

Project no. 004758

GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

In-core proof-of-concept for Apache Derby
GORDA Deliverable D4.3

Due date of deliverable: 2006/09/30
Actual submission date: 2006/09/30

Start date of project: 1 October 2004 Duration: 36 Months

Universidade do Minho

 Revision 1.0

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Contributors

Alfrânio Correia Júnior
José Pereira
Luís Soares
Luís Rodrigues
Susana Guedes

——————————————————
(C) 2006 GORDA Consortium. Some rights reserved.

This work is licensed under the Attribution-NonCommercial-NoDerivs 2.5 Creative Commons License.
See http://creativecommons.org/licenses/by-nc-nd/2.5/legalcode for details.

Abstract

This document describes the mapping of the GORDA Architecture and Programming Interfaces to the
open-source Apache Derby database management system. It aims at providing an example of an in-core
implementation, thus reflecting current experience and roadmap for ongoing work on the prototype.

Chapter 1

Scope

This Chapter describes the scope of the Derby prototype (Derby/G), regarding its objectives and the
components of the GORDA Architecture and Programming Interfaces actually being implemented.

1.1 Objectives

The in-core mapping of the GORDA Architecture and Programming Interfaces (GAPI) to the open source
Derby database management has the following goals:

• Allow the implementation of a wide range of group communication based database replication
protocols thus requiring an extensive mapping of the GAPI, in particular, in the storage phase.

• Allow full compatibility with all Derby clients interfaces and tools. n

• Demonstrate the feasibility of effciently extracting read-sets.

• Modifications to the core Derby source code although unavoidable, should be as little intrusive
as possible in order to facilitate dissemination by proposing patches for acceptance by the Derby
open source community.

1.2 Components

The mapping to Derby is outlined in Figure 1.1. The Derby DBMS is patched with the basic code to
allow the communication between the Reflector and the Derby engine. The Reflector is placed inside a
container. This container holds replication and communication components as well as the client side of
the reflection interface. This container is started in the same address space of the Derby database, but the
implementation was designed to support Remote Method Invocations (RMI) for the case that the user
want to have the replication protocol running as a separate process.

Communications between applications and Derby are performed using a legacy driver provided by the
database vendor/supplier thus ensuring compatibility with all existing clients and tools.

As show in Figure 1.2 the current mapping of the GORDA Programming Interfaces includes all contexts
and the main stages.

1

DriverApplication

Management

Application
Derby

DBMS
Driver

DriverApplication
Application

Derby

DBMS
Driver

Reflector

Reflector

L
o
a
d
 B

a
la

n
c
e
r

(Distributed)

Replicator

Group

Communication

Reflector

Plugin

Reflector

Plugin

Figure 1.1: Mapping architecture.

1.3 The Derby System

Derby [1] is a java based DBMS. This system is based on standard technologies, such as JDBC and
ANSI SQL. Derby is able to handle the SQL language, transaction management, concurrency control,
triggers and backups. It has also functionality’s such as user authentication, access control, validation of
certificates, among other security issues.

The Figure 1.3 shows the Derby architecture. The Derby architecture is composed by the following
modules:

Monitor The Derby DBMS is based on modules. Each module is created and retrieved by a factory and
the monitor manages and configures all the Derby modules.

JDBC Layer – client interface This layer is used by the clients to access the databases. and it imple-
ments the Java packages java.sql and javax.sql, corresponding to the JDBC 2 and JDBC 3 versions,
respectively.

SQL Layer – relational engine The relational engine supports tables, indexes, views, procedures, func-
tions, triggers, temporary tables, restrictions, and keys. It allows to cache of data and SQL. It allows
also the definition of several isolation levels for concurrency control and supports locks for tables
and rows, detecting deadlocks when they occur.

Access Layer It provides the access to tables. It queries rows based on the data, indexes, data ordering,
access control, transactions and isolation levels.

Storage Layer It manages the physical storage of data into files and logs the transactions. It allows file
encryption using JCE [2].

Services A service is a collection of co-operative modules with some functionality. One of the modules
of the service is considered the primary and defines the service interface. These services are started
by the Monitor and can be persistent (defined in configuration time) or non persistent (created on
execution time).

