

Project no. 004758

GORDA

Open Replication Of Databases

Specific Targeted Research Project

Software and Services

Draft Standard
(Database Support for Replication)

GORDA Deliverable D6.4

Due date of deliverable: 2006/09/30

Actual submission date: 2007/03/31

Revision 0.2: 2007/06/18

Start date of project: 1 October 2004 Duration: 36 Months

Universidade do Minho

 Revision 0.2

Project co-funded by the European Commission within the Sixth Framework

Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

c©2006-2007 The GORDA Consortium. Some rights reserved.

Distribution is allowed according to Creative Commons Attribution-NoDerivs 3.0
license. See Appendix A for details or visit:

http://creativecommons.org/licenses/by-nd/3.0/

http://creativecommons.org/licenses/by-nd/3.0/

Contents

1 Introduction and Background 7

1.1 Introduction . 7

1.2 The GORDA Project . 7

1.3 Document Conventions . 8

1.3.1 Definitions . 8

1.3.2 Formatting Conventions . 8

1.4 Open Issues . 9

1.5 Contributors . 9

1.6 Feedback . 9

2 Scope and Requirements 10

2.1 Goals . 10

2.2 Non-Goals . 10

2.3 Requirements . 10

3 Design 11

3.1 Approach and Terminology . 11

3.2 Overview . 11

3.3 Event Handling . 12

3.4 Event Concurrency . 13

3.5 Commit Order . 13

3.6 Context Attachments . 14

3.7 Base-level and Meta-level Calls . 14

3.8 Notification-Disabled Contexts . 15

3.9 Transaction Priority . 16

3.10 Exception Handling . 16

3.11 Configuration and Bootstrap . 16

4 API Description 18

4.1 Overview . 18

4.2 Package gorda.db . 23

4.2.1 Interface ConnectionConstant 23

4.2.2 Interface ConnectionContext 24

4.2.3 Interface ConnectionMetaInfo 25

4.2.4 Interface ConnectionProcessor 26

4.2.5 Interface ConnectionShutdownListener 27
4.2.6 Interface ConnectionStartupListener 28
4.2.7 Interface Context . 28
4.2.8 Interface ContextReference 30
4.2.9 Interface Database . 31
4.2.10 Interface DatabaseConstant 33
4.2.11 Interface DatabaseMetaInfo 35
4.2.12 Interface DatabaseProcessor 35
4.2.13 Interface DatabaseShutdownListener 36
4.2.14 Interface DatabaseStartupListener 37
4.2.15 Interface Dbms . 37
4.2.16 Interface DbmsConstant . 38
4.2.17 Interface DbmsMetaInfo . 39
4.2.18 Interface DbmsProcessor . 42
4.2.19 Interface DbmsShutdownListener 43
4.2.20 Interface DbmsStartupListener 43
4.2.21 Interface ExecutionControl 44
4.2.22 Interface PipelineConstant 45
4.2.23 Interface PreparedExecution 46
4.2.24 Interface Request . 62
4.2.25 Interface RequestBeginListener 63
4.2.26 Interface RequestCompletionListener 63
4.2.27 Interface RequestConstant 64
4.2.28 Interface RequestProcessor 65
4.2.29 Interface Transaction . 66
4.2.30 Interface TransactionBeginListener 68
4.2.31 Interface TransactionCompletionListener 69
4.2.32 Interface TransactionConstant 69
4.2.33 Interface TransactionPrepareListener 72
4.2.34 Interface TransactionProcessor 73
4.2.35 Interface TransactionUpdateListener 75

4.3 Package gorda.db.executor . 77
4.3.1 Interface ExecutorStage . 77
4.3.2 Interface ObjectSet . 78
4.3.3 Interface ObjectSetConstant 79
4.3.4 Interface ObjectSetReadListener 79
4.3.5 Interface ObjectSetWriteListener 80

4.4 Package gorda.db.logminer . 81
4.4.1 Interface LoggerObjectSet 81
4.4.2 Interface LoggerObjectSetExecutionListener 81
4.4.3 Interface LogMinerStage . 82

4.5 Package gorda.db.parser . 83
4.5.1 Interface ParsedStatement 83
4.5.2 Interface ParsedStatementExecutionListener 86
4.5.3 Interface ParserStage . 86

4.6 Package gorda.db.receiver . 88
4.6.1 Interface ReceiverStage . 88
4.6.2 Interface Statement . 88
4.6.3 Interface StatementExecutionListener 89

5 Samples 90

5.1 Query Caching . 90

5.2 Streaming . 92

5.3 Replication . 94

A License 99

Preface

This document, Database Support for Replication, specifies the programming interface
to enable pluggable replication protocols and tools in relational database management
systems.

This specification is presented in the context of the Java platform. It is however pos-
sible to map it to other languages and platforms as it relies on standard concepts and
interfaces. For clarity, we make references only to Java transcriptions of such stan-
dards.

Revision History

Date Version Description
2007-03-31 0.1 Initial public draft
2007-06-18 0.2 Added exception handling section

Who Should Use This Specification

The audience for this document is:

• developers of relational database management systems;

• developers of database replication protocols.

How This Specification Is Organized

Section 1 introduces the interface in the context of the GORDA project as well as
document conventions used. Section 2 describes the goals, scope, and requirements of
the proposed interface. Section 3 presents the abstract model of transaction processing
underlying the interface as well as key design patterns. Section 4 discusses the interface
in detail. Finally, Section 5 is a guide to sample code distributed with the interface.

Related Literature

• On the use of a reflective architecture to augment DBMS by N. Carvalho et al.
Technical report FCUL/UMinho, 2007.

• The JavaTMLanguage Specification by James Gosling, Bill Joy, and Guy L. Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1

• JSR-54: JDBCTM3.0 Specification by Jon Ellis and Linda Ho with Maydene
Fisher. Sun Microsystems, 2001.

6

1 INTRODUCTION AND BACKGROUND

1 Introduction and Background

1.1 Introduction

This document specifies a programming interface that allows the processing of SQL
statements in a relational database management system to be inspected, intercepted,
and altered in order to enable replication.

Replication is understood as providing multiple copies of a database, including partial
copies, addressing multiple consistency criteria, fault tolerance, and scalability goals.
This includes mechanisms sometimes also referred as clustering and synchronization.

1.2 The GORDA Project

The goal of the GORDA project is to foster database replication as a means to address
the challenges of trust, integration, performance, and cost in current database systems
underlying the information society. This is to be achieved by standardizing architecture
and interfaces, and by sparking their usage with a comprehensive set of components
ready to be deployed.

GORDA is supported by the European Community under the Sixth European Union
Framework Programme for Research and Technological Development, thematic pri-
ority Information Society Technologies, contract number 004758. The consortium is
composed by U. Minho, U. della Svizzera Italiana, U. Lisboa, INRIA Rhône-Alpes,
Continuent, and MySQL.

More information is available at:

• http://gorda.di.uminho.pt

7

http://gorda.di.uminho.pt

1.3 Document Conventions 1 INTRODUCTION AND BACKGROUND

1.3 Document Conventions

1.3.1 Definitions

This document uses definitions based upon those specified in RFC-2119 (See http://www.ietf.org/).
For a better reading experience these terms are written in lowercase.

Table 1: Specification terms.
Term Definition
MUST The associated definition is an absolute requirement of

this specification.
MUST NOT The definition is an absolute prohibition of this specifica-

tion.
SHOULD Indicates a recommended practice. There may exist valid

reasons in particular circumstances to ignore this recom-
mendation, but the full implications must be understood
and carefully weighed before choosing a different course.

SHOULD NOT Indicates a non-recommended practice. There may exist
valid reasons in particular circumstances when the par-
ticular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully
weighed before implementing any behavior described
with this label.

MAY Indicates that an item is truly optional.

1.3.2 Formatting Conventions

This specification uses the following formatting conventions.

Table 2: Formatting conventions.
Convention Description
fixed Used in all Java code including keywords, data types,

constants, method names, variables, class names, and in-
terface names.

italic Used for emphasis and to signify the first use of a term.

8

http://www.ietf.org/

1 INTRODUCTION AND BACKGROUND 1.4 Open Issues

1.4 Open Issues

• Additional pipeline stages should be considered. Namely, support for federated
and distributed databases with a rewriter stage and low level observation of disk
I/O with a physical stage.

• The specification of the optimizer stage referred in Figure 1 (see Section 3) has
been omitted from the current revision, as existing prototypes have shown limi-
tations in the current proposal.

• Adequation to the version 4.0 of the JDBC specification, namely regarding the
exception hierarchy.

1.5 Contributors

• Alfranio Correia Jr., U. Minho

• Nuno Carvalho, U. Lisboa

• Nuno A. Carvalho, U. Minho

• Emmanuel Cecchet, Continuent

• Susana Guedes, U. Lisboa

• Rui Oliveira, U. Minho

• José Pereira, U. Minho

• Luís Rodrigues, U. Lisboa

• Luís Soares, U. Minho

• Ricardo Vilaça, U. Minho

1.6 Feedback

Please send any comments and questions concerning this specification to:

community@gorda.di.uminho.pt

9

mailto:community@gorda.di.uminho.pt

2 SCOPE AND REQUIREMENTS

2 Scope and Requirements

2.1 Goals

Support for multiple replication techniques. The specification aims at enabling
the use of the multiple replication techniques found in the literature, encompassing
asynchronous and synchronous replication, conservative and optimistic execution, total
and partial replication.

Portability of replication protocols. The major goal of the specification is to allow
replication protocols to be reused with multiple database management systems.

Multiple implementation strategies. The specification aims at allowing multiple
implementation strategies, namely, within the database server itself or as a middleware
wrapper.

Performance. Although shielding the developer from database server internals, the
interface must allow efficient implementations. For instance, by not forcing multiple
data conversion steps or by imposing overly restrictive concurrency models.

Compatibility with existing interfaces and idioms. The specification builds on ex-
isting interfaces and idioms, thus making it immediately familiar to database develop-
ers.

2.2 Non-Goals

Replication protocols. The specification does not include any specific replication
protocol, thus omitting all issues related to consistency criteria and update mechanisms.

Communication protocols. The specification does not specify interfaces for com-
munication protocols to disseminate updates.

Configuration and management. The specification does not specify interfaces to
bootstrap replication protocols or to manage them while running.

2.3 Requirements

Java Standard Edition platform. All interfaces use the Java language and make
use of the standard java.sql and javax.sql packages. A Java runtime is thus
required to deploy replicated database management systems based on the specification.

Server-side JDBC. To support direct base-level to meta-level calls and transparent
modification of base-level requests as described in Section 3.7, the database server must
provide a Server-side JDBC interface. This is widely available in database management
systems supporting Java stored procedures.

10

3 DESIGN

3 Design

3.1 Approach and Terminology

This specification is based on a reflective model of transaction processing. The exe-
cution of SQL code by the database server is abstracted as a pipeline that performs a
number of processing steps.
According to the usual naming in reflective systems, the base-level denotes SQL code,
as issued by application programs. The meta-level denotes add-on middleware that
observes and modifies the processing of base-level code.
Each stage of the pipeline produces an intermediate data structure that can be inspected
and modified. Meta level code can register event handlers to be notified when a stage
has completed. It can also control when the next stage is started. Related event notifi-
cations reference a common context object, describing their relation.

3.2 Overview

Figure 1: Abstract transaction processing model.

Meta-level
(Java replication middleware)

Base-level
(SQL application code)

DBMS Context
Database Context
Connection Context

Transaction Context
Request Context

Lo
g

M
in

er
 S

ta
ge

E
xe

cu
to

r S
ta

ge

O
pt

im
iz

er
 S

ta
ge

P
ar

se
r S

ta
ge

R
ec

ei
ve

r S
ta

ge

Server-side JDBC

Java Stored Procedures

As shown in Figure 1, the specification abstracts SQL processing by the database server
as receiving, parsing, optimizing, and executing statements. The resulting transactional
log can then be observed asynchronously.
Multiple statements can be provided in a single request. Therefore, resulting event
notifications will reference a common request context. Likewise, several requests can
be issued in the context of a transaction. Transactions execute in the context of a client
connection. Client connections are established to a specific database in a database
management system.

11

3.3 Event Handling 3 DESIGN

Base-level (i.e., SQL application code) calls into meta-level implicitly, as events are
triggered when it traverses the pipeline. Meta-level (i.e., Java replication middleware)
influences base-level by interacting with data structures within the pipeline as depicted
in Figure 1.

It is however possible that SQL code calls directly into meta-level by means of custom
Java stored procedures. It is also possible that meta-level issues SQL statements by
means of Server-side JDBC connections.

3.3 Event Handling

Meta-level code must register event-handlers to intercept the flow of data-structures
within the pipeline. An event handler can be set in two different modes: blocking
and non-blocking. This is chosen at run time by specifying a boolean parameter when
setting the handler.

Blocking mode

When a handler is set in blocking mode, the database server must suspend the current
activity until both the event handler has returned and the continue or cancel methods
have been invoked in the event object. The meta-level code can do it in any order.

Figure 2 shows an example of a statement handler being set in blocking mode. Execu-
tion is suspended until continue is invoked after waiting for an external event.

Figure 2: Blocking notification.
s:StatementProcessor h:StatementExecutionListener

setStatementExecutionListener(h,true)

«create»

st:Statement

handleStatementExecution(st)

wait()

continueExecution()

«destroy»

12

3 DESIGN 3.4 Event Concurrency

Non-blocking mode

When a handler is set in non-blocking mode, the database server may suspend the
current activity until the event handler has returned. Meta-level code must not invoke
continue or cancel methods on the event.
Figure 3 shows an example of a statement handler being set in non-blocking mode.
Execution is suspended while calling the handler and resumes right after the handler
returns.

Figure 3: Non-blocking notification.
s:StatementProcessor h:StatementExecutionListener

setStatementExecutionListener(h,false)

«create»

st:Statement

handleStatementExecution(st)

«destroy»

Figure 4 shows an example of a database server that spawns a separate thread for asyn-
chronous notifications. This means that the meta-level handler must not influence the
base-level and assume any synchronization between separate asynchronous events. The
former point can be achieved by either creating copies of the objects on which the event
occurs, thus ensuring that one can access them, without any concerning on object life
cycles; or only enabling access to static information or identification data (e.g., trans-
action identification, request identification).
Methods to continue and cancel execution are available in interface ExecutionControl,
as shown in Section 4.2.21, and all its sub-interfaces.

3.4 Event Concurrency
The implementation may invoke multiple event-handlers concurrently, even if regis-
tered in blocking mode, unless they depend on each other. It is up to the meta-level
code to handle synchronization where required.
Dependency relations exist between events in nested contexts. Namely, events are
triggered in a context only when all outer contexts are in the UP or ACTIVE state. This
means that STARTING events are notified first for outer contexts and CLOSED events
first for inner contexts.

