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Abstract

This document describes the middleware proof-of-concept implementation of the GORDA Archi-
tecture and Programming Interfaces. The prototype is built as part of Sequoia, an open source database
clustering middleware. Emphasis is put on the description of the fundamental components of Sequoia
that serve to wrap relational database engines and allow to offer a GORDA compliant DBMS which are
the middleware level concurrency control and the capture of the transaction changes to the underlying
databases, and on how the GORDA Reflector interfaces have been implemented in Sequoia.
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Chapter 1
Introduction

The GORDA middleware proof-of-concept is built as part of Sequoia!, an open source database clus-

tering middleware written in Java that allows applications to transparently access a cluster of databases
through JDBC ™.

In the next chapter we start by describing the Sequoia middleware. In Chapter 3 we detail the fun-
damental components of Sequoia that serve to wrap relational database engines and allow to offer a
GORDA compliant DBMS. Finally, in Chapter 4 we show how Sequoia enables a middleware-based
implementation of GORDA and detail the GORDA’s architecture main component, the reflector, imple-
mentation in Sequoia.

This report is part of GORDA Deliverable D4.4. The companion software package can be down-
loaded from the project’s website at http://gorda.di.uminho.pt.

1.1 Objectives

The middleware proof-of-concept implementation of the GORDA Architecture and Programming Inter-
faces (GAPI) has the following goals:

* to provide a compatibility layer to deploy GORDA protocols on a wide range of standard off-the-
shelf database management systems;

* to provide full compatibility with the JDBC client interfaces;

* to demonstrate the feasibility and evaluate the consequences of implementing a large subset of the
GAPI by relying only on a standard JDBC client interface, and

* to leverage as much as possible existing open-source components, namely, to maintain backward
compatibility with Sequoia RAIDD protocols and tools.

1.2 Relationship With Other Deliverables

This document depends on deliverables D2.2 - GORDA Architecture Definition and D2.3 - GORDA
Interfaces Definition, which specify the architecture and interfaces implemented here. The current de-
liverable supersedes deliverable D4.2 - Middleware Mapping Report, which has outlined the general
approach of this proof-of-concept implementation within Sequoia. In detail, it improves on the previ-
ously proposed mapping as follows:

"http://sequoia.continuent.org



* Improvements to the scheduler for optimistically synchronized protocols providing priority schedul-
ing (Section 3.2), which wasn’t initially envisioned. This allows the middleware proof-of-concept
to run all proposed reference replication protocols.

* Improvements to the scheduler for supporting stored procedures, thus widening the applicability
of the prototype to legacy DBMS and applications.

» Support for ODBC clients, thus widening the applicability of the prototype and strengthening its
value when integrating legacy DBMS and applications.



Chapter 2

Sequoia

Sequoia implements the concept of Redundant Array of Inexpensive Databases (RAIDDb) [2]. A database
is distributed and replicated among several nodes and Sequoia load balances the queries between these
nodes.

Sequoia provides a generic driver to be used by the clients. This driver forwards the SQL requests
to Sequoia that balances them on a cluster of databases following a read-one write-all approach (reads
are load balanced and writes are executed on all copies). In the following, queries or statements (used
interchangeably) refer to SQL statements in the context of a transaction, explicitly or implicitly defined.

2.1 Architecture

Figure 2.1 shows an overview of the Sequoia architecture with drivers and controllers. The Sequoia ar-
chitecture is open, allowing to plug in custom requests schedulers, load balancers, connection managers,
caching policies, etc. Sequoia can be used with any RDBMS (Relational DataBase Management System)
providing a JDBC driver, that is to say almost all existing open source and commercial databases. Se-
quoia allows to build any cluster configuration including mixing database engines from different vendors
and is also flexible in the sense that it can be configured with a single controller and a single backend,
providing a bare-bones JDBC interceptor.

2.1.1 Sequoia Driver

The Sequoia JDBC Diriver is a type 4 JDBC driver, which forwards all database queries to the Sequoia
Controller. When using Sequoia with a Java client, the client applications connect to the cluster through
the Sequoia driver, which replaces the database-specific driver originally used by the client application.!

The Sequoia JDBC Driver provides an almost complete coverage of the JDBC 3 specification. The
driver also provides transparent fail-over capabilities to reconnect and restore a transactional context in
case of a controller failure.

2.1.2 Sequoia Controller

The Sequoia Controller is a Java program that acts as a proxy between the Sequoia Driver and the
Database Backends. The controller enables the managed databases to be presented to the client applica-
tion as a single Virtual Database. The Sequoia Controller uses the native database JDBC driver to access
the underlying database server(s).

'The basic Sequoia installation only includes a JDBC driver for Java clients.  However, the Carob project
(http://carob.continuent.org) provides additional connection for other client applications and, through the DBD::JDBC Perl
module, Perl clients can also be served.



Client application ‘g"e”flapfé_”%"’ﬁo” Client application
(Servlet EJ B, ...) (Serviet EJ B, ...) (Servlet EJ B, ...)

