
GROUP COMMUNICATION
SERVICE SPECIFICATION

ht
tp
://
go

rd
a.
di
.u
m
in
ho

.p
t

http://gorda.di.uminho.pt
http://gorda.di.uminho.pt

c©2006-2007 The GORDA Consortium. Some rights reserved.

Distribution is allowed according to Creative Commons
Attribution-NoDerivs 3.0 license. See Appendix A for details or visit:

http://creativecommons.org/licenses/by-nd/3.0/

http://creativecommons.org/licenses/by-nd/3.0/

Contents

1 Introduction and Background 6

1.1 Introduction . 6

1.2 The GORDA Project . 6

1.3 Relation with GCS . 6

1.4 Document Conventions . 7

1.4.1 Definitions . 7

1.4.2 Formatting Conventions 7

1.5 Contributors . 7

1.6 Feedback . 8

2 Scope and Requirements 9

2.1 Goals . 9

2.2 Non-Goals . 10

3 Design 11

3.1 Approach and Terminology . 11

3.2 Overview . 11

3.3 Configuration Interface . 11

3.4 Common Interface . 12

3.5 Data Interface . 12

3.6 Control Interface . 14

4 API Description 16

4.1 Package net.sf.jgcs . 19

4.1.1 Interface Annotation . 19

4.1.2 Interface ControlListener 19

4.1.3 Interface ControlSession 20

4.1.4 See also . 20

4.1.5 Interface DataSession . 21

4.1.6 See also . 21

4.1.7 Interface ExceptionListener 23

4.1.8 Interface GroupConfiguration 24

4.1.9 See also . 24

4.1.10 Interface Message . 24

4.1.11 Interface MessageListener 25

4.1.12 See also . 25

4.1.13 Interface Protocol . 25

4.1.14 See also . 25

4.1.15 Interface ProtocolFactory 26

4.1.16 Interface Service . 27

4.1.17 Interface ServiceListener 27

4.1.18 See also . 28

4.1.19 Exception ClosedSessionException 28

4.1.20 Exception DataSessionException 28

4.1.21 Exception JGCSException 29

4.1.22 Exception NotJoinedException 31

4.1.23 Exception UnsupportedServiceException 32

4.2 Package net.sf.jgcs.membership 33

4.2.1 Interface BlockListener . 33

4.2.2 Interface BlockSession . 33

4.2.3 Interface Membership . 34

4.2.4 Interface MembershipID 36

4.2.5 See also . 36

4.2.6 Interface MembershipListener 36

4.2.7 Interface MembershipSession 37

5 Samples 38

5.1 Third party configurator . 38

5.2 Early deliveries . 41

A License 43

Preface

This document, GORDA Group Communication Service Specification, specifies the
programming interfaces for generic group communication systems.

Revision History

Date Version Description
2007-04-04 0.1 Initial Draft

Who Should Use This Specification

The audience for this document are:

• implementors of database replication protocols;

• implementors of distributed systems that require group communication.

How This Specification Is Organized

Section 1 introduces the interface in the context of the GORDA project as well
as document conventions used. Section 2 describes the goals, scope, and re-
quirements of the proposed interface. Section 3 presents the abstract model of
transaction processing underlying the interface as well as key design patterns.
Section 4 discusses the interface in detail. Finally, Section 5 is a guide to sample
code distributed with the interface.

5

1 INTRODUCTION AND BACKGROUND

1 Introduction and Background

1.1 Introduction

This document specifies a programming interface for Group Communication
as well as minimum semantics that allow application portability. This interface
accommodates existing group communication services, enabling implementa-
tion independence. The interface is called Group Communication Service, or
simply GCS.

Group Communication is understood as a coordination paradigm that eases the
development of multi-participant applications. Some examples are replicated
servers, cooperative caches and multi-user cooperative applications.

1.2 The GORDA Project

The goal of the GORDA project is to foster database replication as a means to
address the challenges of trust, integration, performance, and cost in current
database systems underlying the information society. This is to be achieved by
standardizing architecture and interfaces, and by sparking their usage with a
comprehensive set of components ready to be deployed.

GORDA is supported by the European Community under the Sixth European
Union Framework Programme for Research and Technological Development,
thematic priority Information Society Technologies, contract number 004758.
The consortitum is composed by U. Minho, U. della Svizzera Italiana, U. Lis-
boa, INRIA Rhône-Alpes, Continuent, and MySQL.

More information is available at:

• http://gorda.di.uminho.pt

1.3 Relation with GCS

The specification is based on the GORDA Architecture and Programming Inter-
faces as described in GORDA deliverables D2.2 and D2.3. The main difference
is that a new interface to handle the exclusion of a member from a group was
created.

In the scope of the project, the presented interfaces were implemented us-
ing several group communication toolkits. A Java version of the interfaces
and all its implementations are available as open source code in the URL:
http://jgcs.sf.net.

6

http://gorda.di.uminho.pt
http://jgcs.sf.net

1 INTRODUCTION AND BACKGROUND 1.4 Document Conventions

1.4 Document Conventions

1.4.1 Definitions

This document uses definitions based upon those specified in RFC-2119 (See
http://www.ietf.org/). For a better reading experience these terms are written
in small letters.