3.5 Commit Order
Commit order is determined by the order by which meta-level code invokes
Transaction.continueExecution() upon a

13

3.6 Context Attachments 3 DESIGN

Figure 4: Non-blocking notification (threaded implementation).
s:StatementProcessor h:StatementExecutionListener

setStatementExecutionListener(h,false)

«create»

st:Statement

«create»

t:Thread

handleStatementExecution(st)

«destroy»

TransactionConstant.TRANSACTION_COMMITTING event. The meta-level
code must ensure that no concurrent invocations of such method exist within the same
database context.
When no blocking event-handler is registered (i.e., no event-handler at all or only a
non-blocking event-handler), the commit order is unspecified.

3.6 Context Attachments

Context interfaces allow application specific state to be attached and recovered later
when handling different events. The database server must therefore associate the ref-
erence with the context and return it in future invocations on the same context. This is
similar to what can be done with java.nio.SelectionKey in the standard Java
library.
Figure 5 shows two different statements being handled within the same request context.
Upon the first invocation, the database server must return null. After an object has
been attached, it must be kept and returned later. An attachment is removed by setting
it to null. See interface Context in Section 4.2.7.

3.7 Base-level and Meta-level Calls

A direct call to meta-level code may be forced by the application programmer by reg-
istering it as a native procedure and then using the CALL SQL statement. This causes
a call to the meta-level code to be issued from the base-level code within the Execu-
tor Stage. The target procedure can then retrieve a reference to the enclosing Request
Context and thus to all relevant meta-interfaces (see Figure 6).
Meta-level code can callback into base-level in two different situations. The first is
within a direct call from base-level to issue statements in an existing enclosing request

14

3 DESIGN 3.8 Notification-Disabled Contexts

Figure 5: Using an attachment to store request state.
s:StatementProcessor h:StatementExecutionListener

«create»

r:Request

«create»

st1:Statement

handleStatementExecution(st1)

getRequest()

r

getAttachment()

null

setAttachment(o)

null

«destroy»

«create»

st2:Statement

handleStatementExecution(st2)

getRequest()

r

getAttachment()

o

«destroy»

«destroy»

context. This can be achieved using the Server-side JDBC interface by looking up
the jdbc:default:connection driver, as is usually done in Java procedures.
The second option is to use the enclosing Database Context to open a new base-level
connection to the database.
Transactions issued at the meta-level using client interfaces must be signaled by invok-
ing the following SQL command:
SET TRANSACTION AS MASTER

The database server must not reflect any further events within the corresponding Con-
nection Context to avoid recursion.

3.8 Notification-Disabled Contexts

Reflection can also be disabled on a case-by-case basis by invoking an operation on
context meta-objects. Therefore, meta-level code can disable reflection for a given

15

3.9 Transaction Priority 3 DESIGN

Figure 6: Base-level calls meta-level.

d:Database r:Request rp:RequestProcessor p:StoredProcedure

"CALL p()"

invoke()

getRequest()

r

meta operations

result set

result set

request, a transaction, a specific connection, a database or even an entire database
management system. See interface Context in Section 4.2.7.

3.9 Transaction Priority

Base-level calls issued by meta-level code interact with regular transaction processing
regarding concurrency control, namely, how are conflicts that require rollback are re-
solved. This happens in multi-version concurrency control where the first committer
wins or, regardless of concurrency control strategy, whenever resolving deadlocks.

A compliant implementation must ensure that transactions issued at meta-level do not
abort in face of conflicts with regular base-level transactions.

3.10 Exception Handling

The handling of base-level exceptions within the DBMS is not changed, other than
issuing notifications to the meta-level when transactions are aborted or connections
closed. The DBMS must react to unhandled exceptions at the meta-level within a
transaction context by aborting the encolsing transactions. Other exceptions within the
scope of a connection context may close the client connection. Other exceptions must
be handled by leaving the database in a panic mode, thus requiring external intervention
to repair the system.

Exceptions during meta-level to base-level calls need additional should be handled
as meta-level errors to avoid disseminating errors inside the database while executing
the base-level code. For instance, while a transaction is committing, meta-level code
might need to execute additional statements to keep track of custom meta-information
on the transaction before proceeding, and this action might cause errors due to deadlock
problems or low amount of resources.

3.11 Configuration and Bootstrap

Configuration of meta-level is out of the scope of this specification. It is thus imple-
mentation dependent how such code is loaded. The implementation dependent loader

16

3 DESIGN 3.11 Configuration and Bootstrap

must however provide references to singleton objects that provide access to the inter-
face. In detail, it must provide references to context singletons, i.e., interfaces named
with a Processor suffix.

For each implemented and active stage of the pipeline, the implementation must pro-
vide its respective singleton object, i.e., interfaces named with the Stage suffix.

17

4 API DESCRIPTION

4 API Description

4.1 Overview

The main part of the specification is contained in package gorda.db described in
Section 4.2, including all contexts and related interfaces. A diagram outlining the
relations between individual interfaces is shown in Figure 7. The database server must
fully implement all these interfaces. The life-cycle of each context is shown in Figure 8.
Events triggered upon state change are the main entry point to observing the database
server.

The rest of the specification corresponds to the pipeline stages, described in Sections
4.3 to 4.6. The database server may implement only some of them. For each imple-
mented stage, the database server must however be complete. Diagrams outlining the
required interfaces for each stage are shown in Figures 9 and 10. All data elements
share the same life-cycle, shown in Figure 11.

18

4 API DESCRIPTION 4.1 Overview

Figure 7: Context interfaces.

19

4.1 Overview 4 API DESCRIPTION

Figure 8: Context life-cycles.

DBMS_STARTING

DBMS_UP

DBMS_CLOSING

DBMS_CLOSED

(a) DBMS.

DATABASE_STARTING

DATABASE_UP

DATABASE_PANIC

DATABASE_CLOSING

DATABASE_CLOSED

(b) Database.

CONNECTION_STARTING

CONNECTION_UP

CONNECTION_CLOSING

CONNECTION_CLOSED

(c) Connection.

TRANSACTION_BEGINNING

TRANSACTION_IDLE

TRANSACTION_ABORTING

TRANSACTION_ACTIVE

TRANSACTION_COMMITTING

TRANSACTION_UPDATE

TRANSACTION_ABORTED

TRANSACTION_COMMITTED

TRANSACTION_PREPARING

TRANSACTION_PREPARED

(d) Transaction.

REQUEST_PROCESSING

REQUEST_PROCESSED REQUEST_ERROR

(e) Request.

20

4 API DESCRIPTION 4.1 Overview

Figure 9: Stage interfaces.

 «interface»
 ExecutionControl

 «interface»
 Statement

 «interface»
 PreparedExecution

 «interface»
 PipelineConstant

 «interface»
 ContextReference

 «interface»
 ReceiverStage

 «interface»
 StatementExecutionListener

Notifies

0..1

1
RelatedTo

1

1

Uses

1

1

(a) Receiver stage.

 «interface»
 ExecutionControl

 «interface»
 ParsedStatement

 «interface»
 PreparedExecution

 «interface»
 PipelineConstant

 «interface»
 ContextReference

 «interface»
 ParsedStatementExecutionListener

RelatedTo

1

1

 «interface»
 ParserStage

Uses

1

1

Notifies

0..1

1

(b) Parser stage.

21

4.1 Overview 4 API DESCRIPTION

Figure 10: Stage interfaces (cont).

 «interface»
 ExecutionControl

 «interface»
 ObjectSet

 «interface»
 LoggerObjectSet

 «interface»
 PipelineConstant

 «interface»
 ContextReference

 «interface»
 ObjectSetReadListener

RelatedTo

1

1
 «interface»

 ObjectSetWriteListener

RelatedTo

1

1

 «interface»
 ExecutorStage

Notifies

0..1

1

Notifies
0..1

1

 «interface»
 ObjectSetConstant

Uses

1

1

References

1

1

(a) Executor stage.

 «interface»
 ExecutionControl

 «interface»
 ObjectSet

 «interface»
 LoggerObjectSet

 «interface»
 PipelineConstant

References

1

1

 «interface»
 LogMinerStage

Uses
1

1

 «interface»
 LoggerObjectSetExecutionListener

Notifies
0..1

1

RelatedTo

1

1

(b) Log miner stage.

Figure 11: Stage life-cycle.
PIPELINE_PROCESSING

PIPELINE_PROCESSED PIPELINE_ERROR

22

4 API DESCRIPTION 4.2 Package gorda.db

4.2 Package gorda.db

This package provides access to the DBMS, database, connection, transaction and re-
quest contexts.

The DBMS context aims at providing access to server startup and shutdown events, as
well as to system configuration information.

A database context holds shared state between multiple connections and provides ac-
cess to a Server-side JDBC driver and full image backup and restore. In addition to that,
it provides events related with database startup and shutdown, as well as enumerating
active client connections.

A connection context holds shared state between multiple transactions and provides
access to events related with connection establishment and tear down, as well as meta
information associated with a client.

A transaction context holds shared state between multiple requests issued on behalf of
a transaction. Its main goal is to allow events related to transaction startup, commit
and rollback to be observed and validated. This is key to synchronous replication
protocols as propagation may be performed before allowing commit to be confirmed
back to clients. It is also key to certification based replication protocols, by allowing
transactions to be aborted after failing certification.

A request holds shared state between multiple statements contained in a single client
request and thus allows grouping of multiple statements in a single client interaction.
In addition to that, it identifies the boundaries of a client request by notifying events
related with its beginning and completion.

4.2.1 Interface ConnectionConstant

Defines states and constants used by Connection (in 4.2.2, page 24).

Declaration public interface ConnectionConstant

All known subinterfaces ConnectionContext (in 4.2.2, page 24)

Fields

• int CONNECTION_STARTING

– Defines that a connection is starting up.
This is the first state and identifies that a connection is being made.
It must be notified and one must guarantee that access to Connection’s
meta information and methods is possible.
In this state, a connection may already be established but the control is not
returned to the client, which means that requests cannot be sent.

• int CONNECTION_UP

23

4.2 Package gorda.db 4 API DESCRIPTION

– Defines that a connection is up.
This is the second state and identifies that a connection is already estab-
lished.
It must be notified and one must guarantee that access to Connection’s
meta information and methods is possible.

• int CONNECTION_CLOSING

– Defines that a connection is closing.
This is the third state and identifies that a connection is being closed. Any
problem during or after startup must bring a connection to this state.
It must be notified and one must guarantee that access to Connection’s
meta information and methods is possible.
It is worth noticing that it is not possible to cancel this event as it is a
transition to the final state.

• int CONNECTION_CLOSED

– Defines that a connection is closed.
This is the fourth and final state of a connection and identifies that it is
closed.
There is no obligation of notifying this information. However, if one de-
cides to do so, one must guarantee that access to at least a connection iden-
tification is possible. Every meta information and method that are not avail-
able must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is the final
state.

4.2.2 Interface ConnectionContext

Reflects a client connection. This interface is named ConnectionContext and not
simply Connection, in order to avoid misunderstands between a reflected connec-
tion and a JDBC connection.

Declaration public interface ConnectionContext
extends ConnectionConstant, Context, ExecutionControl

Methods

• ConnectionMetaInfo getConnectionMetaInfo()
throws java.sql.SQLException

– Description
Returns the connection meta information.

– Returns – Connection meta information.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

24

4 API DESCRIPTION 4.2 Package gorda.db

• ConnectionProcessor getConnectionProcessor()

– Description
Returns a reference to the connection processor.

– Returns – A reference to the connection processor.

• Database getDatabase()

– Description
Returns a reference to the database object.
There is no need of returning a copy of this object as one must do when
handling the method getTransaction (in 4.2.2, page 25). Assuming a
blocking notification, the database context must be accessible by means of
a connection.

– Returns – A reference to the database object.

• Transaction getTransaction()

– Description
Returns a copy of the active transaction object.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the object and throwing an exception if any

method that attempts to change its state is called.
– Returns – A copy of the active transaction object, if there is any, otherwise
null.

4.2.3 Interface ConnectionMetaInfo

Defines connection meta information.

Declaration public interface ConnectionMetaInfo

Methods

• java.lang.Object getCharacterSetInformation()
throws java.sql.SQLException

– Description
Returns character set information.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• java.lang.String getUserId()
throws java.sql.SQLException

– Description
Returns user identification.

– Returns – User identification.
– Throws

∗ java.sql.SQLException – If a database access error occurs.

25

4.2 Package gorda.db 4 API DESCRIPTION

4.2.4 Interface ConnectionProcessor

Handles listener registration for connection events and has a connection repository.

Declaration public interface ConnectionProcessor

Methods

• ConnectionContext getConnection(java.lang.String
connectionId)

– Description
Returns a copy of the reflected connection object with the given id.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the object and throwing an exception if any

method that attempts to change its state is called.

– Parameters

∗ connectionId – The connection identification.

– Returns – A copy of the reflected connection object with the given id, if
there is any, null otherwise.

• void setConnectionShutdownListener(ConnectionShutdownListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon connection shutdown.
Subsequent notifications, with respect to the connection
and its inner contexts, may be canceled afterwards using
Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30) or
Connection.setNotificationIgnored (in 4.2.7, page 30).

– Parameters

∗ listener – The listener that handles connection shutdown events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also

∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setConnectionStartupListener(ConnectionStartupListener
listener, boolean wait)

26

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Registers a listener that must be notified upon connection startup.
Subsequent notifications, with respect to the connection
and its inner contexts, may be canceled afterwards using
Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles connection startup events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.2.5 Interface ConnectionShutdownListener

Defines the listener that will be notified whenever a connection is shutting down.

Declaration public interface ConnectionShutdownListener

Methods

• void handleConnectionShutdown(ConnectionContext
connection)

– Description
Is called whenever the listener is registered to receive connection shutdown
events.
If the wait flag is set to true at registration time (see
setConnectionShutdownListener (in 4.2.4, page 26)), then
this method implementation must call continueExecution (in 4.2.21,
page 45).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the connection shutdown.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.
A connection must have one of the following states when receiv-
ing a notification: CONNECTION_CLOSING (in 4.2.1, page 24) or
CONNECTION_CLOSED (in 4.2.1, page 24).

– Parameters
∗ connection – The connection on which the event occurs.

27

4.2 Package gorda.db 4 API DESCRIPTION

4.2.6 Interface ConnectionStartupListener

Defines the listener that will be notified whenever a connection is made.

Declaration public interface ConnectionStartupListener

Methods

• void handleConnectionStartup(ConnectionContext
connection)

– Description
Is called whenever the listener is registered to receive connection startup
events.
If the wait flag is set to true at registration time (see
setConnectionStartupListener (in 4.2.4, page 26)), then
this method implementation must call continueExecution (in 4.2.21,
page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the connection startup.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.
A connection must have one of the following states when receiv-
ing a notification: CONNECTION_STARTING (in 4.2.1, page 23) or
CONNECTION_UP (in 4.2.1, page 23).

– Parameters
∗ connection – The connection on which the event occurs.

4.2.7 Interface Context

This interface defines information common to every context in the GORDA API.