Virtual database 1 Virtual database 2

Authentication Manager ‘ ‘ Authentication Manager

HTTP .
RMI Configuration Request Manager Request Manager
Monitoring Scheduler Scheduler

J MX administration console ) MX Server q Recovery Recovery

Log Log
Load balancer Load balancer
A A A A &

Query result cache Query result cache

Database dumps
management

Connection | | | Connection ||| Connection Connection | | | Connection
Checkpointing Manager Manager Manager Manager Manager

service Ms SQL

Figure 2.1: Sequoia overview

2.1.3 Virtual Database

A Virtual Database virtualizes a single database but the Sequoia controller virtualizes a Relational
Database Management System (RDBMS). In other words, just as a RDBMS can host multiple databases,
the controller can host multiple virtual databases.

A Virtual Database consists of the following components:

Authentication Manager authenticates the virtual database username and password during connection

establishment and checks that it is correctly mapped to the real database server username and
password.

Request Manager handles the incoming client requests forwarded by the Sequoia connector (Sec-
tion 2.2.1)

Database Backend the database backend(s) are used to administer the underlying database servers(s)
(Section 2.2.2).

Backup Manager performs database backup and restore operations and transfers backup files from one
controller to another (Section 2.2.3, not shown in Figure 2.1)

A Virtual Database has a virtual name that matches the database name used in the client application.
The client therefore perceives there to be a single (virtual) database camouflaging the multiple backends.

A Virtual Database and its components are configured in a controller-specific virtual database config-
uration file. To configure one Virtual Database that is hosted by two controllers, two unique controller-
specific configuration files for that Virtual Database are thus needed.



2.2 Main Components

2.2.1 Request Manager

The Request Manager contains the core functionality of the controller. When a client request arrives
from the Sequoia Driver, it is first routed to the Request Manager associated with the Virtual Database.
The Request Manager consists of the following components, which are described in more detail in the
following sections:

* Request Scheduler
* three optional Query Result Caches:

— a metadata cache that caches result set metadata (such as column names, types, etc.) that is
used when building result sets;

— a parsing cache that caches the parsing results, usually table names extracted for locking and
caching purposes. The parsing cache is useful especially with prepared statements;

— a query result cache that caches the result sets of read queries: if a given query is executed
several times, it only needs to be sent to the database once.

¢ Load Balancer

* Recovery Log

Request Scheduler

The Request Scheduler manages the requests and ensures query consistency. Sequoia uses a pass-through
scheduling method, where queries are assigned a unique identifier and forwarded as-is to the load bal-
ancer. This identifier is used later to ensure that the writes are sent in the same order to all backends.
Each database server ultimately performs the scheduling and the locking. Thus, the locking granularity
depends on the database engine.

Load Balancer

Client requests arrive at the Load Balancer through the Request Scheduler. Sequoia’s load balancing
mechanism increases the overall performance of the database cluster. It distributes requests between
backends according to a predefined load balancing method: users can choose a method most suitable for
their system.

The Database Backends (Section 2.2.2) are attached to the Load Balancer. Each Database Backend
contains a total order queue in which it receives the requests.

Recovery Log

The Recovery Log is a transactional log that records all requests and transactions that update the Virtual
Database for database recovery and synchronization purposes. The log also maintains information about
checkpoints that can be local to a controller or global to the cluster.

The Recovery Log information is used to resynchronize failed nodes or add new nodes to the cluster
by replaying queries from a consistent checkpoint that is usually associated to a database dump.



2.2.2 Database Backend

A Database Backend is a Sequoia object that is used to administer an underlying database server. The
term backend refers to Sequoia’s view of a database server instance.

When a backend is disabled, the underlying database server instance may remain operational. A
backend is disabled for example for the time of performing a database backup in order to prevent the
execution of queries during the backup procedure and to ensure database consistency.

Each Sequoia Controller hosts a dedicated set of backends. No backends are shared between con-
trollers for the sake of database consistency.

Database backends can be dynamically added to or removed from a Virtual Database, transparently
to the user application.

2.2.3 Backup Manager

When a new backend is added to the cluster, its database must be brought to a state that is consistent with
the databases of the other active cluster nodes.

In Sequoia, when a node is brought into the cluster, entries logged into a recovery log are used to
bring the node back into exactly the same state as the other nodes in the cluster. This process does not
interfere with the other operations of the cluster and makes it possible to recover from failures without
downtime.

The Backup Manager, together with the Recovery Log, allows the dynamic addition of new backends
to the Virtual Database without the need to stop and restart the system. Similarly, one can use the Backup
Manager and recovery log to easily re-enable a backend when recovering from a backend failure. The
Sequoia installation includes both a generic and several RDBMS-specific backupers. Backupers should
ensure that a full database snapshot can be taken and restored on another backend to provide the exact
same state.

2.24 Group Communication

When using RAIDD across multiple controllers, the controllers use a group communication protocol
to exchange information and maintain consistent state information between each other. This controller
replication prevents controllers from representing a possible single point of failure.

Only database write and commit/rollback commands are sent using the group communication proto-
col. All other commands are executed locally by the controller.

Sequoia allows multiple group communication implementations to be used. By default, Sequoia
controller communication is implemented using the Appia group communication library, although any
JGCS compliant group communication protocol [1], such as Spread can also be used.

2.3 Request Processing

Figure 2.2 illustrates the internals of Sequoia which we will use to exemplify how requests are processed.
The configuration consists of two client JVMs, each having three connections running different trans-
actions on two controllers replicating a virtual database using RAIDb-1 on 4 database backends. The
circled arrows represent Java threads.