2

Storage

DBMS Context

Database Context

Connection Context

Transaction Context

Request Context

P
hy

si
ca

l S
to

ra
ge

 S
ta

ge

Lo
gi

ca
l S

to
ra

ge
 S

ta
ge

E
xe

cu
tio

n
S

ta
ge

O
pt

im
iz

at
io

n
S

ta
ge

P
ar

si
ng

 S
ta

ge

Application

Figure 1.2: Mapped interfaces.

The Derby DBMS can be used as an embedded system or as a server. The Derby DBMS automatically
starts when it is loaded by the JDBC Driver Manager. The Derby supports configuration on three ab-
straction levels: the system, the database and the physic storage. The properties can be static or dynamic.
One example of a static property is the location of a database. One example of a dynamic property is the
write permission of a database. The system properties are defined using Java properties.

The properties that are database specific are stored inside its database. This allows that each database
can be configured with different properties. It allows also that the properties are still valid even when
the database is dumped to another location. These properties can be configured and read using SQL
commands. An example is shown here:

-- Procedure to read a property value
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(<property_name>)

-- Configuration procedure
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(<property_name> , <property_value>)

3

DBMS

Client Interface - JDBC Layer

SQL Layer

Optimization

Execution

Access Layer

Storage Layer

Monitor

Sevices

Database

Figure 1.3: The Derby architecture.

4

Chapter 2

Implementation

This section describes the implementation of the GAPI in the Apache Derby database management sys-
tem. This is a proof-of-concept implementation that shows also that implementing the GAPI is not very
intrusive for kernel of the DBMS.

This interface is subsetable and it can be implemented only some parts of it. To show the functionality
of the GAPI, it was implemented the necessary interfaces to be used by a replication protocol in order to
validate this implementation in a real system.

The Derby DBMS is composed by modules and the GAPI was built as another Derby module. The other
important modules where extended to provide the functionalities needed to implement the GAPI.

2.1 Challenges

There are several issues that are needed to solve when implementing the GAPI interface, regardless of
the DBMS where the interface is going to be implemented.

The Figure 2.1 shows the generic model for the implementation of the Reflector interface. Because the
implementation should be minimally intrusive as possible, the only thing that should be implemented in
the DBMS is the capture of the necessary information, like the moment that a transaction starts, the read
set, the write set, and so on. The Reflector itself should be implemented as a separate module.

2.1.1 Design Options

The main considerations that one must have when designing the Reflector interface are:

Integration of the Reflector in the DBMS In a modular system, the reflector implementation can be
just another module. It should be possible to query the reference for the Reflector in any module
of the DBMS.

Reflector configuration The Reflector configuration should always be made using configuration files,
avoiding code editing to change the reflector parameters.

References between the Reflector stages It is necessary to define how the different stages of the Re-
flector interface will access the other stages.

5

Java Virtual Machine

DBMS

DBMS
Extentions Reflector

Notification
and

Reaction

Access to Meta-Info

Reflector
client

Access to Reflector
Receives notifications

Figure 2.1: Generic model for the Reflector implementation.

Notification Management It is necessary to define a mechanism that supports parallelism. It must allow
that several notifications can be done simultaneously. For each notification, it’s necessary to find
the client to notify, taking into account that the notification, regarding a certain context, could have
been cancelled directly, or as a cascading effect at the level of a superior context.

Unique identifiers for contexts It’s necessary to define unique identifiers for each execution context.

2.1.2 DBMS extensions

The first stage of the Reflector interface implementation was to extend the DBMS with the capture of all
the necessary events and the support for the functionality’s that allowed to react to those events. For each
module of the Reflector, the needed events were captured inside the DBMS engine. The components of
the Derby DBMS that were extended are the following:

DBMS components corresponding to contexts, connection and client request These components must
be extended to inform the Reflector of an expected state change, allowing that the processing can
be cancelled in the state INITIALISING, ESTABLISHING and STARTING.

DBMS component corresponding to the database context This component must be extended to in-
form the Reflector of expected changes, allowing that can be cancelled the processing of STARTING

a database.

DBMS transaction component This component must be extended in a way that allows that the change
of state to INITIALISING, PREPARING, COMMITING and ABORTING can be cancelled. It must be
also possible to configure the isolation mode of a transaction.