Each context must be capable of maintaining a reference to an object, also named
attachment. The attachment may be set using the setAttachment (in 4.2.7, page 29)

method and retrieved using the getAttachment (in 4.2.7, page 29) method.

There are several sub-interfaces that define the API for the GORDA API defined con-
texts:

• Dbms (in 4.2.15, page 37);

• Database (in 4.2.9, page 31);

• Connection (in 4.2.2, page 24);

• Transaction (in 4.2.29, page 66);

• Request (in 4.2.24, page 62);

28

4 API DESCRIPTION 4.2 Package gorda.db

Additionally, associated with each context there are several processing stages. These
stages are based on the classic stages already proposed by previous published works
on the subject. The result of each stage is mapped into a set of interfaces that represent
the outcome of the processing stage.

The result of each processing stage must be one instance of the following interfaces:

• Statement (in 4.6.2, page 88)

• ObjectSet (in 4.3.2, page 78)

• ParsedStatement (in 4.5.1, page 83)

• LoggerObjectSet (in 4.4.1, page 81)

• ExecutionPlan

.

Declaration public interface Context

All known subinterfaces ConnectionContext (in 4.2.2, page 24), Database (in 4.2.9,
page 31), Dbms (in 4.2.15, page 37), Request (in 4.2.24, page 62), Transaction (in 4.2.29,
page 66)

Methods

• java.lang.Object getAttachment()

– Description
Returns the current attachment. This method must not remove the attach-
ment.

– Returns – The current attachment, or null, if there is no attachment.

• int getContextState()

– Description
Retrieves the current context state. Every context has an associated state:
∗ DbmsConstant (in 4.2.16, page 38);
∗ DatabaseConstant (in 4.2.10, page 33);
∗ ConnectionConstant (in 4.2.1, page 23);
∗ TransactionConstant (in 4.2.32, page 69);
∗ RequestConstant (in 4.2.27, page 64);

– Returns – The current context state.

• java.lang.String getId()

– Description
Returns a context identification.

– Returns – Context identification.

• java.lang.Object setAttachment(java.lang.Object obj)

29

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Attaches a reference to the given object to a context. This method provides
access to a placeholder in which a programmer may set any kind of object.
A reference that has been attached may be retrieved later via the
getAttachment (in 4.2.7, page 29) method. There must only be one
reference attached at a time.
Calling this method must discard the current attached reference. In order to
discard the current reference, one must call this method with null as the
parameter.

– Parameters
∗ obj – The object whose reference must be attached, which may be
null.

– Returns – The previously attached reference, if any, otherwise null.

• void setNotificationIgnored(boolean isIgnored)

– Description
Enables or disables notifications regarding a context.
This method has a "Cascade Effect", meaning that a listener must not re-
ceive any notification regarding a context and inner contexts.

– Parameters
∗ isIgnored – true if notifications must be ignored, false other-

wise.

4.2.8 Interface ContextReference

Retrieves a reference to the enclosing context.

Declaration public interface ContextReference

All known subinterfaces ObjectSet (in 4.3.2, page 78), ParsedStatement (in 4.5.1,
page 83), Statement (in 4.6.2, page 88)

Methods

• Request getRequest()

– Description
Returns a reference to the request context.

– Returns – A reference to the request context.

• int getState()

– Description
Retrieves the current state of a stage of the pipeline. Every stage has a
common or specific set of constants based on which their states are defined:
∗ PipelineConstant (in 4.2.22, page 45);
∗ ObjectSetConstant (in 4.3.3, page 79);

– Returns – The current state of a stage.

30

4 API DESCRIPTION 4.2 Package gorda.db

4.2.9 Interface Database

Reflects a database or a logical entity that is reflected.

Declaration public interface Database
extends DatabaseConstant, Context, ExecutionControl

Methods

• void freeze()

– Description
Sets the database in panic mode.
For instance, this method must be used to freeze a database when it some-
how aborts a transaction sent by a metalevel-application and such transac-
tion was not supposed to abort.
When the database is set to panic mode, then it freezes and only an admin-
istrator is able to manually change its state.

• java.util.Iterator getConnections()

– Description
Returns an iterator with a copy of all reflected connection objects opened
to access this database.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the objects and throwing an exception if any

method that attempts to change their state is called.
– Returns – An iterator with a copy of all reflected connection objects.

• long getCurrentVersion()

– Description
Returns the current database version number.
Every time an update transaction is committed, the implementation incre-
ments a counter to register such event.

– Returns – The current database version number.

• java.io.InputStream getDatabaseImage(java.lang.String
tableName)

– Description
Retrieves a database image or a table image as an InputStream.
The structure of the image is application dependent.
If tableName is not null, an image is taken from that table. Otherwise an
image from the database is taken. If the table does not exist, an exception
must be thrown.

– Parameters
∗ tableName – Defines from which table an image must be taken.

31

4.2 Package gorda.db 4 API DESCRIPTION

– Returns – A database image as an InputStream.

• DatabaseMetaInfo getDatabaseMetaInfo()
throws java.sql.SQLException

– Description
Returns the database meta information.

– Returns – The database meta information.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• DatabaseProcessor getDatabaseProcessor()

– Description
Returns a reference to the database processor.

– Returns – A reference to the database processor.

• int getDatabaseSize()

– Description
Calculates the size of the database.
This provides a mechanism to estimate the size of an image in a unit that is
application dependent.

– Returns – The size of the database.

• javax.sql.DataSource getDataSource()

– Description
Returns the datasource.

– Returns – The datasource.

• Dbms getDbms()

– Description
Returns a reference to the DBMS.
In contrast to getConnections (in 4.2.9, page 31), a reference to the
DBMS must be returned. In this case, there is no problem as the DBMS
context is finished only after stopping all active databases.

– Returns – A reference to the DBMS.

• long getMinimumVersion()

– Description
Returns the version of the oldest active transaction in the database.
The implementation must check all active transactions in order to find the
oldest.

– Returns – The oldest active transaction.

• java.lang.String getUrl()

32

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Returns the database Uniform Resource Locator.

– Returns – The database URL.

• void increaseVersion(long inc)

– Description
Increments the database version by a positive value passed as parameter.
Every time an update transaction commits, the database version is incre-
mented by one. Sometimes however a transaction is executed on behalf
of several other transactions. In such cases, incrementing by one does not
reflect the number of implicit transactions committed. For that reason, this
method enables developers to define which is the increment.

– Parameters
∗ inc – A positive value used as increment.

• void installDatabaseImage(java.io.InputStream
databaseImage)

– Description
Installs an image as an InputStream.
The database must be in the state DATABASE_STARTING or
DATABASE_IN_PANIC, to be allowed to install images. This require-
ment ensures that a database is in recovering mode. If a database is in
another state, it is not supposed to do so as it may have internal active
(DATABASE_BOOTED or DATABASE_CLOSING) or or may be shutting
down (DATABASE_CLOSED).
It is also worth noticing that is possible to install images from tables, but
the metalevel-application needs to guarantee that such images are coherent
among them in order to bring the database to a consistent state.

– Parameters
∗ databaseImage – The database or table image as an
InputStream.

4.2.10 Interface DatabaseConstant

Defines states and constants used by Database (in 4.2.9, page 31).

Declaration public interface DatabaseConstant

All known subinterfaces Database (in 4.2.9, page 31)

Fields

• int DATABASE_STARTING

33

4.2 Package gorda.db 4 API DESCRIPTION

– Defines that a database is starting up.
This is the first state and identifies that a database is starting up.
It must be notified and one must guarantee that access to Database’s
meta information and methods is possible.
In this state, a database allows to carry out recovery routines.

• int DATABASE_UP

– Defines that a database is up.
This is the second state and identifies that a database executed its recovery
routines and is ready to receive client connections.
It must be notified and one must guarantee that access to Database’s
meta information and methods is possible.

• int DATABASE_CLOSING

– Defines that a database is shutting down.
This is the third state and identifies that a database is shutting down.
It must be notified and one must guarantee that access to at least a database
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a
transition to a final state.

• int DATABASE_CLOSED

– Defines that a database is shutdown.
This is the fourth and a final state of a database and identifies that it is
shutdown.
It must be notified and one must guarantee that access to at least a database
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state.

• int DATABASE_IN_PANIC

– A database is put in this state by calling the method freeze (in 4.2.9, page
31) or automatically when something goes wrong. In other words, when
something unrecoverable happens.
For instance, the database is put in this state when:
∗ It somehow aborts a transaction sent by a metalevel-application and

such transaction was not supposed to abort.
∗ During startup it is not brought to a consistent state.
∗ Or during shutdown it is not possible for some reason (e.g. log is

corrupted) to bring it to a consistent state.
If the database is set to panic mode, then it freezes and only an administra-
tor is able to manually change its state.
It must be notified and one must guarantee that access to at least a database
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state.

34

4 API DESCRIPTION 4.2 Package gorda.db

4.2.11 Interface DatabaseMetaInfo

Provides access to database meta information. This builds on the
DatabaseMetaData (i.e., a Server-side JDBC driver) and provides additional
methods important to the metalevel development.

Declaration public interface DatabaseMetaInfo
extends java.sql.DatabaseMetaData

Methods

• boolean isFrozen()
throws java.sql.SQLException

– Description
Returns whether this database is frozen or not.
If the database is frozen, then only the administrator is able to apply
changes and manually redefine its state.
If the freeze (in 4.2.9, page 31) method is called in some point in time,
then subsequent calls to the isFrozen method must return true.

– Returns – true if the database is frozen, false otherwise.
– Throws

∗ java.sql.SQLException – If a database access error occurs.

• boolean isReadOnly()
throws java.sql.SQLException

– Description
Returns whether this database is in read-only mode or not.

– Returns – true if so; false otherwise.
– Throws

∗ java.sql.SQLException – If a database access error occurs.

4.2.12 Interface DatabaseProcessor

Handles listener registration for database events and has a database repository.

Declaration public interface DatabaseProcessor

Methods

• Database getDatabase(java.lang.String databaseId)

– Description
Returns a copy of the database object with the given id.
To avoid synchronization problems, one must do exactly what follows:

35

4.2 Package gorda.db 4 API DESCRIPTION

∗ Returning a copy of the object and throwing an exception if any
method that attempts to change its state is called.

– Parameters
∗ databaseId – The database identification.

– Returns – A copy of the database object with the given id, if there is any,
null otherwise.

• void setDatabaseShutdownListener(DatabaseShutdownListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon database shutdown.
Subsequent notifications, with respect to the database and its inner contexts,
may be canceled afterwards using Dbms.setNotificationIgnored
(in 4.2.7, page 30) or Database.setNotificationIgnored (in
4.2.7, page 30).

– Parameters
∗ listener – The listener that handles database shutdown events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setDatabaseStartupListener(DatabaseStartupListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon database startup.
Subsequent notifications, with respect to the database and its inner contexts,
may be canceled afterwards using Dbms.setNotificationIgnored
(in 4.2.7, page 30) or Database.setNotificationIgnored (in
4.2.7, page 30).

– Parameters
∗ listener – The listener that handles database startup events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.2.13 Interface DatabaseShutdownListener

Defines the listener that will be notified whenever the database is shutting down.

36

4 API DESCRIPTION 4.2 Package gorda.db

Declaration public interface DatabaseShutdownListener

Methods

• void handleDatabaseShutdown(Database database)

– Description
Is to be called whenever there is a listener registered to receive database
shutdown events.
If the wait flag is set to true at registration time (see
setDatabaseShutdownListener (in 4.2.12, page 36)), then
this method implementation must call continueExecution (in 4.2.21,
page 45).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the database shutdown.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ database – The database on which the event occurs.

4.2.14 Interface DatabaseStartupListener

Defines the listener that will be notified whenever the database is starting up.

Declaration public interface DatabaseStartupListener

Methods

• void handleDatabaseStartup(Database database)

– Description
Is to be called whenever the listener is registered to receive database startup
events.
If the wait flag is set to true at registration time (see
setDatabaseStartupListener (in 4.2.12, page 36)), then this
method implementation must call continueExecution (in 4.2.21, page
45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the database startup.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ database – The database on which the event occurs.

4.2.15 Interface Dbms

Reflects a DBMS.

37

4.2 Package gorda.db 4 API DESCRIPTION

Declaration public interface Dbms
extends DbmsConstant, Context, ExecutionControl

Methods

• java.util.Iterator getDatabases()

– Description
Returns an iterator with a copy of all database objects.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the objects and throwing an exception if any

method that attempts to change their state is called.

– Returns – An iterator with a copy of all database objects.

• DbmsMetaInfo getDbmsMetaInfo()

– Description
Returns the DBMS meta information.

– Returns – The DBMS meta information.

• DbmsProcessor getDbmsProcessor()

– Description
Returns a reference to the DBMS processor.

– Returns – The DBMS processor.

4.2.16 Interface DbmsConstant

Defines states and constants used by Dbms (in 4.2.15, page 37).

Declaration public interface DbmsConstant

All known subinterfaces Dbms (in 4.2.15, page 37)

Fields

• int DBMS_STARTING

– Defines that a DBMS is starting up.
This is the first state and identifies that a DBMS is starting up.
It must be notified and one must guarantee that access to Dbms’s meta
information and methods is possible.

• int DBMS_UP

38

4 API DESCRIPTION 4.2 Package gorda.db

– Defines that a DBMS is up.
This is the second state and identifies that a DBMS is ready to manage
databases.
It must be notified and one must guarantee that access to Dbms’s meta
information and methods is possible.

• int DBMS_CLOSING

– Defines that a DBMS is shutting down. Any unforeseen event must bring
the DBMS to this state.
This is the third state and identifies that a DBMS is shutting down.
It must be notified and one must guarantee that access to at least a database
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a
transition to the final state.

• int DBMS_CLOSED

– Defines that a DBMS is shutdown.
This is the fourth and final state of a DBMS and identifies that it is shut-
down.
It must be notified and one must guarantee that access to at least a database
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a
transition to the final state.

4.2.17 Interface DbmsMetaInfo

Provides access to DBMS meta information. This builds on the
DatabaseMetaData (i.e., a Server-side JDBC driver) and provides additional
methods important to the reflection mechanism.

Declaration public interface DbmsMetaInfo

Methods

• int getDbmsMajorVersion()
throws java.sql.SQLException

– Description
Returns the DBMS major version number.

– Returns – The DBMS major version number.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

39

4.2 Package gorda.db 4 API DESCRIPTION

• int getDbmsMinorVersion()
throws java.sql.SQLException

– Description
Returns the DBMS minor version number.

– Returns – The DBMS minor version number.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• java.lang.String getDbmsProductName()
throws java.sql.SQLException

– Description
Returns the name of the Database Management System (DBMS) product.

– Returns – The DBMS product name.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• java.lang.String getDbmsProductVersion()
throws java.sql.SQLException

– Description
Returns the DBMS version number.

– Returns – The DBMS version number.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• int getJDBCDriverMajorVersion()

– Description
Returns an integer identifying the JDBC (i.e., a Server-side JDBC driver)
driver major version.

