
Plane
mPlane

an Intelligent Measurement Plane for Future Network and ApplicaƟon Management

ICT FP7-318627

Deployment Experiences

Author(s): NETVISOR A. Bakay B. Szabo, G. Rozsa, L. Nemeth
POLITO S. Traverso
FUB E.Tego, F. Matera, A. ValenƟ
SSB S. Pentassuglia, G. De Rosa
TI (ed) F. Invernizzi
ALBLF Z. Ben Houidi
EURECOM M. Milanesio
ENST J. Auge, D. Cicalese, D. Rossi, D. Zeaiter JoubmlaƩ
NEC M. Dusi, S. Nikitaki
TID I. LeonƟadis, M. Varvello, L. Baltrunas
FTW A. D'Alconzo, P. Casas, A. Bär
FHA M. Faath, R. Winter
ULG Korian Edeline, Benoit Donnet
FW M. Scarpino, E. Kahveci, A. Sannino, E. Kowallik

Document Number: D5.3
Revision: 1.0
Revision Date: 31 March 2015
Deliverable Type: RTD
Due Date of Delivery: 31 March 2015
Actual Date of Delivery: 31 March 2015
Nature of the Deliverable: (R)erport
DisseminaƟon Level: Public

Ref. Ares(2016)1844564 - 19/04/2016

318627-mPlane D5.3
Deployment Experiences

Abstract:
This document describes the requirements of the integrated mPlane prototype and test beds
and it reports on the status of the deployment at the Ɵme of this wriƟng.
In parƟcular, details about the design and implementaƟon of the target deployment scenario
are described along with the progress of the integraƟon acƟviƟes.
Details about the system architecture, element funcƟons and interacƟons, use cases descrip-
Ɵon and integraƟon plans can be found in other mPlane deliverables available at the official
mPlane website (http://www.ict-mplane.eu/).
In contrast to this deliverable, D5.1 contained a report about the project's data collecƟon
track record and D5.2 reported on the mPlance components to be included in the integraƟon
test plants, including a descripƟon of the mPlane SDK and the use cases to be realized in an
integrated manner.

Keywords: mPlane, integraƟon, unified, probe, supervisor, repository, reasoner, use case

Plane 2 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Disclaimer

The information, documentation and ϔigures available in this deliverable are written by the mPlane
Consortium partners under EC co-ϔinancing (project FP7-ICT-318627) and does not necessarily reϔlect
the view of the European Commission.
The information in this document is provided ``as is'', and no guarantee or warranty is given that the
information is ϔit for any particular purpose. The user uses the information at its sole risk and liability.

Plane 3 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Contents

Disclaimer. 3

Document change record. 6

Executive Summary. 7

1 Deployment requirements. 8
1.1 Network requirements . 8
1.2 Software requirements . 10
1.3 Use case speciϐic requirements . 13

1.3.1 mSLAcert requirements . 13
1.3.2 Firelog requirements . 13
1.3.3 Mobile Probe requirements. 14
1.3.4 GLIMPSE requirements . 14
1.3.5 DBStream requirements . 15
1.3.6 Passive Content Curation Requirements . 15
1.3.7 Content Popularity Estimation Requirements . 16
1.3.8 Multimedia Content Delivery Requirements . 16

1.4 Data privacy and security . 20

2 Deployment status. 21
2.1 Network requirements deployment status . 21
2.2 Software requirements deployment status . 22

2.2.1 Tested software . 22
2.3 Use case deployment status . 24

2.3.1 mSLAcert requirements deployment. 24
2.3.2 Firelog deployment . 25
2.3.3 Mobile Probe deployment. 25
2.3.4 Anomaly detection and root cause analysis in large-scale networks 26
2.3.5 Passive Content Curation Deployment. 27
2.3.6 Content Popularity Estimation Deployment . 27
2.3.7 GLIMPSE Deployment Requirements . 27
2.3.8 Multimedia Content Delivery Status . 28

Plane 4 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

A Good Practices for Development and Deployment. 30
A.1 Releases . 30
A.2 Licenses, Copyright . 30
A.3 Dependencies. 30
A.4 Different Hardware Architectures / Porting . 30
A.5 Documentation. 31
A.6 Coding Style and Automatic Syntax Checking . 31
A.7 Automatic Testing of Source Code . 31

Plane 5 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Document change record

Version Date Author(s) Description
0.1 2 March 2015 F. Invernizzi (TI) initial draft
0.2 27 March 2015 F. Invernizzi (TI) and All consolidated draft
0.3 31 March 2015 R. Winter (FHA) review
0.4 8 April 2015 S. Traverso (POLITO) review
0.5 10 April 2015 M. Milanesio (EURECOM) ϐinal review

Plane 6 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

ExecuƟve Summary

This document reports the ϐirst deployments experiences and the status of the mPlane prototype
at the time of delivery of the document. In the ϐirst part requirements are described in terms of net-
work, software and speciϐic use cases requirements, then the status of the deployment and speciϐic
experiences are reported.

Plane 7 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

1 Deployment requirements

The mPlane integrated prototype combines a number of different systems, from different devel-
opers and designed for different purposes. In order to successfully deploy this mPlane integrated
prototype, a number of requirements, documented in the following subsections, need to be fulϐilled.
These have been logically grouped into:

• Network requirements: these refer to network infrastructure and integration details needed
to have mPlane elements not only talking to each other (basic connectivity) but also to other
network related aspects that are needed to place probes in realistic networking environ-
ments, in order to have meaningful test results;

• Software requirements: all details related to the software packages, libraries and operating
system requirements, which are needed by speciϐic implementations of mPlane components
such as probes, supervisors or reasoners;

• Use case requirements: the mPlane work has been use case-driven from the onset of the
project and some use cases can involve speciϐic requirements not related to other categories
in order to be successfully deployed;

• Data privacy and security: details related to user data privacy protection and systems secu-
rity;

• Good practices: given the size and diversity of the mPlane echo system, good practices which
have beenproven to be important during thework are reported, as they are consideredpillars
of a good deployment process.

