x λΣ

2 < x < λΣ
1

1 x ≥ λΣ
1

(5.22)

and for κ = 3, FX(x) is derived in (5.23) at the top of next page. One can easily derive
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FX(x) =





0 x ≤ 0

1− c2c3
(c2−c1)(c3−c1)ec1x − c1c3

(c3−c2)(c1−c2)ec2x − c1c2
(c1−c3)(c2−c3)ec3x 0 < x < λΣ

3

1− c2c3
(c2−c1)(c3−c1)ec1x − c1c3

(c3−c2)(c1−c2)ec2x λΣ
3 < x < λΣ

2

1− c2c3
(c2−c1)(c3−c1)ec1x λΣ

2 < x < λΣ
1

1 x ≥ λΣ
1

(5.23)
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Figure 5.3: Outage probability approximated by (5.26) (nS →∞) in comparison with the
Monte Carlo simulations for various values of nS.

fX(x) by taking the derivative of FX(x) with respect to x, i.e.,

fX(x) =
dFX(x)

dx
(5.24)

which, is a straightforward simple derivation practice. Figure 5.1 illustrates the fX(x)
assuming λGj = 1 for various values of λΣ

j . The agreement between the theoretical and
Monte Carlo simulations validates the correctness of the calculations.

Statistical characteristics of γD assuming infinite antennas at the source

From the discussions provided in the previous section, it is clear that γD = γSY X where
Y follows an Erlang distribution with rate and shape parameters equal to nS, i.e.

fY (y) =
nnS

S
(nS − 1)!

ynS−1e−nSy
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and X follows a distribution as derived in (5.20) and (5.24). In order to calculate the cdf
of γD, one should calculate the following integral

FγD(z) = P{γD < z} = P{γSY X < z}

=

ˆ ∞
0

P{X <
z

yγS
}

︸ ︷︷ ︸
FX( z

yγS
)

fY (y)dy. (5.25)

On the other hand, (5.25) does not lend itself easily to further calculations, and to the best
of our knowledge, the integral cannot be solved with the existing table of integrals, e.g.
[113]. However, clearly, FγD(z) is a multipartite function because X has a multipartite
cdf; to the best of our knowledge, a multipartite FγD(z) in the context of AF cooperative
systems has not been reported in the literature and so it is observed for the �rst time in
this part3. The following theorem provides an approximate FγD(z) for the given system
model:

Theorem 5.3. For large nS, FγD(z) can be approximated by

FγD(z) ≈ FX(
z

γS
) (5.26)

Proof. The random variable Y in the previous sections, e.g. in (5.14), follows an Erlang-
distribution; indeed, Y is the sum of nS exponential random variables, each with para-
meter nS (see (5.13a)). Using the central limit theorem (see [114, Ch. 7.4]), the random
variable Y can be approximated by a Gaussian distribution with mean equal to 1 and
variance 1/nS, i.e. approximately, Y ∼ N(1, 1/nS). Assuming large nS, i.e. nS →∞, one
can easily deduce Y → 1. By setting Y = 1 in (5.25), one can write

FγD(z) = P{γD < z} = P{X <
z

γS
}

and so (5.26) is proved.

Figure 5.2 and Figure 5.3 are intended to validate the precision of the approximation
obtained in (5.26). In Figure 5.2 an illustration ofFγD(z) is provided; clearly, Monte Carlo
simulations approximate theoretical FγD(z) when nS is large. Moreover, considering
that the cdf FγD(z) in (5.26) corresponds to the outage probability for large nS (ideally for
nS →∞), in Figure 5.3 we plot outage probability versus transmit power at the source
node using (5.26) and also using Monte Carlo simulations for various values of nS. It is
clear that for large values of nS, the closed form expression for the outage probability

3We use multipartite function to refer to a function that involves several distinct functions for di�erent
domains, e.g. see (5.22) and (5.23). Note that being multipartite is not considered to be advantage (or
disadvantage) for the system but stressing on the novelty of the statistical characteristics of the SNR, in
the context of AF cooperative systems, is meant to highlight the need for further investigation on the
problem.
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approximates the Monte Carlo simulations with high accuracy. Nevertheless, for smaller
values of the nS, although the approximation is not accurate, it provides a reasonable
approximation.

As mentioned in 5.1.3, one of the main objectives in this part is to allocate available
power in the relay according to (5.10) among di�erent λGj variables so that the ergodic
capacity in (5.6) is maximised. In fact, for plotting Figure 5.1 we arbitrarily assumed
λG1 = λG2 = 1; however, such a random power allocation to λG1 and λG2 does not guaran-
tee that the maximisation problem in (5.6) is solved. On the other hand, it was observed
in (5.25) that the FX( · ) expression derived in (5.20) is too complicated to lend itself to
further mathematical calculations. Indeed, we do not know any closed form expression
for the objective function E{C( · )} which can be used for calculating optimal λGj val-
ues in (5.6). Furthermore, not only do we not know any analytical way for calculating
optimal λGj values, we are not aware of any numerical method to calculate optimal λGj
values. For the purpose of comparison, exhaustive search over various discrete values
of the achievable rates is used as a benchmark. The rates for the exhaustive search are
obtained by assigning various amount of the power to the eigenmodes according to the
power constraint in (5.10); moreover, the resolution of the exhaustive search is kept ad-
equately small (0.1 dB) to ensure accurate approximation. Note that resolutions larger
than 0.1 dB also provide accurate results, however, to make sure that no local maximum
is missed, we use the the resolution of 0.1 dB throughout this part when exhaustive
search is provided for comparison.

Although the proposed method in the next section is simple and straightforward, it will
be revealed that the obtained values for λGj s lead to the reasonable rates that are in-
distinguishable from the benchmark rates. Also, it will be revealed that the proposed
method signi�cantly reduces the computationally expensive calculations due to exhaust-
ive search for �nding optimal λGj values in real time practical communication systems.

5.1.5 Two antenna relay

For simplicity, as an initial step, let us assume a system with two antennas at the relay, i.e.
nR = 2, where Σ = [1 ρ

ρ∗ 1 ]; the parameter ρ indicates the correlation coe�cient. As there
are only two eigenvectors corresponding to Σ, the problem of optimal power allocation
reduces to calculating the optimal values of λG1 and λG2 , given the power constraint in
(5.10).

In [103, Eq. 34], we derive a necessary and su�cient condition under which transmis-
sion only from the largest eigenvector (the eigenvector corresponding to λΣ

1 ) achieves
capacity. For ease of reference, [103, Eq. 34] is provided in the following lemma:

Lemma: Transmission from the largest eigenvector achieves capacity if

λΣ
2 ≤

(α1 + P1λ
Σ
2 )D(λΣ

1 , P1)− α1E{ 1
1+P1Z1

}
P1E{1+λΣ

2 γY

1+P1Z1
}

(5.27)
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Figure 5.4: Rate vs. transmit power at the relay. The rate values are obtained using the
proposed power allocation algorithm, equal power allocation and the bench-
mark. nS = nR = 2, N0 = 1, PS = 0 dB, and inter-antenna correlation
ρ = 0.3. The exhaustive search is performed over discrete values of trans-
mission rates that were obtained using various values of λG1 and λG2 (step
size 0.1 dB) that ful�l (5.10).

with

Z1 = λΣ
1 (1 + γλΣ

1 Y )X1 (5.28)

D(λΣ
1 , P1) =

1

P1λΣ
1

Γ(0,
1

P1λΣ
1

)e
1

P1λ
Σ
1 (5.29)

where P1 = PR
λΣ

1 PS+N0
and α1 =

λΣ
2 PS+N0

λΣ
1 PS+N0

. Although [103] proves that LER is the optimal
transmission method at low SNR, it does not discuss any method to distribute the avail-
able power at the relay among λGj variables when (5.27) does not hold. This problem is
addressed in the rest of this part.

Proposition. Given λΣ
1 , λΣ

2 , PS and PR , if (5.27) holds, allocate the entire power in the
relay only to λG1 as

λG1 =
PR

N0 + PSλΣ
1

(5.30)

and set λG2 = 0, i.e. LER, otherwise, when (5.27) does not hold, we propose to allocate
power per eigenvector proportionally to the strength of the eigenmodes, i.e.

λG1
λG2

=
λΣ

1

λΣ
2

. (5.31)
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Consequently, one can assume λG1 = λΣ
1 g2 and λG2 = λΣ

2 g2 with g2 obtained from (5.10)
as

g2 =
PR

PS(λΣ2
1 + λΣ2

2 ) +N0(λΣ
1 + λΣ

2 )
. (5.32)

Note that (5.30) and (5.32) are obtained from the relay power constraint in (5.10). �

Remark: The motivation for assuming proportional power allocation in (5.31) arises
from the limit behaviour of the correlation coe�cients. In the case where λΣ

1 much
larger than λΣ

2 , i.e. λΣ
1 � λΣ

2 , clearly LER will be optimal transmission method and so
λG1 � λG2 has to hold, and this is guaranteed by (5.31). On the other hand when λΣ

1 and
λΣ

2 are only slightly di�erent, both λG1 and λG2 should be assigned relatively equal power;
indeed, when λΣ

1 = λΣ
2 , the fading is uncorrelated and so, as described in Subsection 5.1.4,

λG1 = λG2 = λGeq, which again is guaranteed by (5.31).Note that the conjecture will be
validated in the following by simulations which show that the result is nearly identical
to that with power allocation by exhaustive search.

Figure 5.4 illustrates the transmission rates of a cooperative system with nS = nR = 2
when the power allocation is carried out using the proposed algorithm. For comparison,
maximum transmission rates corresponding to the benchmark are also illustrated. The
�gure clearly shows a good agreement between exhaustive search, i.e. the benchmark,
and also the simple proposed algorithm. The di�erence between the proposed algorithm
and the benchmark is, in fact, indistinguishable. Figure 5.4 shows the transmission rate
assuming equal power allocation in the relay. Note that equal power transmission is
equivalent to ignoring the knowledge of correlation at the relay. Clearly, the proposed
algorithm signi�cantly outperforms equal power transmission.

With two antennas at the relay, Figure 5.4 shows that the proposed algorithm leads to
excellent results. In the next section, the proposed algorithm is extended for a system
with three antennas at the relay.

5.1.6 Three antenna relay

Assuming three antennas at the relay, it is clear that according to the values of λΣ
1 , λΣ

2 ,
λΣ

3 , PR and PS, capacity optimal transmission can lead to three di�erent scenarios:

• Case 1: Transmission only via the largest eigenmode achieves capacity, i.e. trans-
mission via the eigenvectors corresponding to λΣ

1 , or equivalently, LER is the
capacity-optimal transmission method. This scenario will occur only when (5.27)
holds. In this case λG1 > 0 and λG2 = λG3 = 0.

• Case 2: Transmission only via the two largest eigenmodes achieves capacity, i.e.
transmission via the eigenvectors corresponding to λΣ

1 and λΣ
2 , or equivalently, 2-

LER is the capacity optimal transmission method. In this case λG1 > 0, λG2 > 0 and
λG3 = 0.
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• Case 3: Transmission via all three eigenmodes achieves the capacity, or equival-
ently, 3-LER is the capacity optimal transmission method. In this case λG1 > 0,
λG2 > 0 and λG3 > 0.

Note that (5.27) speci�es the LER-optimal region. In the following, we intend to specify
necessary and su�cient conditions under which, assuming proportional power alloca-
tion, transmission only via the two largest eigenmodes in the relay (2-LER) approaches
capacity. Note that proportional power allocation is motivated by the precision of the
algorithm introduced in Section 5.1.5. We emphasise that the optimality of n-LER is con-
ditioned on proportional power allocation and so it is sub-optimal, however, the results
are acceptable when compared with the benchmark4.

Conditional optimality of 2-LER

As discussed in Section 5.1.5, when LER is not optimal, transmission via the two largest
eigenmodes, with proportionally assigned power, approximates the benchmark with
reasonable accuracy; therefore, by setting

λG1 = λΣ
1 g2 and λG2 = λΣ

2 g2 (5.33)

we aim to derive a necessary and su�cient condition under which, the maximisation
problem will be achieved by setting λG3 = 0 and assigning the available power in the
relay, proportionally, to λG1 and λG2 .

Considering that λG1 ≥ λG2 ≥ · · · ≥ λGnR, one can easily conclude that if λG3 > 0
leads to rate loss, then all the available power in the relay has to be assigned only to
λG1 and λG2 and consequently λGj = 0 for j ≥ 3. Let us assume that from the entire avail-
able power in the relay, ε > 0 is assigned to λG3 and, motivated by the results of the two
antenna relay scenario in Section 5.1.5, the rest of the power is proportionally distrib-
uted between λG1 and λG2 . It is easy to conclude from ∆Cav(λG3 )

∆λG3
=

Cav(λG3 =ε)−Cav(λG3 =0)

ε
≤ 0

that Cav(λG3 = 0) ≥ Cav(λ
G
3 = ε); therefore, assigning ε power to λG3 will cause a rate

loss. Now, let us assume that ε → 0, consequently, ∆Cav(λG3 )

∆λG3
≤ 0 is equivalent to

∂Cav(λG3 )

∂λG3
|λG3 →0 ≤ 0. Therefore, ∂Cav(λG3 )

∂λG3
|λG3 →0 ≤ 0 speci�es a region in which assign-

ing power to λG3 (and consequently λGj forj ≥ 3) results in rate loss, and so one has to
transmit only via λG1 and λG2 in this region.

According to the power constraint in (5.10), and assuming thatλG1 = λΣ
1 g2 andλG2 = λΣ

2 g2,
one can calculate the power assigned to λG1 and λG2 by calculating g2 in (5.32) as

g2 = P2 − α2λ
G
3 (5.34)

4Our conjecture is that the benchmark transmission rate obtained using exhaustive search is, virtually,
equivalent to optimal transmission rate.
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C( · ) = log

(
1 + (P2 − α2λ

G
3 )
(
λΣ2

1 W1X1 + λΣ2
2 W2X2

))
(5.37)

− log

(
1 + (P2 − α2λ

G
3 )(λΣ

1X1 + λΣ
2X2) + λG3 λ

Σ
3X3

)
. (5.38)

∂Cav(λ
G
3 )

∂λG3
|λG

3 →0 = E
{ α2/P2

1 + P2Z2

}
+ E

{λΣ
3 (1 + γSY λ

Σ
3 )X3

1 + P2Z2

}
(5.39)

−E
{λΣ

3 X3 − α2(λΣ
1 X1 + λΣ

2 X2)

1 + P2(λΣ
1 X1 + λΣ

2 X2)

}
(5.40)

=
α2

P2
E{ 1

1 + P2Z2
}+ λΣ

3 E{
1 + γSY λ

Σ
3

1 + P2Z2
} − (

α2

P2
+ λΣ

3 )D(λΣ
1,2, P2) (5.41)

with

P2 =
PR

PS(λΣ2
1 + λΣ2

2 ) +N0(λΣ
1 + λΣ

2 )
(5.35)

α2 =
PSλ

Σ
3 +N0

PS(λΣ2
1 + λΣ2

2 ) +N0(λΣ
1 + λΣ

2 )
(5.36)

where the index of P2 and α2 indicates that the 2-LER condition is being considered.
Substituting (5.14) and (5.34) in (5.11) and considering that log(a/b) = log(a)− log(b),
we obtain C( · ) in (5.37), at the top of the next page, whereWi = 1 + γSY λ

Σ
i . The condi-

tional optimality region of 2-LER corresponds to a region determined by ∂Cav(λG3 )

∂λG3
|λG3 →0 ≤

0, that can be calculated by combining (5.37) and (5.6) which is derived in (5.39) at the
top of page with

Z2 = λΣ2
1 W1X1 + λΣ2

2 W2X2. (5.42)

Note that the random variableX3 at the second expectation operation on the right hand
side of (5.39) is independent of Z2 and Y , hence, X3 can be removed in the �rst expecta-
tion operation because E{X3} = 1. To the best of our knowledge, the �rst expectation
and second expectations in (5.39) cannot be further simpli�ed; however, (5.39) can be
further simpli�ed to (5.40) where

D(λΣ
1,2, P2) =

Γ(0, ζ1)

P2(λΣ
1 − λΣ

2 )
eζ1 +

Γ(0, ζ2)

P2(λΣ
2 − λΣ

1 )
eζ2 (5.43)

with ζi = (P2λ
Σ
i )−1. Then, the conditional optimality region of 2-LER, i.e.

∂Cav(λ
G
3 )

∂λG3
|λG3 →0 ≤ 0
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Figure 5.5: Blue area: λΣ
2 vs. λΣ

1 . The area shows the LER optimal region. Red area: λΣ
3 vs.

λΣ
1 . The area illustrates the 2-LER optimal region for λΣ

2 = 0.5λΣ
1 . For both

the areas PR = PS = 10 dB.

can be obtained by some algebraic manipulation of (5.40) according to

λΣ
3 ≤

(α2 + P2λ
Σ
3 )D(λΣ

1,2, P2)− α2E{ 1
1+P2Z2

}
P2E{1+λΣ

3 γSY

1+P2Z2
}

(5.44)

. Note that when ∂Cav(λG3 )

∂λG3
|λG3 →0 < 0, i.e. not including equality, the necessary condition

is also su�cient, and so, the strict “inequality" of (5.44) speci�es a necessary and su�-
cient condition, under which 2-LER is the optimal transmission method. However, when
equality in (5.44) holds, i.e. meaning that ∂Cav(λG3 )

∂λG3
|λG3 →0 = 0, one should make sure that

the optimum point is a maximum point; this can be done by showing ∂2Cav(λG3 )

∂(λG3 )2 |λG3 →0 < 0.

In [103, App. D], it is proved that ∂
2Cav(λG2 )

∂(λG2 )2 |λG2 →0 < 0 is always valid. Following the same

lines of proof, one can, similarly, prove that ∂
2Cav(λG3 )

∂(λG3 )2 |λG3 →0 < 0 and so, the inequality in
(5.44) is a necessary and su�cient condition under which the 2-LER transmission is the
optimal5 transmission method.

Near optimal power allocation in a relay with three antennas

Similar to the algorithm in Section 5.1.5, introduced for power allocation in a two an-
tenna relay, a power allocation method will be introduced for the three cases (Case
1/2/3) discussed at the beginning of this section.

5Optimal in the sense that we assume proportional power allocation to the two largest eigenvectors. In
the rest of this part all n-LER transmissions are conditioned on proportional power allocation
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Proposition. Allocate all available power in the relay to the largest eigenmode if (5.27)
holds, i.e. LER, otherwise check (5.44) and allocate proportional power to the two largest
eigenmodes if (5.44) holds, i.e. 2-LER; in the case when neither (5.27) nor (5.44) hold, then
allocate the power proportionally to all three eigenmodes; i.e. λG1 = λΣ

1 g3, λG2 = λΣ
2 g3

and λG3 = λΣ
3 g3 where

g3 =
PR

PS(λΣ2
1 + λΣ2

2 + λΣ2
3 ) +N0(λΣ

1 + λΣ
2 + λΣ

3 )
(5.45)

The algorithm is summarised in Table 5.1. �

Figure 5.6 illustrates the transmission rates using the proposed algorithm. Comparison
with the benchmark con�rms that the proposed algorithm is e�ectively optimal.

Table 5.1: Power allocation in a relay with nR = 3

Step 1: Set P1 = PR
N0+PSλΣ

1

Step 2: Check the inequality in (5.27)
Step 3: If Step 2 is true

Set λG1 = P1, λG2 = λG3 = 0 and Quit.
Step 4: Set P2 from (5.35) and α2 from (5.36)
Step 5: Check the inequality in (5.44)
Step 6: If Step 5 is true

Set λG1 = λΣ
1 g2, λG2 = λΣ

2 g2., λG3 = 0 and Quit.
else

Set λG1 = λΣ
1 g3, λG2 = λΣ

2 g3 and λG3 = λΣ
3 g3

5.1.7 Proposed power allocation in a relay with an arbitrary number of
antennas

In this section, let us assume that the relay node is equipped with an arbitrary number
of the antennas (say nR). As discussed in earlier sections, in order to achieve capacity,
the relay has to assign an appropriate amount of its available power per eigenvector.
Following the same approach discussed in Section 5.1.6, one can assume κ cases where,
depending on the the system parameters (i.e., Σ, PS and PR), n-LER will be the capacity
approaching transmission method; it means that transmission vian (n ≤ κ) eigenvectors
approaches capacity, and so, only n eigenvectors should be assigned power and the rest
of the eigenvectors should be set to zero, i.e. λGj > 0 for j ≤ n and λGj = 0 for j > n.

In Section 5.1.5, we introduced the necessary and su�cient condition under which trans-
mission via one eigenmode (largest eigenmode) achieves capacity; later on, in Section 5.1.6,
a necessary and su�cient condition was derived, under which, transmission via the two
largest eigenmodes approaches maximum transmission rate. One can extend the same
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Figure 5.6: Rate vs. transmit power at the relay. The rate values are obtained using the
proposed power allocation algorithm, equal power allocation and the bench-
mark. nS = 2, nR = 3, N0 = 1, PS = 0 dB, and inter-antenna correlation
ρ12 = 0.7, ρ23 = 0.5 and ρ13 = 0.2. The exhaustive search is performed over
discrete values of transmission rates that were obtained using various values
of λG1 and λG2 (step size 0.1 dB) that ful�l (5.10).

concept and derive a necessary and su�cient condition under which transmission via n
(n ≤ κ) eigenvectors will maximise the rate with the assumption of proportional power
allocation.

Analogous to Section 5.1.6, let us assume that from the available power in the relay,
ε > 0 is assigned to λGn+1 and the rest of the power is proportionally distributed between
λG1 · · ·λGn . It is easy to conclude that ∂Cav(λGn+1)

∂λGn+1
|λGn+1→0 ≤ 0 is equivalent to the fact that

assigning power toλGn+1 will result in rate loss, and consequently, sinceλG1 ≥ λG2 ≥ · · ·λGnR
,

the egienvectors corresponding to λΣ
j for j ≥ n+ 1 should not be assigned power.