– Returns – The driver major version.

• int getJDBCDriverMinorVersion()

– Description
Returns the JDBC (i.e., a Server-side JDBC driver) driver minor version.

– Returns – The driver minor version.

• java.lang.String getJDBCDriverName()
throws java.sql.SQLException

– Description
Returns the JDBC (i.e., a Server-side JDBC driver) driver name.

– Returns – The driver name.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

40

4 API DESCRIPTION 4.2 Package gorda.db

• java.lang.String getJDBCDriverVersion()
throws java.sql.SQLException

– Description
Returns the JDBC (i.e., a Server-side JDBC driver) driver version.

– Returns – The driver version.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• java.lang.String getURL()
throws java.sql.SQLException

– Description
Returns the DBMS Uniform Resource Locator.

– Returns – The DBMS Uniform Resource Locator.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• boolean isExecutorStageImplemented()

– Description
Returns the implementation status of the executor stage.

– Returns – true if it is implemented, false otherwise.

• boolean isExtractingReadSets()

– Description
Returns the implementation status on read sets.

– Returns – true if it is implemented, false otherwise.

• boolean isExtractingWriteSets()

– Description
Returns the implementation status on write sets.

– Returns – true if it is implemented, false otherwise.

• boolean isLogMinerStageImplemented()

– Description
Returns the implementation status of the log miner stage.

– Returns – true if it is implemented, false otherwise.

• boolean isOptimizerStageImplemented()

– Description
Returns the implementation status of the optimizer stage.

– Returns – true if it is implemented, false otherwise.

• boolean isParserStageImplemented()

41

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Returns the implementation status of the parser stage.

– Returns – true if it is implemented, false otherwise.

• boolean isReceiverStageImplemented()

– Description
Returns the implementation status of the receiver stage.

– Returns – true if it is implemented, false otherwise.

4.2.18 Interface DbmsProcessor

Handles listener registration for DBMS events.

Declaration public interface DbmsProcessor

Methods

• void setDbmsShutdownListener(DbmsShutdownListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon DBMS shutdown.
Subsequent notifications, with respect to the DBMS and its inner contexts,
may be canceled afterwards using Dbms.setNotificationIgnored
(in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles the DBMS shutdown events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setDbmsStartupListener(DbmsStartupListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon DBMS startup.
Subsequent notifications, with respect to the DBMS and its inner contexts,
may be canceled afterwards using Dbms.setNotificationIgnored
(in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles the DBMS startup events.

42

4 API DESCRIPTION 4.2 Package gorda.db

∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.2.19 Interface DbmsShutdownListener

Defines the listener that will be notified whenever the database is shutting down.

Declaration public interface DbmsShutdownListener

Methods

• void handleDbmsShutdown(Dbms dbms)

– Description
Is called whenever the listener is registered to receive DBMS shutdown
events.
If the wait flag is set to true at registration time (see
setDbmsShutdownListener (in 4.2.18, page 42)), then this method
implementation must call continueExecution (in 4.2.21, page 45).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the DBMS shutdown.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ dbms – The DBMS on which the event occurs.

4.2.20 Interface DbmsStartupListener

Defines the listener that will be notified whenever the database is starting up.

Declaration public interface DbmsStartupListener

Methods

• void handleDbmsStartup(Dbms dbms)

– Description
Is called whenever the listener is registered to receive DBMS startup events.

43

4.2 Package gorda.db 4 API DESCRIPTION

If the wait flag is set to true at registration time (see
setDbmsStartupListener (in 4.2.18, page 42), then this method
implementation must call continueExecution (in 4.2.21, page 45) or
cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the database startup.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ dbms – The DBMS on which the event occurs.

4.2.21 Interface ExecutionControl

Resumes or cancels execution.
One of the methods provided by this interface must be invoked by a listener when it is
registered with the waiting flag set to true. Any invalid call characterized by the set
of cases that follows must either throw an exception or simply be ignored:

• Calling such methods when a notifier is not blocked. This means that there is no
pending notification waiting for a call to proceed.

• As a colollary of the previous case one has: calling such methods when a listener
is registered with the waiting flag set to false.

• Some states define a final step of a state machine (e.g., CONNECTION_CLOSED
(in 4.2.1, page 24)) and do not allow calls to the cancel method to be made.

The choice between ignoring invalid calls or throwing an exception is presented to
preserve compatibility with meta-level applications already developed. This was the
common practice in the early versisons of this interface.
The descriptions presented in this document however only uses exceptions and it is
thoroughly recommend its adoption.

Declaration public interface ExecutionControl

All known subinterfaces ConnectionContext (in 4.2.2, page 24), Database (in 4.2.9,
page 31), Dbms (in 4.2.15, page 37), Request (in 4.2.24, page 62), Transaction (in 4.2.29,
page 66), ObjectSet (in 4.3.2, page 78), LoggerObjectSet (in 4.4.1, page 81), ParsedState-
ment (in 4.5.1, page 83), Statement (in 4.6.2, page 88)

Methods

• void cancelExecution()
throws java.sql.SQLException

– Description
Cancels execution.
Some events does not support calling this method and an exception must
be thrown.
Should the listener be registered with the waiting flag set to false, then
the execution must proceed without waiting for this method to be called.

44

4 API DESCRIPTION 4.2 Package gorda.db

• void continueExecution()
throws java.sql.SQLException

– Description
Resumes execution.
If the listener is registered with the waiting flag set to false, then the
execution must proceed without waiting for this method to be called.

4.2.22 Interface PipelineConstant

Defines states and constants used by the Statement (in 4.6.2, page 88),
ParsedStatement (in 4.5.1, page 83), ExecutionPlan , ObjectSet (in 4.3.2,
page 78) and LoggerObjectSet (in 4.4.1, page 81).

The processing state indicates that an object was processed by their respective counter-
part in the pipeline and it is about to enter in the next stage:

• The Statement.PIPELINE_PROCESSINGmeans that a request was split in
different statements and is about to entering into the parser. Right after parsing
a statement, a notification may be sent to indicate that it was processed and its
state is Statement.PIPELINE_PROCESSED.

• The ParsedStatement.PIPELINE_PROCESSING means that a parsed
statement was produced by the parser and is about to entering into
the optimizer. Right after optimizing a parsed statement, a notifica-
tion may be sent to indicate that it was processed and its state is
ParsedStatement.PIPELINE_PROCESSED.

• The ExecutionPlan.PIPELINE_PROCESSING means that an execu-
tion plan was produced by the optimizer and is about to entering into
the executor. Right after processing an execution plan, a notifica-
tion may be sent to indicate that it was processed and its state is
ExecutionPlan.PIPELINE_PROCESSED.

• The ObjectSet.PIPELINE_PROCESSING means that an object set was
produced by the executor and is about to be logged in memory (write-ahead
logging). Right after logging an object set a notification may be sent to indicate
that it was processed and its state is ObjectSet.PIPELINE_PROCESSED.

• The LoggerObjectSet.PIPELINE_PROCESSING means that a log-
ger object set was created in memory and is about to be written to
disk (write-ahead logging). Right after writing it to disk, a notifi-
cation may be sent to indicate that it was processed and its state is
LoggerObjectSet.PIPELINE_PROCESSED.

Declaration public interface PipelineConstant

All known subinterfaces ObjectSet (in 4.3.2, page 78), LoggerObjectSet (in 4.4.1,
page 81), ParsedStatement (in 4.5.1, page 83), Statement (in 4.6.2, page 88)

45

4.2 Package gorda.db 4 API DESCRIPTION

Fields

• int PIPELINE_PROCESSING

– Defines that a stage of the pipeline is being processed.
It must be notified and one must guarantee that access to meta information
and methods is possible.

• int PIPELINE_PROCESSED

– Defines that a stage of the pipeline was processed.
There is no obligation of notifying this information. This is optional as
it is always possible to detect completion of any stage of the pipeline by
checking a request completion.
If one decides to do so, one must guarantee that access to at least an object
identification (e.g. Statement’s identification or ExecutionPlan’s
identification) is possible. Every meta information and methods that are
not available must throw an exception. Any attempt to change the object
must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state. Thus, any attempt to cancel this notification must throw an exception.

• int PIPELINE_ERROR

– Defines that a stage of the pipeline did not ended correctly or was canceled.
There is no obligation of notifying this information. This is optional as it
is always possible to detect recoverable errors in any stage of the pipeline
by a transaction abort. Other errors are detected when a database is put in
panic mode.
However, if one decides to do so, one must guarantee that access to
at least an object identification (e.g. Statement’s identification or
ExecutionPlan’s identification) is possible. Every meta information
and methods that are not available must throw an exception. Any attempt
to change the object must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state. Thus, any attempt to cancel this notification must throw an exception.

4.2.23 Interface PreparedExecution

Provides methods to manipulate a prepared object.

This should be used to change and access information in any stage on requests to be
prepared or executed.

The interface is built upon the java.sql.PreparedStatement and
java.sql.CallableStatement and allows to redefine parameter values.
However, one should do so by carefully checking parameter types through the
java.sql.ParameterMetaData. If types do not match or an implicit conversation
is not possible an exception is thrown.

Declaration public interface PreparedExecution

46

4 API DESCRIPTION 4.2 Package gorda.db

All known subinterfaces ParsedStatement (in 4.5.1, page 83), Statement (in 4.6.2,
page 88)

Methods

• java.sql.Array getArray(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Array.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a Array.

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.math.BigDecimal getBigDecimal(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java BigDecimal.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a BigDecimal.

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.sql.Blob getBlob(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Blob.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a Blob.

– Throws
∗ java.sql.SQLException – If an error occurs.

• boolean getBoolean(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java boolean.

– Parameters
∗ index – The index of the parameter to return.

47

4.2 Package gorda.db 4 API DESCRIPTION

– Returns – The parameter value as a boolean.

– Throws
∗ java.sql.SQLException – If an error occurs.

• byte getByte(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java byte.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a byte.

– Throws
∗ java.sql.SQLException – If an error occurs.

• byte[] getBytes(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java byte array.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a byte array

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.sql.Clob getClob(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Clob.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a Clob.

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.sql.Date getDate(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java java.sql.Date.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a java.sql.Date.

48

4 API DESCRIPTION 4.2 Package gorda.db

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.sql.Date getDate(int index, java.util.Calendar
cal)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java java.sql.Date.

– Parameters
∗ index – The index of the parameter to return.
∗ cal – The Calendar to use for timezone and locale.

– Returns – The parameter value as a java.sql.Date.
– Throws

∗ java.sql.SQLException – If an error occurs.

• double getDouble(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java double.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a double.
– Throws

∗ java.sql.SQLException – If an error occurs.

• float getFloat(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java float.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a float.
– Throws

∗ java.sql.SQLException – If an error occurs.

• int getInt(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java int.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a int.

49

4.2 Package gorda.db 4 API DESCRIPTION

– Throws
∗ java.sql.SQLException – If an error occurs.

• long getLong(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java long.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a long.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.lang.Object getObject(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Object.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as an Object.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.lang.Object getObject(int index, java.util.Map
map)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Object.

– Parameters
∗ index – The index of the parameter to return.
∗ map – The mapping to use for conversion from SQL to Java types.

– Returns – The parameter value as an Object.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.sql.ParameterMetaData getParameterMetaData()
throws java.sql.SQLException

– Description
Retrieves the number, types and properties of this PreparedExecution
object’s parameters.

– Returns – a ParameterMetaData object that contains information about
the number, types and properties of this PreparedExecution object’s
parameters

50

4 API DESCRIPTION 4.2 Package gorda.db

– Throws
∗ java.sql.SQLException – If a database access error occurs

– See also
∗ java.sql.ParameterMetaData

• java.sql.Ref getRef(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java Ref.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a Ref.

– Throws
∗ java.sql.SQLException – If an error occurs.

• short getShort(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java short.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a short.

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.lang.String getString(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java String.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a String.

– Throws
∗ java.sql.SQLException – If an error occurs.

• java.sql.Time getTime(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java java.sql.Time.

– Parameters
∗ index – The index of the parameter to return.

51

4.2 Package gorda.db 4 API DESCRIPTION

– Returns – The parameter value as a java.sql.Time.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.sql.Time getTime(int index, java.util.Calendar
cal)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java java.sql.Time.

– Parameters
∗ index – The index of the parameter to return.
∗ cal – The Calendar to use for timezone and locale.

– Returns – The parameter value as a java.sql.Time.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.sql.Timestamp getTimestamp(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java
java.sql.Timestamp.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a java.sql.Timestamp.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.sql.Timestamp getTimestamp(int index,
java.util.Calendar cal)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java
java.sql.Timestamp.

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a java.sql.Timestamp.
– Throws

∗ java.sql.SQLException – If an error occurs.

• java.net.URL getURL(int index)
throws java.sql.SQLException

– Description
Returns the value of the specified parameter as a Java java.net.URL.

52

4 API DESCRIPTION 4.2 Package gorda.db

– Parameters
∗ index – The index of the parameter to return.

– Returns – The parameter value as a URL.

– Throws
∗ java.sql.SQLException – If an error occurs.

• boolean isExecute()

– Description
Returns true if this is related to executing prepared statements.
For instance, the following commands should be classified in this category:
EXECUTE [(params, ...)] | CREATE TABLE AS EXECUTE [(params, ...)]

– Returns – a boolean value.

• boolean isPrepare()

– Description
Returns true if this is related to preparing statements.
For instance, the following commands should be classified in this category:
PREPARE

– Returns – a boolean value.

• void setArray(int i, java.sql.Array x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Array object.
The metalevel-application converts this to an SQL ARRAY value when it
sends it to the database.

– Parameters
∗ i – the first parameter is 1, the second is 2, ...
∗ x – an Array object that maps an SQL ARRAY value

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setBigDecimal(int parameterIndex,
java.math.BigDecimal x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.math.BigDecimal
value.
The metalevel-application converts this to an SQL NUMERIC value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.

53

4.2 Package gorda.db 4 API DESCRIPTION

∗ x – The parameter value.
– Throws

∗ java.sql.SQLException – If a database access error occurs

• void setBlob(int i, java.sql.Blob x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Blob object.
The metalevel-application converts this to an SQL BLOB value when it
sends it to the database.

– Parameters
∗ i – the first parameter is 1, the second is 2, ...
∗ x – a Blob object that maps an SQL BLOB value

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setBoolean(int parameterIndex, boolean x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java boolean value.
The metalevel-application converts this to an SQL BIT value when it sends
it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setByte(int parameterIndex, byte x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java byte value.
The metalevel-application converts this to an SQL TINYINT value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setBytes(int parameterIndex, byte[] x)
throws java.sql.SQLException

54

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Sets the designated parameter to the given Java array of bytes.
The metalevel-application converts this to an SQL VARBINARY or
LONGVARBINARY (depending on the argument’s size relative to the
metalevel-application’s limits on VARBINARY values) when it sends it to
the database.

– Parameters

∗ parameterIndex – The index of the parameter, starting at position
1.

∗ x – The parameter value.