In diagrams, T1, T3, T4 and T5 are write transactions whereas T2 and T6 are read-only transactions.
Transactions that are sent in parallel are ordered by the group communication primitives. In this example,
the transactions are delivered in the following order: T1, T4, T3 and T5. When we say that transactions
are delivered in a specific order, in fact we mean requests belonging to these transactions. A Virtual-
DatabaseWorkerThread is assigned to each client connection. It handles the protocol with the driver and
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it is responsible for executing the queries on the controllers. You can notice that read transactions are
only executed at one backend on the local controller whereas write transactions are executed at all nodes
and have a dedicated connection on all nodes.

Each request is represented by one of the objects in the org.continuent.sequoia.controller.requests.-
AbstractRequest hierarchy (only used on the controller side). The request object also carries the con-
nection context to be used in all components of the controller. These objects are serializable to be
sent to remote controllers. Each command (StatementExecute, StatementExecuteUpdate, etc.) maps a
JDBC call and is encapsulated in a group message represented by a org.continuent.sequoia.controller.-
virtualdatabase.protocol.DistributedRequest object that handles the query execution through the different
components of the distributed request manager. Each command is posted in the BackendWorkerThread
queue as an org.continuent.sequoia.controller.loadbalancer.tasks. AbstractTask that contains the code for
the execution on the backend.

2.3.1 Read Transaction Handling

Read requests do not require any group communication since they execute locally to a controller. A read
request will completely execute inside the VirtualDatabaseWorkerThread by executing first the code of
the scheduler and then the load balancer code to choose a node according to the load balancing policy.
Note that if a query result cache is available (not shown in the Figure 2.2), the result would be returned on
a cache hit before going to the load balancer. Read-only transaction commits only occur on the nodes that
have started the transactions. Usually there is only one node but it might happen that in multi-statement
transactions reads are distributed on several nodes.

2.3.2 Write Transaction Handling

Write requests are sent through the group communication to be delivered in the same total order at all
nodes. When the group communication delivers the messages in total order, it executes, in mutual exclu-
sion, the single threaded group communication handler that inserts the query in a total order queue (not
shown in Figure 2.2). It is only when the single threaded handler has completed that the next message
(usually a request) can be delivered. The ultimate execution of each request is then handled in a separate
thread that executes the code of the multi-threaded handler, on behalf of the client application, for each
VirtualDatabase managed by the controller (code found in DistributedVirtualDatabase). The handler
executes the code of the load balancer that posts the query to a request queue and coordinates the com-
pletion of the requests between the associated client application, via the VirtualDatabaseWorkerThread,
and the BackendWorkerThread. The load balancer ensures that all queries are posted in the same order
to all queues. The request completion locally to a controller is handled by the org.continuent.sequoia.-
controller.loadbalancer.tasks. AbstractTask methods. The completion of a distributed request is handled
in org.continuent.sequoia.controller.requestmanager.distributed.DistributedRequestManager. The same
methods can also detect inconsistencies for update queries returning an update count. The first result is
considered as the final result and all backends that have a different result are disabled.

2.4 Client APIs

Sequoia includes two types of client APIs designed to provide simple and transparent access to the
cluster.
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2.4.1 JDBC APIs

Sequoia implements its own wire protocol for clients. This protocol is supported by the Sequoia JDBC
driver, which clients must use to connect directly to controllers. This approach was a natural design for
Sequoia and its predecessor C-JDBC, which are written in Java and intended to support Java applications.

JDBC drivers are highly standardized and therefore quite transparent. Java client applications can
switch to the Sequoia driver easily and then connect directly to the cluster.

The main advantage of the Sequoia JDBC driver is that it has built-in failover and connection load
balancing capabilities. This raises client application availability and balances load across controllers
without necessity of application load-balancing logic or extra hardware.

2.4.2 Native Client Access

The majority of clients that connect to databases served by GORDA are not written in Java (specifically
PostgreSQL and MySQL). Instead, these applications are written in languages like PHP, Perl, C, Ruby,
and a host of other languages that communicate with the database using native APIs. There is no stan-
dard for database access across such languages, and ports of the native libraries themselves can be very
problematic for a number of reasons that range from difficulty in relinking applications to performance
problems.

The Myosotis connector is an open source proxy developed by Continuent to solve the native client
access problem. Myosotis serves as a gateway between MySQL and PostgreSQL clients and JDBC. For
example Myosotis can accept a SELECT request from a MySQL client, execute the query through JDBC
and return results to the client again. This approach greatly increases the simplicity of using the cluster,
as clients do not need to switch libraries and all languages and OS platforms are supported. In addition,
Myosotis is quite performant. Query throughput is better than comparable proxies like pgpool-II (a
PostgreSQL proxy) as well as Sequoia itself.

Continuent has made considerable improvement to Myosotis over the course of 2007 and early 2008,
including addition of support for prepared statements. Transparency is now very high, with current work
focused on addressing arcane details of data types and character sets.

11



Chapter 3

Database Middleware Wrapper

In this chapter we describe in detail three fundamental mechanisms built into Sequoia allowing it to
take the role of a replicated DBMS in a GORDA setting. Sequoia acts as a GORDA compliant DBMS
wrapping up a database engine where the GAPI interfaces cannot be implemented.