Theorem 5.4. The necessary and su�cient condition under which transmission from n
largest eigenmodes (n-LER transmission) approaches capacity is:

λΣ
n+1 ≤

(αn + Pnλ
Σ
n+1)D(λΣ

1,··· ,n, Pn)− αnE{ 1
1+PnZn

}
PnE{1+λΣ

n+1γSY

1+PnZn
}

(5.46)

where

Pn =
PR

N0

∑n
m=1 λ

Σ
m + PS

∑n
m=1 λ

Σ2
m

(5.47)

αn =
N0 + PSλ

Σ
n+1

N0

∑n
m=1 λ

Σ
m + PS

∑n
m=1 λ

Σ2
m

(5.48)
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Figure 5.7: Rate vs. transmit power at the relay. The rate values are obtained using the
proposed power allocation algorithm, equal power allocation and the bench-
mark. nS = 2, nR = 4, N0 = 1, PS = 0 dB, and inter-antenna correlation
ρ12 = 0.7, ρ13 = 0.5, ρ14 = 0.3, ρ23 = 0.7, ρ24 = 0.5 and ρ34 = 0.7. The ex-
haustive search is performed over discrete values of transmission rates that
were obtained using various values of λGi (step size 0.1 dB) that ful�l (5.10).

and

D(λΣ
1,··· ,n, Pn) =

n∑

m=1

(λΣ
m)n−2

n∏
k=1
k 6=m

(λΣ
m − λΣ

k )
Γ(0, ζm)eζm (5.49)

Proof. The proof is similar to that of Section 5.1.6.

Note that (5.46) is a general form of (5.27) and (5.44). In fact, (5.46) will determine the
eigenvectors that should be assigned power proportional to their correlation power. The
power allocation algorithm is summarised in Table 5.2. The algorithm is indeed analog-
ous to the water-�lling algorithm: the purpose is to �nd the eigenmodes that should
be assigned power for transmission and to discard the “weak" eigenmodes that result
in rate-loss if assigned power. Note that the expressions derived in (5.27), (5.44) and
(5.46) involve expectation operations that do not seem to lend themselves to calculation
in closed-form; therefore, in practical implementation of the system one should imple-
ment them using numerical methods. Please see [103] wherein a numerical integration
expression is derived.

Figure 5.7 illustrates the transmission rates for the proposed algorithm for a relay with
four antennas and correlation coe�cients as described in the caption. Clearly the pro-
posed algorithm agrees with the rates obtained using exhaustive search. Moreover, its su-
periority over equal power transmission is evident. The values chosen for inter-antenna
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correlation in the numerical simulations in Figures 5.6 and 5.7 are selected to be relat-
ively high, and to re�ect what might be expected in a relatively closely-spaced linear
array. In these cases the proposed algorithm demonstrates performance extremely close
to the optimum. Note that when ρij → 0 (smaller inter-antenna correlation), the spa-
tial correlation diminishes and so the equal power transmission will be the optimum
method, which is indeed guaranteed by the proportional power allocation proposed in
(5.31); this is demonstrated by numerical simulation in Figure 5.4. Hence, since our al-
gorithm is provably optimum at low correlation and is shown by simulation to be very
close to optimum for a typical case of high correlation, it is at least a reasonable hypo-
thesis that it is near optimum for all cases of practical interest.

Table 5.2: Power allocation in a relay with arbitrary nR

Initiate n = 1

while n ≤ κ

Step 1: Set Pn from (5.47) and αn from (5.48)
Step 2: Check the inequality in (5.46)
Step 3: If Step 2 is true

Set λGj = λΣ
j gn for j ≤ n

Set λGj = 0 for j > n+ 1 and Quit while.
else

Set n← n+ 1 and go to Step 1
end (end of while when n > κ)

5.1.8 Conclusion

This part studies the statistical characteristics of the received SNR at the destination
in a MIMO relay network when the relay node experiences fading correlation. It is
assumed that the relay node has access only to the statistical CSI. In order to approach
the ergodic capacity of the system, based on the available statistical channel knowledge
at the relay, a new relay precoder design methodology is introduced. The proposed
method is analogous to the water-�lling algorithm; it searches for the largest eigenmodes
that should be assigned power and discards the remaining eigenmodes. The simulations
demonstrate good agreement between the proposed method and the benchmark which
is obtained using exhaustive search.
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5.1.9 Proof of the SNR distribution: Full correlation

By combining (5.14) and (5.17), one can write γD = γSnR
Y V
1+V

, and so, assuming w = x
γSnR

we have

FγD−FC (x) = P(
Y V

1 + V
< w) = P(V <

w

Y − w )

1− e
−w

λG
1
nR(Y−w) =

ˆ ∞
0

(1− e
−w

λG
1
nR(y−w) )fY (y)dy

1−
ˆ ∞

0

e
−w

λG
1
nR(y−w)fY (y)dy (5.50)

Note that V is exponentially distributed, and so, P(V < w
Y−w ) is non-zero only for Y > 0;

consequently, by substituting fY (y) in (5.50) and assuming the proper domain for the
integral, we have

FγD−FC (x) = 1− nnS
S

(nS − 1)!

∞̂

w

ynS−1e
− w

λG
1
nR(y−w)

−nSy
dy (5.51)

by changing variable according to t = y − w, assuming

(t+ w)nS−1 =

nS−1∑

m=0

(nS − 1)!

m!(nS −m− 1)!
tmwnS−m−1

and applying [113, 3.471.9], FγD−FC (x) will be derived as

FγD−FC (w) = 1− 2(nSw)nSe−nSw
nS−1∑

m=0

(λG1 nSnRw)−(m+1)/2

m!(nS −m− 1)!
Km+1(2

√
nSw

λG1 nR
)

and so, (5.18) is proved.

5.1.10 Statistics of the random variable X

As a complete proof of (5.20) is lengthy, we only prove the case of κ = 2. Following
the same approach, the extension of the proof to larger values of κ, i.e. κ = 3, 4, · · · , n,
is straightforward. Then by the rule of mathematical induction, it is easy to obtain the
general expression in (5.20).
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FX(x) for the case of κ = 2. The numerator and the denominator random variable
X in (5.16) include summation of random variables Xj which follow exponential dis-
tribution with unit mean. For simplicity, we assume κ = 2, i.e. X =

λG1 λ
Σ2
1 X1+λG2 λ

Σ2
2 X2

1+λG1 λ
Σ
1 X1λG2 λ

Σ
2 X2

,
and derive FX(x) of (5.20). However, in order to simplify notation, in this section, let
us substitute λGj Xj → Xj consequently Xj is distributed exponentially with mean λGj .
One can write

FX(x) = P(X < x) = P
( λΣ2

1 X1 + λΣ2
2 X2

1 + λΣ
1X1 + λΣ

2X2

< x
)
. (5.52)

Applying basic algebraic manipulation, (5.52) can be simpli�ed according to

P(X < x) , P
(
X1 <

x+ λΣ
2 (x− λΣ

2 )X2

λΣ
1 (λΣ

1 − x)

)
(5.53)

Let us split the problem of deriving P(X < x) in (5.53) over four di�erent intervals: A)
x < 0, B) 0 < x < λΣ

2 C) λΣ
2 < x < λΣ

1 and D) λΣ
1 < x and derive P(X < x) for each

interval individually.

A) x < 0. Note that the random variables X , X1 and X2 are non-negative random
variables. Therefore, for x < 0, we have P(X < x) = 0.

B) 0 < x < λΣ
2 . Assuming 0 < x < λΣ

2 ; clearly, (λΣ
1 − x) at the denominator of (5.53)

is positive. Therefore, sinceX1 > 0, the expression x+ λΣ
2 (x− λΣ

2 )X2 at the numerator
of (5.53) has to be positive as well and, hence,

X2 <
−x

λΣ
2 (x− λΣ

2 )
(5.54)

must hold. Therefore, (5.53) can be simpli�ed to

P(X < x) =

−x
λΣ

2
(x−λΣ

2
)ˆ

0

P
(
X1 <

x+ λΣ
2 (x− λΣ

2 )x2

λΣ
1 (λΣ

1 − x)

) e−x2/λG2

λG2︸ ︷︷ ︸
fX2

(x2)

dx2.

Considering thatP(X1 < t) = 1− e−t/λ
G
2 , it is straightforward to prove, from (5.55), that

for 0 < x < λΣ
2 ,

P(X < x) = 1− c2

c2 − c1

ec1x − c1

c1 − c2

ec2x. (5.55)

where cj is de�ned in (5.21).
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C) λΣ
2 < x < λΣ

1 . It is easy to deduce from (5.53) that for λΣ
2 < x < λΣ

1 , the numerator
and the denominator of (5.53) is positive for every value of the random variable X2 and,
hence,

P(X < x) =

∞̂

0

P
(
X1 <

x+ λΣ
2 (x− λΣ

2 )x2

λΣ
1 (λΣ

1 − x)

)e−x2/λG2

λG2
dx2 (5.56)

which leads to

P(X < x) = 1− c2

c2 − c1

ec1x (5.57)

D) x > λΣ
1 . For the given interval, clearly, the denominator of (5.53) is negative while

the numerator is positive; hence, one can easily conclude that assuming x > λΣ
1 is equi-

valent to assuming X1 < 0. On the other hand, since X1 follows the exponential distri-
bution, it is necessarily positive, and so, x > λΣ

1 is an invalid assumption. Consequently,
P(X < x) = 1 for x > λΣ

1 .
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Part III

Signal processing and decoding strategies
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6 Hierarchical interference processing

6.1 Successive decoding with hierarchical interference
cancellation in wireless (physical layer) network coding
systems

The intermediate network nodes (relays) in WPLNC systems are allowed to process only
some speci�c (“hierarchical") functions of user data (instead of separate decoding of in-
dividual user signals), which allows to overcome the rate limits induced by the conven-
tional Multiple Access Channels capacity regions. Unfortunately, since the mapping
between a speci�c decoded hierarchical function and the corresponding signal space
representation is generally one-to-many, traditional successive decoding techniques with
perfect interference cancellation (subtraction) of decoded signals cannot be directly em-
ployed in WPLNC systems. In this section we show that even in this case the knowledge
of hierarchical data can be e�ciently exploited in the decoding process to signi�cantly
reduce the impact of interfering signal on the subsequent decoding operations in WPLNC
systems.

6.1.1 Introduction

Background and related work

The invention of network coding [37, 44] has provided a valuable tool to boost the per-
formance of communication networks beyond the conventional routing-based solutions.
It is not surprising that wireless systems researchers soon turned their attention to this
powerful wireline technique too.

Even though that the conventional network coding techniques can be (relatively straight-
forwardly) implemented in wireless communication systems, it was realised later that
wireless channels possess some favourable characteristics, e.g. inherent broadcast and su-
perposition nature, which can be e�ciently exploited together with a modi�ed network
coding processing [24, 47]. The techniques based on such extension of conventional
network coding to the wireless domain are usually referred to as WPLNC [1, 11, 21, 22].

In WPLNC systems the intermediate network nodes, e.g. relays, do not have to decode
separate source data from their observations, but instead of this, they directly decode
hierarchical functions of source data, e.g. dAB = f (dA,dB), allowing to achieve the
rates above the conventional Multiple-Access (MAC) capacity region, see [1, 22].
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Figure 6.1: WPLNC relay receiving transmissions from three independent sources.

Analyses of WPLNC processing in wireless systems have, however, revealed several
non-trivial research problems which do not appear in conventional wireless systems, in-
cluding the sensitivity to channel parameterisation [7–9, 25], challenging multi-source
transmission synchronisation [27–29] or partial decoding of information on broadcast
channels [4, 115, 116].

Goals of this report and contribution

Another interesting research problem occurs when the relay observation contains (apart
of dA,dB) another source data, e.g. dC), which cannot be separately decoded from the
relay observation (see Figure 6.1. In a conventional MAC channel, Successive Decoding
(SD) with Interference Cancellation (IC) is used as an optimal decoding strategy, allowing
to achieve the rates at the upper-bound of MAC capacity region [32]. The possibility to
perform perfect IC is there guaranteed by a one-to-one mapping between the decoded
source data and their signal space representation. Unfortunately, only speci�c functions
of source data are decoded by relays in WPLNC systems, and hence it is impossible to
perform IC (subtraction) of the decoded signal from the relay observations, as the map-
ping between the decoded function of source data and their signal space representation
is generally one-to-many (see Figure 6.2).

An alternative approach to multi-user WPLNC decoding is introduced in [117], where an
approximate sum-capacity is evaluated for a lattice-encoded, K-user interference chan-
nel. The decoding process presented in [117] is based on a decoding1 of multiple (hier-
archical) functions of source signals at each receiving node, which can be then solved to
obtain the desired data. However, for the present, the system model analysed in [117]
is limited to a real-valued interference channel case with equal strength interferers, and
hence it is not able to capture the impact of complex channel parameterisation or di�er-
ent interferer strengths.

In this section we discuss the successive-decoding problem in WPLNC systems. We intro-
duce a 3-user single-relay network topology, which is capable to illustrate a general back-
ground of the problem. We exemplify the relay decoding process in a binary-modulated

1The decoding operation is based on a modulo-lattice operation in the Compute and Forward [22] frame-
work.
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Figure 6.2: Multiple constellation symbols correspond to the decoded hierarchical data
symbol dAB = 0 (binary modulated sources A,B, dAB = dA ⊕ dB).

system, where we show that a knowledge of dAB (more precisely ĉAB (dAB)) is suf-
�cient to enable the subsequent decoding of dC to be (under some conditions) almost
interference free, even though that perfect IC cannot be performed. We show that even in
a binary-modulated system, varying parameterisations of particular wireless channels
can signi�cantly a�ect the achievable performance. We do not strive to evaluate the
capacity of the system as a function of channel parameterisation, but rather we would
like to demonstrate that successive decoding with hierarchical interference cancellation
represents a viable decoding strategy for multi-user WPLNC systems.

6.1.2 System model and definitions

The simplest network topology where the principle of successive decoding in WPLNC
systems can be demonstrated is a relay MAC channel with three independent sources (Fig-
ure 6.3). This topology can be viewed as some inner building block of a large wireless
network.

In the analysed system, three sources (A, B, C) simultaneously transmit their data to
a common shared relay (R). A signal space representation (with an orthonormal basis)
of transmitted channel symbols is si (ci) ∈ Ai

s ⊂ CN , i ∈ {A,B,C}, where Ai
s(�) is a

channel symbol memoryless mapper, ci (di) is a source i codeword and di is a data-word
sent from the source i.

The n-th constellation space symbol (we omit the time variable n for a better clarity)
received at the relay is

yR = hAsA + hBsB + hCsC + w (6.1)
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Figure 6.3: Relay MAC channel with three independent sources A, B, C .

where w is the circularly symmetric complex Gaussian noise (variance σ2
w per complex

dimension) and hA, hB, hC are scalar complex channel coe�cients (constant during the
observation and known at the relay).

Without loss of generality we assume that the relay wants to recover only some function
of data from sources A, B (dAB = f (dA,dB)), while data from source C (dC) has to be
decoded separately. These two decoded data streams (dAB, dC) are then potentially re-
encoded by the relay and transmitted to the network. In this report we are interested
only in the relay decoding process, and hence we will not discuss the particular form of
the relay output signal.

6.1.3 Overview of successive decoding strategies in WPLNC systems

As we have already mentioned, successive decoding with interference cancellation (SD-
IC) is well understood to be a capacity achieving decoding strategy in conventional multi-
user MAC channels. The main principle of SD-IC resides in the fact that the decoded
signal can be perfectly subtracted from the receiver observation, thus removing the cor-
responding interfering signal from the subsequent receiver processing. Unfortunately,
this is not always possible in WPLNC systems, due to the one-to-many mapping between
the decoded function of source data and its signal space representation (see Figure 6.2).

In this section we overview three successive decoding strategies for the analysed MAC
channel (Figure 6.3). We show that only two of these decoding strategies can be imple-
mented using conventional SD-IC processing, while the last one does not allow a perfect
IC of the decoded signal, and hence it introduces a novel research problem.
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Conventional single-user decoding

Single-user decoding of separate user data streams dA, dB , dC is evidently a feasible
strategy, even though the fundamental goal of the relay node is to forward dAB , dC to
the network2. A conventional 3-user MAC capacity region [32] then de�nes the upper-
bound of source transmission rates, and an arbitrary rate 3-tuple within this capacity
region can be achieved using a standard SD-IC processing. However, constraints given
by the MAC capacity region does not allow to fully exploit the available performance
gains of WPLNC processing.

WPLNC-based decoding

WPLNC processing allows to overcome some constraints induced by conventional MAC
capacity regions, as only some functions of data are decoded at intermediate network
nodes (instead of separate decoding of particular user data). As we show in the following
discussion, the order in which the signals are decoded determines the possibility to per-
form a perfect IC of decoded signals and consequently also the achievable performance.

Perfect IC of sC . We assume that source transmission rates allow that only dC can be
decoded from the relay observation (6.1), while dAB cannot be directly decoded. Since
mapping between the code symbol cC (dC) and its signal space representation sC is one-
to-one, a perfect IC can be performed, and hence the in�uence of sC can be completely
removed from the relay observation:

y′R = yR − hCsC (cC)

= hAsA (cA) + hBsB (cB) + w. (6.2)

This allows an interference-free decoding of cAB (dAB) from (6.2). Thus, after IC the sys-
tem becomes equivalent to a conventional 2-Way Relay Channel (2-WRC) with WPLNC
decoding of dAB [1]. Since the perfect IC is again possible, we will not further analyse
this particular decoding strategy here.

Hierarchical IC (Imperfect IC of hAsA+hBsB). We assume that source transmission
rates allow that only dAB can be decoded from the relay observation (6.1), while dC
cannot be directly decoded. Since mapping between the hierarchical code symbol cAB
and its signal space representation (signal hAsA (cA (dA)) + hBsB (cB (dB))) is one-to-
many, perfect IC cannot be performed. However, even in this case the knowledge of

2Note that dAB = f (dA,dB) can be always obtained when both dA, dB are available at the relay.
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cAB (dAB) can be e�ciently exploited by the Maximum Likelihood decoder of cC (dC):

ĉC = arg max
čC

p (yR | čC , ĉAB)

(∗)≈ arg max
čC

∏

n

p (yR | čC , ĉAB)

= arg max
čC

∏

n

∑

cA,cB :f ′(cA,cB)=ĉAB

p (yR | čC , cA, cB)

= arg max
čC

∏

n

∑

cA,cB :f ′(cA,cB)=ĉAB

exp

(
−‖y′′R − hCsC (čC)‖2

σ2
W

)
(6.3)

where y′′R = yR − hAsA (cA) − hBsB (cB) and the approximation in (∗) is given by
the assumption of per-symbol evaluated metric3. Without loss of generality we have
assumed that the hierarchical function can be evaluated element-wisely on code symbols,
i.e. cAB = f ′ (cA, cB).

Contrary to the previous case, the perfect IC cannot be performed since only a func-
tion of source data dAB = f (dA,dB) (equivalently a function of source codewords
cAB = f ′ (cA,cB)) is decoded, and hence the exact value of the corresponding sig-
nal space representation hAsA (cA) − hBsB (cB) remains unknown to the relay. Nev-
ertheless, a knowledge of a particular subset of codewords (cA, cB) conforming with
cAB = f ′ (cA, cB) becomes available at the relay when ĉAB (dAB) is decoded, and hence
at least a speci�c subset of permissible values of hAsA (cA)− hBsB (cB) for a particular
cAB can be identi�ed. Presumably, a knowledge of this subset can help to reduce the im-
pact of the interfering signal hAsA (cA)− hBsB (cB) on the relay processing. Since the
knowledge of hierarchical codewords cAB = f ′ (cA,cB) is exploited in the decoding pro-
cess, we will refer to this decoding strategy as the "Successive Decoding with Hierarchical
Interference Cancellation" (SD-HIC).

6.1.4 Binary system example

In the rest of this report we analyse the performance of SD-HIC strategy (6.3) in a BPSK-
modulated WPLNC system, where si (ci) ∈ Ai

s = {±1}, i ∈ {A,B,C}. The hierarchical
function f ’ is de�ned on codewords as

f ′ (cA, cB) = cA ⊕ cB, (6.4)

where ⊕ is a bit-wise xor operation.

3The per-symbol evaluation of metric could be sub-optimal since p
(
y

(n)
R | č(n)

C , ĉ
(n)
AB

)
and

p

(
y
(n′)
R | č(n

′)
C , ĉ

(n′)
AB

)
are not generally independent for n 6= n′.
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Figure 6.4: Relay observation in SD-HIC process: Pparameterisarameterisation case I
(∠hA = ∠hB = ∠hC and |hi| = 1).

First of all, we focus on the decoding of source C data in a genie-aided relay decoder
which has a perfect estimate of hierarchical codewords ĉAB (dAB) available4, and hence
only a subsequent decoding of cC (dC) takes place. We depict the relay observation in
SD-HIC process to get a better insight into the problem and we analyse three cases of
channel parameterisations to emphasise its impact on the processing. Then, we provide a
numerical evaluation of capacity (mutual information) performance of the BPSK system
to demonstrate that HIC is capable to reduce the impact of source interference, even
though that perfect elimination of interfering signal is impossible.

Impact of channel parameterisation

The knowledge of a particular value of hierarchical code symbol cAB virtually splits the
relay observation in SD-HIC process into several sub-cases, e.g. for ĉAB = 0 and ĉAB = 1
in the BPSK-modulated system. As a result, there are potentially multiple signal space

4This corresponds to the situation where source rates allow an error-free decoding ĉAB (dAB) from the
relay observation in the presence of interfering signal from source C .
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Figure 6.5: Relay observation in SD-HIC process: parameterisation case II (∠hA =
∠hB = 0; ∠hC = π/2 and |hi| = 1).
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Figure 6.6: Relay observation in SD-HIC process: Parameterisation case III (∠hA =
0; ∠hB = π/2; ∠hC = π/4 and |hi| = 1).
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points conforming to a particular code symbol cC . As we show in the following examples,
the particular number of these signal space points depends mainly on the actual channel
parameterisation and particular value of cAB .

Parameterisation case I: ∠hA = ∠hB = ∠hC . At �rst we analyse the case when
all source-relay channels are synchronous in phase, i.e. ∠hA = ∠hB = ∠hC . As it is
visualised in Figure 6.4, the knowledge of cAB virtually splits the relay observation in
SD-HIC process into two sub-cases for each particular signal space symbol observation.