1.1 Network requirements

One of the ϐirst and most obvious requirements in order to build a distributed prototype, integrat-
ing a large number of different components, is to have a common, shared network infrastructure,
able to interconnect all functional elements of the reference architecture and granting all capabili-
ties needed to deploy the project's chosen use cases. To this end, themPlane project has developed
a network core lab, deployed at two lab facilities hosted by the two industrial project partners Tele-
com Italia (Torino) and Fastweb (Milano) which are directly interconnected using a dedicated ϐiber
link. This solution leads to a well structured, controlled shared lab that is able to offer trafϐic gen-
eration and network impairment functionalities, along with real user trafϐic data and typical ISP
network provider infrastructure.
The overall structure of the core network lab/integrated test plants is depicted in Figure 1, which
also highlights the different functionalities provided by each test plant and shows where mPlane
components are planned to be deployed.
The two test plants only represent the core of the integrated prototype. All partner lab facilities
are interconnected to this shared resource by means of standard Internet connections, simply ex-
posing the relevant interfaces. In particular all mPlane partners can interact and interconnect to
functionalities exposed by this shared infrastructure by means of:

• SSH: enabled on all mPlane network and functional elements for management purposes;
• Supervisor - backend: this is the place where all mPlane elements can do mPlane protocol
related activities, such as registering capabilities, speciϐications, etc.;

• Supervisor GUI: the mPlane supervisor can expose a simpliϐied HTTP interface in order to
present a easy-to-grasp, high-level view of the underlying mPlane activities and to enable a

Plane 8 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

mPlane TILab
Network

Internet

Core Network

BB-Router

2x 10Gbs

Tstat

Access Node

Impairments

Impairments LAB

ADSL2+ VDSL2

2x 10Gbs

mPlane core
network

Firewall

1x Gbs

100Mbs

1x Gbs

CDN-Network

100Mbs

POP Network

ADMADM

STM-1

A c t i v e p r o b e s

Active Probe

ADMADM

TESTPLANT POP Network
EDGE-Router

Video Server

Probes

Repository

Supervisor

2x 10Gbs

Figure 1: Telecom Italia and Fastweb interconnected test plants

user to issue measurements without requiring protocol-level understanding of mPlane;
• Reasoner GUI: some reasoner implementations can expose dedicated agent GUIs in order to
present reasoning results in a specialized, reasoner-speciϐic representation;

• Management interface: leveraging on the PM2 (https://github.com/Unitech/pm2) web
interface, a dedicated web GUI is exposed on some mPlane instances (e.g., supervisors) for
simpliϐication of certain management operations.

Plane 9 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

The shared test plant will host an mPlane supervisor instance, available to all mPlane lab facilities
by means of previously mentioned services. In order to enable the collection of useful measure-
ments and to provide a larger set of functionalities, all partners are required to host at least one
instance of all needed probes, up and running from mid 2015 to the end of the project (preferably
beyond the project's lifetime). Details on IP address numbering, naming, interconnections and spe-
ciϐic enabled service details are not reported here for security reasons.

Requirement Description Provided by Notes
Internet IP reachability IP addresses reachable

from the Internet.
All sites Public static IPs

are not required.
IPs can be NAT
public addresses.

Network impairment In some test scenario
speciϐic network condi-
tions need to be em-
ulated (packet loss, la-
tency, ...) in a controlled
manner.

Telecom Italia

Realistic user trafϐic Trafϐic generated by
users using a realistic
network scenario (e.g.
ADSL access, ISP net-
work, ISP peering, OTT)
in a controlled manner.

Telecom Italia and
Fastweb

Real user trafϐic Trafϐic generated by real
user

Fastweb Security consider-
ation applicable

Multiple probe vantage points Some use cases require
multiple measurements
taken at different net-
work points

All partners

Multiple administrative domains Some use cases can take
advantage of operating
in different administra-
tive domains

All

Distributed environment Mandatory for testing
real scenarios

All

Table 1: Network requirements.

Table 1 lists all network requirements consideredmandatory in order to complete prototypeprepa-
ration, testing and deployment.

1.2 SoŌware requirements

The implementation of the mPlane integrated prototype requires a well-deϐined set of software li-
braries, operating systems and other software solutions that the various components implemented
by the project are build with/designed for. As described in previous mPlane documents (see, for

Plane 10 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Description FQDN Partner Notes
Public supervisor supervisor.ict-mplane.eu TI Main public

supervisor
Public supervisor supervisor2.ict-mplane.eu FW Secondary public

supervisor
Public TI probe probeTI.ict-mplane.eu TI Probe
Public PoliTO probe probePOLITO.ict-mplane.eu POLITO Probe
Public FUB probe probeFUB.ict-mplane.eu FUB Probe
Public SSB probe probeSSB.ict-mplane.eu SSB Probe
Public ALBLF probe probeALBLF.ict-mplane.eu ALBLF Probe
Public EURECOM probe probeEURECOM.ict-

mplane.eu
EURECOM Probe

Public NEC probe probeNEC.ict-mplane.eu NEC Probe
Public TID probe probeTID.ict-mplane.eu TID Probe
Public NETVISOR probe probeNETVISOR.ict-

mplane.eu
NETVISOR Probe

Public FTW probe probeFTW.ict-mplane.eu FTW Probe
Public FHA probe probeFHA.ict-mplane.eu FHA Probe
Public ULG probe probeULG.ict-mplane.eu ULG Probe
Public ETH probe probeETH.ict-mplane.eu ETH Probe
Public A-LBELL probe probeA-LBELL.ict-mplane.eu A-LBELL Probe
Public FW probe probeFW.ict-mplane.eu FW Probe

Table 2: Public elements details.

example, D5.2), the consortium is working on two distinct, publicly available reference implemen-
tations, based on Python and nodejs respectively. These serve the project and the community at
large as a reference to test andprogrammPlane components against. Given the signiϐicance of these
mPlane implementations, the particular software requirements for these two are listed separately
in following tables.

Name Release Description
PyYAML >=3.11 YAML parser and emitter
tornado >=4.1 Web framework
urllib3 >=1.8.2 HTTP library

Table 3: python mPlane module requirements.