3.1 Logical Locking

We start by discussing how scheduling of potentially conflicting transactions is performed. As the JDBC
interface provides no mean to detect if a query will block at the database level or not, we have to repro-
duce the database locking at the middleware level in order to guess potential conflicts. This is achieved
in Sequoia by using logical locks, granted to transactions, based on the database table namespace. This
requires parsing each query to know which database tables are accessed. If the parsing fails or if it is not
possible to determine which tables are accessed (e.g. a stored procedure call) the query’s transaction will
require locks for all tables at once.

3.1.1 Write Scheduling

In detail, the scheduler maintains a list of locks acquired by the different transactions on each database
table (one lock per table). The first transaction to acquire a lock on a table will execute in non-blocking
mode (possibly in a dedicated thread) whereas if the lock is already held by another transaction, the
request will be marked as potentially blocking. This way, non-conflicting transactions can be executed
in parallel and potentially blocking transactions will execute sequentially from a conflicting queue.
Being based on table-level locking the middleware scheduler is fated to be too conservative especially
when the underlying databases use a more fine grained row-level locking scheme. To avoid false conflicts
and mitigate this phenomenon, the Sequoia scheduler allows to execute in parallel conflicting queries

Conflicting re- | Non-conflicting | Lock T1 T2
quests queue requests queue | queue
A | B | Begin | Begin
TIW(A1) T1 W(A1)
T2W(A2) T2 W(A2)
T1
TIW(A2) T2 W(A2)
T1

Table 3.1: Example of non-conflicting and conflicting accesses to the same table
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Conflicting re- | Non-conflicting | Lock T1 T2 T3 T4
quests queue requests queue | queue
A | B | Begin Begin Begin Begin
TIW(A) T1 W(A)
T2W(A) T2 W(A)
Tl blocked
T2W(A) T3W(B) T2 | T3 W(B)
T1
T4W(B) T2 | T4 W(B)
T2W(A) T1 | T3 blocked
T4W(B) T3Commit T2 | T4 Commit
T2W(A) T1
T2W(A) T4W(B) (prior-
ity inversion)
T2W(A) T4Commit Commit
T1Commit T2 | T4 | Commit
T2Commit T4 Commit

Table 3.2: Example of order inversion

by relying on the concurrency control of the backend (see example of Table 3.1). This optimization
however can be troublesome when queries have conflicts at the row level, that is, real conflicts. Since
Sequoia cannot guarantee that such statements execute by the same order on all backends, this may
lead to a deadlock or an inconsistency problem. If Sequoia waits for an answer from all backends to
continue the execution of a transaction, this may generate a deadlock as some backends may be waiting
to acquire a lock to proceed. On the other hand, if the answer of the first backend is used, one may end
up with backends executing transactions by different orders. To circumvent this, one may check if the
updates returned the same results on all backends. If not, the backends that report a different result are
automatically disabled.

3.1.2 Order Inversion on Transaction Completion

When a transaction completes (commit/rollback/abort), it releases all locks it had acquired during its
execution. These locks might have caused other queries to be flagged as possibly blocking since the
transaction was holding the locks. It is then necessary to re-check if some of the blocked queries are not
unnecessarily held in the conflicting requests queue. Order Inversion extracts a query from the conflicting
requests queue to place it in the non-conflicting requests queue for faster execution eventually inverting
the natural order of execution.

Table 3.2 shows an example of order inversion with four transactions (T1 and T2 writing to A and
T3, T4 writing to B). If the queries are executed in the order used in the example, T4 will be stacked in
the conflicting requests queue after T2 which is waiting for T1 to release its lock. As T4 is only waiting
for a lock held by T3, when T3 completes, it notifies the next waiting transaction on the lock for B (that
is T4). T4 request does not block anymore and is promoted to the non-conflicting requests queue for
immediate execution and thus overtaking T2.

3.1.3 Table Based Deadlock Detection

Table 3.3 presents a scenario with two transactions trying to write to two tables in different orders. This
is a typical deadlock problem, but, in our case, not all requests are sent to the database which would not
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Conflicting re- | Non-conflicting | Lock T1 T2
quests queue requests queue queue
A | B | Begin Begin
TIW(A) T1 W(A)
T2W(B) T1 | T2 W(B)
T2W(A) T2 | T2 W(A)
T1 blocked
TIW(B) T2 | T1 | W(B)
T2W(A) T1 | T2 | blocked

Table 3.3: Example of a deadlock scenario

Conflicting re- | Non conflicting | Lock T1 T2
quests queue requests queue | queue
A | B | Begin Begin
TIW(A) T1 W(A)
T2W(B)R(A) T2 | T2 W(B)R(A) not blocked if
T1 snapshot isolation
T1Commit T2 | T2 | Commit
T2Commit Commit

Table 3.4: Example of a multi-table locking scenario

be able to detect the deadlock. We need to check the list of acquired locks to detect a conflicting order
between transactions. In this example, T1 took A before T2 but T2 took B before T1. The deadlock
detection algorithm builds a graph of dependencies for all lock queues and then checks for cycles in the
graph. Transactions are aborted and removed from the graph until the graph does not contain any cycles.
The graph computation and deadlock detection is only triggered when the conflicting requests queue has
not progressed for a given amount of time (equivalent to a deadlock detection timeout). This way, the
request execution does not incur in any overhead until a real deadlock happens.