DBMS relational processing module It is necessary to capture the points of the analysis, optimization
and execution in the relational processing. It is necessary to define how to cancel the processing
in the beginning of each one of these phases. It should be possible to change the SQL request in
the first two phases.

Component responsible by the read and write operations It’s necessary to identify in the Derby en-
gine where the data is read, written and updated, allowing to obtain the read sets and write sets.

6

Component responsible by the storage operations It’s necessary to identify where the data is logged,
in order to reflect it in the physical storage module.

2.1.3 Reflector support

After capturing all the information inside the DBMS engine, it is necessary to build the Reflector itself.
To build the Reflector, the folowing guidelines must be followed:

DBMS module This module is responsible to materialise the method that allow the notification of changes
in the DBMS. It’s necessary to get the context meta-information, such as the URL, the name, the
version of the DBMS and the supported client versions.

Database context module This module is responsible to materialise the state changes of a database and
to allow to retrieve meta-information, in particular the URL, the size and the database mode. It
should be also possible to retrieve the related contexts and a JDBC DataSource.

Client connection context module This module is responsible to materialise the state changes of a
client connection and to allow to retrieve meta-information, in particular the user ID and the used
language. It should be also possible to retrieve the related contexts.

Transaction context module This module is responsible to materialise the state changes of a transaction
and to allow to retrieve meta-information, in particular the ID, the version and the isolation mode.
It should be also possible to retrieve the related contexts.

Client request context module This module is responsible to materialise the state changes of a request
and to allow to retrieve meta-information, in particular the ID and the related contexts.

Processing stage modules These modules should materialise the methods that allow to inform the be-
ginning and end of the processing stages.

2.2 Mapping on Derby

This Section presents the implementation of the Reflector interface in the Derby DBMS. This imple-
mentation was designed to have the best performance possible and at the same time to maintain the
compatibility with its design patterns, tools and client interfaces. The current implementation is based
on the implementation challenges and options previously described. Only the minimum functionality’s
were implemented inside the Derby engine. The interface itself was implemented in a separated source
folder. To maintain the Derby structure and design patterns, the Reflector implementation was built as a
Derby service – the Reflection Service. Each module of this service corresponds to a execution context
or to a processing phase of the reflector.

Each Derby service exports a well defined interface. The interface that needs to be exported by each
module of the reflection service corresponds to an extension of the reflector interface itself, with methods
that allow to retrieve information about the database engine. This option allows the Derby engine to
use the reflection service. This service can be used by the Derby engine for self configuration and
monitoring. The primary module of the reflection service is called ReflectionModule and is responsible
for the definition of the service interface, its name (GordaReflection) and the property that is used to
configure the service (derby.service.ReflectionModule).

7

Figure 2.2: Reflector source code organisation.

The source code of the reflector interface was placed in a different package (gorda.reflector.derby), apart
from the Derby engine. Its organisation is illustrated in the Figure 2.2. The package gorda.reflector.derby.iapi
contains the specification of each module of the reflection service, using interfaces and the package de-
nominated gorda.reflector.derby.impl contains the implementation of these interfaces.

The reflection service is disabled by default. The service can be enabled by specifying the location of its
primary module:

-- Reflection service configuration
derby.service.GordaReflection=gorda.reflector.derby.iapi.ReflectionModule

It is also possible to configure each one of the other modules, indicating if they should be enabled or not:

-- Reflector modules configuration
derby.gordaReflection.Dbms = < true / false (default) >
derby.gordaReflection.Database = < true / false (default) >
derby.gordaReflection.Connection = < true / false (default) >
derby.gordaReflection.Transaction = < true / false (default) >
derby.gordaReflection.Request = < true / false (default) >
derby.gordaReflection.Statement = < true / false (default) >
derby.gordaReflection.ParsedStatement = < true / false (default) >
derby.gordaReflection.ExecutionPlan = < true / false (default) >
derby.gordaReflection.ObjectSet = < true / false (default) >
derby.gordaReflection.Logger = < true / false (default) >

The configuration of the reflection service and its modules is done at the system level, as described
previously.