Parameterisation case II: ∠hA = ∠hB = 0; ∠hC = π/2. As a second example we
analyse the case where signals from sources A, B are synchronous in phase, while the
signal from source C is rotated by ∠hC = π/2. As it is visualised in Figure 6.5, in this
case the signal from source C appears to be virtually orthogonal to signals from sources
A, B. Presumably, in this case the impact of imperfect interference elimination on the
performance of the system will be almost negligible. However, it is important to note
that this virtual orthogonality of signals can presumably occur only if all the sources are
BPSK-modulated.

Parameterisation case III: ∠hA = 0; ∠hB = π/2; ∠hC = π/4. As a last example
we analyse the case where all source signals are asynchronous in phase. As it is visu-
alised in Figure 6.6, under some speci�c channel phase rotation, constellation symbols
conforming to a di�erent code symbols (cC = 0, cC = 1) can fall close to each other in
the constellation space, which will presumably result in a decreased performance of SD-
HIC processing. Note that similar behaviour (Euclidean distance shortening due to an
undesirable channel parameterisation) has been already observed in hierarchical signal
decoders, see [8].

Reference decoders

In this report we are interested mainly in the impact of imperfect cancellation of interfer-
ing signal in HIC decoder, and hence we compare its performance with two reference
successive decoders of data from source C . The reference decoders di�er in the amount
of prior knowledge about cA, cB , i.e. in the capability to remove the interfering signal
hAsA (cA)− hBsB (cB) from the relay observation (6.1) prior to the decoding of source
C data.

“Perfect IC” decoder (P-IC) knows both individual user codewords cA, cB prior to the de-
coding of cC , and hence it is capable to perfectly remove the interfering signalhAsA (cA)−
hBsB (cB) from its observation (6.1). Contrary to this, “No IC” (N-IC) decoder decodes
cC directly from the relay observation (6.1) and hence the interfering signal is simply
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P-IC HIC N-IC

1st decoding cA, cB cAB cC

2nd decoding cC cC cAB

Table 6.1: Successive decoders.

ignored as an additional noise. Successive processing of source information in all the
analysed decoders is summarised in Table 6.1.

For the sake of simplicity we focus only on the decoding of cC at the relay, and hence
we assume that the hierarchical codeword cAB (respectively individual user codewords
cA, cB) in HIC decoder (respectively P-IC decoder) is provided by the genie-aided de-
coder5. In the rest of this section we evaluate the achievable capacity (maximal mutual
information for BPSK alphabets) of source C transmission (CC) in both genie-aided suc-
cessive decoders of cC with interference cancellation (P-IC, HIC) and the interference-
blind single-user decoder of cC (N-IC). An upper bound of transmission rates from other
sources (CB , CB, CAB) will be also evaluated for corresponding decoders to provide a
relevant comparison with practical (not genie-aided) decoders.

Perfect IC decoder. The capacityCP−IC
C for the case where both individual user code-

words cA, cB are available at the relay prior to decoding of cC (dC) can be evaluated as:

CP−IC
C = I (cC ; yR|cA, cB) = H [yR|cA, cB]−H [yR|cC , cA, cB] . (6.5)

In a practical decoder, both individual user codewords cA, cB has to be decoded from the
relay observation (6.1) before the actual decoding of cC takes place, which consequently
limits the corresponding capacities CP−IC

A , CP−IC
B of individual single-user decoders. It

can be shown that these capacities are equal in a symmetric case:

CP−IC
i =

1

2
I (cA, cB; yR) =

1

2
(H [yR]−H [yR|cA, cB]) (6.6)

for i ∈ {A,B}, while generally any rate pair inside the conventional MAC capacity
region [32] can be achieved in the asymmetric case.

HIC decoder. The capacity CHIC
C for the case where the hierarchical user codeword

cAB is available at the relay prior to decoding of cC (dC) can be evaluated as the follow-
ing conditioned mutual information:

CHIC
C = I (cC ; yR|cAB) = H [yR|cAB]−H [yR|cC , cAB] . (6.7)

5This assumption is equivalent to the case where the transmission rates from sources A,B are limited
below the corresponding interference channel capacities (more details will be given later). Moreover,
the perfect availability of cAB (eventually cA, cB) represents also the case, where the particular data
are received on an independent path from the network prior to the actual decoding of cC at the relay.
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Figure 6.7: Comparison of achievable capacities in P-IC, N-IC and HIC decoders (hA =
hB = hC = 1; γC = γA = γB).
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Figure 6.8: Comparison of achievable capacities in P-IC, N-IC and HIC decoders (hA =
hB = 1; hC = 1/2; γC = 1

4
γA = 1

4
γB).

The requirement to obtain a perfect estimate of cAB limits the corresponding hierarchical
capacity CHIC

AB in a practical decoder as:

CHIC
AB = I (cAB; yR) = H [yR]−H [yR|cAB] . (6.8)

No IC decoder. The capacity CN−IC
C for the case where the relay decoder does not

have any knowledge about cA, cB , and hence cC (dC) is decoded directly from the relay
observation (6.3) is given by:

CN−IC
C = I (cC ; yR) = H [yR]−H [yR|cC ] . (6.9)

The N-IC decoder is equivalent to a practical decoder since it does not require any a
priori knowledge about other user signals. It allows a perfect IC of signal sC from relay
observation (6.2) and subsequent decoding of hierarchical codeword cAB from the res-
ulting interference-free channel. Consequently, the capacity of CN−IC

AB is given directly
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by the hierarchical channel capacity, see [1]:

CN−IC
AB = I (cAB; yR|cC) = H [yR|cC ]−H [yR|cC , cAB] . (6.10)

6.1.5 Numerical evaluation

All alphabet constrained capacities were evaluated numerically by the Monte-Carlo in-
tegral evaluation (for details see [1] and references therein). SNR of source i → relay
channel (i ∈ {A,B,C}) is de�ned as γi = E

[
|hi|2|si|2/σ2

w

]
.

A comparison of capacities CP−IC
C , CHIC

C and CN−IC
C is provided in Figures 6.7 and 6.8

for two di�erent examples of channel parameterisation. All capacities are evaluated as a
function of SNR on sourceC→ relay channel (γC). As expected, the performance of hier-
archical interference canceller (HIC) is bounded by the performance of perfect interference
canceller (P-IC) and interference blind receiver (N-IC) as:

CN−IC
C ≤ CHIC

C ≤ CP−IC
C . (6.11)

As it is also evident from Figures 6.7 and 6.8 the actual performance of all successive
decoders (see Table 6.1) is sensitive to actual channel parameterisation. To analyse the
in�uence of channel parameterisation on the performance, we evaluate also the mean
achievable capacities C̄ = Eϕ [C (ϕ)], whereϕ = [∠hA;∠hB;∠hC ] and∠hi is uniformly
distributed on 〈0; 2π), i ∈ {A,B,C}. The comparison of mean capacities C̄P−IC

C , C̄HIC
C

and C̄N−IC
C is provided in Figures 6.9 and 6.10.

As it is obvious from a comparison of Figures 6.7 and 6.8 with Figures 6.9 and 6.10, the
HIC decoder performance su�ers only from a minor SNR loss when compared with the
upper bound given by the P-IC decoder (i.e. CHIC

C ≈ CP−IC
C ). This observation justi�es

a viability of hierarchical interference cancellation in WPLNC decoders. However, it is
important to note again, that the maximal capacities of source C transmission in HIC
(respectively P-IC) decoders are conditioned by the availability of perfect estimate of cAB
(respectively cA, cB) prior to the decoding of source C data. In the practical receiver
(not genie-aided) this assumption implicitly forces an upper bound of transmission rates
from sources A, B. To make the picture complete, these limits on CHIC

AB (HIC decoder)
or CP−IC

A , CP−IC
B (P-IC decoder) are evaluated in Figures 6.7, 6.8, 6.9 and 6.10 as well6.

6In the N-IC decoder, to the contrary, the capacity CN−IC
AB represents only the maximal transmission

rate of hierarchical codewords, which can be achieved after cC is decoded (see the order of successive
decoding operations in Table 6.1).
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Figure 6.9: Comparison of mean achievable capacities in P-IC, N-IC and HIC decoders
(∠hi ∈ 〈0; 2π), |hi| = 1, i ∈ {A,B,C}; γC = γA = γB).
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6.1.6 Conclusion

We have shown that hierarchical interference cancellation is a viable decoding strategy
in WPLNC systems, since it su�ers only from some residual interference, due to an imper-
fect removal of interfering hierarchical signal. We have observed only a minor perform-
ance degradation (when compared to perfect interference cancellation) of the SD-HIC
decoding strategy in the binary-modulated 3-source relay channel. In the future work we
would like to analyse the achievable capacity regions of multi-user WPLNC system and
identify the optimal decoding strategies to respect all constraints induced by practical
(not genie aided) decoders.

6.2 Joint and recursive HIC with successive CaF decoding

6.2.1 Introduction

Background and related work

WPLNC is the network structure aware PHY layer coding technique currently receiving
a wide attention in the research community. The WPLNC technique utilises the know-
ledge of the network structure directly at the PHY layer to improve the e�ciency of the
communication in a complex network. To some extent it reduces the need of separate Me-
dium Access Control or Network Routing Layer. The information is “�ooded” through
the whole network directly at PHY layer coding and processing in a form of many-to-one
functions (Hierarchical Network Code maps (HNC map)) of data. This reduces the size
of (hierarchical) codebook that needs to be decoded and also the rates transmitted from
the relay while fully respecting all PHY constellation space related aspects – mainly the
parameterisation of channels. The �nal destination collects noisy observation of several
HNC maps and solves (jointly decodes) for the desired source data. The WPLNC can be
also seen as the step from the network coding principles [37] designed for discrete �nite
�eld alphabets over lossless links to the signal space representation typical for wireless
communications.

There are many possibilities of designing Network Coded Modulation (NCM) and re-
lated relay processing (see [79], [21] for an overview). The NCM can be based on tra-
ditional single user codes and traditional constellations with layered approach properly
addressing exclusive law (solvability) of the HNC maps at constellation level and relays
using Hierarchical Decode & Forward strategy [1]. Selected results are available invest-
igating various particular forms of the source, relay and destination strategies: lattice
based [19], [118], [15] and other [13] network aware multi-source encoding, adaptive
relay mapping/decision strategies [12], [9], [12], [11].

CaF technique [22] is a generalisation of lattice based design approach. It uses nested lat-
tices and receiver modulo lattice operation complemented with Minimum Mean Square
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Error (MMSE) equaliser alignment of lattices misaligned by the channel fading coe�-
cients. This performs a constellation space equivalent operation to HNC map function
on discrete data themselves. This section focuses on CaF strategy.

Goals of this section and contributions

The motivation and goals of this section can be outlined in the following points.

1. CaF relay processing technique complemented with nested lattice type of NCM is
believed to be “all-in-one” solution for designing WPLNC based networks. How-
ever we see that it has several de�ciencies. The major one is the fact that receiver
lattice mismatch is aligned only through the scalar single tap equaliser. It does not
provide enough degrees of freedom for multiple misaligned sources.

2. Di�erent HNC decodable (with complying computation rate) maps represent vari-
ous forms of structure knowledge that should be exploited at the receiver. These
maps are however still many-to-one functions having ambiguity in their constel-
lation space (lattice) representation.

3. The standard CaF assumes essentially that the number of involved source nodes
and relays is high and we have plenty of choices to optimise HNC map coe�cients
that maximise the computation rate. However in practical situations with a small
number of nodes, we are rather limited and frequently only few are allowed in
order to guarantee �nal destination solvability. Respecting subsequent stages of
the network (not just the MAC (Multiple Access Channel) stage of the �rst stage)
frequently dictates further constraints on the map that is required to be processed
by the relay. A particular HNC map is typically desired to be processed by the
relay.

4. The goal of this work is extension of CaF processing which allows to increase de-
grees of freedom in processing (equalising) misaligned lattices and to utilise all
available hierarchical codebook (HNC map) structure knowledge.

In this section we provide the following contributions and results.

1. We introduce a concept of Hierarchical Interference Cancellation (H-IFC). It de-
scribes the technique where we help the decoder of given desired HNC map by
partially mitigating the ambiguity generated by all involved sources by using other
(again many-to-one) HNC map structure knowledge. Number of known maps is
assumed not to be su�cient for fully resolving all contributing sources (thus the
name “hierarchical” IFC).

2. The H-IFC concept will be particularly used in extending and generalising CaF
technique. It will use Hierarchical Successive CaF Decoding (SCFD) where mul-
tiple auxiliary many-to-one HNC maps are decoded. They are subsequently used
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bA bB

cA cB ci

Sources Si

i ∈ {A,B, . . .}

bi

x

Relay R

Figure 6.11: Hierarchical MAC single stage network fragment.

in H-IFC where each auxiliary map increases the degrees of freedom of equaliser
aligning lattices misaligned by channel fading coe�cients.

3. This technique will be presented in two variants. The �rst performs H-IFC equal-
isation jointly for all auxiliary maps at once. The second form does that in recurs-
ive manner, each map at one step.

6.2.2 Preliminaries

System model and definitions

We assume a Hierarchical MAC single stage fragment of the WPLNC network (Fig-
ure 6.11). This fragment can be used as a building block of a complex network. For
the notational simplicity, we will assume only a single relay R. Generalisation for mul-
tiple relays is straightforward. Sources Si, i ∈ {A,B, . . .} with data vectors bi transmit
codewords (nested lattice points) (ci ∈ Cn) ci = ci(bi). Channel between source Si and
the relay is a block �at fading AWGN channel with fading coe�cient hi ∈ C and noise
w with σ2

w variance per dimension. The received signal is

x =
∑

i

hici + w. (6.12)

Compute-and-forward relay strategy

Here we very brie�y summarise CaF strategy for readers convenience and for notation
de�nition purposes (see [22] for details). CaF is a particular form of NCM based on
nested lattice codes where the relay can decode a linear function of the data vectors
from involved sources. It uses a linear single tap equaliser which minimises (in MMSE
sense) the impact of the channel parameterisation. Essentially, it scales the superposed
lattices misaligned by channel coe�cients to “�t” as good as possible to the common
lattice. Then it is followed by the modulo shaping lattice operation which equivalently
corresponds to Gallois Field (GF) linear function on source data symbols.
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Sources transmit ΛS-shaped ΛC-lattice codewords ci = ci(bi) with Pi = P power and
ratesRi, Ri′ ≤ RA (lower rate codes are zero-padded). Individual data symbols are from
GF bi ∈ FM . The relay has the observation (6.12).

The relay decodes linear minimal cardinality [79] HNC map b =
∑

i qibi, qi ∈ FM .
Modulo-equivalent codeword HNC maps are formed by coe�cients ai ∈ Z, where

a = [aA, aB, . . .]
T

, such that ∑

i

aici mod ΛS = c(b). (6.13)

Coe�cients a are such that after modΛS lattice preprocessing we get the valid code-
word c(b). Coe�cients can be back-mapped on data symbol combination coe�cients
ai mod M 7→ qi.

Before applying modulo shaping lattice operation, the receiver performs linear scalar
equalisation

x̃ = αx = α
∑

i

hici + αw (6.14)

with MMSE “matching” of codeword HNC map misalignment ρ = ‖αx−∑i aici‖2

α̂ = arg min
α

E

[
‖
∑

i

(αhi − ai)ci + αw‖2

]
. (6.15)

A close-form solution is

α̂ =
PhHa

σ2
w + P‖h‖2

. (6.16)

The residual lattice misalignment interference mean power is P‖α̂h− a‖2.

Computation rate at the relay R is then

R̃(a) = max lg+

(
P

|α|2σ2
w + P‖αh− a‖2

)
(6.17)

where lg+ x = max(0, log2 x). It is maximised by MMSE equaliser with coe�cient α̂
given by (6.16) and is achievable by nested lattice code [22]. Computation rate R̃(a)
determines maximum hierarchical rate at the relay. All sources with ai 6= 0 have to
have rates Ri < R̃(a).
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Multiple HNC map CaF

It might happen that our desired map a does not have a su�cient computation rate. In-
stead, the relay can compute multiple (auxiliary) maps {ãm}m provided that their com-
putation rate is higher than the rate of all participating sources and that the desired map
can be get as a linear integer combination

a =
∑

m

ηmãm. (6.18)

In [22], it is called Successive Cancellation. A similar idea also appears in [117]. Here, all
interference is assumed to have a common fading coe�cient and then, 2 standard CaF
maps are used to solve desired and interfering lattices. There is also described a variant
which sequentially nulls interference with regard to desired lattice.

All these ideas share a common principle of computing several auxiliary maps (with
potentially more favorable computation rate) instead of the desired one and then obtain
the desired one as a linear integer combination. We will use this as a reference case and
we call it multiple map CaF.

Hierarchical interference cancelation

In this section, we present two variants of CaF generalisation which introduce addi-
tional degrees of freedom into the lattice misalignment equaliser and allows exploiting
all available structure knowledge of hierarchical codewords (many-to-one source code-
word functions). An additional advantage is that the auxiliary and the desired map does
not need to be linearly dependent. Two variants will be introduced: with joint and re-
cursive processing.

H-SCFD with joint H-IFC multi-tap equaliser

Hierarchical Successive CaF Decoding (H-SCFD) with Joint H-IFC multi-tap equaliser
performs the following steps.

1. H-SCFD step: The relay decodes multiple auxiliary IFC HNC maps {ãm}m. Each
map has to have su�cient computation rate for all participating sourcesRi < R̃(a)
for all i such that ai 6= 0.

2. Joint H-IFC equaliser step: Let the desired map be a (it does not need to be a
linear combination of auxiliary maps). Joint H-IFC multi-tap equaliser minimises
MSE lattice misalignment with regard to to desired map a including multi-tap
scaling of all available decodable hierarchical codeword structures

[α̂, β̂] = arg min
α,β

E

[
‖αx−

∑

m

βm

(∑

i

ãmi ci

)
−
∑

i

aici‖2

]
(6.19)
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where β = [. . . , bm, . . .].

Notice, that all exploitable decodable hierarchical codewords map have dedicated inter-
face canceller equaliser tap which is optimised for this map. This means that we ex-
actly as many equaliser degrees of freedom as is the number of exploitable patterns. It
is worth stressing that these patterns are only hierarchical, i.e. many-to-one functions
of the source codeword and as such they still have constellation/lattice space ambigu-
ity. This is the reason we use “hierarchical” IFC name. Please compare that to classical
successive decoding interference canceller where an exact and non-ambiguous form of
source codeword is subtracted.

Next we �nd a closed form solution of the MMSE Joint H-IFC equaliser. For a simplicity,
we assume only a single IFC map ã. Generalisation is straightforward. Single auxiliary
map Joint H-IFC MMSE equaliser is stated as

[α̂, β̂] = arg min
α,β

E

[
‖αx− β

∑

i

ãici −
∑

i

aici‖2

]
. (6.20)

The utility function is

ρ = E

[
‖αx− β

∑

i

ãici −
∑

i

aici‖2

]
(6.21)

= nP‖αh− βã− a‖2 + n|α|2σ2
w (6.22)

is a real-valued function of complex variables α, β. In order to �nd its stationary point,
we need to use generalised derivative, see [119]. Performing this leads to linear equations
easily solvable in a closed form. MMSE coe�cients are get from

[
γ‖h‖2 + 1 −γhH ã

γãHh −γ‖ã‖2

][
α̂

β̂

]
=

[
γhHa

γãa

]
(6.23)

where γ = P/σ2
w is Signal-to-Noise Ratio (SNR).

Residual IFC misalignment is z =
∑

i

(
α̂hi − β̂ãi − ai

)
ci with mean power

Pz =
E [‖z‖2]

n
= P‖α̂h− β̂ã− a‖2. (6.24)

Resulting computation rate is

R̃J = lg+ P

|α̂|2σ2
w + P‖α̂h− β̂ã− a‖2

. (6.25)
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H-SCFD with recursive H-IFC equaliser

Hierarchical Successive CaF Decoding (H-SCFD) with Recursive H-IFC equaliser per-
forms recursively equaliser steps for each auxiliary map at one step.

1. H-SCFD step: The relay decodes multiple auxiliary IFC HNC maps {ãm}m. Each
map has to have su�cient computation rate for all participating sourcesRi < R̃(a)
for all i such that ai 6= 0.

2. H-IFC equaliser at recursionm step: Let the desired map be a (it does not need
to be a linear combination of auxiliary maps). At each recursion step, the equaliser
minimises MSE lattice misalignment with regard to to desired map a using only
scaling of m-th decodeable structure (map ãm)

β̂m = arg min
βm

E

[
‖ym−1 − βm

(∑

i

ãmi ci

)
−
∑

i

aici‖2

]
(6.26)

where we de�ne the initialisation y0 = x. The H-IFC canceller is then

ym = ym−1 − β̂m
∑

i

ãmi ci. (6.27)

3. Final CaF equaliser step: At the end, for �nal y we perform a standard CaF α
MMSE equalisation (see Section 6.2.2). E�ectively it means the standard CaF is
applied to new e�ective channel coe�cients

h̃ = h−
∑

m

β̂mãm. (6.28)

A closed-form solution will be for a simplicity again show for single auxiliary map ã
(with a straightforward generalisation). Optimal MMSE H-IFC coe�cient solution is
again get using generalised derivative of the utility function

ρ = E ‖x− β
∑

i

ãici −
∑

i

aici‖2 (6.29)

= nP‖h− βã− a‖2 + nσ2
w. (6.30)

The solution has a form of a projector

β̂ =
ãH(h− a)

‖ã‖2
(6.31)

and does not depend on SNR.