3.1.4 Queries Accessing Multiple Tables

Some queries access multiple tables either to read or to write. This is for example the case of queries
using a sub-select statement in their where clause (e.g. a statement like UPDATE tablel WHERE id
in (SELECT id FROM table2) accesses tablel to write it and table2 to read it). Some databases
also accept updating simultaneously multiple tables such as DELETE FROM tablel, table2.

All locks should always be acquired in the same order to prevent any deadlock. For example,
DELETE FROM tablel,table2 and DELETE FROM table2,tablel always take the locks
in the same order. Sequoia uses a SortedSet of table names, so that locks are always acquired in the
alphabetical order of the table names.

If all locks are free, the query can go in the non-conflicting queue, else it has to go to the conflicting
queue. Extra care has to be taken when all locks cannot be taken. Note that in Table 3.4 example, the
result of the update on table B will depend on whether T1 commits before or after the read on table A.
In this case, it is necessary to ensure that all backends will commit T1 in the same order with regard to
T2’s update operation. An option consists of systematically waiting for all locks to be available.
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Conflicting re- | Non conflicting | Lock T1 T2 T3
quests queue requests queue queue
A | B | C | Begin Begin Begin
T2ST1 T2 | T2 | T2 ST1
TIW(A) T1 | T2 | T2 | W(A)
T2 blocked
T2W(A) T1 | T2 | T2 W(A)
T2 blocked
T3W(A) T3 | T2 | T2
TIW(A) Tl \bY(Efk)e J
T2
TIST1 T3 | T1 | T1 | ST1
T3W(A) T1 | T2 | T2
TIW(A) T2

Table 3.5: Deadlock scenario with a simple locking for stored procedures

3.1.5 Stored Procedures Handling

Stored procedures are very specific in the sense that simple parsing of the stored procedure invocation
request will not tell us which tables will be accessed. One approach is to assume that the stored procedure
will access all tables and then lock all tables. If we handle stored procedures this way, it increases the
likelihood that a deadlock can occur, at the middleware level, because we are locking all tables. This
is demonstrated in Table 3.5. In this example, T2 executes a stored procedure (ST1) and then locks
all tables. T1 writes to A and is flagged as non-blocking however, let us assume, the write executes
successfully in the conflicting requests queue since it did not conflict with tables accessed in ST1. When
T2 tries to write to A, it is allowed to proceed in the non-conflicting requests queue since it already has
the lock on A. When T1 executes a stored procedure, it is sent to the conflicting requests queue, however
it can still execute. If T3 tries to write to A, it will be blocked in the conflicting requests queue. If T1
tries to execute a stored procedure it will be blocked after T3’s write and will never be able to progress.
The system is deadlocked and the deadlock detection mechanism will not detect any cycle in the lock
graph.

The proposed solution, for the near term, consists of using a separate queue for stored procedures.
This queue does not have any BackendWorkerThread to process it. Queries in the stored procedure
queue are just in standby waiting for all current transactions to release their lock to be able to lock the
whole database. When a stored procedure executes, no other transaction is allowed to take any lock (and
thus execute writes) until the transaction completes. Note that the deadlock detection mechanism has
to be enhanced to take into account transactions that are on hold because they are waiting for a stored
procedure to execute. Table 3.6 gives an example of a deadlock where T1 waits for T2’s completion
before executing its stored procedure. If T2 tries to acquire a resource already held by T1, there is a
deadlock that needs to be detected.

The deadlock detection algorithm has to augment the lock queue graph with locks of the stored
procedure queue so that stored procedure locks are represented in the graph. Note that when a cycle is
detected, rollback priority should be given to transactions trying to execute a stored procedure. Since
such transactions are trying to acquire all locks, they are more likely to cause deadlocks than other
transactions. A longer term solution to the execution of stored procedures is anticipated to involve
determining, to the degree possible, which tables may be referenced by a given stored procedure and to
then acquire locks only on those tables. This approach has some limitations as well and is only applicable
to stored procedures for which the source code is available and which exhibit other properties such as
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Stored procedure | Conflicting re- | Non conflicting | Lock T1 T2
queue quests queue requests queue | queue
A | B | Begin | Begin
TIW(A) T1 W(A)
T2W(B) T1 | T2 W(B)
T1ST1 T1 | T2 | ST1
T2 | T2 W(A)
T2W(A) blocked T1 blocked

Table 3.6: Deadlock scenario with a simple locking for stored procedures

deterministic execution. Given that this type of approach is feasible, the handling of stored procedures
can then be re-factored so that they are handled the same way as any other database write request.

3.2 Priority Scheduling

A priority scheduling mechanism eases the task of ensuring that a commit order can be enforced regard-
less of competing unrestricted transactions being submitted by other connections. In detail, this requires
that in the event that a high priority transaction is about to block due to a lower priority transaction, the
latter is aborted.

To enable such features in Sequoia, logical locking 3.1, deadlock detection and transaction properties
take into account master transactions. Such an attribute is set simply by issuing a SET TRANSACTION
MASTER command.