For deployment, OS compatibility is an important aspect to being considered, in particular for end-
system-based probes, less for mPlane components such as supervisors, reasoners or repositories.
During the development activities of the mPlane project, a number of particular operating systems
have been employed for some of the components and are therefore considered as supported. These
are described in Table 5.
In order to deploy mPlane components on a number of measuring vantage points large enough for
the purposes of the project, a simple deployment solution - given the operating system list above -
was adopted by all partners in order to painlessly install a goodnumber ofmPlane-ready probes. To
this end, a virtual appliance containing a complete mPlane environment is being prepared, includ-

Plane 11 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Name Release Description
nodejs >= 0.6.1 This is the base nodejs envi-

ronment
lodash >=2.4.0 Javascript objects and generic

util library
cron >=1.0.4 mPlane multi measure and

timing implementation
sha1 >=0.1.1 mPlane objects token genera-

tion
util >=0.10.0 Generic nodejs util functions
sync-request >=2.0.1 HTTP synchronous request

Table 4: nodejs mPlane library requirements.

Name Tested version(s) Elements tested
FreeBSD 9.0, 10.1 (nodejs, python) Supervisor,

Client, Tstat, Dati proxy, Demo
Reasoner

Linux Ubuntu Server 10.4 (nodejs, python) Supervisor,
Client, all supported probes,
Demo Reasoner

OpenWRT 14.07 (python) Supervisor, Tstat
OS X 10.10.2 (Yosemite) (nodejs) Supervisor, Client,

Dati proxy, Demo Reasoner,
GLIMPSE

Windows 7 (nodejs) Supervisor, Client,
Dati proxy, Demo Reasoner

Android 4.4.2 Rooted devices, tested on
Galaxy S2, Nexus S, Nexus
5 (GLIMPSE on non-rooted
Android devices)

Linux Fedora 21 (python) Supervisor, Client,
ping proxy, tstat proxy

Table 5: Supported operating systems.

ing all required probe instances and supplemental software (control and management software,
certiϐicate generation tools, etc.). All partners will be required to install at least one instance of this
appliance, conϐiguring it and keeping it up and running. It needs to be connected to one of the pub-
lic supervisors available in the shared lab facility. This ensures to have a running prototype for all
project participants to experiment with, ready for integrated testing, measurement collection and
proof-of-concept show case.

The virtual appliance will be an Ubuntu server version 10.4 with software installed as detailed in
Table 6.

Plane 12 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Software Name Version Notes
mPlane python libraries VERSION
tstat probe VERSION
mPlane nodejs libraries >=0.6.4
mPlane nodejs base probe >=0.0.3 Availabel measures: ping,

traceroute, HTTP latency
Certiϐicate management scripts n.a. Script and root certiϐicates for

generating andmanage probes
certiϐicates

PM2 manager >=0.12.8 Systemmanagement
PM2-WEB >=2.1.3 WEB management GUI
GLIMPSE >=2.4.0 from

GLIMPSE-mplane branch Exposed capabilities available
at http://www.measure-it.
net/static/capabilities

Table 6: Virtual appliance installed software.

1.3 Use case specific requirements

This paragraph details speciϐic requirements needed by some use cases. Where a requirement is a
speciϐic probe, for sake of simplicity, that probe requirements are described. Where not listed, it is
intended that the use case applies for above described requirements.

1.3.1 mSLAcert requirements

mSLAcert is an active probe and its main task is to verify the SLA between client and ISP. In particu-
larwhen it runs either onaPC connected to thehomemodem(all the other devices aredisconnetted
from the modem) or on a 3G-4G device mSLAcert measures the line (or channel) capacity, the cur-
rent throughput and RTT. In this formmSLAcert already is able to give some information regarding
some problems on the line and on QoE troubles (i.e. too high RTT caused by network congestion).
To run mSLAcert the following software are required:

• Python version >=3
• Yalm
• Tornado
• Iperf
• Running all under linux (tested on Ubuntu 14.04)

1.3.2 Firelog requirements

Firelog can be installed on any Linux PC (e.g., Ubuntu/Debian): the code is publicly available on
Github1. The probe comes as a standalone Python (>= 3.0) application with the following depen-
dencies.

1https://github.com/marcomilanesio/qoe-headless-probe

Plane 13 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

• Python version >=3 (standard libraries numpy, urllib, sqlite3, etc)
• Apache Flume > 1.42
• phantomJS > 1.9.73
• Tstat 2.4 modiϐied4
• libpcap 0.8 (system dependent, on all apt repositories) for compiling Tstat
• root access (for compiling scripts and Tstat)

In order to run the probe, the user has to:
1. clone the repository
2. download and unpack the required software
3. compile as root the scripts in src/script folder, set the 4755 mask to the executable
4. conϔigure, compile andmake tstat (do not install)
5. change the probe.conf ϐile accordingly
6. execute themain.sh script

The probe works even if no repository is set up. The results are stored in form of a local sqlite3
database and in a JSON ϐile in the session_bkp folder.

1.3.3 Mobile Probe requirements.

The mobile probe requires Android version 4.4.2 or higher. It also requires a rooted phone (as
it captures data from the network interfaces). To (optionally) run a demo on Youtube videos the
ofϐicial Youtube app is required. It has been tested on Cyanogen 11 and on Galaxy S2, Nexus S, and
Nexus 5 devices.
For the router probe (the other end of the mobile probe), a router running openWRT is required. It
has been successfully tested on an Ngear WNDR-3800 router running the Barrier-Breaker version
(but any latest version should work).
For the reasoner and repository, a Linux distributionwith the latest version of Apache Server, Mon-
goDB, Oracle Java and Python are required. Also, the Weka 3.7.11 (or later) library is required.

1.3.4 GLIMPSE requirements

GLIMPSE can be installed on Debian-based systems via apt from the GLIMPSE repositories, which
will take care of dependencies. On Arch-Linux GLIMPSE can be installed via the Arch User Reposi-
tory which also takes care of the dependencies. The GLIMPSE client code is publicly available from
Github5. Compiling the code requires a few non-standard libraries, which need to be pre-installed
on the system, which are detailed below:

• For all operating systems: QT 5 (>=5.4) and dependencies of QT, qtsysteminfo, QtCreator rec-
ommended

• For Windows: winpcap (>= 4.1.3)
• For Linux: libwnck22 (>= 2.30.0-3)
• For Mac OS X: xcode

2https://ϐlume.apache.org/download.html
3http://phantomjs.org/release-1.7.html
4http://ϐirelog.eurecom.fr/mplane/software/eur-tstat-2.4.tar.gz
5http://www.github.com/HSAnet/glimpse_client

Plane 14 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

GLIMPSE probes do not require root access.