– Throws

∗ java.sql.SQLException – If a database access error occurs

• void setClob(int i, java.sql.Clob x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Clob object.
The metalevel-application converts this to an SQL CLOB value when it
sends it to the database.

– Parameters

∗ i – the first parameter is 1, the second is 2, ...
∗ x – a Clob object that maps an SQL CLOB value

– Throws

∗ java.sql.SQLException – if a database access error occurs

• void setDate(int parameterIndex, java.sql.Date x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.sql.Date value.
The metalevel-application converts this to an SQL DATE value when it
sends it to the database.

– Parameters

∗ parameterIndex – The index of the parameter, starting at position
1.

∗ x – The parameter value.

– Throws

∗ java.sql.SQLException – If a database access error occurs

• void setDate(int parameterIndex, java.sql.Date x,
java.util.Calendar cal)
throws java.sql.SQLException

55

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Sets the designated parameter to the given java.sql.Date value, using
the given Calendar object.
The metalevel-application uses the Calendar object to construct an SQL
DATE value, which the metalevel-application then sends to the database.
With a Calendar object, the metalevel-application can calculate the date
taking into account a custom timezone. If no Calendar object is specified,
the metalevel-application uses the default timezone, which is that of the
virtual machine running the metalvel-application.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the parameter value
∗ cal – the Calendar object the metalevel-application will use to con-

struct the date
– Throws

∗ java.sql.SQLException – if a database access error occurs

• void setDouble(int parameterIndex, double x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java double value.
The metalevel-application converts this to an SQL DOUBLE value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setFloat(int parameterIndex, float x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java float value.
The metalevel-application converts this to an SQL FLOAT value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setInt(int parameterIndex, int x)
throws java.sql.SQLException

56

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Sets the designated parameter to the given Java int value.
The metalevel-application converts this to an SQL INTEGER value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setLong(int parameterIndex, long x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java long value.
The metalevel-application converts this to an SQL BIGINT value when it
sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setNull(int parameterIndex, int sqlType)
throws java.sql.SQLException

– Description
Sets the designated parameter to SQL NULL
Note that the SQL parameter type must be specified.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ sqlType – The SQL type code defined in Types .

– Throws
∗ java.sql.SQLException – If a database access error occurs.

• void setNull(int paramIndex, int sqlType,
java.lang.String typeName)
throws java.sql.SQLException

– Description
Sets the designated parameter to SQL NULL.
This version of the method setNull should be used for user-defined
types and REF type parameters. Examples of user-defined types include:
STRUCT, DISTINCT, JAVA_OBJECT, and named array types.

57

4.2 Package gorda.db 4 API DESCRIPTION

Note: To be portable, metalevel-applications must give the SQL type code
and the fully-qualified SQL type name when specifying a NULL user-
defined or REF parameter. In the case of a user-defined type the name
is the type name of the parameter itself. For a REF parameter, the name is
the type name of the referenced type. If a metalevel-application does not
need the type code or type name information, it may ignore it.Although it
is intended for user-defined and Ref parameters, this method may be used
to set a null parameter of any JDBC type. If the parameter does not have a
user-defined or REF type, the given typeName is ignored.

– Parameters
∗ paramIndex – the first parameter is 1, the second is 2, ...
∗ sqlType – a value from java.sql.Types

∗ typeName – the fully-qualified name of an SQL user-defined type;
ignored if the parameter is not a user-defined type or REF

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setObject(int parameterIndex, java.lang.Object
x)
throws java.sql.SQLException

– Description
Sets the value of the designated parameter using the given object. The sec-
ond parameter must be of type Object; therefore, the java.lang equiva-
lent objects should be used for built-in types.
The JDBC specification specifies a standard mapping from Java Object
types to SQL types. The given argument will be converted to the corre-
sponding SQL type before being sent to the database.
If the object is of a class implementing the interface SQLData, the
metalevel-application should call the method SQLData.writeSQL to write
it to the SQL data stream. If, on the other hand, the object is of a
class implementing Ref, Blob, Clob, Struct, or Array, the metalevel-
application should pass it to the database as a value of the corresponding
SQL type.
In contrast to the JDBC specification, this method throws an exception if
the class of the object does not match the paramter meta-information.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the object containing the input parameter value

– Throws
∗ java.sql.SQLException – if a database access error occurs or

the type of the given object is ambiguous

• void setObject(int parameterIndex, java.lang.Object
x, int targetSqlType)
throws java.sql.SQLException

58

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Sets the value of the designated parameter with the given object. This
method is like the method setObject above, except that it assumes a scale
of zero.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the object containing the input parameter value
∗ targetSqlType – the SQL type (as defined in java.sql.Types) to be

sent to the database
– Throws

∗ java.sql.SQLException – if a database access error occurs

• void setObject(int parameterIndex, java.lang.Object
x, int targetSqlType, int scale)
throws java.sql.SQLException

– Description
Sets the value of the designated parameter with the given object. The sec-
ond argument must be an object type; for integral values, the java.lang
equivalent objects should be used.
The given Java object will be converted to the given targetSqlType before
being sent to the database.
If the object has a custom mapping (is of a class implementing the
interface SQLData), the metalevel-application should call the method
SQLData.writeSQL to write it to the SQL data stream. If, on the other
hand, the object is of a class implementing Ref, Blob, Clob, Struct, or
Array, the metalevel-application should pass it to the database as a value
of the corresponding SQL type.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the object containing the input parameter value
∗ targetSqlType – the SQL type (as defined in java.sql.Types) to be

sent to the database. The scale argument may further qualify this type.
∗ scale – for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC

types, this is the number of digits after the decimal point. For all other
types, this value will be ignored.

– Throws
∗ java.sql.SQLException – if a database access error occurs

– See also
∗ java.sql.Types

• void setRef(int i, java.sql.Ref x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given REF(<structured-type>)
value.

59

4.2 Package gorda.db 4 API DESCRIPTION

The metalevel-application converts this to an SQL REF value when it sends
it to the database.

– Parameters
∗ i – the first parameter is 1, the second is 2, ...
∗ x – an SQL REF value

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setShort(int parameterIndex, short x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java short value.
The metalevel-application converts this to an SQL SMALLINT value when
it sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setString(int parameterIndex, java.lang.String
x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given Java String value.
The metalevel-application converts this to an SQL VARCHAR or
LONGVARCHAR value (depending on the argument’s size relative to the
metalevel-application’s limits on VARCHAR values) when it sends it to the
database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setTime(int parameterIndex, java.sql.Time x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.sql.Time value.
The metalevel-application converts this to an SQL TIME value when it
sends it to the database.

60

4 API DESCRIPTION 4.2 Package gorda.db

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setTime(int parameterIndex, java.sql.Time x,
java.util.Calendar cal)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.sql.Time value, using
the given Calendar object.
The metalevel-application uses the Calendar object to construct an SQL
TIME value, which the metalevel-application then sends to the database.
With a Calendar object, the metalevel-application can calculate the time
taking into account a custom timezone. If no Calendar object is specified,
the metalevel-application uses the default timezone, which is that of the
virtual machine running the metalevel-application.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the parameter value
∗ cal – the Calendar object the metalevel-application will use to con-

struct the time

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setTimestamp(int parameterIndex,
java.sql.Timestamp x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.sql.Timestamp value.
The metalevel-application converts this to an SQL TIMESTAMP value when
it sends it to the database.

– Parameters
∗ parameterIndex – The index of the parameter, starting at position

1.
∗ x – The parameter value.

– Throws
∗ java.sql.SQLException – If a database access error occurs

• void setTimestamp(int parameterIndex,
java.sql.Timestamp x, java.util.Calendar cal)
throws java.sql.SQLException

61

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Sets the designated parameter to the given java.sql.Timestamp value,
using the given Calendar object.
The metalevel-application uses the Calendar object to construct an SQL
TIMESTAMP value, which the metalevel-application then sends to the
database. With a Calendar object, the metalevel-application can calculate
the timestamp taking into account a custom timezone. If no Calendar ob-
ject is specified, the metalevel-application uses the default timezone, which
is that of the virtual machine running the metalevel-application.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the parameter value
∗ cal – the Calendar object the metalevel-application will use to con-

struct the timestamp

– Throws
∗ java.sql.SQLException – if a database access error occurs

• void setURL(int parameterIndex, java.net.URL x)
throws java.sql.SQLException

– Description
Sets the designated parameter to the given java.net.URL value.
The metalevel-application converts this to an SQL DATALINK value when
it sends it to the database.

– Parameters
∗ parameterIndex – the first parameter is 1, the second is 2, ...
∗ x – the java.net.URL object to be set

– Throws
∗ java.sql.SQLException – if a database access error occurs

• boolean wasNull()
throws java.sql.SQLException

– Description
This method tests whether the value of the last parameter that was fetched
was actually a SQL NULL value.

– Returns – true if the last parameter fetched was a NULL, false other-
wise.

– Throws
∗ java.sql.SQLException – If an error occurs.

4.2.24 Interface Request

Reflects a client request.

62

4 API DESCRIPTION 4.2 Package gorda.db

Declaration public interface Request
extends RequestConstant, Context, ExecutionControl

Methods

• RequestProcessor getRequestProcessor()

– Description
Returns a reference to the request processor.

– Returns – The reference to the request processor.

• Transaction getTransaction()

– Description
Returns a reference of the current active transaction object.
However a null value may be returned when the request is not associated
to a transaction such as in a stream processing environment. Thus, whether
to return a null value or not is application dependent.

– Returns – A reference to the current active transaction object, if there is
any, null otherwise.

4.2.25 Interface RequestBeginListener

Defines the listener that will be notified whenever a request is made.

Declaration public interface RequestBeginListener

Methods

• void handleRequestBegin(Request request)

– Description
Is called whenever the listener is registered to receive request begin events.
If the wait flag is set to true at registration time (see
setRequestBeginListener (in 4.2.28, page 65), then this method
implementation must call continueExecution (in 4.2.21, page 45) or
cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the request being made.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ request – The request on which the event occurs.

4.2.26 Interface RequestCompletionListener

Defines the listener that will be notified whenever a request is made.

63

4.2 Package gorda.db 4 API DESCRIPTION

Declaration public interface RequestCompletionListener

Methods

• void handleRequestCompletion(Request request)

– Description
Is called whenever the listener is registered to receive request completion
events.
If the wait flag is set to true at registration time (see
setRequestCompletionListener (in 4.2.28, page 66), then
this method implementation must call continueExecution (in 4.2.21,
page 45).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the request being finishing.
If the listener has previously called the
Request.setNotificationIgnored (in 4.2.7, page 30) method,
then this notification must not happen.

– Parameters
∗ request – The request on which the event occurs.

4.2.27 Interface RequestConstant

Defines states and constants used by Request (in 4.2.24, page 62).

Declaration public interface RequestConstant

All known subinterfaces Request (in 4.2.24, page 62)

Fields

• int REQUEST_PROCESSING

– Defines that a request is being processed.
It must be notified and one must guarantee that access to meta information
and methods is possible.

• int REQUEST_PROCESSED

– Defines that a request was processed.
Right after processing the last statement issued in the context of a request,
one must change the state from processing to processed. The completion
of a request does not include writing to the log as such operations at this
point are executed asynchronously.
There is no obligation of notifying this information. This is optional as it
is always possible to detect completion of any request by checking directly
on the pipeline.

64

4 API DESCRIPTION 4.2 Package gorda.db

If one decides to do so, one must guarantee that access to at least a a request
identification is possible. Every meta information and methods that are not
available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state. Thus, any attempt to cancel this notification must throw an exception.

• int REQUEST_ERROR

– Defines that a request did not ended correctly or was canceled.
There is no obligation of notifying this information. This is optional as it is
always possible to detect recoverable errors by a transaction abort. Other
errors are detected when a database is put in panic mode.
However, if one decides to do so, one must guarantee that access to at least
a request identification is possible. Every meta information and methods
that are not available must throw an exception. Any attempt to change the
request must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state. Thus, any attempt to cancel this notification must throw an exception.

4.2.28 Interface RequestProcessor

Handles listener registration for request events and has a request repository.

Declaration public interface RequestProcessor

Methods

• Request getRequest(java.lang.String requestId)

– Description
Returns a copy of the request object with the given id.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the object and throwing an exception if any

method that attempts to change its state is called.
– Parameters

∗ requestId – The request identification.
– Returns – A copy of the request object with the given id, if there is any,
null otherwise.

• void setRequestBeginListener(RequestBeginListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon request begin.
Subsequent notifications, with respect to the request that ini-
tiated and its inner contexts, may be canceled afterwards us-
ing Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

65

4.2 Package gorda.db 4 API DESCRIPTION

– Parameters
∗ listener – The listener that handles request begin events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setRequestCompletionListener(RequestCompletionListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon request completion.
Subsequent notifications, with respect to the request comple-
tion and its inner contexts, may be canceled afterwards us-
ing Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles request completion events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.2.29 Interface Transaction

Reflects a transaction.

Declaration public interface Transaction
extends TransactionConstant, Context, ExecutionControl

Methods

• ConnectionContext getConnection()

– Description
Returns a reference to the reflected connection object.
There is no need of returning a copy of this object as one must do when
handling the method getRequest (in 4.2.29, page 67). Assuming a block-
ing notification, the connection context must be accessible by means of
transaction.

66

4 API DESCRIPTION 4.2 Package gorda.db

– Returns – the reference to a connection object.

• Request getRequest()

– Description
Returns a copy of a request object.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the object and throwing an exception if any

method that attempts to change its state is called.

– Returns – A copy of a request object, if there is any, otherwise null.

• Transaction getTransaction()

– Description
Returns a reference to the parent transaction.
This method must return null if this transaction is not a sub-transaction.
In contrast to getRequest (in 4.2.29, page 67), a reference to the trans-
action object must be returned. In this case, there is no problem as the
parent-transaction context is finished only after committing or aborting its
sub-transaction.

– Returns – The reference to a parent transaction, if any, null otherwise.

• int getTransactionIsolation()
throws java.sql.SQLException

– Description
Returns the transaction isolation level.
Isolation levels available:
∗ TRANSACTION_READ_UNCOMMITTED (in 4.2.32, page 71)
∗ TRANSACTION_READ_COMMITTED (in 4.2.32, page 72)
∗ TRANSACTION_REPEATABLE_READ (in 4.2.32, page 72)
∗ TRANSACTION_SERIALIZABLE (in 4.2.32, page 72)
∗ TRANSACTION_SNAPSHOT (in 4.2.32, page 72)

– Returns – The transaction current isolation level.

– Throws
∗ java.sql.SQLException – If a database access error occurs.

– See also
∗ Transaction.setTransactionIsolation() (in
4.2.29, page 68)

• TransactionProcessor getTransactionProcessor()

– Description
Returns a reference to the transaction processor.

– Returns – A reference to the associated transaction processor.