Sequoia defines two levels of priority, namely, “master” and ‘“normal” (i.e., default). Once a transac-
tion is defined as master, its priority is only brought to normal, after being rolled back or committed.

The information about the priority of a transaction is stored in org.continuent.sequoia.controller.-
requestmanager. TransactionMetaData. Using logical locks, when a master transaction tries to acquire a
lock on a table and it has already been acquired by a normal transaction then this normal transaction is
added to the queue of transactions to abort on org.continuent.sequoia.controller.locks.AbortThread. This
thread is responsible for request the abort of transactions in its queue to RequestManager.

Consider two different transactions: T1 and T2, where T1 is a master (or high priority transaction)
that is about to block due to locks held by T2 on table t. When T1 tries to acquire a lock on table t, T1
finds T2 holds a lock on t and notifies AbortThread to abort T2 and therefore releasing its locks.

3.3 Write Set Extraction

To capture the changes of a transaction to the database, Sequoia needs to be able to extract the write-set
during a transaction execution. There are three types of tuple values that need to be saved: the new
values in the case of an INSERT, the old values in the case of a DELETE, and both the old and the new
values in the case of an UPDATE. To achieve this at the middleware level, one needs to set triggers in the
backends capable of capturing the required values and saving them in the backend itself and, just before
the transaction commits, to access and export them.

These triggered procedures are highly dependent on the real database engine used. Therefore,
there is an interface to perform these operations which is the gorda.reflector.sequoia.utils.objectset.-
SequoiaObjectSet:

* enableGlobalWriteSetExtraction registers a trigger to write to temporary tables the inserted,
updated and deleted values and to perform a cleanup routine on commit;
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* enableLocalWriteSetExtraction creates, for each connection, a temporary table that will collect
the data;

» getWriteSet retrieves the inserted, updated and deleted values for each table.

Currently these trigger procedures are defined for PostgreSQL and for MySQL. They use temporary
tables to save the required data. In the former for each connection, a temporary table is created for each
original table in the database, with its original schema plus a field with the type of operation performed, a
sequential timestamp that records the order of the operations, and the user id. In latter, due to restrictions
in the use of temporary tables and the inability to change the primary keys with AUTO_INCREMENT
configured, three temporary tables are defined for each original table in the database, one for each type:
INSERT, DELETE and UPDATE. Each table has its original schema plus a field a sequential timestamp
that records the order of the operations. Trigger procedures for other database management systems can
easily be defined.
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Chapter 4

GAPI Compliance

Figure 4.1 shows the high level architecture of a middleware-based implementation of GORDA. Com-
pared to an in-core implementation (GORDA Deliverable D4.3 - In-Core Proof-of-concept) clients are
not directly attached to a DBMS. Instead, clients attach to a Sequoia Controller (shaded box) through
a Sequoia Driver that provides the application with a standard JDBC driver that replaces the original

database JDBC driver.

‘ Management ’

Application > Driver h

irtual DBMS

Reflector

(Distributed) Group
Replicator Communication
N

Reflector

Jec\?gﬁ@gﬂ@i

i

>
Application > Driver - -

Figure 4.1: Generic GORDA architecture for a middleware implementation

The Sequoia Controller exposes the Reflector interfaces (as defined in GORDA Deliverable D2.3
- APIs Definition Report) to the Replicator component. The Replicator is a component that is imple-
mented in each instance of the GORDA middleware and relies on the Group Communication component
(as defined in GORDA Deliverable D2.2 - Architecture Definition Report). In its current state, the Se-
quoia implementation allows it to be used with all reference replication protocols described in GORDA
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Deliverables D3.1 (Wide-Area Oriented Protocols Report) and D3.2 (Cluster Oriented Protocols Report).

The source code of the reflector interface has been placed in a different package (gorda.db.sequoia).
The package gorda.db.sequoia contains the implementation of the GORDA reflector processing contexts
and GORDA reflector processing stages. The package gorda.db.sequoia.demo contains the class that en-
ables to run the GORDA reflector demos within sequoia. The package gorda.db.sequoia.escada contains
the class that enables to run the replicator within sequoia. The package gorda.db.sequoia.utils contains
classes used for writeset extraction and parse module.

The reflection service is disabled by default. The service can be enabled by specifying the location
of class registering GORDA reflector events.

In the following we describe how the the reflector component (GORDA Deliverable D2.2 - Architec-
ture Definition Report) is provided by Sequoias’s Virtual Database implementation. Figure 4.2 describes
how the different GORDA interfaces are mapped onto Sequoia building blocks.
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Figure 4.2: Transaction processing model

4.1 Processing Contexts

With respect to the processing contexts, the DBMS Context is a subset of the JDBC DatabaseMetadata
that is fully supported by the Sequoia Controller. The client Connection Context builds upon the JDBC

19



Connection information (fully JDBC 3 compliant) with additional runtime information. The Transac-
tion Context is represented internally in Sequoia through its TransactionMetadata container that includes
cluster-wide unique transaction ids. The Request Context is essentially mapped to the Sequoia JDBC
Statement implementation but specific implementations exist for PreparedStatement and CallableState-
ment (stored procedures).