1.3.5 DBStream requirements

To run DBStream the libraries listed in Table7 are needed. Furthermore, python-matplotlib,
weka, golang are needed in support of the ``Anomaly detection and root cause analysis in large-
scale networks'' use-case. Yet for this use-case, DBStream should be able to import external data
coming from geo-localization services such as MaxMind6 and IP address analysis services such as
Team Cymru Community Services7.

In the integrated prototype DBStream runs on a dedicated machine at PoliTo premises. Namely, a
single server equippedwith 32GB of RAM, one XEONE5 2640, supporting up to 12 threads (6 cores
with hyper-threading), running at 2.5 GHz, and 4x 2TB disks (7200 RPM) running RAID 10.

Name Version
postgresql ≥ 9.3

postgresql-client ≥ 9.3

postgresql-contrib ≥ 9.3

postgresql-plperl ≥ 9.3

postgresql-plpython ≥ 9.3

postgresql-plpython3 ≥ 9.3

postgresql-matplotlib ≥ 9.3

Table 7: DBSTREAM libraries requirements.

1.3.6 Passive Content CuraƟon Requirements

The media curation use case requires the following software to be installed. On the probe side:

• Tstat (TNG tstat-3.0, Traubi ϐlavor).
• Python 3.2 or higher.

Above software setup has been tested on Ubuntu 10.04.

On the machine hosting the repository and the reasoner:

• MySQL 14.14 (version 5.5.41 or higher).
• Python 3.2 or higher installing MySQLdb and Urllib2 modules.
• Apache 2.4.7 or higher (to improve thewebsite performance this has to be conϐigured towork
in ``worker'' mode, which requires fast-cgi and ph5-fpm packages to be installed).

• PHP 5.5.9 or higher.

Above software setup has been tested on Ubuntu 14.04.

6https://www.maxmind.com
7https://www.team-cymru.org/

Plane 15 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

1.3.7 Content Popularity EsƟmaƟon Requirements

The content popularity estimation use case requires the following software to be installed. On the
probe side:

• Tstat (TNG tstat-3.0, Traubi ϐlavor).
• Python 3.2 or higher.
• mPlane Authorized Transfer via HTTP (MATH) developed by FTW (probe side).

On Debian Tstat can be installed via apt which will take care of resolving missing dependencies.

On the machine hosting the repository and the reasoner:

• MongoDB 3.0 or higher.
• mPlane Authorized Transfer via HTTP (MATH) developed by FTW (repository side).
• Python 3.2 or higher installing Numpy module.
• Apache 2.4.7 or higher.

Above software setup has been tested on Ubuntu 14.04.

1.3.8 MulƟmedia Content Delivery Requirements

1.3.8.1 General DescripƟon

The UC demonstration emulates a comprehensive OTT content distribution network with multi-
ple CDN servers as alternative content sources, and with multiple consumers connected through
different mobile and ϐixed access technologies.

Passive and active probes throughout the network provide for service quality measurements. They
are all controlled and used by a single Supervisor and Reasoner, which acts as a high-level Quality
Assurance Center.

Plane 16 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

1.3.8.2 Infrastructure requirements for integraƟon and demonstraƟon

The demonstration of MMCD UC requires an extensive network of probes, machines and network
links, detailed in Table 8.
In the integration phase most components are provided in NETvisor premises (possibly in smaller
quantities and in some emulated form), with the exception of the Supervisor machine, which will
be a publicly available server in the TI testbed.

Plane 17 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Category Name
ID in
ϐigure

Description
Required/recommended

number of units
``Core
network''

A Connects the customer access
lines to the datacenter, and to
the external networks

1 (per testbed)

Subscriber
access lines

B Emulated subscriber connec-
tions possibly using different
technologies: xDSL, ϐiber, mo-
bile, etc.

2 / 6 (per testbed)

Network
Sections

Subscriber
home net-
works

C Typical residential networks
with 4-8 1GB (or 100 Mbyte)
switched Ethernet ports,
protected by a residential
NAT/Firewall

For most of the access
lines (except for 1-2
special mobile AP-s with
a single mobile device
only).

Data center D Host virtual or physical
server(s), e.g. CDN servers,
Supervisor, and Probes

1 (per testbed)

Inter-
provider
peering
connection

E Connects the two testbeds 1

CDN
servers

F Deployed in DC, conϐigured to
stream OTT services to clients.
Low end servers, or equivalent
virtual machines

1-2 (per testbed)

Active
probes
(MiniProbes)

G Running active tests at various
customer networks, and also
in the core and the data center

4-6 (per testbed) pro-
vided by NETvisor

Devices

Passive
probe

H A server (possibly with 10G
ports), which receives all
trafϐic entering/exiting the DC.
Will run TSTAT /Blockmon

1 (per testbed)

Impairment
emulation

I A device to introduce impair-
ments in some lines

1-2 (per testbed)

Supervisor J A low-end server (or equiva-
lent VM), which hosts the Su-
pervisor, and our UC-speciϐic
repository and reasoner

1 (either at TI or at FW)

Customer
computers

K A laptop or a mobile device
(e.g. Android tablet or smart-
phone). Laptops have some
desktop OS (Windows, Linux
or IOS installed)

One per each subscriber
network

Software
(not provided
by mPlane)

CDN Server F Apache with OTT module (in-
stalled by NETvisor)

One per CDN server

Table 8: Multimedia Content Delivery UC - Infrastructure requirements.

Plane 18 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

1.3.8.3 mPlane component requirements

This use case relies on mPlane Components detailed in Table 9.