DIWINE D4.03



172 6 Hierarchical interference processing

The resulting new e�ective channel is then h̃ = h − β̂ã. This e�ective channel can be
easily plugged into the standard CaF solution. The computation rate is

R̃1(aj) = k lg+ P

|α̂|2σ2
w + P‖α̂h̃− a‖2

(6.32)

with optimal MMSE α (CaF for the e�ective channel)

α̂ =
P h̃Ha

σ2
w + P‖h̃‖2

. (6.33)

6.2.3 Numerical results

We examined both suggested one-step variants of hierarchical interference canceller in
the 3-user MAC. Standard CaF with multiple HNC maps was used as a reference scen-
ario. In the �rst case, we considered channel coe�cients causing only small lattice mis-
alignment. Thus, we chose real valued vector of channel coe�cients h = [3.1, 2.1, 0.9].
Without loss of generality we assumed desired HNC map to be a = [1, 1, 1]. In the ref-
erence case, we chose HNC map ã1 = ah = [1, 1, 0] maximising the computation rate at
SNR = 5 dB and second auxiliary map ã2 = ax = [0, 0,−1]. These maps were selected in
order to obtain the desired map a as their integer linear combination. For recursive and
joint H-SD-IFC auxiliary HNC maps, the map maximising the computation rate of the
desired map was used. For a given h we obtained ã = aifc = [−2,−1, 0]. In Figure 6.12a,
there are plotted computation rates of individual maps. It is obvious that the resulting
achievable rate of appropriate scenario is given by the minimal rate among all participat-
ing HNC maps. Achievable rates for all considered scenarios are plotted in Figure 6.12b,
where we can see that standard CaF with multiple maps is not optimal for given h, while
both hierarchical interference cancellers gave the computation rates above the case of
only one desired HNC map.

The same analysis was performed for channel coe�cients causing large lattice misalign-
ment. An example of such channel is h = [3.3, 1.5, 0.9]. Appropriate HNC maps together
with their computation rates are shown in Figure 6.13a. From results in Figure 6.13b it
can be seen that standard CaF with chosen multiple maps has poor performance again.
Recursive H-SD-IFC gave better results, even without restriction on desired map to be a
linear integer combination of auxiliary HNC maps.

In [22,117] there is mentioned that CaF extension to complex valued channel is straight-
forward, but all papers about CaF give numerical results only for a real valued case.
Therefore, we also show the results of considered scenarios for complex channel coef-
�cients (Figure 6.14 and Figure 6.15). Again we can see that recursive H-SD-IFC ranks
among the scenarios with better performance. In Figure 6.14 there is shown that CaF
with multiple auxiliary maps can also achieve good results, even better than joint H-SD-
IFC.
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Figure 6.12: Real valued channel with small lattice misalignment: (a) Computation rates
for all participating auxiliary HNC maps, (b) Resulting computation rates as
minimum over all auxiliary HNC maps associated with given scenario.
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Figure 6.13: Real valued channel with large lattice misalignment: (a) Computation rates
for all participating auxiliary HNC maps, (b) Resulting computation rates as
minimum over all auxiliary HNC maps associated with given scenario.
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Figure 6.14: Complex valued channel with small lattice misalignment: (a) Computation
rates for all participating auxiliary HNC maps, (b) Resulting computation
rates as minimum over all auxiliary HNC maps associated with given scen-
ario.

DIWINE D4.03



176 6 Hierarchical interference processing

(a)

æ æ æ
æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à
à à à à à à à à à à

ì ì
ì ì ì ì ì ì ì ì ì ì ì ì ì

ò ò ò
ò ò

ò ò ò ò ò ò ò ò ò ò

ô ô
ô

ô

ô

ô
ô ô ô ô ô ô ô ô ô

ç ç ç
ç ç ç ç ç ç ç ç ç ç ç ç

-10 0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SNR @dBD

C
o
m
p
u
ta
ti
o
n
a
l
R
a
te
@b
it
�d
im
D

channel h= 83.4 + 0.4 I, 2.3 + 1.7 I, 1.6 + 2.4 I<, d esired a= 81 + I, 1 + I, 1 + I<,

ah= 81 + I, I, I<,ax= 80, -1, -1<,a ifc= 8-2, -1 - I, -I<

ç Join t H-SD-IFC, desired a

ô H-SD-IFC, desired a

ò H-SD, canceller aifc

ì CF, 2nd map ax

à CF, 1st map ah

æ CF, desired a

(b)

æ æ

æ

æ

æ
æ æ æ æ æ æ æ æ æ æ

à
à

à

à à
à à à à à à à à à à

ì ì

ì

ì

ì
ì ì ì ì ì ì ì ì ì ì

ò ò

ò

ò

ò
ò ò ò ò ò ò ò ò ò ò

-10 0 10 20 30 40 50 60
-0.1

0.0

0.1

0.2

0.3

0.4

SNR @dBD

C
o
m
p
u
ta
ti
o
n
a
l
R
a
te
@b
it
�d
im
D

channel h= 83.4 + 0.4 I, 2.3 + 1.7 I, 1.6 + 2.4 I<, d esired a= 81 + I, 1 + I, 1 + I<,

ah= 81 + I, I, I<, ax= 80, -1, -1<, a ifc= 8-2, -1 - I, -I<

ò Join t-H-SD-IFC

ì H-SD-IFC

à CF, lin-comb Hah ,axL->a

æ CF

Figure 6.15: Complex valued channel with large lattice misalignment: (a) Computation
rates for all participating auxiliary HNC maps, (b) Resulting computation
rates as minimum over all auxiliary HNC maps associated with given scen-
ario.
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6.2.4 Discussion and conclusions

We developed a generalisation of CaF relay strategy that increases number of degrees
of freedom in lattice misalignment equaliser using hierarchical CaF successive decod-
ing. Apart of creating multi-tap equaliser we also utilise all available auxiliary HNC
map codebook knowledge in relay CaF processing. Freedom gained in this multi-tap
equaliser-canceller clearly allows achieving better computation rates and also relaxes
the need of linear only HNC map combination in standard multi-map CaF. In a com-
plicated system, we can set the desired map paying less attention to its optimality with
regard to CaF misalignment equalisation.

Numerical results showed that our hierarchical interference canceller can achieve good
results, even for channel coe�cients causing large lattice misalignment. However, for
each channel coe�cient vector, we can �nd at least one HNC map leading to catastrophic
degradation of computation rate. Nevertheless, HNC map with poor performance in
one scenario can be better for another one. Therefore, some adaptive mixture of H-IFC
strategies can lead to desired performance.
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7 Performance analysis

7.1 Hierarchical pairwise error probability for hierarchical
decode and forward strategy in WPLNC

7.1.1 Introduction

Pairwise Error Probability (PEP) is an essential tool allowing to design practical optim-
ised coding schemes. It reveals the connection between the performance and the de-
coding metric that is directly related to the codeword and/or constellation properties.
The application of this principle to the hierarchical PEP used to describe the decod-
ing performance of many-to-one message functions (Hierarchical Network Code maps)
in WPLNC is addressed in this paper. Unlike for the single-user case, the hierarch-
ical PEP reveals a complicated dependence on the structure of the hierarchical code-
word/constellation. The structure is de�ned in terms of hierarchical distance and hier-
archical self-distance spectra. We show that the Network Coded Modulation (NCM) min-
imising the hierarchical decoding error probability should have zero self-distance spec-
trum leading to self-folded NCM design criterion.

WPLNC background

WPLNC communication networks deliver the information from sources to destinations
through the complex network of relays. The information �ow does not route individual
source messages but their many-to-one functions, similarly to network coding. But in
addition to this, the signals of multiple transmitting nodes are allowed to interact at the
receiving relay and the relay performs all processing directly in the constellation space.
The extraction of the many-to-one message function out of the interacting signals can
be done in multiple hierarchical encapsulation levels, and we name it hierarchical in-
formation. Network Coded Modulation (NCM) denotes the set of component constella-
tion space codebooks aware of the network structure and designed for a particular relay
strategy. Relay strategies can have many forms: Compute and Forward (CaF), Denoising,
Compress and Forward, Hierarchical Decode and Forward (HDF), etc. Final destination
node determines the desired message by solving the decoding task on multiple collected
received signals carrying hierarchical messages with independent many-to-one message
functions. The overview of selected strategies can be found in [21, 22, 75–79], and selec-
ted results related to the error rate performance are in [50, 120].
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Motivation

The error probability is an important performance indicator and also an obvious code
and receiver design optimisation goal. The exact error probability evaluation based on
the transition probabilities is too complex (apart of trivial uncoded cases) to be practically
useful. It also gives only a limited insight for a synthesis of the code. A pairwise error
probability can be used to upper-bound the true error rate. As a side-e�ect it also connects
the performance target with the metric used by the demodulator and decoder. This can
be used for the code synthesis.

This paper focuses on the HDF relay strategy [78] in a single-stage H-MAC channel.1 The
relay wants to decode the H-message. Multiple combinations of component codewords
correspond to one H-message. As a consequence, the hierarchical symbol/codeword,
is generally a set of multiple constellation points or codewords U(b). It is called called
H-constellation.2 The fact that H-constellation (or H-codeword) has multiple represent-
ations of the H-message makes the pair-wise error analysis substantially more di�cult.
Also the interpretation of the results reveals some surprising facts which do not have
their equivalents in the classical single user system.

Contribution and main results

We will de�ne hierarchical pairwise error probability and we will show how this can be
used in the isomorphic layered NCM design. The evaluation of the hierarchical error
probability on the relay implies H-message relay decoding strategy, i.e. HDF.

(1) We derive the expression forHierarchical Pair-wise Error Probability (H-PEP) revealing
its dependence on the structure of the hierarchical constellation. The structure is de�ned
in terms of hierarchical distance and hierarchical self-distance spectra.

(2) We show that the NCM minimising the hierarchical decoding error probability should
have zero self-distance spectrum and we call this case self-folded NCM. The self-folding
property provides a neat NCM design criterion.
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b1 c1C1 x b
H-MAC

channel
bK cKCK

relay

component node 1

component node K

Figure 7.1: System model for H-MAC stage.

7.1.2 System model and definitions

H-MAC stage

In order to streamline the development of the paper, we focus on a generic single H-
MAC stage with a single receiving relay (Figure 7.1). It is a smallest building block of
a more complex WPLNC system. The component messages bk ∈ [1 : M ] of all trans-
mitting nodes are encoded by NCM into ck = Ck(bk), k ∈ [1 : K], where K is the
number of the transmitters in H-MAC. The relay wants to decode H-message which is
Hierarchical Network Code (HNC) map (many-to-one function) b = χ(b̃) of the compon-
ent messages, where the concatenation of all component messages is b̃ = [b1, . . . , bK ].
The “tilde” denotes “concatenation” and will also be used in the notations of codewords
c̃ = [cT1 , . . . , c

T
K ]T , symbols c̃ = [cT1 , . . . , c

T
K ]T , codebooks C̃ = [C1, . . . ,CK ]. The obser-

vation is described by p(x|b̃) = p(x|c̃(b̃)), where x = u(c̃) + w, u(c̃) is the channel-
combined constellation symbol depending on all component codewords c̃, and w is Gaus-
sian noise.

Isomorphic layered NCM

We call the set of component codebooks {Ck}Kk=1 isomorphic layered NCM if there ex-
ists one-to-one mapping H-code C and H-codeword HNC map c = χc(c̃) such that
c = C(b). The isomorphism implies that the component-wise encodings can be equival-
ently expressed for the relation between the desired H-message and the corresponding
H-codeword. Since the H-decoding can be based on the decoding metric related to the H-
codeword which is �rst obtained from the component-wise channel observation model
p(x|c̃), we call that approach also layered. The examples of isomorphic layered NCM
are CaF [22] or layered block linear NCM [78].

The analysis in this paper can be generally applied on the level of complete messages b,
codewords c and vector observation x but it could also be applied in the symbol-wise
manner (cn, xn), e.g. for the uncoded case. We will use a generic notation using b, c, x to
cover both.

1A pre�x “H-” is used to denote “hierarchical” entity, i.e. the one that is generally many-to-one func-
tion of the components, or a processing (e.g. codebook, codeword, MAC channel, etc.) related to the
hierarchical entities.

2A trivial uncoded example has two component BPSK sources with symbols {±1}. The channel com-
bined constellation points are {−2, 0, 2}. For XOR type of many-to-one hierarchical function, there are
two H-symbols, one represented by {0} and second one being a pair of possible points {±2}.
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7.1.3 Hierarchical pairwise error probability

H-PEP for isomorphic NCM

H-PEP definition

Assume the H-message decoding metric is µb(x) and that the decoder decision processing
maximises its value, b̂ = arg maxb µb(x). H-PEP is

P2H(b′|b) = Pr
{
µb(x) < µb′(x)|b = χ(b̃x)

}
(7.1)

where b̃x are actually transmitted component data and b 6= b′ are some given H-messages.
We will also use a simpli�ed notation P2H = Pr {µb < µb′ |b}.
The H-PEP is thus the probability that the H-metric for correct H-message b is smaller
than the one for some other message b′ provided that the received signal is consistent
with b, i.e. all component transmitted data are such that b = χ(b̃x). The form of the
metric used in H-PEP is arbitrary. It does not even need to be the metric leading to the
optimal performance. In such a case it would simply analyse the performance under
that suboptimal metric and potentially suggest how to optimise the code for that given
(suboptimal) metric. The most common example is the MAP metric.

H-PEP for isomorphic NCM

The evaluation of H-PEP related directly to the message level HNC map metric is a dif-
�cult task. It becomes much easier when the metric is related to the code level HNC
map. It directly employs the codewords into the calculation which will provide better
insight on what the code should optimally look like. If the NCM is isomorphic then
P2H(b′|b) = P2H(c′|c) where c = C(b) and c′ = C(b′). From now on, we will assume
isomorphic NCM, and thus

P2H(c′|c) = Pr {µc(x) < µc′(x)|c} . (7.2)

We will also assume the use of MAP decoding metric. The H-metric is a marginalisation

µc(x) = p(x|c) =
1

p(c)

∑

c̃:c

p(x|c̃)p(c̃) (7.3)

where we used notation (c̃ : c) = {c̃ : c = χc(c̃)}. Notice a very important fact that the
step from message H-PEP evaluation to codeword based one (which is trivial in a single
user case) requires a speci�c assumption and further treatment.

In (7.2), we �rst focus on the conditioning by the received signal consistent with c.
There are multiple of component codewords c̃x in the received signal consistent with
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c P2H = Pr{µc(x) < µc′(x)|⋃c̃x:c c̃x}. Events c̃x are disjoint. If we assume that they are
also equally probable Pr{c̃x : c} = const then3

P2H =
1

Mc̃:c

∑

c̃x:c

Pr {µc(x) < µc′(x)|c̃x} (7.4)

where Mc̃:c is the size of sub-codebook C̃(c). C̃(c) is a subset of C̃ where we take only
the entries consistent with c. The H-PEP is the average over all consistent source node
component codes. This is additional level of averaging over those being present in the
traditional pairwise error probability calculation.

The most probable event

We can upper-bound the H-PEP by the most probable pairwise H-constellation event

P2H ≤ P2Hm = max
c̃x:c

Pr {µc(x) < µc′(x)|c̃x} . (7.5)

Notice that the hierarchical codewords c, c′ are still �xed. The overall error rate beha-
viour can be then (similarly as in classical single user code case) upper-bounded by the
overall most probable pairwise event

P2Hmax = max
c 6=c′,c̃x:c

Pr {µc(x) < µc′(x)|c̃x} . (7.6)

H-PEP for Gaussian memoryless channel

Gaussian channel

In the next step, we will constrain the treatment to a special case of Gaussian memoryless
channel. The observation likelihood for all component codes is

p(x|c̃) =
1

πmσ2m
w

exp
(
−‖x− u(c̃)‖2/σ2

w

)
,

where m is a complete dimensionality of the signals (both per-symbol and length of the
message), σ2

w is the variance per dimension, and u(c̃) is noiseless constellation space point
observed at the receiver. Notice that channel model inherently contained in u(c̃) can be
arbitrary.4 H-constellation is the set of u(c̃) consistent with c, i.e. U(c) = {u(c̃) : c =
χc(c̃)} where we properly count for multiplicities.

3For multiple disjoint and equally probable events Bi, it holds Pr
{
A|⋃Mi=1Bi

}
= 1

M

∑M
i=1 Pr{A|Bi}.

4In a special case of a linear �at fading channel, used now only as an example and not needed for the
rest of the derivation, it would be u =

∑
k hkck .
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On top of assuming uniformly distributed c̃, Pr{c̃} = 1/Mc̃, Mc̃ = |C̃|, we also assume
uniform c, i.e. Pr{c} = const = 1/Mc where Mc = |C| is the size of H-codebook. Then
the metric is

µc =
Mc

Mc̃

∑

c̃:c

p(x|c̃) =
Mc

Mc̃

1

πmσ2m
w

∑

c̃:c

e
− 1

σ2
w
‖x−u(c̃)‖2 (7.7)

and its normalised form µ̇c = µcπ
mσ2m

w Mc̃/Mc is

µ̇c =
∑

c̃:c

exp
(
−‖x− u(c̃)‖2/σ2

w

)
. (7.8)

H-distance

The H-distance for the complete message is uHmin(c) = arg minu(c̃):χc(c̃)=c ‖x − u(c̃)‖2.
We can factorise (7.8)

µ̇c = e
− 1

σ2
w
‖x−uHmin(c)‖2 ∑

c̃:c

e
− 1

σ2
w

(‖x−u(c̃)‖2−‖x−uHmin(c)‖2) (7.9)

where all di�erences in the summation are non-negative ‖x−u(c̃)‖2−‖x−uHmin(c)‖2 ≥
0. Finally, taking the negative scaled logarithm ρc = −σ2

w ln µ̇c, we get the decoder
metric

ρc = ‖x− uHmin(c)‖2 − σ2
wηc (7.10)

where the correction term is

ηc = ln
∑

c̃:c

e
− 1

σ2
w

(‖x−u(c̃)‖2−‖x−uHmin(c)‖2)
. (7.11)

Clearly, it holds 0 ≤ ηc ≤ ln(Mc̃/Mc). The correction term is zero ηc = 0 if exactly
one H-constellation point is the minimal H-distance point u(1)(c̃) = uHmin(c) and all
others (if any) are at much larger distance, ∀i 6= 1, ‖x − u(i)(c̃)‖2 � ‖x − uHmin(c)‖2.
Notice that many practical component constellations, e.g. 2 component BPSK and XOR
HNC with H-constellation {0, {−2, 2}}, do not �t under these conditions. On the other
side, if for all c̃ : c the H-constellation point is the minimal H-distance point, then the
correction is non-zero but constant and independent of x, ηc = ln(Mc̃/Mc). The non-
zero value of ηc on its own does not present a problem from the H-PEP evaluation point
of view. However its dependence on x is a problem. The presence and behaviour of
the correction term also nicely demonstrates that the pure H-distance is not generally
optimal decoding metric.
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H-PEP

The H-PEP for a given set of messages and for c-consistent received signal (χc(c̃x) = c)
is then

P2He = Pr{ρc(x) > ρc′(x)|c̃x}
= Pr{‖x− uHmin(c)‖2 − ‖x− uHmin(c′)‖2 − σ2

wηc,c′ > 0|c̃x} (7.12)

where ηc,c′ = ηc−ηc′ . The inequality is reversed since we used negative scaled logarithm
metric. Let us now denote the c-consistent noiseless part of the received signal for given
c̃x as u(c̃x). It has to be a member of the H-constellation set for the c H-symbol, i.e.
u(c̃x) ∈ U(c). The condition of c-consistent received signal is thus re�ected in having
x = u(c̃x) + w and consequently

P2He = Pr
{
‖u(c̃x) + w − uHmin(c)‖2

− ‖u(c̃x) + w − uHmin(c′)‖2 − σ2
wηx,c,c′ > 0

}
(7.13)

where the correction terms under this condition are ηx,c,c′ = ηx,c − ηx,c′

ηx,c = ln
∑

c̃:c

e
− 1

σ2
w

(‖u(c̃x)+w−u(c̃)‖2−‖u(c̃x)+w−uHmin(c)‖2)
, (7.14)

ηx,c′ = ln
∑

c̃′:c′

e
− 1

σ2
w

(‖u(c̃x)+w−u(c̃′)‖2−‖u(c̃x)+w−uHmin(c′)‖2)
. (7.15)

The expression of the distances di�erence that appears in P2He (and with minor modi-
�cation in ηx,c, ηx,c′) can be further manipulated (〈�; �〉 denotes inner product)

‖u(c̃x) + w − uHmin(c)‖2 − ‖u(c̃x) + w − uHmin(c′)‖2

=‖u(c̃x)− uHmin(c)‖2 − ‖u(c̃x)− uHmin(c′)‖2

+ 2Re
[〈
u(c̃x)− uHmin(c);w

〉]
− 2Re

[〈
u(c̃x)− uHmin(c′);w

〉]

=‖u(c̃x)− uHmin(c)‖2 − ‖u(c̃x)− uHmin(c′)‖2

− 2Re
[〈
uHmin(c)− uHmin(c′);w

〉]
. (7.16)

ξ = −2Re
[〈
uHmin(c)− uHmin(c′);w

〉]
is Gaussian real-valued scalar zero-mean ran-

dom variable with the variance σ2
ξ = 2σ2

w‖uHmin(c)− uHmin(c′)‖2. Then

P2He = Pr {ξ>‖u(c̃x)−uHmin(c′)‖2−‖u(c̃x)−uHmin(c)‖2+σ2
wηc,c′} . (7.17)

A similar manipulation can be done for the correction terms

ηx,c=ln
∑
c̃:c e

− 1
σ2
w

(‖u(c̃x)−u(c̃)‖2−‖u(c̃x)−uHmin(c)‖2−2Re [〈u(c̃)−uHmin(c);w〉])
, (7.18)

ηx,c′=ln
∑
c̃′:c′ e

− 1
σ2
w

(‖u(c̃x)−u(c̃′)‖2−‖u(c̃x)−uHmin(c′)‖2−2Re [〈u(c̃′)−uHmin(c′);w〉])
. (7.19)
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Hierarchical distance and self-distance spectrum

The properties of the quantities determining the H-PEP clearly depend on two types of
the H-constellation/codeword distances. The �rst one is the distance between the points
belonging to di�erent H-symbols and the second one is the distance between the points
belonging to the same H-symbol. For this purpose, we de�ne hierarchical distance and
self-distance spectrum.

Hierarchical distance (H-distance) spectrum is a set

SH(c, c′) = {‖u(c̃)−u(c̃′)‖2: c=χc(c̃)6=c′=χc(c̃′)} . (7.20)

We also de�ne SH =
⋃
c,c′ SH(c, c′).

Hierarchical self-distance (H-self-distance) spectrum is a set

SH̄(c) = {‖u(c̃(a))−u(c̃(b))‖2: c=χc(c̃(a))=χc(c̃(b))∧c̃(a) 6=c̃(b)} . (7.21)

We also de�ne SH̄ =
⋃
c SH̄(c).