The VirtualDatabaseWorkerThread handles a connection with a Sequoia driver thus plays an im-
portant role in the interception of the following events:connectionStartUp, connectionShutDown, be-
ginTransaction, beforeCommit, beforeRollback, afterRollback, afterCommit, beginRequest and finishRe-
quest.

4.1.1 Support and Implementation of the DBMS Module

The DBMS Context is started when the Sequoia Controller starts. At this point, administrative tasks
are carried using Sequoia console. It is worth noticing that the DBMS identification is assigned upon
start up of the Sequoia Controller and should be unique. Its assignment and management is not done
automatically but it is done by the administrator. There is no problem in reusing ids as long as distinct
systems have distinct ids. Canceling a DBMS startup involves invoking System.exit() and aborting the
Sequoia controller.

4.1.2 Support and Implementation of the Database module

Each Virtual Database represents a Database Context. The database start up event is generated by Sequoia
whenever Virtual Database have at least on enabled Backend for this Virtual Database. The database
shutdown is generated by the Sequoia whenever Virtual Database has no enabled Backends.

As detailed in Section 2.1.3 similar to a RDBMS a controller can host multiple virtual databases.

By calling get DatabaseSource() one has access to a JDBC connection. If the URL used to acquire
a connection is jdbc:de fault, statements are processed in the context of a transaction if there is one,
otherwise an exception is raised.

This module is also responsible for providing access to the system meta-information. This informa-
tion is accessible using org.continuent.sequoia.controller.virtualdatabase. VirtualDatabaseDynamicMetaData
that gathers the dynamic metadata for a Virtual Database, that is, all the metadata subject to changes dur-
ing the lifetime of the application.

The methods related to the transfer of the entire database image, used for recovery purposes, are
implemented using the Backup Manager that performs database backup and restore operations. Currently
the Backup Manager has several backupers implemented. In the context of GORDA, the Apache Derby,
the PostgreSQL and the MySQL backupers are used.

4.1.3 Support and Implementation of the Connection Module

Sequoia creates a new thread org.continuent.sequoia.controller.virtualdatabase. VirtualDatabaseWorkerThread
for each user. One might allow a connection to proceed or cancel it, by calling continueExecution() or
cancelExecution(), respectively. In the latter case, the new connection is safely ended. The ability to
cancel a connection is quite interesting when a database is doing recovery refusing user transactions.

4.1.4 Support and Implementation of the Transaction Module

Sequoia’s Request Manager maintains a mapping between active transaction ids and transactions’ meta
data (TransactionMetaData class). This class carries transaction metadata including the transaction state.

While handling a notification, one might abort a transaction by calling cancelExecution(). In partic-
ular, before a commit request is issued, besides aborting or allowing a transaction to continue, one might
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still update, delete and insert information on the transaction’s context. This feature is exploited in our
prototype to log information used during recovery.

4.1.5 Support and Implementation of the Request Module

A new Request is generated for each transaction Statement. Similarly to other modules, it is possible to
cancel a request by calling cancelExecution(). When this method is invoked the request’s transaction is
aborted.

4.2 Processing Stages

Sequoia’s JDBC driver provides receiving stage and parsing is fully contained in the Sequoia’s controller.
There is no optimization module for Sequoia since these operations are delegated to and performed by
the underlying database engine. At the Execution stage the write set extraction mechanism (Section 3.3)
provides the required data.

4.2.1 Support and Implementation of the Receiver Module

This module is fully implemented by Sequoia’s JDBC driver and statements can be changed. A partic-
ularity of Sequoia, due to the request determinism required by the active replication on RAIDb, is that
time/random macros values are set prior to sending the requests to the group communication protocol.

4.2.2 Support and Implementation of the Parse Module

Sequoia parses SQL requests and extracts the selected columns and tables given the DatabaseSchema of
the database targeted by this request and previously acquired from the database backends. The depth of
parsing depends on the parsing granularities defined in configuration.

Sequoia have the following parsing granularities:

* NO_PARSING the request is not parsed;

* TABLE table granularity: only table dependencies are computed; minor granularity required for
logical locking and priority scheduling;

* COLUMN column granularity: column dependencies are computed (both select and where
clauses), and

* COLUMN_UNIQUE column granularity with UNIQUE queries: same as COLUMN except that
UNIQUE queries that select a single row based on a key are flagged UNIQUE (and should not be
invalidated on INSERTS).

Sequoia defines the following hierarchy of requests after parsing:

* AbstractRequest defines the skeleton of an SQL request. Requests have to be serializable (at
least) for inter-controller communications.

— AbstractWriteRequest is the super-class of all requests which do NOT return any ResultSet.
They do may have side-effects.

x AlterRequest is a SQL request of the following syntax: ALTER { AGGREGATION |
CONVERSION | DATABASE | FUNCTION | GROUP | LANGUAGE |

OPERATOR | SCHEMA | TABLE INDEX | TRIGGER | ROLE | USER |
TABLESPACE } RENAME TO target
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x CreateRequest is a SQL request of the following syntax: CREATE [TEMPORARY]
TABLE table—-name
[ (column—name column-type [,column—-namecolumnm-type] =
[, table-constraint-definition] *) ]
Sequoia also supports SELECT INTO statements.