Component Provided by Source Status
Supervisor Multiple partners

(SDK branch in
GitHub)

GitHub, SDK branch Available

Probes
OTT Probe NETvisor GitHub Available
GLIMPSE FHA GitHub Pending conϐirmation
Blockmon+Tstat NEC, Polito (with

possible NETvisor
extensions)

GitHub Pending conformation

MobileProbe TID Mailed binaries Pending conϐirmation
Repositoriy
OTT QoS Period Repo NETvisor GitHub Release in April 2015
Supervisor plugins (deployed on

the supervisor
server)

OTT-Sepciϐic reasoner NETvisor GitHub Release in July 2015
Supervisor GUI NETvisor and oth-

ers
GitHub Available

Table 9: Multimedia Content Delivery UC - Component requirements.

Plane 19 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

1.4 Data privacy and security

ThemPlane prototype implementation comeswith two transport types - HTTP andHTTPS. The use
of plain HTTP is intended to be used only for test and debugging purposes. Its use in production
is obviously discouraged due to its use of plain-text, i.e., unencrypted data transmission that will
expose the entire infrastructure to malicious attacks. The other reason is that unique identities are
provided by X.509 certiϐicates which are used to perform authentication and authorization checks
between the components of the system.
For the purpose of the integrated prototype, all themPlane partners are providedwith a set of shell
scripts that they can use to generate their own certiϐicates, all belonging to the same PKI (and hence
issuedby the sameCA). TheCAprivate keyneeded to generate those certiϐicates is communicated in
a conϐidential way to the partners requesting it, in order to preserve an acceptable level of trust for
the PKI. This approach is secure enough for the prototyping phase, but in a production environment
(by a partner or external entity choosing to make use of the open source mPlane implementations)
there will be no scripts available to the partners. In production, there has to be a proper authority
in charge for issuing certiϐicates. Currently, since the prototype is still in a deployment and test
phase, all the certiϐicates belong to the same domain, meaning that all the components can commu-
nicate with each other. In case the infrastructure grows and hence it becomes more complex, more
domains will be deϐined. As a general principle however, only the components within the same
domain will be able to communicate with each other directly, while inter-domain communication
will be allowed only through the respective supervisors.
Authorization is performed on the basis of the Distinguished Names extracted from the certiϐicates.
The user-role and capability-role associations are stored in a ϐile loaded by the components at start-
time. Those controls work on the principle ``everything which is not allowed is forbidden'', hence
it is necessary to manually add every new capability of an identity to the conϐiguration ϐile in order
to make things visible to other components.
The protection of the personal data gathered by each probe must take place in the probe itself: all
the data communicated by the probe to other components must be in aggregated form, or, alterna-
tively, sensible information must be anonymized or pseudonymized before transmission.

Plane 20 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

2 Deployment status

This paragraphs report the status of deployment and implementation at the date of the publication
of the document (April 2015), with respect to the above described requirements.

2.1 Network requirements deployment status

Following table reports the status of deployment of network requirements.

Requirement Provided by Deployment status
Internet IP reachability All sites FQDNs registered
Network impairment Telecom Italia Ready
Realistic user trafϐic Telecom Italia and Fastweb Ready
Real user trafϐic Fastweb Ready - Security considera-

tions applicable
Multiple probe vantage points All partners Supervisors and template

probes ready and online.
Partners working on installing
speciϐic instances

Multiple administrative domains All All partners working on
installing speciϐic probe
instances

Distributed environment All All partners working on
installing speciϐic probe
instances

Table 10: Network requirements.

The interconnection between FASTWEB and TI-Lab test plants has been established by a STM-1
link (155Mb). The link and routing would enable components on the TI-Lab network to exploit
the FASTWEB mPlane core network features. TI-Lab mPlane network is conϐigured as a backend
network on ϐirewall and accessibility tests have been performed positively.
The installed components are being listed in details in D6.1. Among those elements, network con-
ϐiguration of the following components have been deployed and tested successfully:

• bk501mpl (NAS)
• as501mpl (Supervisor)
• db501mpl (DBStream)
• am501mpl (Mini probe)

Referred to the demo architecture presented in D6.1 the following activities have been completed:
• Access rules between internet and backend-frontend networks have been conϐigured and
tested on the ϐirewall

• Two residential access lines (ADSL2+ and VDSL2) have been installed within FW test plant
• An internal CDN network has been set up with a ϐiber optic terminated router connected to
Internet with a public IP address

Plane 21 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

• Two splitters which will enable Tstat probes to intercept real and generated trafϐic are being
placed within demo architecture. Trafϐic switching activity is being planned internally and is
in progress

2.2 SoŌware requirements deployment status

This chapter reports the activities lead by Fastweb in testing the produced software, limits and bugs
found and corrective actions taken.

2.2.1 Tested soŌware

2.2.1.1 Tstat

FW started deploying and testing Tstat at the end of the ϐirst year of mPlane: version 2.3 was addi-
tionally installed on some of FW's pre-mPlane active probes.
A similar hybrid approach has been deployed by FW on a server, using version 2.4 of Tstat with
success. This resulted in thepaperwritten togetherwithPOLITO "ExploitingHybridMeasurements
forNetworkTroubleshooting". It has been accepted for the 16th International Telecommunications
Network Strategy and Planning Symposium (Networks 2014).
For the mPlane demo a high performance architecture is needed, as 10 GBit/s ϐiber optical net-
work links are planned to be analyzed by Tstat. At the end of the fourthmPlane quarter FW started
testing a prototype developed by POLITO, using the libDNA/PF_RING software togetherwith a ded-
icated Tstat branch. FW used a trafϐic generator in order to create UDP and TCP ϐlows, and HTTP
connections. But a high packet loss was experienced on the prototype side, for the 100 MBit/s test
series and with higher transmission rates. Additionally, the amount of TCP ϐlows seen and logged
by Tstat was lower than those sent and correctly received by the trafϐic generator. Furthermore,
some test results of the deployment in POLITO were different compared to those described above.
To address this last point, FW made a detailed proposal of a reproducible and automatic deploy-
ment method, based on binary distribution (like Debian packages for example). The feedback of
POLITO was positive.
At the end of the second year of mPlane FW has started to deploy and test the new approach of
POLITO. It is based on DPDK, developed by Intel and released as Free Software, together with a
dedicated Tstat branch. FW provided a patch for the script conϐigure_machine.sh to ϐix the com-
mand for setting the number of Hugepages (nr_hugepages) in the virtual ϐile system of the Linux
kernel (under /sys). POLITO conϐirmed both, the issue and the solution. The results have been
always positive for test from 3 minutes up to 64 hours, and up to 10 GBit/s TCP trafϐic (FTP and
HTTP):
Packet loss in an order of 10−5

TCP flows not recognized by Tstat as completed in an order of 10−3

The aforementioned reproducible and automatic deployment method has been implemented by
FW for this Tstat DPDK approach.
Finally, FW tested successfully the different types of anonymization to be applied for the logs writ-
ten by Tstat, to respect Privacy Law and FW's policies.