NCM design rules based on H-PEP

We use (7.17,7.18,7.19) to establish qualitative design rules for NCM that minimise H-
PEP. The situation is however less straightforward than in the classical single user code.
There are several observations we need to keep in our mind before we start. There are
multiple mutually correlated random variables in the expression and these cannot be
easily factorised into a single one as in single-user code case. All ξ, ηx,c, ηx,c′ directly
depend on Gaussian noise w and are continuous valued correlated variables. But also
the hierarchical minimum distance points uHmin(c), uHmin(c′) depend on the received
signal and therefore also on w. These variables are however discrete one. There are
random and dependent on w but constrained to be inside the H-constellation and their
in�uence on H-PEP can be thus controlled through the H-distance and H-self-distance
spectrum. In order to minimise H-PEP, we should consider the following.

(1) The distance ‖u(c̃x)−uHmin(c′)‖2 in (7.17) should be as large as possible. Notice that
‖u(c̃x)− uHmin(c′)‖2 ∈ SH(c, c′) for arbitrary noise w realisation.

(2) The self-distance ‖u(c̃x)− uHmin(c)‖2 in (7.17) should be as small as possible. Notice
that ‖u(c̃x)− uHmin(c)‖2 ∈ SH̄(c) for arbitrary noise w realisation.

(3) The variance of the ξ variable is proportional to ‖uHmin(c)− uHmin(c′)‖2 ∈ SH(c, c′)
which is constrained by the H-distance spectrum.

(4) The correction term ηx,c,c′ should be as large as possible which in turn means maxim-
ising ηx,c and minimising ηx,c′ . Behaviour of ηx,c is dictated by H-self-distance spectrum
while the behaviour of ηx,c′ is jointly dictated by both H-distance and H-self-distance
spectrum.
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(5) The maximum value of ηx,c is ln(Mc̃/Mc) and it is reached when arguments of the ex-
ponentials are zero, i.e. when all self-distances are zero SH̄(c) = {0}. All H-constellation
(codeword) points for given c are identical. We will call this a self-folded H-constellation
(codebook) or self-folded NCM. If the H-constellation/codebook is self-folded then the
arguments of the exponentials in ηx,c′ are also all zeros, and thus ηx,c′ = ln(Mc̃/Mc) and
the overall correction term is zero regardless of the noise ηx,c,c′ = 0. Self-folded NCM
also causes the self-distance in (7.17) to be zero, and thus

P SF
2He = Pr

{
ξ > ‖u(c̃x)− uHmin(c′)‖2

}
. (7.22)

(6) Now let us have a look at the situation when the NCM is not self-folded. Let us assume
that the spread in self-distances is symmetric for all c. If it was not a symmetric one then
the case that would make an advantage for P2He(c

′|c) would become a disadvantage for
P2He(c|c′) in terms of the possible compensation as discussed in point (6b) below.

(6a) Let us also assume that some point pair c̃x, c̃ in the H-constellation maximises the
self-distance ‖u(c̃x)−u(c̃)‖2 to some particular value d2

H̄
. The expression ηx,c will not be

the maximal one (as for self-folded case) but it will be somewhat smaller. For the given
pair of points, the argument ‖u(c̃x)−u(c̃)‖2 of the exponential in (7.18) increases to the
value d2

H̄
. The second term ‖u(c̃x)− uHmin(c)‖2 will highly likely (at least for high SNR)

be zero since the minimum H-distance point is the closest to the received signal. The
degradation of the �rst noiseless term in (7.18) is thus d2

H̄
at least for that given point

pair.

(6b) This degradation can be possibly compensated by the improvement in the term
(7.19). In the most favorable case for the improvement, the points u(c̃x), u(c̃′), uHmin(c′)
lie in the line and the maximal value of ‖u(c̃x) − u(c̃′)‖2 − ‖u(c̃x) − uHmin(c′)‖2 is d2

H̄
.

Where, by the assumption of the symmetry, points u(c̃′), uHmin(c′) are constrained to the
distance ‖u(c̃′)− uHmin(c′)‖2 = d2

H̄
. So the noiseless terms in the exponentials of (7.19)

can, at the best, just compensate the degradation of the argument of (7.18) but practically
it will be even worse.

(6c) The noise terms in both (7.18) and (7.19), i.e.

2Re
[〈
u(c̃)− uHmin(c);w

〉]

and
2Re

[〈
u(c̃′)− uHmin(c′);w

〉]

are given by the self-distances only. The left-hand sides in the inner products are dif-
ferent but under the assumption of symmetric self-distances SH̄(c) ≈ SH̄(c′) they will
make the noise term highly correlated, and thus both will be a�ecting the arguments of
the exponentials in (7.18) and (7.19) the same way.

(6d) The main expression (7.17) also contains the self-distance. A positive value of
‖u(c̃x) − uHmin(c)‖2 decreases the right-hand side of the inequality and increases the
H-PEP.
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(6e) As we see, the nonzero spread of the self-distances cannot improve the H-PEP and
will make highly likely the things only worse.

7.1.4 Summary

The analysis of the H-PEP behaviour lead us to the �nal main result identifying the
self-folded NCM design criterion.

Conjecture: Self-folded NCM (H-constellation/codebook) minimises H-PEP

Assume isomorphic NCM in Gaussian memoryless channel, decoding MAP H-metric,
and uniform component messages and HNC map such that Pr{c̃} = 1/Mc̃, Pr{c} =
1/Mc, Pr{c̃ : c} = Mc/Mc̃. Self-folded NCM, i.e. the one with zero H-self-distance
spectrum SH̄ = {0}, minimises H-PEP which is (Q is complementary Gaussian CDF)

P SF
2He = Q

(√
‖u(c̃x)− uHmin(c′)‖2/(2σ2

w)
)
. (7.23)

It is important to note that the self-folding property is expected to be natural, i.e. natur-
ally performed by the channel combining the component signals into the H-constellation
also fully respecting the channel parameterisation. Notice that the modulo-lattice pre-
processing (used in CaF) achieves the hierarchical self-folding but it achieves that by the
force. The price paid for this enforcement is the distortion of the noise which becomes
modulo-equivalent Gaussian.
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8 Practical encoding and decoding of CaF based NCM

8.1 Complex low density la�ice codes to physical layer network
coding

CaF, lattice network coding (LNC) and the aforementioned multilevel lattice network
coding (MLNC) lay the theoretical foundations for achieving high-throughput WPLNC-
relaying based on any lattice codes, and MLNC also gives the practical design guideline.
Lattice codes can be constructed by the existing non-binary channel codes, e.g. Construc-
tion A or D lattices, and these lattice codes have been designed in LNC. In this section, we
consider an alternative design to LNC, where the recently developed complex low dens-
ity lattice codes (CLDLC) are employed. Di�ering from construction A or D, CLDLC is
directly designed in the Euclidean space, and has good algebraic properties, which are
well suitable for LNC. Especially CLDLC is in principle capable of improving the overall
LNC performance and throughput compared to the traditional constructions, due to its
high coding gain.

8.1.1 Introduction

WPLNC was introduced around 2006 independently by several research groups [47]
[121] [22]. It has been shown to be very e�ective in improving the throughput of a
two way relay channel (2-WRC). The core idea is that the intermediate relay attempts to
infer and forward linear combinations of the simultaneously received signals, instead of
decoding the transmitted signals individually. Nazer and Gastpar [22] proposed a new
approach to WPLNC, namely compute-and-forward (CaF) which extends the 2-WRC to a
more general network topology. In more recent work, Feng et al. [49] formulated a more
general algebraic framework for lattice-based WPLNC, namely lattice network coding
(LNC), which relates CaF to the fundamental theorem of �nitely generated modules over
a principal ideal domain (PID). One possible solution for LNC design is to employ exist-
ing linear channel codes to construct lattices, e.g. [61] [122]. Another solution for LNC
design is to employ practical high coding gain lattice codes where the lattice codes are
directly designed in the Euclidean space. Sommer et al. developed practically decodable
lattice codes, e.g. signal codes [74], which has been applied in WPLNC [123].

An alternative is provided however by the use of Low density lattice codes (LDLC) [18]
in LNC. LDLC has high coding gain in comparison to signal codes, and manageable de-
coding complexity based on parametric belief propagation decoding. Due to its algebraic
properties and high coding gain, LDLC shows good performance in CaF relaying [124].
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To improve the performance further, we construct low density R-lattices where R de-
notes a principal ideal domain, and hence the generated lattice forms a specialR-module
which is closely associated with the complex low density lattice generator which fur-
ther de�nes the complex low density lattice codes (CLDLC) [73]. Note that CLDLC is
not simply a 2-dimensional real LDLC, but rather the low density R-lattices are directly
generated over the domain of complex numbers. The performance of CLDLC outper-
forms 2-dimensional real LDLC since real parity check matrix normally su�ers from
short loops. Compared to real LDLC, CLDLC is not merely a more practically feasible
code which adapts to channel fading and gives in principle better performance at low di-
mensions; more importantly, the lattices constructed via CLDLC form precisely a �nitely
generated R-module over PID. This algebraic property makes it especially suitable for
LNC design, and e�ectively improves the overall rate compared to the real LDLC-based
CaF. We extend the parametric BP decoding algorithm [125] [126] to the complex case,
and propose a Gaussian mixture reduction model over the complex domain. We present
the low density R-lattice-based LNC design based on some algebraic theorems.

Note that CLDLC is itself a lattice code directly designed in the Euclidean space, which
improves the network throughput at manageable complexity, and is more convenient
when compared to the lattices constructed from linear codes, for which, for example a
large prime �eld may be required. Our work here shows the remarkable potential of
CLDLC used in LNC, and may motivate further research in this area.

Notation definitions

We use C and Z to denote the �elds of complex numbers and integers, respectively.
Fq, q > 1, q ∈ Z denotes the �nite �eld with size q. We also use boldface lowercase
and boldface uppercase to denote column vector and matrices, respectively, e.g. h =
[h1, · · · , hn]T . hi and hi denotes the ith row and the ith column of the matrix H. We also
denote h\j = [h1, · · · , hj−1, hj+1, hn]. Fnq denotes the direct product of n �nite �elds,
where the size of the jth �eld j ∈ {1, 2, · · · , n} is determined by qj ∈ Z.

8.1.2 Complex low density la�ice codes

We denote R as a principal ideal domain (PID), then a Low Density R-Lattice is de�ned
as:

De�nition 1 (Low density R-lattices): An n-dimensional low density R-lattice Λ is con-
structed as a set of R-linear combinations of n linearly independent column vectors in
a low density lattice generator matrix GΛ ∈ CN×n (n ≤ N ):

Λ = {GΛb | b ∈ Rn} , (8.1)

where GΛ is non-singular and its inverse is a sparse matrix H = G−1
Λ (which is called

the parity check matrix). Examples of PID include Gaussian integers Z[i] (i =
√
−1) and
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Eisenstein integers Z[ω] (ω = ei
2π
3 ), which correspond to the low density Z[i]-lattices

and Z[ω]-lattices, respectively, following de�nition 1.

Unless otherwise stated, we assume H is a Latin square matrix in this paper, and hence
N = n, such that each row and column have the same degree d. An (n, d) Latin square
CLDLC can be constructed by designing a sparse parity check matrix H having constant
row and column weight d. Let

h = [1, τ, τ, · · · , τ, 0, · · · , 0] (8.2)

be a generating sequence with (d− 1) τs (τ ∈ C). H should be designed such that each
row and column is a permutation of h followed by a random sign change, and of course
H has to be cycle free. τ should be carefully designed to ensure fast convergence in the
iterative BP decoder. Thus, α ,

∑d
l=2 |hl|2
|h1|2 ∈ (0, 1). We consider here |τ |2 = 1

d
. The

volume of the Voronoi region V(λ) (Section 8.1.3) of CLDLC equals det(G†ΛGΛ), and in
the sequel we normalise V(λ) = 1.

The n-dimensional low-density R-lattice λ is transmitted through the complex additive
white Gaussian noise channel y = λ+ n, where n ∼ CN(0, 2σ2In×1).

CLDLC decoder

The computational costs of the traditional sequential maximum likelihood detection
b̂ = arg minb ‖y − Gb‖2 is una�ordable. Hence, the iterative detection employing
the belief propagation (BP) algorithm over the bipartite graph of H is a good trade-o�
between performance and complexities; the messages calculated in VNs and CNs are it-
eratively exchanged to achieve full convergence, and hence improve the reliability. Note
that the metrics exchanged between the variable nodes (VN) and check nodes (CN) are
continuous functions over (−∞,∞) rather than scalar values, e.g. LLR in LDPC, which
are closely related to the complex Gaussian distribution, expressed by a 2-dimensional
Gaussian function:

N(z; m,V) =
1

2π
√
|V|)

e−
1
2

(z−m)TV−1(z−m) (8.3)

where m and V denote the real mean vector and covariance matrix. Large computa-
tional complexity and storage is needed to quantise the continuous function, and per-
form Fourier transforms for the convolution operations. The Gaussian mixture model
is a good method to make the LDLC decoder practically feasible. Operations at CN and
VN including convolution and multiplication are performed in the form of Gaussian mix-
ture distributions and the output is another Gaussian mixture. A mixture of N complex
Gaussians is represented by:

GM(z) =
N∑

i=1

aiN(z; mi,Vi) (8.4)
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where ai ≥ 0 satisfying
∑N

i ai = 1. It can be represented in parametric form as a list
L = {L1,L1, · · · ,LN}, Li = (mi,Vi, ai). At the check node, the ith CN calculates
function ρj(z) (which is a Gaussian mixture) for the jth VN connected to it, based on the
d− 1 functions µ\j(z) transmitted from all VNs that are connected to this CN. In terms
of the parity check equation, message ρj(z) involves convolution operation between
all elements in µ\j(z) after stretching/expanding and rotating in terms of the complex
components hi. The parity check outputs have to be an integer Z[η] which is unknown
at the decoder, hence the periodic expansion with period 1

|hi,j | is necessary. Inspired by
the work of [126], we consider here that the messages output from CN and VNs are only
single complex Gaussian function. Then the periodic extension step occurs at VNs rather
than CNs.

Variable nodes. Assume the ith VN computes µj(z) for the jth CN connected to it,
based on the input messages ρ̂\j(z) which are single Gaussians. A small “trick” is that
the periodic extension step creates a new Gaussian mixture such that each component
is uniformly distributed. Suppose Gaussian integers are considered here, we have:

ρ`(z) =
1

k

∑

b∈Zk[i]

N(z; m` +
b

h`
,V`) (8.5)

where Zk[i] denotes a set including k �nite integers in Z[i]. Zk[i] should be restricted to
those integers which are close to the channel messages. The variable output µj(z) is the
product of all incoming messages, and also the channel message:

µj(z) = y(z)
d∏

`=1,`6=j
ρ`(z) (8.6)

A forward-and-backward algorithm [126] can be used to reduce the computational com-
plexity of message multiplication of µj(z). The forward and backward recursion is ini-
tialised with α0(z) = γ0(z) =

√
y(z), and the forward and backward recursion for the

`th step is:

α`(z) = FM(α`−1(z), ρ`(z)) (8.7)
γ`(z) = BM(α`+1(z), ρ`+1(z)) (8.8)

where FM denotes the multiplication of the two Gaussian mixtures. The multiplication
in parametric form L is detailed in [126]. Note that the number of mixed Gaussians
in α`(z) grows exponentially as the iterations proceed. Hence, the Gaussian Mixture
Reduction (GMR) [126] algorithm is developed to approximate a mixture ofN Gaussians
by another mixture of Nmax Gaussians, Nmax < N . The GMR algorithm used for real
LDLC compares the distance metric of all possible pairs of single Gaussians in the input
list, and replaces the pair having the minimum metric by a single Gaussian using the
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second moment matching method. The single Gaussian with parameters (m̂, V̂) which
gives the best approximation of L Gaussian mixtures should be selected according to:

(m̂, V̂) = arg min
m̂,V̂

K(GM(z)||N(z; m̂, V̂)) (8.9)

which minimises the Kullback-Leibler divergence K( · || · ). This gives the estimate of
parameters (m̂, V̂):

m̂ =
L∑

`=1

a`m`, V̂ =
L∑

`=1

a`(V` + m`m
T
` )− m̂m̂T (8.10)

Here we consider a GMR algorithm where an integer J is introduced, which determines
the number of Gaussians combined into a 2-D single Gaussian. The details of the GMR
algorithm are described in Algorithm 2. This algorithm reduces the number of loops
for the greedy searches. In practice, we use the lower bound of the divergence, squared
di�erence, instead of KLD. The number of Gaussians in α`(z) is limited to Nmax by this
algorithm, α`(z) = GMR(α`(z)). A large Nmax gives better performance but the com-
plexity increases. Here we found Nmax = 3 is a good trade-o� between the complexity
and performance for the parametric BP CLDLC decoder. The output µj(z) of the VN is
a single Gaussian, given by:

µj(z) = M(GMR(αj−1(z) · γj(z)) (8.11)

where M( · ) is the second moment matching de�ned in (8.9).

Check nodes. Since the periodic extension step is performed at the variable node
rather than CN, this reduces the computational load at CN. Hence, at the ith CN, ρj(z)
involves only convolution, stretching/expanding and rotation in terms of the complex
coe�cients hi, thus:

ρ̂j(z) =
d⊗

`=1,` 6=j
µ`

(
−hi,`
hi,j

z

)
(8.12)

where
⊗

denotes the convolution operation. Also the forward and backward algorithm
is applied to simplify the calculation. If α(z) is a mixture with Nmax Gaussians, the
convolution FC

(
α(z), µ`(−hi,`

hi,j
z)
)

produces another mixture of Nmax Gaussians, with
each component given by:

mp =

[
Re

(
mα
p +

hi,`
hi,j

·mµ
`

)
, Im

(
mα
p +

hi,`
hi,j

·mµ
`

)]T
(8.13)

Vp = Vα
p + H̃Vµ

` H̃, ap = aαp (8.14)

where H̃ =
[
Re (

hi,`
hi,j

),−Im (
hi,`
hi,j

); Im (
hi,`
hi,j

),Re (
hi,`
hi,j

)
]
.
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Algorithm 2 Modi�ed GMR algorithm.
Input: A Gaussian Mixture withN components L = {L1,L2, · · · ,LN}, stopping para-

meters: θ and Nmax, and an appropriate integer value J

1: do
2: Lc ← L . Lc: current list stack
3: Lc ← N . Lc: length of Lc

4: t← 0 . t: counter
5: if

(
N−(J−1)t

J

)
<
(
N−t

2

)
then

6: k ← 2
7: else
8: k ← J
9: end if

10: θc = minLkc∈Lc
K(Lk

c ‖ N(z; m̂, V̂)) . Lk
c : Arbitrary k components in Lc.

11: while θ > θc or Nc > Nmax

12: t = t+ 1 . : the (t+ 1)th search loops next time
13: Lk

c ← arg minLkc∈Lc
K(Lk

c ‖ N(z; m̂, V̂)) . Find k components which give the
minimum divergence.

14: Lc ←
(
Lc

⋃
M(Lk

c)
)
\
{
Lk

c

}
.M(Lk

c): Moment matching to a single Gaussian;
\
{
Lk

c

}
: delete

{
Lk

c

}
from Lc.

15: Nc ← Nc − (J − 1)t . new length of Lc

16: Repeat 5–15.
17: Output list Lc is a mixture of Nmax Gaussians.

8.1.3 Practical WPLNC via CLDLC

Definitions and algebraic framework

De�nition 2 (Quantiser): A lattice quantiser, QΛ: Cn → Λ, maps a point s in Cn to the
nearest point in Λ in Euclidean distance:

QΛ(s) = arg min
λ∈Λ

‖s− λ‖ (8.15)

De�nition 3 (Voronoi region): The Voronoi region of a lattice point λ, denoted by V(λ), is
the set of points in Rn closest to this point, i.e.,

V(λ) = {s : s ∈ Rn,QΛ(s) = λ} (8.16)

The fundamental Voronoi region is de�ned asV(0), or simply represented asV. Let Vol(V)
denote the volume of V and Vol(V) = Vol(Λ).

De�nition 4 (Goodness of lattices): Let z be an n-dimensional i.i.d. Gaussian vector, z v
N(0, σ2In×n), a sequence of lattices Λ is Poltyrev-good if

Pr(z /∈ V) ≤ e−nEp(γ) (8.17)
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where Ep( · ) is the Poltyrev exponent and γ is the volume-to-noise ratio (VNR),

γ =
Vol(Λ)

2
n

2πeσ2
. (8.18)

Let Λ′ denote theR-sublattice of Λ, then Λ/Λ′ represents a quotientR-module. We refer
to 〈$〉 as the ideal generated by a single non-zero and non-unit component in R, and
hence R/〈$〉 is a quotient ring. When $ is a prime in R, the coset representatives of
R/〈$〉 form a �eld.

Let$I denote a diagonal matrix:

$I =




$I,1 0 0 0

0 $I,2 0 0

0 0
. . . 0

0 0 0 $I,n


 (8.19)

where $I,i ∈ R, i = 1, 2, · · · , n, and the low density R-sublattice Λ′ is generated by:

Λ′ = $IGΛ︸ ︷︷ ︸
GΛ′

b, b ∈ Rn (8.20)

where GΛ′ is referred to as the sublattice generator. The following theorem states the
design criterion for CLDLC based WPLNC:

Theorem 8.1. If ∀i ∈ {1, 2, · · · , n}, the non-unit non-zero element $I,i in R is a prime,
and the cardinality |R/〈$I,i〉| = qi, then,

Λ/Λ′ ∼= R/〈$I,1〉 ×R/〈$I,2〉 × · · · ×R/〈$I,n〉 (8.21)
∼= Fq1 × Fq2 × · · · × Fqn = Fnq (8.22)

Theorem 8.1 can be proved following two algebraic theorems. They are the �rst iso-
morphism theorems for �nitely generated modules [63] where the submodule Λ′ is the
kernel of the linear mapping ϕ : Λ → R/〈$I,1〉 × R/〈$I,2〉 × · · · × R/〈$I,n〉; and
the structure theorem of the �nitely generated torsion R-module in elementary divisor
form. �

Thus, Λ/Λ′ is isomorphic to an n-dimensional �nite �eld Fnq, and hence is WPLNC-
compatible [49]. Based on this, there exists a linear labeling ϕ : Λ → R/〈$I,1〉 ×
R/〈$I,2〉 × · · · ×R/〈$I,n〉, which is a surjective R-module homomorphism whose ker-
nel is Λ′, and there also exists an injective map ϕ−1 : (r1 + 〈$I,1〉, · · · , rn+ 〈$I,n〉)→ Λ
satisfying ϕ(ϕ−1(w)) = w.
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196 8 Practical encoding and decoding of CaF based NCM

Encoding and decoding

Now we are able to describe the basic encoding and decoding operations for lattice code-
based WPLNC. Based on Theorem 8.1, there exists an isomorphism between the quo-
tient R-module Λ/Λ′ and Fnq. First we construct a surjective R-module homomorphism
σ : Rn → Fnq, with its kernel equal to (($I,1), ($I,2), · · · , ($I,n)), and also an in-
jective map σ−1 : Fnq → Rn satisfying σ(σ−1(w)) = w, ∀w ∈ Fnq. They show the
explicit isomorphism between the message space and an R-module. Hence, we de�ne
ϕ(λ) , σ(G−1

Λ λ) and the linear labelling ϕ : Λ → Fnq which is also a surjective ring
homomorphism. We further de�ne ϕ−1(w) = GΛσ

−1(w) which is an injective map,
and satis�es the bijection relationship ϕ(ϕ−1(w)) = w.