• long getVersion()

67

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Returns the transaction version number.
This information is used as a timestamp and must be assigned when a trans-
action starts processing its first command (e.g., select, insert, update, etc).
The version may not be available. In this case, this method
must acknowledges this situation by returning UNKNOWN_VERSION
(in 4.2.32, page 71). For instance, this may happen due to the fact
that a transaction just started and does not have a version assigned
to it. See TRANSACTION_BEGINNING (in 4.2.32, page 70) and
TRANSACTION_IDLE (in 4.2.32, page 70).

– Returns – The transaction version, if it is available, UNKNOWN_VERSION
(in 4.2.32, page 71) otherwise.

• void setTransactionIsolation(int level)
throws java.sql.SQLException

– Description
Changes the transaction isolation level.
Isolation levels available:
∗ TRANSACTION_READ_UNCOMMITTED (in 4.2.32, page 71)
∗ TRANSACTION_READ_COMMITTED (in 4.2.32, page 72)
∗ TRANSACTION_REPEATABLE_READ (in 4.2.32, page 72)
∗ TRANSACTION_SERIALIZABLE (in 4.2.32, page 72)
∗ TRANSACTION_SNAPSHOT (in 4.2.32, page 72)

If this method is called during execution (i.e., after processing the first
transaction’s command), an exception must be thrown.

– Throws
∗ java.sql.SQLException – If a) a database access error occurs,

b)the given parameter is not one of the constants or c), one have tried
to change it after starting processing the first command (i.e., in the
middle of a transaction).

– See also
∗ DatabaseMetaInfo (in 4.2.11, page 35)

∗ Transaction.getTransactionIsolation() (in
4.2.29, page 67)

4.2.30 Interface TransactionBeginListener

Defines the listener that will be notified whenever a transaction is being started.

Declaration public interface TransactionBeginListener

Methods

• void handleTransactionBegin(Transaction transaction)

68

4 API DESCRIPTION 4.2 Package gorda.db

– Description
Is called whenever a listener is registered to receive transaction begin
events.
If the wait flag is set to true at registration time (see
setTransactionBeginListener (in 4.2.34, page 73), then this
method implementation must call continueExecution (in 4.2.21, page
45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the transaction execution.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ transaction – The transaction on which the event occurs.

4.2.31 Interface TransactionCompletionListener

Defines the listener that will be notified whenever a transaction is being committed or
aborted.

Declaration public interface TransactionCompletionListener

Methods

• void handleTransactionCompletion(Transaction
transaction)

– Description
Is called whenever a listener is registered to receive transaction finish
events.
If the wait flag is set to true at registration time (see
setTransactionCompletionListener (in 4.2.34, page 74),
then this method implementation must call continueExecution (in
4.2.21, page 45).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the transaction execution.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ transaction – The transaction on which the event occurs.

4.2.32 Interface TransactionConstant

Defines states and constants used by Transaction (in 4.2.29, page 66).

Declaration public interface TransactionConstant

69

4.2 Package gorda.db 4 API DESCRIPTION

All known subinterfaces Transaction (in 4.2.29, page 66)

Fields

• int TRANSACTION_BEGINNING

– Defines that a transaction is beginning.
This is the first state and identifies that a transaction is initiating.
There is no obligation of notifying this information. However, if one de-
cides to do so, one must guarantee that access to Transaction’s meta
information and methods is possible.
In this state, a transaction may already be established but the control is not
returned to the client or other database parts, which means that requests
cannot be sent or processed.

• int TRANSACTION_IDLE

– Defines that a transaction has begun.
This is the second state and identifies that a transaction started but has not
done anything yet.
There is no obligation of notifying this information. However, if one de-
cides to do so, one must guarantee that access to Transaction’s meta
information and methods is possible.

• int TRANSACTION_ACTIVE

– Transaction is trying to execute its first command read or write. This must
only happen after IDLE.
It must be notified and one must guarantee that access to Transaction’s
meta information and methods is possible.
In this state, a version is assigned to the transaction and it is quite important
its notification.

• int TRANSACTION_UPDATE

– Transaction is trying to execute its first write. This must only happen after
ACTIVE.
There is no obligation of notifying this information. However, if one de-
cides to do so, one must guarantee that access to Transaction’s meta
information and methods is possible.

• int TRANSACTION_PREPARING

– Transaction is starting a commitment protocol. This must only happen after
UPDATE.
It must be notified and one must guarantee that access to Transaction’s
meta information and methods is possible.

• int TRANSACTION_PREPARED

70

4 API DESCRIPTION 4.2 Package gorda.db

– Transaction has finished the prepare protocol successfully. This must only
happened after PREPARING.
It must be notified and one must guarantee that access to Transaction’s
meta information and methods is possible.

• int TRANSACTION_COMMITTING

– Transaction is attempting to commit. This must only happen after IDLE,
ACTIVE, UPDATE or PREPARED.
It must be notified and one must guarantee that access to Transaction’s
meta information and methods is possible.

• int TRANSACTION_COMMITTED

– Transaction has successfully committed. This must only happen after
COMMITTING.
It must be notified and one must guarantee that access to at least a transac-
tion identification is possible. Every method and meta information that is
not available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state.

• int TRANSACTION_ABORTING

– Transaction is aborting.
It must be notified and one must guarantee that access to Transaction’s
meta information and methods is possible.

• int TRANSACTION_ABORTED

– Transaction has finished. This must only happen after ABORTING or
COMMITTING
It must be notified and one must guarantee that access to at least a transac-
tion identification is possible. Every method and meta information that is
not available must throw an exception.
It is worth noticing that it is not possible to cancel this event as it is a final
state.

• int UNKNOWN_VERSION

– A constant stating that the version is unknown.
This is used when a transaction have started and have not processed any
command (i.e., insert, update, delete or select command) , thus not being
assigned a version to its execution.

• int TRANSACTION_READ_UNCOMMITTED

– A constant stating that dirty reads, non-repeatable reads and phantom
reads may occur.
Dirty reads are described by the following example: a transaction t1 reads
a row changed by another transaction, t2 and before t2 commits. If any of
the changes, made by t2 in the row read by t1 are rolled back, t1 will have
retrieved an invalid row.

71

4.2 Package gorda.db 4 API DESCRIPTION

• int TRANSACTION_READ_COMMITTED

– A constant stating that dirty reads must not happen; non-repeatable reads
and phantom reads may occur.
In this isolation level, a transaction must not be allowed to read a row with
uncommitted changes in it.

• int TRANSACTION_REPEATABLE_READ

– A constant stating that dirty reads and non-repeatable reads must not
happen. Phantom reads may occur.
In this isolation level, transactions must not: a) be allowed to read a row
with uncommitted changes; b)find non-repeatable read issues.
A non-repeatable read issue is described by the following situation: a trans-
action t1 reads a row, afterwards, a second transaction, t2, updates the very
same row. Finally, t1 rereads the row, eventually getting different values
from the first read operation.

• int TRANSACTION_SERIALIZABLE

– A constant stating that dirty reads, non-repeatable reads and phantom
reads must not happen.
In this isolation level, restrictions described in
TRANSACTION_REPEATABLE_READ (in 4.2.32, page 72) must hold, as
well as there must not be any phantom rows issues.
A phantom row is described by the following example: a transaction, t1
reads all rows that meet a WHERE clause; afterwards a second transaction,
t2 inserts a row that satisfies the WHERE condition; finally, t1 rereads using
the same WHERE clause, retrieving the additional "phantom" rows, created
by t2.

• int TRANSACTION_SNAPSHOT

– A constant stating that dirty reads, non-repeatable reads and phantom
reads must not happen.
In this isolation level, restrictions described in
TRANSACTION_REPEATABLE_READ (in 4.2.32, page 72) must hold, as
well as there must not be any phantom rows issues. Unfortunately, write
skew problems arise.
A phantom row is described by the following example: a transaction, t1
reads all rows that meet a WHERE clause; afterwards a second transaction,
t2 inserts a row that satisfies the WHERE condition; finally, t1 rereads using
the same WHERE clause, retrieving the additional "phantom" rows, created
by t2.

4.2.33 Interface TransactionPrepareListener

Defines the listener that will be notified whenever a transaction is being prepared to be
committed.

Declaration public interface TransactionPrepareListener

72

4 API DESCRIPTION 4.2 Package gorda.db

Methods

• void handleTransactionPrepare(Transaction
transaction)

– Description
Is called whenever a listener is registered to receive transaction prepare
events.
If the wait flag is set to true at registration time (see
setTransactionPrepareListener (in 4.2.34, page 74), then
this method implementation must call continueExecution (in 4.2.21,
page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the transaction execution.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ transaction – The transaction on which the event occurs.

4.2.34 Interface TransactionProcessor

Handles listener registration for transaction events and has a transaction repository.

Declaration public interface TransactionProcessor

Methods

• Transaction getTransaction(java.lang.String
transactionId)

– Description
Returns a copy of the transaction object with the given id.
To avoid synchronization problems, one must do exactly what follows:
∗ Returning a copy of the object and throwing an exception if any

method that attempts to change its state is called.

– Parameters
∗ transactionId – The transaction identification.

– Returns – A copy of the transaction object with the given id, if there is any,
null otherwise.

• void setTransactionBeginListener(TransactionBeginListener
listener, boolean wait)

– Description
Registers a listener that must be notified upon when a transaction is being
started up.

73

4.2 Package gorda.db 4 API DESCRIPTION

Subsequent notifications, with respect to the transaction that is
being started up and its inner contexts, may be canceled af-
terwards using Dbms.setNotificationIgnored (in 4.2.7, page
30), Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30) or
Transaction.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles transaction startup events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setTransactionCompletionListener(TransactionCompletionListener
listener, boolean wait)

– Description
Registers a listener that must be notified when a transaction is being fin-
ished.
Subsequent notifications, with respect to the transaction that is
being finished and its inner contexts, may be canceled after-
wards using Dbms.setNotificationIgnored (in 4.2.7, page
30), Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30) or
Transaction.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that is to handle transaction finish events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setTransactionPrepareListener(TransactionPrepareListener
listener, boolean wait)

– Description
Registers a listener that is notified when the transaction is being prepared.
Subsequent notifications, with respect to the transaction that is
being prepared and its inner contexts, may be canceled after-
wards using Dbms.setNotificationIgnored (in 4.2.7, page
30), Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30) or
Transaction.setNotificationIgnored (in 4.2.7, page 30).

74

4 API DESCRIPTION 4.2 Package gorda.db

– Parameters

∗ listener – The listener for this event
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also

∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setTransactionUpdateListener(TransactionUpdateListener
listener, boolean wait)

– Description
Registers a listener that must be notified when a transaction performed its
first update statement.
Subsequent notifications, with respect to the transaction that is be-
ing receiving its first update and its inner contexts, may be can-
celed afterwards using Dbms.setNotificationIgnored (in 4.2.7,
page 30), Database.setNotificationIgnored (in 4.2.7, page
30), Connection.setNotificationIgnored (in 4.2.7, page 30) or
Transaction.setNotificationIgnored (in 4.2.7, page 30).

– Parameters

∗ listener – The listener that is to handle this event.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also

∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.2.35 Interface TransactionUpdateListener

Defines the listener that will be notified whenever a transaction executed its first update
statement.

Declaration public interface TransactionUpdateListener

Methods

• void handleTransactionUpdate(Transaction transaction)

75

4.2 Package gorda.db 4 API DESCRIPTION

– Description
Is called whenever the listener is registered to receive information on a
transaction that executed its first update statement.
If the wait flag is set to true at registration time (see
setTransactionUpdateListener (in 4.2.34, page 75), then
this method implementation must call continueExecution (in 4.2.21,
page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the transaction execution.
If the listener has previously called the setNotificationIgnored
(in 4.2.7, page 30) method, then this notification must not happen.

– Parameters
∗ transaction – The transaction on which the event occurs.

76

4 API DESCRIPTION 4.3 Package gorda.db.executor

4.3 Package gorda.db.executor

Events and interfaces associated with tuple sets (i.e., write sets and result sets) and
transaction log.

4.3.1 Interface ExecutorStage

Handles listener registration for object set events.

Declaration public interface ExecutorStage

Methods

• void setObjectSetReadListener(ObjectSetReadListener
listener, boolean wait)

– Description
Registers a listener that must be notified when an object set related
to read information is being processed. Subsequent notifications, with
respect to the logger object set and subsequent stages may be can-
celed afterwards using Dbms.setNotificationIgnored (in 4.2.7,
page 30), Database.setNotificationIgnored (in 4.2.7, page
30), Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction#setNotificationIgnored (in 4.2.7, page 30) or
Request#setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles object set events related to read

information.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

• void setObjectSetWriteListener(ObjectSetWriteListener
listener, boolean wait)

– Description
Registers a listener that must be notified when an object set related to
written information is being processed. Subsequent notifications, with
respect to the logger object set and subsequent stages may be can-
celed afterwards using Dbms.setNotificationIgnored (in 4.2.7,
page 30), Database.setNotificationIgnored (in 4.2.7, page
30), Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

77

4.3 Package gorda.db.executor 4 API DESCRIPTION

– Parameters
∗ listener – The listener that handles the object set events related to

written information.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.3.2 Interface ObjectSet

Determines an object set: an object generated after processing a statement.

The interface is built upon the java.sql.ResultSet and is used to define which
information was written and read while processing commands (e.g., update, delete,
insert, etc).

For written information, the object set must be defined as follows

• a delete TYPE_DML_DELETE (in 4.3.3, page 79): a result set with the deleted
tuples.

• TYPE_DML_INSERT (in 4.3.3, page 79)a result set with the inserted tuples

• an update TYPE_DML_UPDATE (in 4.3.3, page 79): a result set where each entry
is composed by the new tuple plus the old tuple.

For read information, the object set must be defined as follows

• a delete (in 4.3.3, page 79): a result set with the read tuples.

However, it is not a requirement to have read information if one decides to imple-
ment this stage. For further discussions on how to obtain a read set see GORDA
Documents (at http://gorda.di.uminho.pt).

Declaration public interface ObjectSet
extends java.sql.ResultSet, gorda.db.PipelineConstant,
ObjectSetConstant, gorda.db.ContextReference,
gorda.db.ExecutionControl

Methods

• ExecutorStage getExecutorStage()

– Description
Returns a reference to the executor stage.

– Returns – A reference to the executor stage.

78

4 API DESCRIPTION 4.3 Package gorda.db.executor

• int getObjectSetType()

– Description
Returns the type of the object set.
The type of the object is one: TYPE_DML_DELETE (in 4.3.3, page 79);
TYPE_DML_INSERT (in 4.3.3, page 79); TYPE_DML_UPDATE (in 4.3.3,
page 79) or TYPE_NO_UPDATES (in 4.3.3, page 79).

– Returns – The object set type.

4.3.3 Interface ObjectSetConstant

Defines states and constants used by ObjectSet (in 4.3.2, page 78).

Declaration public interface ObjectSetConstant

All known subinterfaces ObjectSet (in 4.3.2, page 78)

Fields

• int TYPE_DML_INSERT

– Defines that information is about to be inserted.