Plane 22 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

2.2.1.2 Tstat proxy

FW tested successfully themPlane Proxy for Tstat. This is themean of interaction between the Tstat
probe and the mPlane Protocol. The test was done by executing in the mPlane Client the command
to increase the log details of Tstat for 5 minutes. As expected, this resulted in a change of Tstat's
conϐiguration ϐile runtime.conf, done properly by the Proxy. Therefore Tstat increased the verbosity
of the logged information, for 5 minutes as requested.

2.2.1.3 Firelog

FW tested Firelog and reported a blocking bug to EURECOM. They ϐixed it in this later version:
https://github.com/marcomilanesio/qoe-headless-probe.git

In order to make the install script setup.sh work better on different GNU/Linux distributions and
other operating systems, FW provided the following patches to EURECOM:
Patch 1: adds support for ifconϐig not in the $PATH of a normal user (default on Debian)
Patch 2: avoids compiling as root
Patches 3a and 3b: add support for all POSIX shells, avoid dependency on bash
Patch 4: adds support also for su, avoids dependency on sudo (not default on Debian)
Patch 5: adds support for additional network interface names (used by default on CentOS 7)
Furthermore, a prove of concept for a patch to avoid dangling Tstat processes has been given. FW
provided also an example for the usage of the command trap.

2.2.1.4 mSLAcert

FW analyzed the version of September 2014 and tested the later 1.0.1 release, reporting bugs and
suggesting improvements. In particular, FW recommended to avoid the dependency on a complete
graphical Desktop Environment, as it is not really necessary. This has been implemented by FUB in
the 2.0.1 release. Regarding the need of an external iperf instance, FUB documented their solution
for mPlane compliance in D6.1.

2.2.1.5 GLIMPSE

FW tested an early version of GLIMPSE, speciϐically theDebian package of the console client created
by FHA: glimpse-console_0.1alpha1-74_amd64.deb
FW reported that some unnecessary dependencies were required to be installed, and FHA con-
ϐirmed this as an issue. They were already working to avoid the installation of the Graphical User
Interface (GUI) parts from the cross-platform application framework QT for the console- version.
During the start up of the probe, the error "Username to[o] long" occurred. This bug has been
discovered because of a long FW email address used for registering.
During the mPlane Coding Session at Turin (January 19th-21st, 2015) FW provided a technical
reference to FHA on how to implement support for different init systems in the scripts of their
recent Debian packages of GLIMPSE.

Plane 23 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

2.2.1.6 DBStream

FW tested successfully the deployment of DBStream, by importing FTW's virtual image into the free
version of VirtualBox (on Debian).

2.2.1.7 mPlane Python Reference ImplementaƟon

FW did some successful tests of the development branch of the mPlane Protocol Reference Imple-
mentation which adds the security architecture including Public Key Infrastructure (PKI), Certiϐi-
cation Authority (CA) and certiϐicates.
FW wrote 45 test cases for the modules azn.py, tls.py and utils.py of the mPlane Python Reference
Implementation. 32 of them have already been reviewed and merged by ETH. The other 13 test
cases have been accepted and will be merged soon by ETH.

2.2.1.8 mPlane Node.js Reference Library

ThemPlane Node.js implementation was presented by TI to FW and SSB during ameeting on Octo-
ber 15th, 2014. FW tried a deployment on an available notebookwith Debian/GNU Linux installed,
supported by TI.
But a problem with dependencies of external Node.js packages (from http://npmjs.org/) has
been experienced. Those used to create at runtime a textual (ASCII) version from the image of
the mPlane logo needed even to compile non-Node.js code which failed. TI solved the issue for all
Operating Systems by using the textual version of the logo directly in the source code, avoiding all
the runtime dependencies for the image conversion.
Later FW did some tests of the mPlane Node.js Reference Library. Two errors have been noticed
during these tests. And two patches have been provided by FW regarding the supervisor, speciϐi-
cally for the conϐiguration ϐile supervisor.json to solve both errors.
The ϐirst error was about not found certiϐicate, key and CA ϐiles. It was caused by an absolute and
speciϐic path existing only of the development machine, and solved by using a relative path to these
ϐiles inside the source code tree.
The second error occurred because the supervisor tried to create the log ϐile in the directory
/var/log/mplanewhich usually does not exist. The second patch changed the destination of the log
ϐile to the root directory of the code tree ("./supervisor.log"). With both patched for supervisor.json
applied, the command "node supervisor.js" did not report any error, and the Supervisor started
successfully.

2.3 Use case deployment status

2.3.1 mSLAcert requirements deployment.

The 2.0.1mSLAcert release has been tested in ISCOM-FUB LAB on different GPON accesses (30-100
Mb/s downstream; 1-10 Mb/s upstream) in different core network conditions in terms of delay,
jitter and bit error rate. To fully deploy mSLAcert, the following are required:

Plane 24 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

Figure 2: Mobile probe setup

• 2 Linux PC (preferred Ubuntu 14.04), on one needs to be running mSLAcer server and on the
other one mSLAcert Agent.

• Both PCs need to be directly reachable, the must not be behind a NAT.
• To fully test the use case we also need the following technologies, even in part if not possible:

1. twisted pair accesses: ADSL2+, VDSL2 (if possible also in vectoring version), G.fast;
2. Optical ϐiber accesses (FTTB.FTTH): GPON and P2P;
3. fast Ethernet links: 0.1-1 GbE;

Independently on the access technology, we need the ability to add delay, jitter and bit error rate.