* DeleteRequest is an SQL request with the following syntax: DELETE [tablel]
FROM tablel, table2,table3, ...
WHERE search-condition or
DELETE t WHERE search-condition
Note that DELETE from multiple tables is not supported as this is not part of the SQL
standard.

* DropRequest is an SQL request with the following syntax: DROP TABLE table-name

* InsertRequest is an SQL request of the following syntax: INSERT INTO table-name
[ (column—name [, column—name] ) ]
{VALUES (constant|null[,constant|null]~)}|{SELECT query}

+x UnknownWriteRequest is an SQL request that does not match any SQL query known
by this sequoia.

+x UpdateRequest is an SQL request with the following syntax: UPDATE table-name
SET (column-name=expression[,column-name=expression]x)
WHERE search-condition

— SelectRequest is an SQL request returning a ResultSet. It may also have database side-
effects. It has the following syntax:
SELECT [ALL|DISTINCT] select—-item|[,select—-item]*
FROM table-specification|[,table-specification]*
[WHERE search-condition]
[GROUP BY grouping-column[,grouping—column] ]
[HAVING search—-condition]
[ORDER BY sort-specification][,sort-specification]]
[LIMIT ignored]

* UnknownReadRequest This class defines an UnknownReadRequest used for all SQL
statements that are not SELECT but should be executed as read requests.
An UnknownReadRequest is a request that returns a ResultSet and that we are not able
to parse (we cannot know which tables are accessed, if any).

— StoredProcedure it encodes a stored procedure call. It can have the following syntax:
call <procedure-name>[<argl>;,<arg2>;, ...] or
?=call <procedure-name>[<argl>,<arg2>, ...]

4.2.3 Support and Implementation of the Executor Module

For performance reasons the write set is collected while executing a transaction as explained in Sec-
tion 3.3 and before commit is triggered.

When a new connection is established the write set extraction for that connection is enabled as ex-
plained in Section 3.3.

In Sequoia each backend has a thread responsible for sequentially process a set of tasks. The Commit
task defines the commit of a transaction in some database backend. When this task is executed the write
set is gathered and the GAPI notified before triggering the onCommit event.
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The method handling the notification of object set, clean the temporary table used for that temporary
table.
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Chapter 5

Maintenance and Further Development of
GAPI in Sequoia

Continued maintenance of the GAPI work from GORDA will require investment from both Continuent,
the main sponsor of the Sequoia project, as well as the open source community that uses and helps
develop Sequoia. This chapter contains a summary of on-going work to ensure continued maintenance
and use of the GAPI interfaces.

5.1 Long-Term Value of GAPI Model

GAPI provides a very general interceptor model that has value for a variety of applications beyond
direct support for change set extract for replication purposes. Continuent has been able to confirm the
commercial value of such interceptors to help support integration of Sequoia with MySQL replication to
create clusters that operate between multiple sites. Continuent has introduced very simple interceptors
into the current stable branch of Sequoia but needs the generality of the GAPI model. We believe this
would also be of interest to the open source community, which can use the model to support a variety of
interesting uses of Sequoia that are currently impossible due the monolithic processing model.

5.2 Preparations for Further Development on Sequoia

Continuent has over the course of 2007 and 2008 engaged in two important activities to prepare for the
next round of development on Sequoia.

First and foremost, Continuent has invested considerable effort in stabilizing the Sequoia core to
allow it to be used in production deployments. This included addition of numerous features as well as
fixing well over 100 bugs in areas like recovery log handling, failover, SQL parsing, and error handling.
These are a necessary prerequisite for engaging in further major developments on Sequoia.

Second, the Sequoia project, its codelines, and associated wikis and documentation are now hosted
in a central location, which provides excellent network connectivity as well as high availability. The
infrastructure at LogicWorks includes a significant test bed for builds and test based on Vmware.

These activities are pre-requisites for long-term maintenance and extension of GAPI interfaces.

5.3 Full Incorporation of GAPI into Sequoia

The current GAPI implementation for GORDA-M is part of Sequoia 3.0, an experimental version of
Sequoia. This is a good environment for the initial development, which was designed to prove the
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concept of GAPI interfaces. However, to incorporate GAPI fully, it needs to be based on the more stable
production code maintained by Continuent.

Continuent and members of the open source community plan to handle incorporation of GAPI inter-
faces over two releases.

* Sequoia 4.0 - This will be a new release of Sequoia based on the current Continuent version 2.10
commercial code pruned to eliminate a number of features that are no longer necessary, harmful,
or just not useful. Design work for this release is currently in progress. One of the most important
"features" of the release will be an open source test suite that can be run by the community and will
be the basis of builds to ensure that the new Sequoia 4.0 release is not subject to major regressions.

* Sequoia 5.0 - The GAPI will be formally released in this version. Our analysis shows that some
reimplementation of the current GAPI will be required to match the cleaned-up code provided
by Sequoia 4.0. The 4.0 clean-up will in fact make GAPI much cleaner as there is considerable
duplicated code in Sequoia that makes interceptor implementations quite fragile.

5.4 Looking Forward
GAPI interfaces look like a great edition to Sequoia. We look forward to the additional flexibility that

will be provided by GAPI when it is baked into Sequoia, backed by solid tests and documentation. We
hope to enable both new open source uses (and innovation) as well as new commercial applications.
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