• int TYPE_DML_DELETE

– Defines that information is about to be deleted. It is worth noticing that any
changes to the object set does not make sense in this state. An exception is
thrown if one tries to do so.

• int TYPE_DML_UPDATE

– Defines that information is about to be updated.

• int TYPE_NO_CHANGES

– Defines that information was read.

4.3.4 Interface ObjectSetReadListener

Defines the listener that will be notified whenever an object set (i.e., read information)
is generated.

Declaration public interface ObjectSetReadListener

79

4.3 Package gorda.db.executor 4 API DESCRIPTION

Methods

• void handleObjectSetRead(ObjectSet objSet)

– Description
Is called whenever the listener is registered to receive object set (i.e., read
information) events.
If the wait flag is set to true at registration time (see
setObjectSetReadListener (in 4.3.1, page 77), then this method
implementation must call continueExecution (in 4.2.21, page 45) or
cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the object set execution.

– Parameters
∗ objSet – The object set (i.e., read information) on which the event

occurs.

4.3.5 Interface ObjectSetWriteListener

Defines a listener that will be notified whenever an object set (i.e., written information)
is generated.

Declaration public interface ObjectSetWriteListener

Methods

• void handleObjectSetWrite(ObjectSet objSet)

– Description
Is called whenever the listener is registered to receive object set (i.e., writ-
ten information) events.
If the wait flag is set to true at registration time (see
ObjectSetWriteListener (in 4.3.1, page 77), then this method
implementation must call continueExecution (in 4.2.21, page 45) or
cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the object set execution.

– Parameters
∗ objSet – The object set (i.e., written information) on which the event

occurs.

80

4 API DESCRIPTION 4.4 Package gorda.db.logminer

4.4 Package gorda.db.logminer
Events and interfaces associated with transaction log that provide transparent access to
its content.

4.4.1 Interface LoggerObjectSet

Defines a logger object set provided by a log miner mechanism. At least tuples must
be notified and the format must be the same defined by the ObjectSet (in 4.3.2, page
78).

Declaration public interface LoggerObjectSet
extends gorda.db.PipelineConstant, gorda.db.ExecutionControl

Methods

• gorda.db.executor.ObjectSet getLoggerObjectSet()

– Description
Returns a reference to an object set.

– Returns – A reference to an object set.

• LogMinerStage getLogMinerStage()

– Description
Returns a reference to the log miner stage.

– Returns – A reference to the log miner stage.

4.4.2 Interface LoggerObjectSetExecutionListener

Defines the listener that will be notified whenever a logger object set is being processed.

Declaration public interface LoggerObjectSetExecutionListener

Methods

• void handleLoggerObjectSetExecution(LoggerObjectSet
logger)

– Description
Is called whenever the listener is registered to receive logger object set
events.
If the wait fla iss set to true at registration time (see
setLoggerObjectSetExecutionListener (in 4.4.3, page
82), then this method implementation must call continueExecution
(in 4.2.21, page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the logger object set execution.

– Parameters
∗ logger – The logger object set on which the event occurs.

81

4.4 Package gorda.db.logminer 4 API DESCRIPTION

4.4.3 Interface LogMinerStage

Handles listener registration for logger object set events.

Declaration public interface LogMinerStage

Methods

• void setLoggerObjectSetExecutionListener(LoggerObjectSetExecutionListener
listener, boolean wait)

– Description
Registers a listener that must be notified when a logger object set is being.
Subsequent notifications, with respect to the logger object
set and subsequent stages may be canceled afterwards us-
ing Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles logger object set events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

82

4 API DESCRIPTION 4.5 Package gorda.db.parser

4.5 Package gorda.db.parser

Events and interfaces associated with parse trees.

4.5.1 Interface ParsedStatement

Determines a parsed statement: an object generated by the parser stage.

Declaration public interface ParsedStatement
extends gorda.db.PipelineConstant, gorda.db.ContextReference,
gorda.db.PreparedExecution, gorda.db.ExecutionControl

Methods

• boolean altersDatabaseCatalog()

– Description
Returns true if this request invalidates somehow the Database Catalog.

– Returns – true if the database catalog is altered.

• boolean altersDatabaseSchema()

– Description
Returns true if this request invalidates somehow the Database Schema.

– Returns – true if the database schema is altered.

• boolean altersStoredProcedureList()

– Description
Returns true if this request invalidates somehow the Stored Procedure List.

– Returns – true if the stored procedure list is altered.

• boolean altersUserDefinedTypes()

– Description
Returns true if this request invalidates somehow the User Defined Types.

– Returns – true if the UDTs are altered.

• boolean altersUsers()

– Description
Returns true if this request invalidates somehow the Users definition or
rights.

– Returns – true if the users are altered.

• ParserStage getParserStage()

– Description
Returns a reference to the parser stage.

83

4.5 Package gorda.db.parser 4 API DESCRIPTION

– Returns – The reference to the parser stage.

• java.util.Set getReadLockedTables()

– Description
Returns the list of table names that must be read locked by the execution of
this request.

– Returns – A set of string containing table names to be read locked by this
request. This list may be null or empty if no table needs to be locked.

• java.util.Set getReadTables()

– Description
Returns the list of table names that should be read by the execution of this
request.

– Returns – Set of string containing table names to be read by this request.
This list may be null or empty if no table needs to be read.

• java.util.Set getWriteLockedTables()

– Description
Returns the list of table names that must be write locked by the execution
of this request.

– Returns – A set of string containing table names to be write locked by this
request. This list may be null or empty if no table needs to be locked.

• java.util.Set getWriteTables()

– Description
Returns the list of table names that should be written by the execution of
this request.

– Returns – Set of string containing table names to be write by this request.
This list may be null or empty if no table needs to be written.

• boolean isAlter()

– Description
Returns true if this request in a ALTER statement. It is worth
noticing that this method subsumes the methods: altersUsers (in
4.5.1, page 83), altersUserDefinedTypes (in 4.5.1, page 83) ,
altersStoredProcedureList (in 4.5.1, page 83), (in 4.5.1, page 83)

and altersDatabaseCatalog (in 4.5.1, page 83).

– Returns – a boolean value

• boolean isCreate()

– Description
Returns true if this request in a CREATE statement.

– Returns – a boolean value

• boolean isCursor()

84

4 API DESCRIPTION 4.5 Package gorda.db.parser

– Description
Returns true if this request is related to cursor(s).
For instance, the following commands should be classified in this category:
DECLARE CURSOR | FETCH/MOVE | CLOSE

– Returns – a boolean value

• boolean isDelete()

– Description
Returns true if this request in a DELETE statement.

– Returns – a boolean value

• boolean isDrop()

– Description
Returns true if this request in a DROP statement.

– Returns – a boolean value

• boolean isInsert()

– Description
Returns true if this request in an INSERT statement.

– Returns – a boolean value

• boolean isLock()

– Description
Returns true if this request has hints on locks. For instance, the following
commands should be classified in this category: LOCK TABLE.

– Returns – a boolean value

• boolean isOther()

– Description
Returns true if this an administrative request.
For instance, the following commands must be classified as administra-
tive commands and most likely just makes sense locally: CHECKPOINT |
REINDEX | SET.

– Returns – a boolean value

• boolean isSelect()

– Description
Returns true if this request in a SELECT statement.

– Returns – a boolean value

• boolean isTransaction()

85

4.5 Package gorda.db.parser 4 API DESCRIPTION

– Description
Returns true if this request is related to transaction commands.
For instance, the following commands should be classified in this category:
BEGIN | COMMIT | ROLLBACK | SAVE POINT | PREPARE TRANS-
ACTION

– Returns – a boolean value

• boolean isUpdate()

– Description
Returns true if this request in an UPDATE statement.

– Returns – a boolean value

4.5.2 Interface ParsedStatementExecutionListener

Defines the listener that will be notified whenever a parsed statement event is being
processed.

Declaration public interface ParsedStatementExecutionListener

Methods

• void handleParsedStatementExecution(ParsedStatement
parsedSt)

– Description
Is called whenever the listener is registered to receive parsed statement
events.
If the wait flag is set to true at registration time (see
setParsedStatementExecutionListener (in 4.5.3, page
87), then this method implementation must call continueExecution
(in 4.2.21, page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the parsed statement execution.

– Parameters
∗ parsedSt – The parsed statement on which the event occurs.

4.5.3 Interface ParserStage

Handles listener registration for parsed statement events.

Declaration public interface ParserStage

86

4 API DESCRIPTION 4.5 Package gorda.db.parser

Methods

• void setParsedStatementExecutionListener(ParsedStatementExecutionListener
listener, boolean wait)

– Description
Registers a listener that must be notified when a parsed statement is being
processed.
Subsequent notifications, with respect to the execution plan
and subsequent stages may be canceled afterwards using
Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles parsed statement events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

87

4.6 Package gorda.db.receiver 4 API DESCRIPTION

4.6 Package gorda.db.receiver

Events and interfaces associated with raw statements.

4.6.1 Interface ReceiverStage

Handles listener registration for statement events.

Declaration public interface ReceiverStage

Methods

• void setStatementExecutionListener(StatementExecutionListener
listener, boolean wait)

– Description
Registers a listener that must be notified when an statement is being pro-
cessed.
Subsequent notifications, with respect to the statement
and subsequent stages may be canceled afterwards using
Dbms.setNotificationIgnored (in 4.2.7, page 30),
Database.setNotificationIgnored (in 4.2.7, page 30),
Connection.setNotificationIgnored (in 4.2.7, page 30),
Transaction.setNotificationIgnored (in 4.2.7, page 30) or
Request.setNotificationIgnored (in 4.2.7, page 30).

– Parameters
∗ listener – The listener that handles statement events.
∗ wait – if true the notifier must wait for the listener to proceed,
false otherwise.

– See also
∗ ExecutionControl.continueExecution() (in
4.2.21, page 45)

∗ ExecutionControl.cancelExecution() (in 4.2.21,
page 44)

4.6.2 Interface Statement

Defines an object statement: a command or a set of commands sent by a client to be
processed.

Declaration public interface Statement
extends gorda.db.PipelineConstant, gorda.db.ContextReference,
gorda.db.PreparedExecution, gorda.db.ExecutionControl

88

4 API DESCRIPTION 4.6 Package gorda.db.receiver

Methods

• ReceiverStage getReceiverStage()

– Description
Returns a reference to the receiver stage.

– Returns – A reference to the receiver stage.

• java.lang.String getStatement()

– Description
Returns the statement.

– Returns – The statement.

• void setStatement(java.lang.String statement)

– Description
Sets the statement.

– Parameters
∗ statement – The statement.

4.6.3 Interface StatementExecutionListener

Defines the listener that will be notified whenever a statement is being processed.

Declaration public interface StatementExecutionListener

Methods

• void handleStatementExecution(Statement statement)

– Description
Is called whenever a listener is registered to receive statement events.
If the wait flag is set to true at registration time (see
setStatementExecutionListener (in 4.6.1, page 88), then
this method implementation must call continueExecution (in 4.2.21,
page 45) or cancelExecution (in 4.2.21, page 44).
If the wait flag is set to false at registration time, then this method must
be run in parallel with the statement execution.

– Parameters
∗ statement – The statement on which the event occurs..

89

5 SAMPLES

5 Samples

5.1 Query Caching

This sample shows how to implement a simple query cache. Besides being an im-
portant issue in itself for replicated databases, this is also an example of an important
technique: how to replace statements in the context of a client initiated transaction
while still faking result sets obtained from a different source. This is useful for query
shipping and load balancing, for instance.
Note that this implementation fails to properly invalidate the cache when update opera-
tions are issued. This could be solved by using the object-set stage to inspect modified
data.
public class QueryCache implements StatementExecutionListener,

DatabaseStartupListener {
private static RequestProcessor reqProc;

private static LinkedHashMap cache = new LinkedHashMap() {
protected boolean removeEldestEntry(Map.Entry entry) {
return size() > 100;

}
};

As usual, the first step is to register all required event handlers. In detail, we use the
statement handler.
public QueryCache(DatabaseProcessor dbProc, RequestProcessor reqProc,

ReceiverStage stmtProc) {
QueryCache.reqProc = reqProc;
dbProc.setDatabaseStartupListener(this, true);
stmtProc.setStatementExecutionListener(this, true);

}

The core of the query cache is the method that gets called as a Java stored procedure.
It builds a result set from previously cached results and returns it.
public static void cacheLookup(String reqId, String query, ResultSet[] rs1)

throws SQLException {
Connection c = DriverManager.getConnection("jdbc:default:connection");

Transaction tx = reqProc.getRequest(reqId).getTransaction();
Utils.info("looking up: txid=" + tx.getId());

java.sql.Statement s = c.createStatement();
String cached = (String) cache.get(query);
if (cached == null) {
Utils.info("not found, executing: " + query);
ResultSet rs = s.executeQuery(query);
cached = "values ";
boolean first = true;
while (rs.next()) {
cached += "(";
if (!first)
cached += ", ";

first = false;
for (int i = 0; i < rs.getMetaData().getColumnCount(); i++) {
if (i != 0)
cached += ",";

cached += "’" + rs.getString(i + 1) + "’";
}
cached += ")";

}
cache.put(query, cached);

}
rs1 = new ResultSet[1];
rs1[0] = s.executeQuery(cached);
c.close();

}

90

5 SAMPLES 5.1 Query Caching

The key usage of the specification is in the intercepting and replacing statements with
calls to the cache lookup procedure.
public void handleStatementExecution(Statement statement) {
try {
switch (statement.getState()) {
case Statement.PIPELINE_PROCESSING:
if (statement.getStatement().toLowerCase().startsWith("select"))
statement.setStatement("CALL cacheLookup(’"

+ statement.getRequest().getId() + "’, ’"
+ statement.getStatement() + "’)");

statement.continueExecution();
break;

case Statement.PIPELINE_PROCESSED:
statement.continueExecution();
break;

case Statement.PIPELINE_ERROR:
statement.continueExecution();
Utils.cleanUp(new SQLException("ObjectSet - WriteSet Error."));
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

The Java stored procedure is registered upon startup of each database, transparently to
client configuration.
public void handleDatabaseStartup(Database database) {
try {
switch (database.getContextState()) {

case Database.DATABASE_STARTING:
database.continueExecution();
break;

case Database.DATABASE_UP:

DataSource ds = database.getDataSource();
Connection c = ds.getConnection();

java.sql.Statement s = c.createStatement();
s.execute("CREATE PROCEDURE cacheLookup(reqid VARCHAR(10), query VARCHAR(100))"
+ "PARAMETER STYLE JAVA LANGUAGE JAVA READS SQL DATA DYNAMIC RESULT SETS 1"
+ "EXTERNAL NAME ’gorda.demo.QueryCache.cacheLookup’");

s.close();
c.close();

database.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

}

91

5.2 Streaming 5 SAMPLES

5.2 Streaming

This sample shows how to use to capture changes to the database and publish them
to a JMS compliant publish-subscribe system. This allows any database server that
implements the specification to achieve a similar effect to Oracle Streams.
public class ChangePublisher implements TransactionBeginListener,