2.3.2 Firelog deployment

To deploy Firelog and test the WebQoE use case the following requirements have to be meet:
• 1 cluster OpenStack (Fastweb) as repository, with HDFS as storage, and the following addi-
tional software/tools:

– Apache Flume: a Flume sink is needed to receive data from the probes
– Apache Spark: in order to run the analysis modules

• 1 web server for hosting the reasoner interface with access to the repository
• 1 or more Firelog probe (can be on linux PC / plugPC)
• (Optional) Ability to add delay and jitter (e.g. NETEM)

The probe is ready, and it will soon export capabilities in the mPlane reference implementation.
There is a repository currently running at Eurecom premises for testing purposes. The web appli-
cation for interfacing with the reasoner will be ready in the next months.

2.3.3 Mobile Probe deployment

To deploy the mobile probe the following are required:
• One or more mobile Android phones to load videos and run the mobile probe.
• One Open-WRT based wireless access point for the mobile phones to connect and to collect
measurements.

Plane 25 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

• A video server to load videos and collect measurements.
• A server that hosts the reasoner and the repository (or two servers if these are separate).

For Demo purposes the following are required.

• Otherwireless devices to cause interference or trafϐic on thewirelessmedium (e.g., awireless
linux-based terminal).

• Other wired devices or a trafϐic generator to cause trafϐic on the LAN/ADSL side.
• Ability to cause impairments on the internal network and to the video server.
• Avisualization server todisplay the results and topossibly control the experiment (e.g., start/stop
impairments)

An example is shown in Figure 2

2.3.4 Anomaly detecƟon and root cause analysis in large-scale networks

For this use-case, the integration consists of the following activities:

• Integration of DBStream and Tstat: DBStream will import data from Tstat using a newly im-
plemented External Protocol referred to as mPlane Authorized Transfer via HTTP (MATH).
Data will be ϐirst transferred from Tstat probes to a NAS, serving as a proxy. On the NAS a
program called math_probe will host Tstat logs. On the DBStreammachine another program
called math_repowill fetch the logs from the NAS inmonotonically increasing time order and
import them into DBStream. The exact details of the MATH protocol implementation will be
described in D3.4.
Current status: The Indirect ExportmoduleMATH isnowcapable to importTstatlog_tcp_complete
in version 15 from a remote probe or NAS into DBStream. In the integration test, we were
able to import four days of Tstat logs, which correspond to 200GB, in 2 hours and 10minutes.
Therefore, it is possible with the current implementation of MATH to import about 45 days
of Tstat logs (or 2.3 TB) in a single day. At the time of writing MATH is fully integrated into
DBStream. Further integration towards the mPlane architecture is ongoing work.

• Integration of RipeAtlas probe in mPlane: We envision two slightly different types of integra-
tion. In fact, we expect to use RipeAtlas to lunch two types of active measurements: 1) dis-
tributed pre-scheduled and continuously running activemeasurements (i.e., ping and Tracer-
outes), 2) on demand individual measurements triggered by the reasoner. The main differ-
ence is that in the ϐirst case results are exported to the repository (i.e, DBStream), whereas in
the second case they are returned to the (use-case speciϐic) reasoner via the supervisor. In
the ϐirst case an importing mechanism similar to MATH will be adopted.
Current status: The deadline for this integration is end of May (see D5.2, sec. 6.5.4). However,
we are trying to anticipate the date in order to early start testing the integrated prototype.

• Integration of the analysis modules: the ADtool, the Entropy-based analysis, and the Routing
anomalies analysis modules are need for the use-case objective.
Current status: ADToll and the Entropy-based analysis modules are already integrated in DB-
Stream and have been tested with production trafϐic from a nation-wide mobile network.

In accordance to the deployment plan for the use-case (ref. D5.2, §6.5.4), at the time of writing
DBStreamhas been deployed and tested in the demo test plant on a dedicated repository consisting
of a HP DL380p Gen8, 2 x Xeon E5-2620 6 core, 128 GB RAM, 24 TB Storage. For further details
please refer to D6.1,§ 3.6.2.

Plane 26 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

2.3.5 Passive Content CuraƟon Deployment

All the components involved in this use case have been deployed in the Politecnico di Torino net-
work. The content curation service is available at the website http://webrowse.polito.it. To
build this setup, the following hardware has been employed:

• One Linux machine running the Tstat probe enabled to monitor and log HTTP trafϐic. The
setup must be conϐigured so that Tstat can monitor the HTTP GET requests contained in the
trafϐic generated by a pool of users.

• One Linux machine running the Repository, i.e., the python scripts responsible for extracting
interesting URLs.

• One Linux machine running the presentation module such as, e.g., the website. This machine
must install Apache, PHP5 and MySQL.

The repository receives the HTTP logs generated from Tstat using a newly implemented external
protocol. Such external protocol streams the logs over the network in real-time. The current de-
ployment is not mPlane compliant yet. However, as the all involved components already have their
mPlane proxies, we plan to make the systemmPlane compliant in the following weeks.
Finally, considering the Demo context, the presentation module and the repository can co-exist on
the same machine.

2.3.6 Content Popularity EsƟmaƟon Deployment

For this use case, the following hardware requirements have to be met:
• One Linux machine running the Tstat probe enabled to monitor and log HTTP trafϐic. The
setup must be conϐigured so that Tstat can monitor the HTTP GET requests contained in the
trafϐic generated by a pool of users.

• One Linuxmachine running theRepository. Thismachinemust be equippedwith the external
protocolmPlaneAuthorizedTransfer viaHTTP (MATH) developed by FTW,MongoDB and the
python scripts responsible for extracting and sorting HTTP requests.

• OneLinuxmachine running thepresentationmodule such as, e.g., awebsite to test the content
popularity prediction results.

The repository receives the HTTP logs generated by Tstat using the external protocol MATH. Such
external protocol moves logs from Tstat's temporary local storage to the repository, which import
them into MongoDB. Currently we are working at building the system and gluing together the var-
ious components. However, as the all involved components already have their mPlane proxies, we
plan to have a fully mPlane compliant system in the following month.
For the Demo purpose the presentation module and the repository can co-exist on the same ma-
chine.