Encoding. The CLDLC codewords normally have large power as n increases. To limit
the power expansion, the encoder should include a sublattice λ′ where the generator
matrix of Λ′ is GΛ′ = GΛ$I. Following Theorem 8.1, the encoder E is designed by:

x = E(w) = ϕ−1(w)−GΛ′k (8.23)

where k ∈ Rn. The vector k is determined by the so-called shaping operations. In this
paper we focus on the Tomlinson-Harashima shaping approach [74] which restricts the
codewords x to a hypercube. Additional constraints need to be added into the parity
check matrix H for CLDLC. Thus, H should have a lower-triangle form HL and the
diagonal elements of H are all one. Note that in this case the top rows and right-hand
columns have degree less than d. A more general approach to obtain the lower-triangular
matrix is to use QR decomposition of the Latin square H = JQ [127] where J is a
lower triangular matrix and Q is orthonormal. Then each element of k can be obtained
recursively by:

ki =

⌊
σ−1(wi)−

∑i−1
l=1 Ji,lxl

$I,i

⌉
(8.24)

xi =

(
σ−1(wi)−$I,iki −

i−1∑

l=1

Ji,lxl

)
/Ji,i (8.25)

where θ denotes the Gaussian integer nearest to θ in the Euclidean distance. The encoder
E establishes the relationship between the message space Fnq and low-density lattice
partition Λ/Λ′, and the power is conserved.

Decoding. The receiver aims to decode a linear combination u =
∑L

`=1 a`w` over Fnq
given the noisy, and faded low-density lattice codes y =

∑L
`=1 h`x` + n. We need to

�nd the optimal scaling factor α and the corresponding coe�cient vector a such that αy
is within the Voronoi region of a new low-density lattice point λ =

∑L
`=1 a`x`, and the

expectation of the squared norm of the e�ective noise neff ,
∑L

`=1(αh`− a`)x` + αz is
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αy1

αyM

ûm
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Figure 8.1: System diagram for CLDLC-WPLNC.

minimised. Finding the optimal values of αopt and aopt is equivalent to solving a shortest
vector problem, as suggested in [49]. The estimates of û are given by:

û = ϕ

(
QΛ

(
L∑

`=1

a`

(
ϕ−1(w`)−GΛ′k`

)
+ neff

))
(8.26)

(a)
= ϕ

(
QΛ

(
L∑

`=1

a`ϕ
−1(w`) + neff

))
(8.27)

(b)
= ϕ

(
L∑

`=1

a`ϕ
−1(w`)

)
+ ϕ(QΛ(neff)) (8.28)

(c)
=

L∑

`=1

σ(a`)w` + ϕ(QΛ(neff)) (8.29)

where (a) and (b) follows from the fact that GΛ′k` is the kernel of ϕ, and the prop-
erty of the ring homomorphism, respectively. From (8.29), u can be correctly recovered
provided that ϕ(QΛ(neff)) = 0, thus, the e�ective noise should be within the Voronoi
region of Λ′.

Computation rate

We now focus on the theoretical rate bound R for the CLDLC-based relaying. Assume
there are L sources, and we are concerned with the rate bound at the mth relay. Hence,
let the algebraic integer coe�cient vector and channel coe�cient vector be

am = [am,1, am,2, · · · , am,L]T ∈ RL

DIWINE D4.03



198 8 Practical encoding and decoding of CaF based NCM

and
h = [hm,1, hm,2 · · · , cm,L] ∈ CL,

respectively. Then the scaled MAC output is:

αmym =
L∑

`=1

am,`x` +

effective noise︷ ︸︸ ︷
L∑

`=1

(αhm,` − am,`)x` + αmzm (8.30)

The source ` is subject to the power constraint E [‖ x` ‖2] ≤ nP due to the hypercube
shaping. For convenience, we de�ne the signal-to-noise ratio γ = P/N0. The computa-
tion rate has the form of the logarithm of the ratio between the transmit power and the
upper bound of the e�ective noise variance. When hm and am are known, we employ
the Nazer-Gastpar computation rate [22] [49] to approximate the achievable rate of the
low density Z[i]-lattice-based LNC, which is written as

R = max
α∈C

log2

(
γ

|α|2 + γ ‖ αhm − am ‖2

)
(8.31)

This is reasonable when P is the average power of CLDLC lattices in the shaping region.
However, the scalar optimisation is a bit di�erent. Finding the optimal scalar α is a
convex optimisation problem, which should correspond to the minimum value of the
denominator in (8.31). Hence, equation (8.31) can be changed to:

R = log2

(
am

(
IL − h†mhm

γ

γ ‖ hm ‖2 +1

)
a†m

)−1

(8.32)

where † denotes the Hermitian operation, and IL is the L×L identity matrix. A positive-
de�nite matrix P can be constructed:

P = γ

(
IL − h†mhm

γ

γ ‖ hm ‖2 +1

)
(8.33)

such that it has a Cholesky decomposition P = TT†. Note that to ensure the successful
recovery of the original messages w`, ` = 1, 2, · · · , L, from the linear combinations over
Fnq, based on the quotient low density R-lattices, the coe�cient vector am ∈ RL should
be optimised in terms of:

am,opt = arg min
am 6=

⋃n
i=1〈$I,i〉

‖ amT ‖2 (8.34)

then the rate bound for CLDLC network coding is:

RCLDLC

= log2

(
am,opt

(
IL − h†mhm

γ

γ ‖ hm ‖2 +1

)
a†m,opt

)−1

(8.35)

subject to (8.34). Finding optimal am,opt is equivalent to a vector optimisation problem.
Now equation (8.34) gives the rate bound for CLDLC based network coding for a given
signal-to-noise ratio.

D4.03 DIWINE



8.1 Complex low density lattice codes to physical layer network coding 199

8.1.4 Decodability and simulation results

Decodability

As mentioned above, to perform hypercube shaping for CLDLC, the parity check mat-
rix has to have a lower-triangular form, which means that hypercube-shaped CLDLC
has asymmetric protection over each dimension. The constellation size at a certain di-
mension corresponding to a less protected check equation has to be reduced. This is
di�erent from signal codes where the generator matrix has a Toeplitz structure which is
close to lower-triangular [74], and hence the cardinality of the original information at
each dimension is not additionally limited. We are mainly concerned with the choice of
$I such that the information at each dimension can be fully recovered.

Since the degree of a given HL increases from 1 to d, $I,i should be selected to ensure
decodability for each level. Thus, the �eld size qi = |R/($I,i)| should gradually increase.
The optimal selection of $I,i for HL to minimise rate loss is still an open problem, but
it is not our main concern in this paper. For the extended hypercube shaping, we de�ne
a nominal rate $, and $I,i should be selected such that |$I,i| ≤ b|Ji,i$|c. The prac-
tical average rate at each dimension is smaller than the nominal rate, but we expect to
reduce the rate loss through the careful design of $I,i. Assume $ = 4, and the range of
b|Ji,i$|c = {5, 4, 3, 2} (not uniformally distributed). If $I,i is restricted in the form of
Z[i] = {a| a ∈ Z}, we can only choose the Gausssian prime $I,i = 3 for those dimen-
sions corresponding to b|Ji,i$|c ≥ 3. If $I,i can be selected to be any Gaussian prime,
the increased �exibility will be bene�cial to the rate improvement. The codeword |xi| is
upper bounded by

√
2L
2

, where L ful�ls |$I,i| = b|Ji,iL|c for given $I,i.

Simulations

Figure 8.2 shows the simulated performance of the symbol error rate (SER) against
volume-to-noise ratio (VNR) for an n-dimensional CLDLC over the complex AWGN
channel, n = 100,Nmax = 3 and d = 5. The decoding algorithm is based on Section 8.1.2.
We compare the performance of CLDLC to a 2n-dimensional real LDLC, with Nmax = 3
and d = 5. We have SER of 10−4 at 2.5 dB from channel capacity for (100, 5) CLDLC, and
there is an improvement around 0.7 dB in SER performance when compared to (200, 5)
real LDLC. Both employ 10 iterations. This reveals that CLDLC has better performance
than LDLC at relatively low dimension.

We show and analyse the performance of our CLDLC-based WPLNC scheme via a two
way relay channel. We focus mainly on the multiple access channel (MAC) by which the
overall system performance is dominated. Simulations were carried out for the low dens-
ity Z[i]-lattice code with dimension n = 100. We set the nominal rate $ = 4. The two
approaches of choosing$I,i described in Section 8.1.4 result in the average transmission
rate around R = 2.80 bits/dimension and R = 3.27 bits/dimension, respectively. For the
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real LDLC case, we set the nominal constellation size $ = 8. Based on the hypercube
shaping, we can obtain an average transmission rate of R = 2.80 bits/dimension. In this
paper, we show simulations for h1 = h2 = 1, but the general case will be investigated
in a subsequent paper.

Figure8.3 illustrates the SER performance against signal-to-noise ratio (SNR) over a two
way relay channel. SNR is de�ned as SNR = E[‖xi‖2]

2σ2 . It is observed that CLDLC of
rate 2.80 bits/dimension reaches an SER around 10−5 at 14 dB, approximately 5 dB from
the hypercube shaping capacity (HSC) [127]; whereas we have SER of 10−5 at 15 dB
for CLDLC of rate 3.27 bits/dimension which is around 4 dB from HSC. It is obvious
that there is 1 dB improvement for CLDLC of rate 3.27 bits/dimension over CLDLC of
rate 2.80 bits/dimension. This con�rms our viewpoint in Section 8.1.4; thus, by care-
fully designing the sublattice (which is determined by $I,i), we are capable of reducing
the shaping loss. In comparison to Figure8.2, we observe that there are additional 2 dB
and 1 dB performance losses for CLDLC with R = 2.80 and R = 3.27, respectively,
compared to the single-user complex AWGN channel. This is due to the combined ef-
fects of the MAC and shaping. We also compare the performance of CLDLC-based LNC
with LDLC-based CaF in Figure8.3. When we employ both (100, 5) CLDLC and (100, 5)
LDLC, the CLDLC based scheme outperforms LDLC by around 8.5 dB at rate R = 2.80
bits/dimension which is approximately the di�erence between the two HSCs. This shows
good potential of CLDLC over LDLC and is what we expect for CLDLC. The symbol error
probability is de�ned as Pr(û 6= u) = Pr(ϕ(QΛ(neff)) 6= 0). Thus, the linear function u
can be fully decoded i� the quantised e�ective noise is a sublattice point Λ′ = GΛ′b. Our
simulations show that the proposed CLDLC-based WPLNC scheme gives good coding
gain and SER performance over MAC.

8.1.5 Conclusions

We have proposed the low density R-lattices and demonstrated that CLDLC, which de-
rives from these is a class of good lattice codes suitable for WPLNC. We have given a mod-
i�ed GMR model for iterative BP decoding of CLDLC, analysed WPLNC-compatibility,
and given the comparison with HSC and with LDLC, which showed that CLDLC with
hypercube shaping works well in a two way relay channel. We also discussed the choice
of low density sublattices to reduce the rate loss.

8.2 Convolutional la�ice encoding and decoding

8.2.1 Introduction

Constructing lattices from Forward Error Correction (FEC) codes has been a rather act-
ive �eld of research in the past, and has led to Constructions A, B, C, D etc. [54]. In
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Figure 8.2: Symbol error rate for CLDLC based on the decoding algorithm in Sec-
tion 8.1.2.

this section we are also interested in lattice construction, and in particular, Construc-
tion A because of its simplicity and Construction D because of the potential perform-
ance of the resulting codes. For lattice construction, we use convolutional codes as
the underlying FEC code because capacity approaching Turbo codes consist of two (or
more) convolutional codes; therefore, constructing convolutional lattices is a major step
forward towards constructing Turbo lattices. There has been, surprisingly, little work
on exploitation of convolutional codes for constructing lattices reported in the literat-
ure. Although [128, 129] discusses lattices based on convolutional codes (indeed, Turbo
codes), the transmitted signals are restricted to be binary which loses the freedom to
arbitrarily specify the rate of the lattice code: in this section we extend this to allow
non-binary transmission with arbitrary transmission rate; moreover, lattice decoding
algorithms have not been discussed in [128,129], whereas we propose adopting the trel-
lis structure of the underlying convolutional code for lattice decoding and demonstrate
superior performance using this approach. This provides the possibility of implement-
ing computationally feasible lattice decoding methods for convolutional lattices. Note
that universal lattice decoding methods commonly applied in the literature for practical
communication systems, e.g. sphere decoding, have until now been relatively complex,
and as a result are applicable only to lattices with very short dimension [130–132]; for
instance, a lattice decoder was proposed in [132] with relatively reasonable complexity
that was examined for lattices of dimension up to 32. Indeed this is a major drawback be-
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Figure 8.3: Symbol error rate for CLDLC-based WPLNC with �xed channel fading.

cause the code length (lattice dimension) of real communication systems is much longer
than 32. Consequently, the lattice decoding method proposed in this section for decod-
ing convolutional lattices is practically important due to its feasible complexity at high
dimensions; furthermore, it will be observed in Sec 8.2.4 that the proposed lattice decod-
ing approach signi�cantly outperforms existing lattice decoding algorithms. [74] also
studies convolutional lattices, however, the proposed scheme is mostly “attractive for
Inter Symbol Interference (ISI) channels”. Decoding algorithms of other ISI channel, in
particular, Faster Than Nyquist (FTN) signalling has been studied by the authors in [133],
however note that [74] considers code �lters combined with ISI �lters which results in
uni�cation of equalisation and decoding. In this section we are not interested in ISI chan-
nels nor FTN signalling but we would like to construct lattices from convolutional codes
that are proved to approach capacity when applied in Turbo codes. Moreover, [74] con-
siders single layer lattices whereas we assume multilayer as well as single layer lattices.

Due to the superior performance of Construction D over Construction A, the construc-
tion of convolutional lattices based on Construction D and multi layer Code Lattices are
also studied in this section. Construction D relies on two characteristics of the underly-
ing FEC codes: (i) the codes are nested as a chain of sub-codes and (ii) these sub-codes
have larger Minimum Euclidean Distance (MED) than the parent code [54, Ch. 8]. Con-
volutional codes do not readily ful�l such requirements, which may be one reason that
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convolutional codes have not so far been exploited in Construction D1. In this section,
we �rst propose constructing convolutional lattices based on Construction D by neg-
lecting the MED criterion, and then introduce means of increasing the MED of nested
convolutional codes by rearranging the input messages which guarantees to ful�l the
MED criterion of the Construction D de�nition.

For the convolutional lattices based on Construction A/D (and also single/multi layer
Code Lattices), equivalent encoding based on shift registers is proposed enabling us to
exploit existing decoding algorithms of convolutional codes for convolutional lattices,
too. The lattice codes based on convolutional lattices allow optimal lattice decoding us-
ing the trellis structure of the underlying convolutional code, e.g. the BCJR algorithm.
A further contribution of this section is to provide methods to incorporate the BCJR al-
gorithm in lattice decoding. This requires the statistical characteristics of Modulo Lattice
Additive Noise (MLAN), and therefore we also derive the probability density function
(pdf) of MLAN in closed form for lattices with hypercubic shaping regions. A rather
similar pdf has been described in [58, Sec. III-B], however, no closed-form expression
for the pdf was derived.

The new lattice decoding algorithms we develop are based on ML/MAP decoders, and
thus have similar complexity. However, throughout the section it will be observed that
on the point to point channel ML/MAP decoders outperform the corresponding lattice
decoders in practice, i.e. in dimensions less than in�nity [16, 134–136]. This might raise
the question of the bene�ts of lattice decoding as compared to pure ML/MAP decoding.
Our motivation, however, extends beyond the point-to-point channel to relay commu-
nication systems [137], and in particular, recently-proposed communication paradigms
such as Compute and Forward (CaF), which relies purely on the structure of the lat-
tice, and hence requires practical implementation of lattice decoding for lattices with
arbitrarily high dimension, for which direct ML/MAP decoding would be prohibitively
complex. Here we study lattice encoding and decoding algorithms in a point to point
communication system as a step towards their use in CaF decoders.

This section is organised as follows: In Section 8.2.2 a point-to-point system is intro-
duced. In Sec 8.2.3 the statistical characteristics of MLAN are studied and in Sec 8.2.4
convolutional lattices based on Construction A are proposed, along with the methods
for lattice decoding and in Section 8.2.5 a CaF system based on construction A is studied.
Section 8.2.6 deals with convolutional lattices based on Construction D and their lat-
tice decoding methods using the trellis structure of the underlying codes. Section 8.2.7
gives concluding remarks, including a discussion of further work required to apply the
methods described to CaF, and to turbo lattices.

1Although [128, 129] study Turbo lattices based on Construction D, they neglect the minimum distance
criterion, and consequently it may result in degradation of the lattice code performance.
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Figure 8.4: System model.

8.2.2 System model

A point-to-point communication system exploiting nested lattice codes according to [16],
and illustrated by Figure 8.4, is investigated in this section: the transmitter employs a
lattice encoder which maps a message t to a Euclidean codeword c to be sent to the
destination, i.e.,

c = [t ·GΛ − u] mod− Λ (8.36)
where u is a dithering signal, known to the transmitter and receiver, that is uniformly
distributed in the Voronoi region of the coarse lattice. GΛ is the generator matrix of
the lattice code that is obtained from a feed forward convolutional encoder according to
Construction A and D in this section. Note that the code rate is speci�ed by the shaping
lattice, i.e. the number of the lattice points inside the Voronoi region of the shaping
lattice as well as the rate of the underlying convolutional code. Assuming M to be the
number of lattice points inside the shaping region,

R =
1

N
log2M (8.37)

is de�ned as the code rate where N is the lattice dimension. The signal received at the
destination is corrupted by Additive White Gaussian Noise (AWGN) as

v = c+ n, (8.38)

that is multiplied by theα coe�cient to implement Minimum Mean Square Error (MMSE)
estimation and the dither u is also added to the received signal2,

y = αv + u. (8.39)

The signal y is then decoded by a lattice decoder and the transmitted message is re-
covered at the destination

ĉ = [Q(y)] mod− Λ (8.40)
t̂ = D(ĉ) (8.41)

2Please see [16] for detailed description about the role of MMSE estimator α and the dither u.
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where Q( · ) indicates a lattice quantiser/decoder and D maps a codeword to a message.
Note that the [ · ]mod − Λ operation is a distributive operation and so one can rewrite
(8.40) as

ĉ = Q([y] mod− Λ) (8.42)

which is equivalent to performing the modulo operation before lattice quantisation. In-
deed performing the modulo operation before or after lattice decoding/quantisation does
not a�ect the performance of the system and so a common trend in the literature is to
apply existing lattice decoding algorithms, e.g. [138, 139], before the modulo operation
since this leaves the structure of the lattice intact. However, we take a rather di�erent
approach and perform the modulo operation before lattice quantisation as in (8.42).

8.2.3 Statistical characteristics of modulo la�ice additive noise

Statistical description of the overall receiver noise plays a key role in the design and the-
oretical analysis of communication systems; for instance, soft decoding algorithms, e.g.
the BCJR algorithm, rely on the distribution of the additive noise in the receiver, which is
usually modelled by the Gaussian distribution in conventional communication systems.
However, in modulo-lattice channels wherein the receiver employs the modulo− Λ op-
eration before channel decoding, the additive noise is no longer Gaussian. Indeed, the
additive noise lies inside the fundamental Voronoi region of the coarse lattice, and so, un-
like the Gaussian noise, the modulo-Λ Gaussian noise does not expand the entire space,
i.e. nmod /∈ (−∞,+∞). Following Erez et al. in [16], we will use the notation of “MLAN”
(Modulo-Lattice Additive Noise) in this section.

Considering that we assume a lattice with hypercubic shaping region in this section
based on Construction A/D, the [ · ]mod−Λ operation for anN dimensional lattice can be
performed independently per dimension and so in the rest of this section we concentrate
on deriving the statistical description of the noise in a single dimension. As n is normally
distributed with zero mean and σ2 variance, αn is also distributed normally. Moreover,
the random variable (1− α)u is distributed uniformly. Consequently, the overall noise
is the modulo-Λ of sum of two random variables of which one is distributed normally
and the other is distributed uniformly:

Z = [ (1− α)u+ αn︸ ︷︷ ︸
N ′

]mod− Λ (8.43)

where the pdf of N ′ is derived as

fN ′(x) =
1

4ηd
erf(

x− ηd√
2ασ

,
x+ ηd√

2ασ
) (8.44)

with ηd = d(1− α); erf(x, y) = erf(y)− erf(x) is the generalised error function. For
a proof of (8.44), see Subsection 8.2.8. Figure 8.5 (black line) illustrates the pdf of N ′
that was derived in (8.44). A modulo-lattice operation is equivalent to mapping the area
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Figure 8.5: A demonstration of fN ′(x) = 1
4ηd

erf( x−ηd√
2ασ

, x+ηd√
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) and modulo operation.

outside Voronoi region into inside the Voronoi region: for instance, in Figure 8.5, the
portion of the black curve in (d, 3d) will be mapped inside the (−d, d) region. It is
clear from the �gure that the portion of fN ′(x) in (d, 3d) is equal to the green curve at
(−d, d). Note that the green curve corresponds to the pdf of (1− α)u+ αn (as in (8.43))
where n follows the same distribution as in (8.43) and u is a random variable uniformly
distributed in (−3d,−d). Indeed, the the pdf of modulo-lattice noise in (−d, d) is the
sum of an in�nite number of random variables with a pdf as in (8.71) with the centres
located at 0,±2d,±4d, · · ·. Consequently, the pdf of Z in (8.43) can be written as

fZ(z) =
1

4ηd

∞∑

i=−∞
erf(

z − 2di− ηd√
2ασ

,
z − 2di+ ηd√

2ασ
). (8.45)

Note that fZ(z) as derived in (8.45) will be used for lattice decoding of convolutional
lattices using the BCJR algorithm in the following sections.