TransactionCompletionListener, ObjectSetWriteListener {

private MessageProducer sender;

private Session session;

The first step is to setup the meta-level code by registering all event listeners. Note that
we synchronously wait for transaction begin and end events.
public ChangePublisher(Session session, Destination dest,

TransactionProcessor tranProc, ExecutorStage objProc)
throws JMSException {

this.session = session;
sender = session.createProducer(dest);
tranProc.setTransactionBeginListener(this, true);
tranProc.setTransactionCompletionListener(this, true);
objProc.setObjectSetWriteListener(this, false);

}

When a transaction begins, either explicitly or implicitly, we are notified and initialize
the attached state to hold all changes until the transaction commits.
public void handleTransactionBegin(Transaction transaction) {
try {
switch (transaction.getContextState()) {

case Transaction.TRANSACTION_BEGINNING:
transaction.setAttachment(new Store());

case Transaction.TRANSACTION_IDLE:
case Transaction.TRANSACTION_ACTIVE:
transaction.continueExecution();
break;

}
} catch (Exception ex) {
Utils.cleanUp(ex);

}
}

public void handleTransactionCompletion(Transaction transaction) {
Store state = (Store) transaction.getAttachment();
TextMessage message = null;

try {
switch (transaction.getContextState()) {

We are not interested in doing anything else before the transaction commits. So we let
it proceed.

case Transaction.TRANSACTION_COMMITTING:
transaction.continueExecution();
break;

If the transaction has commited successfully, we wrap the changes performed as a text
message and publish it using JMS. Properties are set on the message to allow filtering.

case Transaction.TRANSACTION_COMMITTED:
message = session.createTextMessage();
message.setText("Committed transaction " + transaction.getId()

+ "\n" + state.toString());
message.setBooleanProperty("committed", true);
message.setStringProperty("database", transaction

92

5 SAMPLES 5.2 Streaming

.getConnection().getDatabase().getId());
message.setIntProperty("writes", state.writes());
sender.send(message);
transaction.continueExecution();
break;

case Transaction.TRANSACTION_ABORTING:
transaction.continueExecution();
break;

If the transaction has aborted, we nonetheless performed as a text message and publish
it using JMS. By setting the commited property, we allow filtering to occur within the
network.

case Transaction.TRANSACTION_ABORTED:
message = session.createTextMessage();
message.setText("Aborted transaction: " + transaction.getId()

+ "\n" + state.toString());
message.setBooleanProperty("committed", false);
message.setStringProperty("database", transaction

.getConnection().getDatabase().getId());
sender.send(message);
transaction.continueExecution();
break;

}
} catch (Exception ex) {
Utils.cleanUp(ex);

}
}

Upon each modification being performed, we store it in the context of the transaction
for later use.
public void handleObjectSetWrite(ObjectSet objSet) {
try {
switch (objSet.getState()) {

case ObjectSet.PIPELINE_PROCESSING:
Store state = (Store) objSet.getRequest().getTransaction()

.getAttachment();

Utils.makeUpdate(objSet, state);

objSet.continueExecution();
break;

case ObjectSet.PIPELINE_PROCESSED:
objSet.continueExecution();
break;

case ObjectSet.PIPELINE_ERROR:
objSet.continueExecution();
Utils.cleanUp(new SQLException("ObjectSet - WriteSet Error."));
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

}

93

5.3 Replication 5 SAMPLES

5.3 Replication

A simple asyncrhonous primary-backup replication protocol can be achived by relaying
changes to a backup replica using some communication protocol. In this example, a
simple stream socket is used, thus minimizing the amount of code.

public class NaivePrimary implements TransactionBeginListener,
TransactionCompletionListener, ObjectSetWriteListener, Runnable {

The primary, or master, must collect all changes done by clients. This is similar to
capturing changes in Section 5.2.
public NaivePrimary(TransactionProcessor tranProc,

ExecutorStage objProc) {
tranProc.setTransactionBeginListener(this, true);
tranProc.setTransactionCompletionListener(this, true);
objProc.setObjectSetWriteListener(this, true);

}

public void handleTransactionBegin(Transaction transaction) {
try {
switch (transaction.getContextState()) {
case Transaction.TRANSACTION_BEGINNING:
transaction.setAttachment(new Store());

case Transaction.TRANSACTION_IDLE:
case Transaction.TRANSACTION_ACTIVE:
transaction.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

Upon each transaction commiting, we queue updates for asynchronous propagation by
the separate thread.
public synchronized void handleTransactionCompletion(Transaction transaction) {
try {
switch (transaction.getContextState()) {
case Transaction.TRANSACTION_COMMITTING:
queue.add(transaction);
notifyAll();
break;

case Transaction.TRANSACTION_COMMITTED:
case Transaction.TRANSACTION_ABORTING:
case Transaction.TRANSACTION_ABORTED:
transaction.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

public void handleObjectSetWrite(ObjectSet objSet) {
try {
switch (objSet.getState()) {

case ObjectSet.PIPELINE_PROCESSING:
Store state = (Store) objSet.getRequest().getTransaction()

.getAttachment();
Utils.makeUpdate(objSet, state);

Utils.info("write value " + state.toString());

objSet.continueExecution();
break;

case ObjectSet.PIPELINE_PROCESSED:

94

5 SAMPLES 5.3 Replication

objSet.continueExecution();
break;

case ObjectSet.PIPELINE_ERROR:
objSet.continueExecution();
Utils.cleanUp(new SQLException("ObjectSet - WriteSet Error."));
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

The core of the primary replica is a separate thread that connects to a backup replica
and pushes updates as they become available on the local outgoing queue.
public void run() {
try {
ServerSocket ssock = new ServerSocket(12345);

while (true) {
Socket sock = ssock.accept();

updateBackup(sock);
}

} catch (Exception ex) {
Utils.cleanUp(ex);

}
}

private synchronized void updateBackup(Socket sock) {
Utils.info("Backup connected.");

try {
ObjectOutputStream outstr = new ObjectOutputStream(sock

.getOutputStream());
ObjectInputStream instr = new ObjectInputStream(sock

.getInputStream());

while (true) {
while (queue.isEmpty())
wait();

Utils.info("Sending update.");

Transaction evt = (Transaction) queue.removeFirst();

Store state = (Store) evt.getAttachment();

LinkedList concatStore = new LinkedList();

concatStore.addAll(state.insertStore);
concatStore.addAll(state.updateStore);
concatStore.addAll(state.deleteStore);

outstr.writeObject(concatStore);

outstr.flush();

Utils.info("Sending done, waiting acknowledgment.");

if (!instr.readBoolean()) {
evt.cancelExecution();
break;

}

Utils.info("Acknowledgment received.");

evt.continueExecution();
}
Utils.info("Backup refused update.");

} catch (Exception e) {
Utils.error("Backup disconnected.", e);

}

95

5.3 Replication 5 SAMPLES

try {
sock.close();

} catch (IOException ex) {
Utils.error("Socket error.", ex);

}
}

private LinkedList queue = new LinkedList();
}

The backup replica waits for updates being pushed by the primary replica and applies
them using the JDBC interface. Notice that the meta-level code is used to ensure that
no local updates are performed to the backup, which is available for read-only transac-
tions.

public class NaiveBackup implements DatabaseStartupListener,
ConnectionStartupListener, TransactionBeginListener,
TransactionCompletionListener, ObjectSetWriteListener, Runnable {

private String user = "refmanager";

private Connection conn;

public NaiveBackup(String db, DatabaseProcessor dbProc,
ConnectionProcessor connProc, TransactionProcessor tranProc,
ExecutorStage objProc) throws SQLException {

dbProc.setDatabaseStartupListener(this, true);
connProc.setConnectionStartupListener(this, true);
tranProc.setTransactionBeginListener(this, true);
tranProc.setTransactionCompletionListener(this, true);
objProc.setObjectSetWriteListener(this, true);

}

public void handleTransactionBegin(Transaction transaction) {
try {
switch (transaction.getContextState()) {
case Transaction.TRANSACTION_BEGINNING:
transaction.setAttachment(new Store());

case Transaction.TRANSACTION_IDLE:
case Transaction.TRANSACTION_ACTIVE:
transaction.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

Upon commit, check if updates have been performed and rollback the transaction.
public synchronized void handleTransactionCompletion(Transaction transaction) {
Store state = (Store) transaction.getAttachment();

Utils.info("Number of tuples written is " + state.writes() + ".");

try {
switch (transaction.getContextState()) {
case Transaction.TRANSACTION_COMMITTING:
if (state.writes() != 0) {
transaction.cancelExecution();

}
break;

case Transaction.TRANSACTION_COMMITTED:
case Transaction.TRANSACTION_ABORTING:
case Transaction.TRANSACTION_ABORTED:
transaction.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}

96

5 SAMPLES 5.3 Replication

}

public void handleObjectSetWrite(ObjectSet objSet) {
try {
switch (objSet.getState()) {
case ObjectSet.PIPELINE_PROCESSING:
Store state = (Store) objSet.getRequest().getTransaction()

.getAttachment();
while (objSet.next()) {
state.contWrites++;

}
objSet.continueExecution();
break;

case ObjectSet.PIPELINE_PROCESSED:
objSet.continueExecution();
break;

case ObjectSet.PIPELINE_ERROR:
objSet.continueExecution();
Utils.cleanUp(new SQLException("ObjectSet - WriteSet Error."));
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

The main loop waits for a connection from the primary and then receives updates and
applies them using JDBC connection. Notice that this is very naive in the sense that
sequential application of updates is performed. This is done to improve the readability
of the sample and can easily be done using the JDBC interface with a connection pool.
public void run() {
try {
Utils.info("Connecting to primary.");
Socket sock = new Socket("localhost", 12345);
Utils.info("Connected to primary.");

ObjectOutputStream outstr = new ObjectOutputStream(sock
.getOutputStream());

ObjectInputStream instr = new ObjectInputStream(sock
.getInputStream());

while (true) {
Utils.info("Waiting for update.");
LinkedList update = (LinkedList) instr.readObject();
Utils.info("Update received, applying.");

try {
Statement s = conn.createStatement();
Iterator i = update.iterator();
while (i.hasNext()) {
String up = (String) i.next();
Utils.info(up);
s.executeUpdate(up);

}
conn.commit();
s.close();

} catch (SQLException sqle) {
Utils.error("Failed update.", sqle);
outstr.writeBoolean(false);
break;

}
Utils.info("Sending acknowledgment.");
outstr.writeBoolean(true);
outstr.flush();

}
Utils.info("Backend refused update.");

} catch (Exception ex) {
Utils.error("Disconnected from master.", ex);
Utils.cleanUp(ex);

}
}

97

5.3 Replication 5 SAMPLES

This creates a connection to inject remote updates into the backup replica.
public void handleDatabaseStartup(Database database) {
try {
switch (database.getContextState()) {
case Database.DATABASE_STARTING:
database.continueExecution();
break;

case Database.DATABASE_UP:
conn = database.getDataSource().getConnection();
database.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

This disables reflection of processing of SQL statements issued when applying updates.
This ensures that only locally executed statements get reflected.
public void handleConnectionStartup(gorda.db.ConnectionContext connection) {
try {
switch (connection.getContextState()) {
case gorda.db.ConnectionContext.CONNECTION_STARTING:
ConnectionMetaInfo meta = connection.getConnectionMetaInfo();
if (meta != null && meta.getUserId() != null

&& meta.getUserId().equals(user))
connection.setNotificationIgnored(true);

case gorda.db.ConnectionContext.CONNECTION_UP:
connection.continueExecution();
break;

}
} catch (SQLException ex) {
Utils.cleanUp(ex);

}
}

}

98

A LICENSE

A License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COM-
MONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE
CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such
as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or
artistic work, or phonogram or performance and includes cinematographic adaptations or any other form
in which the Work may be recast, transformed, or adapted including in any form recognizably derived
from the original, except that a work that constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance
or phonogram, the synchronization of the Work in timed-relation with a moving image ("synching") will
be considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute
intellectual creations, in which the Work is included in its entirety in unmodified form along with one or
more other contributions, each constituting separate and independent works in themselves, which together
are assembled into a collective whole. A work that constitutes a Collection will not be considered an
Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work through sale or
other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of
this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity
or entities who created the Work or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who
act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions
of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including without
limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form
of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address,
sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work
or entertainment in dumb show; a musical composition with or without words; a cinematographic work
to which are assimilated works expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated
works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan,
sketch or three-dimensional work relative to geography, topography, architecture or science; a perfor-
mance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a
literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously violated
the terms of this License with respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public
those public recitations, by any means or process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that members of the public may
access these Works from a place and at a place individually chosen by them; to perform the Work to the

99

A LICENSE

public by any means or process and the communication to the public of the performances of the Work,
including by public digital performance; to broadcast and rebroadcast the Work by any means including
signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or
visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free
from copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work
as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

c. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights granted
under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect roy-
alties through any statutory or compulsory licensing scheme can be waived, the Licensor waives
the exclusive right to collect such royalties for any exercise by You of the rights granted under this
License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individu-
ally or, in the event that the Licensor is a member of a collecting society that administers voluntary
licensing schemes, via that society, from any exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject to
Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include
a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the
terms of this License or the ability of the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose
any effective technological measures on the Work that restrict the ability of a recipient of the Work from
You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does not require the Collection apart from
the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice
from any Licensor You must, to the extent practicable, remove from the Collection any credit as required
by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has been made
pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the
medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor
institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the

100

A LICENSE

Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to the copyright notice or licensing information
for the Work. The credit required by this Section 4(b) may be implemented in any reasonable manner;
provided, however, that in the case of a Collection, at a minimum such credit will appear, if a credit
for all contributing authors of the Collection appears, then as part of these credits and in a manner at
least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties,
as appropriate, of You or Your use of the Work, without the separate, express prior written permission of
the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law,
if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Collections,
You must not distort, mutilate, modify or take other derogatory action in relation to the Work which
would be prejudicial to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OF-
FERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITH-
OUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCU-
RACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW,
IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPE-
CIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of
the terms of this License. Individuals or entities who have received Collections from You under this
License, however, will not have their licenses terminated provided such individuals or entities remain in
full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this
License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the
applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release
the Work under different license terms or to stop distributing the Work at any time; provided, however
that any such election will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient
a license to the Work on the same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this License, and without further action by the
parties to this agreement, such provision shall be reformed to the minimum extent necessary to make
such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such
waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

101

A LICENSE

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here.
There are no understandings, agreements or representations with respect to the Work not specified here.
Licensor shall not be bound by any additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the
terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO
Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on
July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License
terms are sought to be enforced according to the corresponding provisions of the implementation of those
treaty provisions in the applicable national law. If the standard suite of rights granted under applicable
copyright law includes additional rights not granted under this License, such additional rights are deemed
to be included in the License; this License is not intended to restrict the license of any rights under
applicable law.

102