2.3.7 GLIMPSE Deployment Requirements

For the integrated prototype only the console based GLIMPSE-probe is being used and requires the
following:

• A server with Ubuntu (>= 14.04) with the GLIMPSE apt package repository and the glimpse-

Plane 27 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

console app installed
• An mPlane supervisor (component-initiated)
• An mPlane repository

2.3.8 MulƟmedia Content Delivery Status

Table 11 details the deployment status of planned components in the development environment
for this UC (NETvisor), and also in the common mPlane testbeds (of TI and FW).

Component Status in development envi-
ronment

Status in Integration/Demo
Testbed

Supervisor Operating (from develop
branch)

Under installation

Probes
OTT Probe Operating Operating on MiniProbes
GLIMPSE Pending (being ported to mPlane) Pending (being ported to

mPlane)
Blockmon+Tstat Pending (under development) Pending (under development)
MobileProbe Being Integrated Pending
Repositoriy
OTT QoS Period Repo Pending, under development Pending
Supervisor plugins
OTT-Speciϐic reasoner Under integration Pending
Supervisor GUI Operating (with develop

branch)
Pending

Table 11: Multimedia Content Delivery UC - Components Status.

Plane 28 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

References

[1] About jenkins.debian.net. https://jenkins.debian.net/userContent/about.html.
[2] Comparison of free and open-source software licenses. http://en.wikipedia.org/wiki/

Comparison_of_free_and_open-source_software_licenses.
[3] Continuous integration. http://en.wikipedia.org/wiki/Continuous_integration.
[4] Frequently asked questions: Gnu licenses. http://www.gnu.org/licenses/gpl-faq.html.
[5] Gnu faq: Why should i put a license notice in each source ϐile? http://www.gnu.org/licenses/

gpl-faq.html#NoticeInSourceFile.
[6] Itp: tstat -- tcp statistic and analysis tool / license of ns.c? https://bugs.debian.org/cgi-bin/

bugreport.cgi?bug=323913#72.
[7] Pep 8 -- style guide for python code. https://www.python.org/dev/peps/pep-0008/.
[8] Travis ci. https://travis-ci.org.
[9] Various licenses and comments about them. http://www.gnu.org/licenses/license-list.html.

[10] J. Schäfer. Emacs python development environment Elpy. https://github.com/jorgenschaefer/
elpy.

Plane 29 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

A Good PracƟces for Development and Deployment

In this sectionweprovide somegenerally knownand recommended goodpractices of interest for the project.
Some references will be given, and examples of experiences within mPlane are provided.

A.1 Releases

Software should be released as early as possible, as often as possible. Releases should be preferred, rather
than snapshots or tags in a version control repository.
The released source tree should

• not include any auto-generated ϐile
• nor embed any third-party library.

For established software, developed since some time, also releases of a stable branch with security and im-
portant bug ϐixes only should be provided.

A.2 Licenses, Copyright

A License should be chosen for any project. There are many different Free Software Licenses available, ex-
amples of lists with additional information are [2] and [9].
An own license text should deϐinitely not be written as it becomes very difϐicult to avoid problems like con-
tradictions. The attribution of Copyright and the chosen license should be documented in each ϐile of the
source tree [5].
An example with a relationship tomPlane is the passive probe Tstat: it could not be included in Debian since
2005 even though thework of packagingwas done years ago for the ϐirst time. But there are Source Code ϐiles
of Tstat with none or insufϐicient information about the applied (Free) Software Licenses. [6] is reporting
one of these ϐiles. The history of packaging efforts regarding Tstat is available on the same (whole) web page.
It is important to note that Free Software Licenses are not always compatible between each other [4]. Specif-
ically, the GNU GPL version 3 is incompatible with version 2.

A.3 Dependencies

Packages of the Distribution/Operating System should be used, as these have been tested. Furthermore, they
are supported which includes security and other updates.
An example within mPlane is the probe mSLAcert: the way to install the dependency Tornado was changed
from an external source (pip3) to the ofϐicial package of the GNU/Linux Distribution, python3-tornado.
Dependencies shouldbedocumentedexplicitly, for examplenot just Python3butYaml forPython3: python3-
yaml
If possible the dependencies should be reduced. Within mPlane this has been done for GLIMPSE (details in
2.2.1.5), Firelog (Sec. 2.2.1.3),mSLAcert (Sec. 2.2.1.4), and theNode.jsReference Implementation (Sec. 2.2.1.8).

A.4 Different Hardware Architectures / PorƟng

If possible
• different Hardware Architectures

Plane 30 of 31 Revision 1.0 of 31 March 2015

318627-mPlane D5.3
Deployment Experiences

• different Kernels
• different Operating Systems

should be supported.
Tstat for example has been successfully deployed and tested within mPlane on a Hardware Mini Probe with
a MIPS Processor. Additionally, Tstat works on FreeBSD.
GNU autoconf/automake is one good way to achieve multi-platform support. In fact, Tstat is using it.

A.5 DocumentaƟon

As much as possible a user/tester/developer needs to know should be documented, in particular
• the runtime dependencies of a software,
• the build dependencies of a software and for its documentation.

Manual (man) pages should also we written.

A.6 Coding Style and AutomaƟc Syntax Checking

A Coding Style should be chosen for the Source Code. For Python there is an ofϐicial one [7].
An Automatic Syntax Checker should be always used (if available for the Programming Language used).
For example for Python there is Elpy [10], an extension for the Emacs Text Editor.

A.7 AutomaƟc TesƟng of Source Code

Unit Tests should be written for all Methods/Functions of the Source Code. In mPlane this has already been
partially done for the Python Reference Implementation, as well as for Reference Implementation written in
Node.js. Details about the Python Unit Tests are described in 2.2.1.7.
End-To-End Tests should be deϐined and implemented, too. In mPlane these would help the interoperability
of the two Reference Implementations.
"Complete" Test Suites should be a goal.
Continuous Integration (CI) [3] should be used.
For the mPlane Reference Implementation written in Node.js, some tests are run on the Travis CI online
service [8], promoted for projects hosted on GitHub.
Debian has chosen Jenkins [1] , an extensible Continuous Integration server released as Free Software.

Plane 31 of 31 Revision 1.0 of 31 March 2015