8

The Derby DBMS architecture is based on modules and there are already mechanisms to allow, to each
module, to obtain the reference to other modules. This can be done using the Monitor and its context
manager. When the Reflector service is created, it receives an execution context with a reference to the
other modules. On the other side, all the Derby components that were extended to build the reflector
contain, on their execution context, a reference to the reflector module.

The notifications to the Reflector clients are made from its execution thread, allowing that a blocking
notification stop only the execution of the captured event and not other events. This allows also that the
client of the Reflector interface uses its own thread policy.

All execution context must have a unique identifier. These identifiers are created by a Derby tool that
creates identifiers in the same format of the Microsoft UUIDGEN:

-- Identifier generated by the module UUIDFactory of Derby
E4900B90-DA0E-11d0-BAFE-0060973F0942

2.2.1 Support and implementation of the DBMS module

To support the functionality’s of the DBMS reflector context, its necessary to extend the corresponding
Derby component, capturing the events of STARTUP and SHUTDOWN. The Derby DBMS is started by the
DriverManager, invoking:

Monitor.startMonitor(bootProperties, logging);

This method is responsible for starting up one instance of the Derby Monitor. This is done using an
abstract class called BaseMonitor that contains the method runWithState for starting up the system and
the shutdown method for shutting down the system.

This module was extended with the functionality’s for the supporting the communication between the
Derby engine and the Reflector. Each state change is captured in the Derby engine, received by the
reflector and delivered to the client modules. This module is also responsible for giving access to the
system meta-information. This information is also accessible using the interface DatabaseMetaData
defined in JDBC.

2.2.2 Support and implementation of the database module

To support the functionality’s of the database reflector context, its necessary to extend the corresponding
Derby component, capturing the events of start up and shutdown of a database and defining the panic
(freeze) mode of a database.

The Derby system defines an interface called Database, located in the package org.apache.derby.database,
that allows the control of a database, such as the data itself and the files where the data is stored. This
interface is internally extended by the interface org.apache.derby.iapi.db.Database with operations that
are not accessible for the users. It only exists one implementation of this interface, the BasicDatabase,
that implements the boot and stop methods. These class was extended to notify the reflector about state
changes of a database. The extension of this component also extends the panic mode of a database. This
mode indicates that the database state is not coherent and cannot be accessed by the database users. For
this to be supported, the reflector implementation uses procedures already provided by Derby:

CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()
CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()

9

2.2.3 Support and implementation of the transaction module

To support the functionality’s of the transaction reflector context, its necessary to extend the correspond-
ing Derby component, capturing the events of start and end of a transaction and defining its isolation
mode.

The Derby defines an interface called org.apache.derby.iapi.store.raw.Transaction that represents a trans-
action and provides the methods to manage it. It is possible, for example, to abort a transaction. This
interface is partially implemented by the abstract class RawTransaction. This class already implements
functionality’s that allow the notification of external elements when a transaction is aborted, commited,
or rolled back until the last save point. This class is extended by the class Xact, that implements all the
other life cycle states of a transaction.

2.2.4 Support and implementation of the analysis module

To support the functionality’s of the analysis module, its necessary to extend the Derby relational pro-
cessing component, capturing the events of start and end of an analysis phase and allowing that the
processing is cancelled at the beginning of the logical storage stage.

The GenericStatement class corresponds to a SQL request in text format and it’s responsible for the
analysis of the request. This class was extended to notify the reflector about the beginning and end of
this stage.

2.2.5 Support and implementation of the storage module

To support the functionality’s of the storage module, its necessary to extend the Derby in the points
where data is read, inserted, updated and removed. This is needed to obtain the write and read sets. At
this moment, only the write sets are exported to the reflector interface.

On Derby, the byte code that processes the execution plan is dynamically generated. The generated class
extends an internal class called BaseActivation that implements the Activation interface. During the
execution, it’s generated a tree with the sets of updated, inserted, removed and added data. The events
are captured in these classes and exported to the Reflector.

The Activation interface was extended to allow the configuration of capturing the write sets; if it should
be captured and, in the case that is captured, which columns to capture.

10

Bibliography

[1] Apache Derby web page.
http://db.apache.org/derby/.

[2] JCE Manual.
http://java.sun.com/products/jce/.

11