Truncation error. Although the expression derived in (8.45) represents fZ(z) in closed-
form, the in�nite summation can be considered as a source of inconvenience in practice.
Nevertheless, the in�nite summation can be truncated with arbitrarily low truncation er-
ror. Note that lim

i→∞
erf( z−2di+κ√

2ασ
, z−2di−κ√

2ασ
) = 0, and so the signi�cance of the expressions

in (8.45) decreases as i increases. Figure8.6 illustrates fZ(z) for various values of σ using
the closed-form expression of (8.45) truncated at i = ±2. The result of Monte Carlo
simulations is also provided for comparison: it shows a perfect agreement between the
theoretical plot and Monte Carlo simulations even for truncations as low as i = ±2.
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Figure 8.6: pdf of modulo-lattice additive noise with d = 3, α = 0.5 and various σ. For
comparison, Monte Carlo simulations is provided for σ = 1.

8.2.4 Constructing la�ices from forward error correction codes

Lattices with hypercubic Voronoi regions are particularly interesting because the mod-Λ
operation in N dimensions can be performed independently in each dimension which
results in considerable simpli�cation of the problem. Since the complexity of specifying
the Voronoi cell of a non-hypercubic lattice is unbounded in large dimensions [132],
in a complexity-performance trade o�, hypercubic lattices with lower complexity have
been a potential candidate for practical purposes and so we focus on hypercubic lattices,
too. “Construction A” and “Construction D” are two well known and widely adopted
lattice constructions that have hypercubic Voronoi regions. We adopt them from [54]
for constructing convolutional lattices. Moreover, single and multi-layer Code Lattices
analogous with Construction A and D, respectively. It will be observed that Code Lattices
outperform their counterparts with considerable di�erence.

Preliminaries: Block convolutional codes

Assuming a k/N block convolutional code; the generator matrix of the block convolu-
tional code is a k × N matrix where the basis vectors (the rows of a generator matrix)
are convolutional codewords generated by setting only one bit of the data vector to one
and the rest of the bits to zero. Let us assume that the length-N codeword generated
by [1, 0, · · · , 0] data-word is placed in the �rst row of the matrix and similarly, the code
word generated by a one in the i-th position of the data-word is placed in the i-th row of
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the generator matrix. Hence, one generator matrix of a (7, 5) block convolutional code,
according to the above explanation, is

Gc =




1 1 1 0 1 1 0 0 0 0 0 0

0 0 1 1 1 0 1 1 0 0 0 0 · · ·
0 0 0 0 1 1 1 0 1 1 0 0

... . . .



k×N

. (8.46)

In the next sections, (8.46) will be used for lattice construction.

Single layer convolutional la�ices: Construction A and code la�ice

Construction A. Assume a (k,N, d) linear block code (block convolutional code in
this section) in Fq represented by C = {c0, c1, · · · , cM−1} with generator matrix Gc.
Any vector x = (x1, · · · , xN) is a point of an N -dimensional lattice ΛA, corresponding
to codeword ci ∈ C if and only if

[x]mod− qN , ci, ci ∈ C. (8.47)

For instance, assuming q = 2, any vector x with even entries, is congruent to the code-
word c0 = (0, · · · , 0). In other words, any vector x with even entries is (i) a lattice point
and (ii) represents the codeword c0. In the following we discuss how the generator matrix
of a convolutional lattice may be obtained from the generator matrix of the convolutional
code.

Generator matrix of ΛA: For a given block convolutional code with rate k/N , the gen-
erator matrix of the “N -dimensional” convolutional lattice ΛA constructed according to
Construction A is

GΛA =

[
Gc

G

]

N×N
(8.48)

where Gc is the k ×N generator matrix of the convolutional code, e.g. for a (7, 5) con-
volutional codeGc is derived in (8.46) andG is an (N−k)×N matrix with rows chosen
from an N × N scaled identity matrix qIN×N wherein the scaling parameter q is spe-
ci�ed by the shaping lattice3. The matrix G has to be chosen in a way that GΛA is a full
rank square matrix. Indeed, the role of G is to make GΛA a rank N matrix. Minimum
Euclidean distance of ΛA (dΛA

min-u) is

dΛA
min-u = min{q,

√
dCmin}. (8.49)

where dCmin is the minimum Hamming weight of the corresponding convolutional code.
Note that for q <

√
dCmin, the error performance of the lattice is expected to be inferior to

3In [54], Construction A is described only for q = 2, however, it does not necessarily require to be binary;
in this section we assume arbitrary q.
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the error performance of the underlying block code because the performance of the lat-
tice is bounded by the minimum Euclidean distance, which is smaller than the minimum
Euclidean distance of the underlying convolutional code dΛA

min-u <
√
dCmin.

Single layer code la�ice. The generator matrix of a block convolutional code Gc

(size k ×N ) can also be considered as the generator matrix of a “k-dimensional” lattice,
which is called “single layer Code Lattice” (ΛC) in this section. Note that although the
dimension of the lattice is k, N coordinates are used to represent the lattice points in N
dimensional space. The lattice points of ΛC can be generated using Z ·Gc where the size
of Z is 1× k.

Minimum Euclidean distance of dΛC

min-u is equal to the square of the Hamming distance of
the underlying block convolutional code

dΛC

min-u =
√
dCmin. (8.50)

Remark 1. It can easily be observed that ΛC ⊆ ΛA and so, clearly, dΛA
min-u ≤ dΛC

min-u.
Indeed the extension of the ΛC lattice to ΛA is performed using sub-matrix G in (8.48).

For a better understanding the role of G in (8.48) (or equivalently, the extension of ΛC

to ΛA), a simple two dimensional example is provided in the following: one generator
matrix of a two dimensional hexagonal lattice on the z = 0 plane is GHex =

[
1 0
1
2

√
3

2

]
,

nevertheless, the generator matrix of the lattice is not unique and, for instance, it can be
represented by another generator matrix as

GHex =

[−1 1 0

0 −1 1

]
(8.51)

that uses three coordinates on the x+ y + z = 0 plane to represent a two dimensional
lattice. The lattice generated by GHex in (8.51) is indeed the generator matrix of the two
dimensional lattice ΛC discussed above. In order to produce a lattice based on Construc-
tion A, one can concatenate, e.g. the row [0 0 2] with (8.51) and obtain

GΛA =



−1 1 0

0 −1 1

0 0 2


 . (8.52)

Note that the third row in (8.52) copies the two dimensional hexagonal lattice to the
third dimension parallel to x+ y + z = 0 plane and generates the three dimensional ΛA

lattice. It’s worth to mention that, in this example, the dCmin is the MED of the hexagonal
lattice and so dCmin = 2. Consequently dΛA

min-u = min(q,
√
dCmin) = min(2,

√
2) =

√
2

which is bounded by the MED of the code, hence, the error performance ofGHex in (8.51)
andGΛA in (8.52) are expected to be rather similar; however, for many advanced channel
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codes, the MED of the code is larger than q and so the error performance of the ΛC lattice
is better than the error performance of ΛA lattice. This will be con�rmed by simulation
later in this section.

Remark 2. A transmitter, exploiting lattices (based on Construction A) as the channel
code, generates only the lattice points inside the Voronoi region of the shaping lattice
qN as follows: assuming that u1×N is the data vector that represents M messages, one
can write

ui ∈
{
{0, 1, · · · , q − 1}, for i ≤ k

{0}, for i > k,
(8.53)

consequently, u = [udata uduplicate] where udata is a 1 × k vector that is speci�ed by the
�rst row of (8.53); uduplicate is a 1× (N − k) vector that does not carry any information.
Note that the transmitter exploits [u ·GΛA ]mod− qN for assigning a lattice point to a
message and so any value assigned to uduplicate will be discarded by [ · ]mod− qN oper-
ation. Note that one can also generate lattice points generated by [u ·GΛA ]mod− qN
using [udata ·GΛC

]mod− qN and so the lattice points inside qN hypercube are common
lattice points between ΛA and ΛC. Note that it is important to distinguish between the
two lattices because “lattice decoding” using ΛA or ΛC can lead to di�erent error per-
formance and so one should use appropriate lattice (the lattice with the larger minimum
distance) for the purpose of lattice decoding.

Decoding single layer convolutional la�ice codes using trellis structure of the
code

Although lattice decoding (indeed lattice quantisation) is usually considered to be less
complex than ML decoding because of the structure of the lattice, a practical “univer-
sal lattice decoding” algorithm with reasonable complexity is still a hot research topic
in the �eld. There are several lattice decoding algorithms proposed in the literature
[54, 131, 132, 140], however, the algorithms are only applicable in very low dimensions;
for example, in [132] it is clari�ed that the proposed algorithm has been examined for
decoding lattices up to 32 dimensions. Considering that transmission rates close to ca-
pacity can be approached only by lattices with high dimension, the existing universal
lattice decoding algorithms do not seem to be very appealing in practice.

Apart from the universal lattice decoders, several lattice decoding algorithms have been
proposed for certain lattices obtained using particular FEC codes; for instance, lattice
decoders based on the sum-product algorithm have been proposed in [18, 141] for Low
Density Lattice Codes (LDLC). Likewise, in this section, we are not interested in a uni-
versal lattice decoding algorithm for an arbitrary lattice but in lattice decoding of con-
volutional lattices that are obtained using convolutional codes.
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Figure 8.7: Trellis representation of (7, 5) convolutional lattice with q = 3. Input is in
{0, 1, 2} and output is in {0, 1, 2(or −1)}. Green lines represent the transition
corresponding to input 0, blue corresponds to input 1 and red for input equal
to 2.

Before we continue with lattice decoding of convolutional lattices, let us concentrate
on ML/MAP decoding of convolutional lattices and notice that ML and MAP decoding
algorithms with reasonable complexity exist (i.e. Viterbi and BCJR, respectively).

ML and MAP decoding of convolutional la�ices. For ML/MAP decoding of con-
volutional lattices, one can simply resort to the trellis structure of the corresponding
convolutional code: for instance, assuming q = 2 and preserving the order of the basis
vectors in the generator matrix of the lattice according to Section 8.2.4-A, the transmit-
ted lattice points are exactly equal to the corresponding binary convolutional code and
so one can easily employ the trellis structure of the convolutional code for Viterbi/BCJR
decoding of the convolutional lattice. For shaping hypercubes q > 2, the trellis struc-
ture is not hard to derive. As an example, assume q = 3, and so, the lattice encoding is
performed in F3. Assuming a shift register based convolutional encoder which performs
operations in F3, the trellis structure is illustrated by Figure 8.7 for a (7, 5) convolutional
code where the green arrows represent transitions corresponding to input ui = 0, blue
and red arrows show transitions corresponding to ui = 1 and ui = 2, respectively. Note
that the overall number of the codewords inside the shaping hypercube is 3k and so the
code rate is

R =
1

n
log2 3k =

1

2
log2 3. (8.54)

It is important to clarify that using the trellis structure of the underlying convolutional
code for ML/MAP decoding of the lattice, we use the Code Lattice (ΛC) for decoding and
not the Construction A lattice (ΛA). Note that dΛC

min ≥ dΛA
min and consequently decoding

on ΛC outperforms decoding on ΛA.

La�ice decoding of convolutional la�ices. As discussed earlier in (8.40) and (8.42),
performing the modulo operation before or after lattice quantisation will not a�ect the
performance of the system; therefore, for the purpose of lattice decoding, we perform
the modulo operation before lattice quantisation which consequently maps the entire
space to the inside of the Voronoi region of the shaping lattice which includes only the
lattice points that can actually be transmitted from the source. Therefore, one can ex-
ploit the trellis structure of the underlying convolutional lattice for lattice decoding, e.g.
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Figure 8.8: Frame Error Rate for (7, 5) convolutional lattice with q = 2.

Viterbi or BCJR. Note that the only di�erence with the ML/MAP decoding discussed
earlier is the [ · ]mod− qN operation and so we refer to this as “Lattice decoding using
Viterbi/BCJR” algorithm (where the noise is MLAN) whereas ML/MAP decoding refers
to conventional Viterbi/BCJR decoding algorithms without the [ · ]mod− qN operation,
i.e. with Gaussian noise. Considering that the BCJR algorithm requires the statistical de-
scription of the overall noise, we exploit the pdf of MLAN derived in (8.45) for calculating
the state transition probabilities of the BCJR algorithm.

Figure 8.8 illustrates the Frame Error rate (FER) obtained using computer simulations
for a (7, 5) convolutional lattices with q = 2, i.e. F2, on a lattice with dimension equal to
20. Assuming Gaussian noise and modulo operation before BCJR decoding, i.e. Lattice
Decoding (LD) using BCJR algorithm, FER is shown by the bold line marked with (+); for
comparison two universal lattice decoding algorithms from [130] and [131] are indicated
with LD-Algorithm I and II, respectively. It is clear that the proposed BCJR based lattice
decoding of convolutional lattices outperforms conventional lattice decoding methods
with more than 1.5 dB di�erence. Note that in Figure 8.8 we are forced to perform com-
puter simulations in low dimension (20 dimension) because existing universal lattice
decoders, i.e. LD-Algorithms I and II from [130] and [131], that are used as a benchmark
for comparison, are practically feasible only in low dimensions. Figure 8.8 also shows the
BCJR decoding of the convolutional lattice (without performing modulo operation, say
MAP decoding). Note that MAP decoding outperforms lattice decoding because of the
poor error performance of lattice decoding4, however, clearly both the curves converge
at high SNR, as expected.

In the following theorem, the advantage of ΛC over ΛA that leads to a superior error
performance as illustrated in Figure 8.8 is discussed.

Theorem 8.2. Considering error rate as a performance benchmark, lattice decoding of

4Please see [16, 134–136] for a thorough discussion about the error exponent of MLAN channels.
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single layer Code Lattice (ΛC) outperforms lattice decoding of the corresponds Construc-
tion A lattice (ΛA).

Proof. Comparing the lattice decoders in Figure 8.8 puts forward the question of why
the proposed lattice decoder outperforms existing universal lattice decoders? There are
indeed two main reasons for this that are explained in the following:

• The proposed lattice decoding using the BCJR algorithm is performed over the
Code Lattice (ΛC) whereas lattice decoding using universal lattice decoders pro-
posed by [130, 131] is performed over ΛA. The minimum Euclidean distance of
ΛC is equal to the minimum Euclidean distance of the underlying convolutional
code, i.e. dΛC

min =
√
dCmin, while dΛA

min ≤
√
dCmin. Hence, lattice decoding on ΛC using

the BCJR algorithm outperforms existing universal lattice decoders that perform
decoding on ΛA lattice. Note that universal lattice decoding algorithms proposed,
e.g. [130–132] require a generator matrix in square form and so we are forced to
use the ΛA lattice with square generator matrix for decoding5.

• In a ΛA lattice which is generated from a k×N convolutional code, the dimension
of the lattice increases from k toN (usingG sub-matrix in (8.48)) and consequently
the number of adjacent lattice points that can erroneously be decoded increases.

As discussed in earlier sections, considering that a lattice decoder is, in general, outper-
formed by an ML decoder, application of lattice decoders in practice does not seem to
be a justi�able choice in point-to-point communication systems, however, the idea of
obtaining convolutional lattices, in this section, was initially motivated by CaF relay-
ing [22]. In order to validate the usefulness of lattice decoding, the next section, we
consider a CaF relaying where lattice decoding is the method of choice due to its man-
ageable complexity in practical systems.

8.2.5 Application of convolutional la�ices in compute and forward

In this section, we use CaF relaying to validate the usefulness of the proposed lattice
decoder by comparing the complexity of the proposed lattice decoder with an ML/MAP
decoder. Assume a CaF relaying systems wherein multiple source nodes transmit their
data simultaneously towards a relay node. For instance, Figure 8.9 illustrates the Mul-
tiple Access Channel (MAC) phase of a relaying system wherein the source nodes employ
convolutional lattice codes as the FEC code. The relay node performs channel decoding
(whether ML or lattice decoding); upon decoding the resultant lattice point in the relay,

5We are not aware of any “universal lattice decoding” algorithm with reasonable decoding complexity
which performs on non-square generator matrix. However, if one proposes a universal lattice decoder
which performs decoding on a non-square generator matrix (k×N in this section), we conjecture that
the performance should be equivalent to the proposed BCJR (or Viterbi) based lattice decoding.
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Figure 8.9: System model: Compute and forward.

[ · ]mod− qN operation is performed as network coding and a new lattice point is then
sent to the intended destination nodes, see [22] for detailed description about CaF. As-
suming the source nodes to apply the same convolutional codes, the complexity of the
rely node employing the proposed lattice decoder is considerably lower than the com-
plexity of the equivalent ML/MAP decoder. Let us de�ne the complexity of the proposed
lattice decoder for convolutional lattices as the number of trellis states

C = qT trellis states (8.55)

whereC is the measure of complexity and T+1 is the constraint length of corresponding
convolutional code; note that the complexity of the lattice decoder is independent of
the number of the source nodes whereas assuming M source nodes, the complexity of
ML/MAP decoder is C = qMT trellis states. Consequently, as illustrated by Figure 8.10,
the complexity of the ML decoder is indeed much more than the lattice decoder.

Assuming Gaussian channel (hi = 1) and convolutional lattice based on (7, 5) code,
Figure 8.11 shows the FER of CaF system with two source nodes exploiting convolu-
tional lattices over a hypercube of 310 and 3200, i.e. shaping lattice of q = 3 in 10 and
200 dimensions with rate 1

2
log2 3, with MAP and proposed lattice decoding used in the

relay node: from a complexity point of view, the proposed lattice decoder using BCJR al-
gorithm performs decoding with only 32 = 9 trellis states whereas an ML/MAP decoder
has 32×2 = 81 trellis states. This demonstrates the advantage of the proposed lattice
decoder in certain communication systems like CaF. Note that since the complexity of
an ML/MAP decoder grows exponentially with the number of the users, practical im-
plementation of it is indeed impossible with moderate and large number of users. Note
that as expected, ML/MAP decoder has a better performance but this is true only at low
SNR and the performance of lattice and ML/MAP decoders converge at high SNR, as
illustrated by Figure 8.11; nevertheless, taking complexity into account for a CaF sys-
tem with large number of the users, the proposed lattice decoder will be the method of
choice.

Further focusing on Figure 8.11 reveals that the gap between MAP and lattice decoders
increases with increasing dimension of the lattice and so the two curves converge at
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Figure 8.10: Complexity of ML and lattice decoding for various values of T and M = 5.

higher SNRs. For instance, assuming a 10 dimensional convolutional lattice, the two
curves have almost converged at 9 dB whereas for the convolutional lattice with 200
dimensions, there is a rather large gap between the two curves at 9 dB. The reason for
this is explained in the following Remark. Note that we do not provide comparison with
universal lattice decoders from e.g. [130] and [131] due to the large dimension of the lat-
tice, however, it is clear, from Figure 8.8, that the proposed lattice decoding outperforms
them.

Remark 3. There is one major concern to be discussed here: why does the gap between
lattice decoder and ML/MAP decoder increase with increasing dimension of the lattice?
Indeed by increasing the dimension of a lattice the number of edge points6 that can be
decoded erroneously increases; this is the main reason that the 200 dimensional lattice in
Figure 8.11 converges at higher SNR in comparison with the equivalent 10 dimensional
lattice. Moreover, as discussed earlier, due to the implementation complexity of universal
lattice decoders in higher dimensions, no comparison is provided with universal lattice
decoders, however, we conjecture that the gap will be even wider for universal lattice
decoders because the dimension of the ΛA lattice (for the (7, 5) convolutional code used
in Figure 8.11) is twice that of ΛC and so it results in further degradation of the perform-
ance. Nevertheless, we expect that as k →∞, the gap to be closed and both the ML and
LD decoding curves converge.

6By “edge points” we mean the lattice points in the boundary of the shaping lattice that can be transmit-
ted by the transmitter and can erroneously be decoded to the lattice points outside the shaping lattice.
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8.2.6 Encoding and decoding multilayer convolutional la�ices

Lattices based on Construction D (ΛD) and what we refer to as “multilayer code lattices
(ΛC)7” are the two lattice constructions discussed in this section. However, before we
continue with the de�nition of Construction D and the construction of lattices from con-
volutional codes exploiting the Construction D template, we would like to focus also on
conventional multilevel coding [142] techniques which are referred to as Construction
by Code Formula (CCF). This is discussed in the next subsection. Note that we are inter-
ested in CCF because both CCF and Construction D are usually regarded equivalent in
the literature (see [143–145]).

Multilevel codes or construction by code formula

Assume a family of a binary linear codes in which

FN2 ⊇ C1 ⊇ C2 · · · ⊇ Ca (8.56)

with Ci as a [ki, N, di] linear block code. A code based on CCF will be de�ned as

CCCF = ψ1(C1) + ψ2(C2) + · · ·+ ψa(Ca) (8.57)

where ψ( · ) is a map from FN2 to RN in which ψi(x) = x
2i−1 where x ∈ Ci. For instance,

assuming a = 3, one can write CCCF = 1
4
C3 + 1

2
C2 +C1 for the resultant code8. The code

rateRCCF of CCF isRCCF =
a∑
i=1

RCi . The desired aspects of CCF, among the others, is that

encoding (and decoding) CCCF can be performed using the conventional encoding (and
decoding) methods used for the underlying code Ci. For instance, one can use Viterbi
or BCJR algorithm for decoding a convolutional CCCF, wherein the receiver decodes the
inner layer Ca �rst and exploits it as a priori knowledge passed to the decoder which
decodes the layer corresponding to Ca−1. This multi-stage decoding algorithm continues
until all the layers are decoded. Note that multilevel codes and multi-stage decoding
algorithms are extensively studied in the literature (see [142]) and so we will adopt them
in the following for encoding and decoding lattices based on Construction D.

In the following, taken from [54], we will de�ne Construction D and will explain, using
a counterexample, that Construction D and CCF can be di�erent.

Construction D

Assume a family of a binary linear codes in which

FN2 ⊇ C1 ⊇ C2 · · · ⊇ Ca (8.58)
7That is analogous to single layer code lattice discussed in Section 8.2.4.
8Alternatively, one can write CCCF = C3 + 2C2 + 4C1, too.
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Figure 8.11: Frame error rate for (7, 5) convolutional lattice with q = 3.

with Ci as a [ki, N, di] linear block code where di ≥ 4i/γ in which γ = 2 or 4. Choose
N basis vectors of FN2 , i.e. {b1, b2, · · · , bN}, wherein the set of {b1, b2, · · · , bki} spans
Ci. Also assume that ψ( · ) is a map from FN2 to RN in which ψi(x) = x

2i−1 where x ∈ Ci.
A lattice based on Construction D contains all vectors of the form

ΛD =
a∑

i=1

ki∑

j=1

α
(i)
j ψi(bj) + (2Z)N (8.59)

where α(j)
k ∈ {0, 1}. Consequently, ΛD is an N dimensional lattice with hypercube

fundamental Voronoi region. Assuming CD to be a code consisting of all lattice points
inside the (−1, 1]N hypercube of ΛD lattice, any point/vector x = (x1, · · · , xN) ∈ RN

is a lattice point congruent to codeword ci if and only if

[x]mod− 2N , ci, ci ∈ CD. (8.60)

Note that as both the CCF and Construction D are de�ned based on the ψ( · ) function,
they are usually considered to be equivalent in the literature, e.g. [143–145]), however, in
order to disprove this conjecture, a counterexample is provided in the following which
shows that CCF does not necessarily result in a lattice construction.

Counterexample: Assume two nested binary codes C1 ⊇ C2 with G1 =
[

1100
1010
1001

]
and

G2 = [ 1100
1010 ]. The codebook of CCF inside the 24 hypercube obtained from CCCF =
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1
2
C2 + C1 is

CCCF =
{

[0 0 0 0] [0 0 1 1] [0 1 0 1] [0 1 1 0]

[1 0 0 1] [1 0 1 0] [1 1 0 0] [1 1 1 1]

[0.5 0 0.5 0] , [0.5 0 1.5 1] , [0.5 0.5 0 0] , [0.5 0.5 1 1]

[0.5 1 0.5 1] , [0.5 1 1.5 0] , [0.5 1.5 0 1] , [0.5 1.5 1 0]

[1.5 0 0.5 1] , [1.5 0 1.5 0] , [1.5 0.5 0 1] , [1.5 0.5 1 0]

[1.5 1 0.5 0] , [1.5 1 1.5 1] , [1.5 1.5 0 0] , [1.5 1.5 1 1]

[0 0.5 0.5 0] , [0 0.5 1.5 1] , [0 1.5 0.5 1] , [0 1.5 1.5 0]

[1 0.5 0.5 1] , [1 0.5 1.5 0] , [1 1.5 0.5 0] , [1 1.5 1.5 1]
}
. (8.61)

The generator matrix of Construction D is9

GΛD =

[
1
2

1
2

00
1
2

0 1
2

0
1001
2000

]
, (8.62)

with which, the lattice points inside the 24 hypercube are

CD =
{

[0 0 0 0] [0 0 1 1] [0 1 0 1] [0 1 1 0]

[1 0 0 1] [1 0 1 0] [1 1 0 0] [1 1 1 1]

[0.5 0 0.5 0] [0.5 0 1.5 1] [0.5 0.5 0 0] [0.5 0.5 1 1]

[0.5 1 0.5 1] [0.5 1 1.5 0] [0.5 1.5 0 1] [0.5 1.5 1 0]

[1.5 0 0.5 1] [1.5 0 1.5 0] [1.5 0.5 0 1] [1.5 0.5 1 0]

[1.5 1 0.5 0] [1.5 1 1.5 1] [1.5 1.5 0 0] [1.5 1.5 1 1]

[0 0.5 0.5 1] [0 0.5 1.5 0] [0 1.5 0.5 0] [0 1.5 1.5 1]

[1 0.5 0.5 0] [1 0.5 1.5 1] [1 1.5 0.5 1] [1 1.5 1.5 0]
}
. (8.63)

Careful comparison of (8.61) and (8.63) reveals that the two last rows in (8.61) and (8.63)
are di�erent and so, one can easily conclude that CCF and Construction D are not ne-
cessarily equivalent. Furthermore, although [1.5 1.5 1 1] and [0 1.5 1.5 0] are points of
CCCF in (8.61) (the last vectors in row six and seven), their mod-2 sum

[
[1.5 1.5 1 1] + [0 1.5 1.5 0]

]
mod− 24 = [1.5 1 0.5 1] (8.64)

does not belong to CCCF in (8.61) and so, clearly, in this example, the CCF does not gen-
erate lattice points. In general, the CCF does not necessarily generate a lattice, however,

9Note that obtaining generator matrix of a lattice based on Construction D will be explained in further
detail in the following, however, in order to validate the di�erence between Construction D and CCF,
we use it in this example without a proof.
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for the particular case of convolutional codes, we introduce an approach with which lat-
tice points of Construction D are generated using CCF. �

Note that on the one hand we are interested in constructing a lattice from (convolu-
tional) codes based on Construction D and, on the other hand, we would like to make
Construction D and CCF equivalent because then we can exploit existing and practic-
ally feasible decoding algorithms of CCF for decoding convolutional lattices that are
constructed based on Construction D, else, as discussed in the context of construction A,
universal lattice decoders are not interesting from a practical point of view at high dimen-
sions.

In the following, we focus on deriving the generator matrix of a lattice constructed from
convolutional codes according to Construction D and its equivalent CCF. For this, we
�rst neglect the minimum distance criterion of Construction D de�nition in the follow-
ing, i.e. the di ≥ 4i/γ criterion. Later on, we will discuss methods for ensuring the min-
imum distance criterion is ful�lled which indeed can improve the performance of the
code10.

No minimum distance criterion. The generator matrix of the convolutional lattice
will be obtained as follows: the �rst ka basis vectors11 multiplied by 1/2a−1 form the �rst
ka rows of the generator matrix; the rows from ka+1 to ka−1 are obtained by multiplying
the ka+1 to ka−1 rows of the convolutional code generator matrixGc to 1/2a−2. Similarly
one can obtain all the rows of the generator matrix of the lattice using the ψ( · ) mapping
that corresponds to the associated convolutional code. The remaining (N − k) rows are
chosen from the rows of a 2IN×N matrix in such a way that the generator matrix of the
lattice has rank N .

In the following, the generator matrix of a convolutional lattice based on Construction D
is further discussed using an example.

Example 1: Assume three (7, 5) convolutional codes as FN2 ⊇ C1 ⊇ C2 ⊇ C3 and let
GCi be the generator matrix of a (7, 5) convolutional code as derived in (8.46). Note that
since we assume nested codes, we mean that all C1, C2 and C3 contain equal length code-
words (and data words) and so it implies that the data words of the sub-codes are zero
padded (ZP) to make the length of the data vectors of the sub-codes equal to the length
of the data vector of the parent code C1. For instance assume k3 = 1, k2 = 2, k1 = 4;
therefore, the generator matrix of the the three nested codes is as follows: GC3 = [b1]1×8,

10Note that the main reason for neglecting the minimum distance criterion is due to a lack of nested
convolutional codes that ful�l the minimum distance criterion. Therefore, many papers, e.g. [128, 129,
146], relax this criterion.

11The basis vectors are obtained according to the description in Section 8.2.4.
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GC2 = [b1; b2]2×8, GC1 = [b1; b2; b3; b4]4×8 where bi is the i-th row of (8.46). The gener-
ator matrix of the lattice constructed according to Construction D is

GΛD =




1
4
b1

1
2
b2

1b3

1b4

G




8×8

. (8.65)

Note that the coe�cient 1
4

for b1, the coe�cient 1
2

for b2 and 1 for b3 and b4 represent the
ψi( · ) function in (8.59) and G contributes the (2Z)N part of (8.59). All the lattice points
inside the (−1, 1]N hypercube are the codewords of the Construction D convolutional
lattice, and are obtained using the [u ·GΛD ] mod− 2N operation where u ∈ Z.

In order to take advantage of decoding algorithms of CCF, in the following, a method is
introduced by which Construction D and CCF are equivalent.

Construction Dusing CCF: In the above example, there are three nested codes, contrib-
uting in encoding four bits (say {d1, d2, d3, d4} corresponding to basis vectors {b1, b2, b3, b4},
respectively). Consequently, one can say that d1 is encoded by C3, d2 by C2 and d3, d4 by
C1. In order to generate Construction D lattice points inside the 24 hypercube, similar to
multilevel codes (or CCF), one can write the equivalent transmitter side generator matrix
as

G
TX-eqv
ΛD

=




[
1
4
b1

]
[

1
2
b1

1
2
b2

]




b1

b2

b3

b4







, (8.66)

however, set the data bits corresponding to the basis vectors indicated by the red color
to zero, i.e.

deq = [ d1︸︷︷︸
C3

, 0, d2︸︷︷︸
C2

, 0, 0, d3, d4︸ ︷︷ ︸
C1

]. (8.67)

Consequently,
[
deq ·GTX-eq

ΛD

]
mod− 2 will generate the same lattice points inside the 24

hypercube that will be generated by [d ·GΛD ] mod− 24 where d = [d1, d2, d3, d4].

Note that the upper sub-matrix in (8.66) corresponds to C3, the sub-matrix in the middle
corresponds to C2 and the bottom one corresponds to C1; hence, instead of using matrix
multiplication for generating lattice points (codewords), one can use conventional shift
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register based encoders according to Figure 8.12 in the transmitter where

d3 = [d1, 0, 0, 0︸ ︷︷ ︸
ZP

] (8.68a)

d2 = [0, d2, 0, 0︸︷︷︸
ZP

] (8.68b)

d1 = [0, 0, d3, d4]. (8.68c)

Consequently, [d ·GΛD ] mod − 2 ,
[
deq ·GTX-eq

ΛD

]
mod − 2 and Figure 8.12 will generate

the same lattice points inside the 24 hypercube.

Ensuring minimum distance criterion. So far, we have relaxed the minimum dis-
tance criterion of the original de�nition of Construction D. The relaxation of the min-
imum distance criterion was, in part, to focus on constructing lattices using conventional
convolutional codes; however, the literature usually ignores the minimum distance cri-
terion, e.g. [128,141,146], since it is hard to �nd nested codes that ful�l this criterion. In
particular, in the case of convolutional codes, the minimum distance of a code is �xed;
for instance, it is well known that the minimum distance of the (7, 5) convolutional code
that was used in the above example is equal to �ve.

In the previous part, we applied a naive method of zero padding to have data words
of equal length in all convolutional codes (see (8.68)), however, one can perform repeti-
tion of the uncoded data bits instead of simply zero padding which indeed can result in
increasing the minimum distance of the code.

For clarity of explanation, let us begin with the same (7, 5) convolutional code with the
generator matrix derived in (8.46). Note that (8.46) is only one of the generator matrices
of the (7, 5) code; each basis vector in (8.46) can be replaced by another basis vector.
For instance, the basis vector in the �rst row of (8.46), i.e. b1 = [11101100 · · · ], can
be replaced by a new b1 where b1 = [110101110 · · · ] that is a codeword generated by
a data vector with the �rst two bits set to 1 and the rest of the bits set to zero. Note
that in Example 1 where only one bit d1 is transmitted by the inner code C3, one can
repeat d1 instead of zero padding: indeed, substituting b1 = [11101100 · · · ] with b1 =
[110101110 · · · ] in (8.65) is equivalent to transmitting [d1, d1, 0, 0] from C3. Moreover,
considering that C3 produces only two codewords (all zero and [110101110000]), clearly,
the minimum distance of the code has increased to 6. Note that codes with larger min-
imum distance can be produced by di�erent repeating patterns for di�erent convolu-
tional codes: for instance, repeating d1 according to [d1, 0, 0, d1] is equivalent to repla-
cing b1 = [11101100 · · · ] with b1 = [11101111101100] and so C3 will produce two
codewords (all zero and [11101111101100]) that have minimum distance equal to 10.

Note that the repeating pattern depends on the convolutional code, however, for the
particular example of the (7, 5) convolutional code, repeating [di00] along the data word,
instead of zero padding, will generate codewords with maximum MED.
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Figure 8.12: Equivalent Construction D encoder using conventional FEC encoders.

Decoding multilayer convolutional la�ice codes

One obvious way of lattice decoding convolutional lattices obtained using Construc-
tion D is to employ the well known universal lattice decoders in combination with the
original generator matrix of ΛD as obtained, e.g. in (8.65). However, as observed in Sec-
tion 8.2.4, the performance will be poor due to the edge lattice points and the MED of the
lattice which is upper bounded by 2. Another solution is to decode the lattice in k dimen-
sions instead ofN and obtain better performance; this is discussed in the following. The
following corollary is provided as a result of Theorem 8.2 for multilayer convolutional
lattices:

Corollary 8.1. Considering error rate as a performance benchmark, lattice decoding of
multilayer Code Lattice (ΛC) outperforms lattice decoding of the corresponds Construction D
lattice (ΛD).

Proof. The proof of single layer convolutional lattices in Theorem 8.2 proves the corol-
lary, too.

Note that, in the following, lattice decoding is performed over ΛC (rather than ΛD). How-
ever, we use the term “Construction D” to refer to multilayer convolutional lattices. Con-
sidering that lattice codes based on Construction D, as described in the previous subsec-
tion, are indeed multilevel convolutional codes [142] and so one can apply multi-stage
trellis decoding algorithms for ML, MAP or lattice decoding (similar to Construction A
in Section 8.2.4 ). The multi-stage decoding is started by decoding the inner code with
the largest minimum distance Ca; the decoded layer is then fed to the higher layer Ca−1

and is used as a priori information for decoding the data of the corresponding layer. The
process is continued to until decoding C1. Note that any known decoding algorithms, e.g.
Viterbi or BCJR, can be applied for decoding the layers (we are interested in BCJR decod-
ing in this section as it is a SISO decoder). The BCJR decoder for multi-stage decoding is
slightly di�erent than the Conventional BCJR decoder because the state transition prob-
abilities depend on the a priori information of the other layers, too. A priori information
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Figure 8.13: BER – Construction D.

can be hard information plugged from inner layers to upper layers or soft information
that only passes the probability of the data corresponding to the other layers; by exchan-
ging soft information among the layers, iterative decoding of the layers is also possible
that indeed o�ers higher performance gains.

Example 2: A design methodology of a two layer lattice based on construction D from
(7, 5) convolutional codes is explained in this example. Assume that the nested codes
are de�ned as FN2 ⊇ C1 ⊇ C2 where the dimension N = 300, C1 and C2 together
participate in encoding 150 bits, i.e. number of messages M = 2150. Moreover, assume
C2 participates in encoding 10 bits and C1 encodes 140 bits. In the following we will
describe obtaining the generator matrix of the lattice based on Construction D where
the minimum Euclidean distance criterion of the Construction D de�nition is ful�lled.
Later on, a corresponding lattice encoder based on conventional convolutional encoders
is described.

La�ice generator matrix

One lattice based on construction D will be obtained as follows:

• Inner layer: the inner code C2 carries only 10 data bits in inner layer of a code-
word of length 300 that is generated from a data word of length 150 (because it
is based on a (7, 5) convolutional code); consequently, each data bit in inner layer
can be represented by 15 “virtual” data bits that can be arranged in the desired
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arrangement in order to achieve the desired MED. As there are 10 data bits to be
encoded in the inner layer, and there are only 10 basis vectors that need to be spe-
ci�ed; we propose b1 = ⊕ri where i ∈ {1, 4, 7, 10, 13} and ri speci�es the rows of
the generator matrix of (7, 5) code that was derived in (8.46); ⊕ represents mod-2
summation. In other words, b1 is a codeword generated by a data word, in octal
notation db1 = [4, 4, 4, 4, 4,01×135]. Hence, feeding db1 to a (7, 5) convolutional
encoder generates the �rst basis vector.
Likewise, b2 = ⊕ri where i ∈ {16, 19, 22, 25, 28} that is generated from a data
word in octal notation as db2 = [01×15, 4, 4, 4, 4, 4,01×120]. One can similarly ob-
tain all the basis vectors of the inner generator matrix, e.g. the 10-th basis vec-
tor is b10 = ⊕ri with i ∈ {136, 139, 142, 145, 148} that is generated from the
db10 = [01×135, 4, 4, 4, 4, 4] data vector. Consequently, plugging in db10 to a (7, 5)
convolutional encoder will generate the basis vectors corresponding to the inner
layer, i.e. the �rst ten rows of ΛD.

• Outer layer: One can arbitrarily choose the 140 remaining basis vectors, i.e.

b11, b12, · · · , b150

from the generator matrix (8.46) of the convolutional code; however, the only con-
straint is that for any i ≥ 11, the summation ⊕ bi 6= bk where k = 1, 2, · · · , 10.
The constraint is stressed to make sure that the generator matrix of the lattice is
full rank. The remaining 150 basis vectors are chosen from 2I300×300 matrix with
which GΛD is a full rank matrix.

Construction D using CCF. The equivalent shift register based encoder consists of
two conventional convolutional encoders where 140 data bits are encoded by C1 and 10
data bits by C2; moreover, the data of C2 are repeated in the corresponding positions
to generate a “virtual” data word of length 150. Figure 8.13 illustrates BER of the con-
volutional lattice in Example 2: The overall BER is shown by a black solid line marked
with (x). The BER of the outer layer is nearly equal to the overall BER because the per-
formance of the code is bounded by the MED of the outer layer (note that minimum
Euclidean distance of the outer layer is smaller than minimum Euclidean distance of the
inner layer). Clearly, due to the large minimum Euclidean distance of inner layer, its
BER is much lower.

It was claimed earlier (without proof) that neglecting the MED criterion of the de�n-
ition of Construction D will degrade the error performance of the overall system. In
order to validate this, we have provided another simulation in Figure 8.14 where C2 is a
[10, 300, 12]. The minimum Euclidean distance is 12 (dC2

min = 12) which is smaller than
the minimum Euclidean distance of the C2 in the above example. As expected, the BER
of both layers is degraded when compared with Figure 8.13.
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Figure 8.14: BER – Construction D (neglecting the MED criterion).

8.2.7 Conclusion and future work

Constructing convolutional lattices based on Construction A/D is proposed in this sec-
tion. Also, lattice decoding using trellis structure of the underlying convolutional code
is discussed. Unlike the existing lattice decoding algorithm the proposed method is prac-
tically feasible with reasonable complexity at arbitrarily high dimensions. Moreover, the
performance of the proposed lattice decoder is found to be superior, since decoding is
performed at lower dimension compared to the dimension of Construction A/D. Further-
more, the statistical characteristics of MLAN are derived in this section, and are exploited
by the BCJR decoder.
Exploitation of the code lattices studied in this section and BCJR decoding algorithm on
communication systems based on CaF is an ongoing research.

8.2.8 Distribution of N ′

Assume T is a normally distributed random variable with mean equal to µ = a+b
2

and

variance equal to α2σ2, i.e. fT (t) = 1√
2πασ

e−
(t−µ)2

2α2σ2 . Also, assume V is a random variable
according to a uniform distribution in the (ηb, ηa) interval, i.e.

fV (v) =

{
1

ηa−ηb ηb < v < ηa

0 otherwise
(8.69)

and so, the pdf of W = T + V is
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fW (w) =
1

2(ηa − ηb)
erf

(
2w − b− a(3− 2α)

2
√

2ασ
,
2w − a− b(3− 2α)

2
√

2ασ

)

with ηi = i(1− α).

Proof. AssumingW = T + V , the pdf ofW is the convolution of the pdf of T and V , i.e.
fW (w) = fT (t) ∗ fV (v). By resorting to the de�nition of the convolution operator, one
can write

fW (w) =

ˆ ∞
−∞

fV (t)fT (w − t)dt

=
1

2(ηa − ηb)

ˆ ηa

ηb

1√
2πασ

e−
(w−µ−t)2

2α2σ2 dt. (8.70)

Considering that erf(x) = 2√
π

´ x
0

e−t
2
dt and µ = a+b

2
, after some manipulation, (8.70)

can easily be simpli�ed according to

fW (w) =
1

2(ηa − ηb)
erf

(
2w − b− a(3− 2α)

2
√

2ασ
,
2w − a− b(3− 2α)

2
√

2ασ

)
. (8.71)
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9 Conclusions

This �nal version of the deliverable on “Terminal node processing for advanced scen-
arios” provides a comprehensive technical overview of selected physical layer techniques
and algorithms which has been successfully implemented by the HW and SLS demon-
strators (as reported in the WP5 deliverables). In addition, it introduces some additional
promising physical layer techniques and algorithms developed in the last stage of the
project.

Some particular algorithms/techniques presented in this report have already been suc-
cessfully implemented by the HW/SLS demonstrator(s) as we summarise below:

Coded superposition modulation technique (sections 2.1, 2.2) was successfully im-
plemented by the SMN HW demonstrator, as reported in [D5.42]. Appropriate
modi�cations of the node processing strategies were implemented to combat the
real-world setup impairments like the non-coherent complex phase rotation of in-
dividual source transmissions or direct channel availability between the source
and its desired destination. The resulting algorithm is eligible to outperform con-
ventional (i.e. non WPLNC) relaying strategies in a 5-node single relay network
topology.

Cloud access node scheduling strategies (section 4.3) which interpret the cloud as
a macro-relay using some approximations for parallel and mutually interacting
�ows have been investigated within the SLS demonstrating activity (see [23]).
Even if the validations are far from being exhaustive, this activity gives the guidelines
on new scheduling strategies to access to sub-networks as macro-relays.
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