Table 1: Specification terms.
Term Definition
MUST The associated definition is an absolute requirement

of this specification.
MUST NOT The definition is an absolute prohibition of this

specification.
SHOULD Indicates a recommended practice. There may exist

valid reasons in particular circumstances to ignore
this recommendation, but the full implications must
be understood and carefully weighed before choos-
ing a different course.

SHOULD NOT Indicates a non-recommended practice. There may
exist valid reasons in particular circumstances when
the particular behavior is acceptable or even useful,
but the full implications should be understood and
the case carefully weighed before implementing any
behavior described with this label.

MAY Indicates that an item is truly optional.

1.4.2 Formatting Conventions

This specification uses the following formatting conventions.

Table 2: Formatting conventions.
Convention Description
fixed Used in all Java code including keywords, data

types, constants, method names, variables, class
names, and interface names.

italic Used for emphasis and to signify the first use of a
term.

1.5 Contributors

• Alfranio Correia Jr., U. Minho

• Nuno Carvalho, U. Lisboa

• Nuno A. Carvalho, U. Minho

7

http://www.ietf.org/

1.6 Feedback 1 INTRODUCTION AND BACKGROUND

• Rui Oliveira, U. Minho

• José Pereira, U. Minho

• Luís Rodrigues, U. Lisboa

• Ricardo Vilaça, U. Minho

1.6 Feedback

Please send any comments and questions concerning this specification to:

community@gorda.di.uminho.pt

or

jgcs@lasige.di.fc.ul.pt

8

mailto:community@gorda.di.uminho.pt
mailto:jgcs@lasige.di.fc.ul.pt

2 SCOPE AND REQUIREMENTS

2 Scope and Requirements

2.1 Goals

No changes to payload required. No assumptions or changes should be made
on message payload. This means that implementing GCS does not require
specific data formats, additional message headers or additional messages ex-
changed. The toolkits that adopt GCS as their native interface can implement
GCS-specific optimizations. As a result, applications that use a specific pro-
tocol through GCS should be interoperable with legacy versions using native
interfaces. Furthermore, no specific constructors or data formats are forced on
the application. It must be possible to translate the interface to languages in
the same family such as C++ or C#.

Support service locator and dependency injection patterns. All details re-
garding protocol configuration and service selection must be encapsulated in
objects that may be supplied to the application by a third party (i.e. the con-
figurator) using a service locator or the dependency injection patterns. As an
example, this allows substitution by a stronger service, when the exact service
required by the application is not available in the target environment.

Support multiple group-based programming paradigms. The GCS interface
should be flexible enough to support different flavors of multicast communi-
cation based on process groups. The GCS should support both open groups
(where any process can send messages to the group) and closed groups (where
only group members can send messages to the group). It should also support
peer groups, in which messages are target to specific members of the group. As
an example, a multicast group is useful for data replication while a peer group
is useful in a load balancing application. Note that both flavors require precise
knowledge of current membership to function properly.

Export a flexible subsetable interface. The GCS should support the deploy-
ment of just parts of the interface to avoid redundancy. The GCS has been
designed to be subsetable, in the sense that parts can be independently reused,
without carrying along with partially implemented interfaces and runtime ex-
ceptions.

Non-blocking input/output and container-managed concurrency. GCS sup-
ports an event-driven interface. The application registers a number of call-
back listener interfaces to be notified of messages arriving and changes to
group composition. This avoids the requirement to have threads blocked on
input/output. It also allow the GCS implementations to cooperate with appli-
cation containers to optimize the number of concurrent threads, when concur-
rency requirements arise.

Accommodate latest research results. The interface should allow recent re-
search results, such as support semantic annotations and early delivery, to be
easily accommodated. In fact, the goal is to foster programming idioms that
naturally take advantage of such results as they become available.

9

2.2 Non-Goals 2 SCOPE AND REQUIREMENTS

2.2 Non-Goals

Specify a common set of service guarantees. The GCS avoids this pitfall by
assuming a configuration step that matches available service guarantees to ap-
plication requirements.

Exclusively reuse existing standard interfaces. It is a better option to pro-
vide a syntactically incompatible interface that embodies similar structure and
the same patterns such that programmers can easily make the transition.

Provide interfaces for protocol composition. The main problem is that the
mapping of an existing implementation to a component interface is not straight-
forward and thus the approach is not general. Furthermore, interfaces that
allow efficient assembly of fine-grained protocol components are likely to im-
pose a specific runtime that is not acceptable as a general purpose application
programming interface.

10

3 DESIGN

3 Design

3.1 Approach and Terminology

This specification is based on the basis needed to implement group communi-
cation in general. We use Java to illustrate the interfaces, but any object ori-
ented language may be used to implement the GCS.

3.2 Overview

The GCS interface is organized in four complementary interfaces, namely: the
configuration interface, the common interface, the data interface, and the con-
trol interface. Each of these interfaces is decribed below.

3.3 Configuration Interface

The configuration interface decouples the application code from specific imple-
mentations by requiring that a third party, the configurator, matches available
services with application requirements. It is composed by opaque objects as
follows:

ProtocolFactory The protocol factory must serve as the interface entry point
and triggers the initialization of runtime instances of a protocol imple-
mentation. At the semantic level, it encapsulates an implicit service guar-
antee specification which is enforced for all sessions.

GroupConfiguration A group configuration encapsulates the configuration
of a group that can be used to open a session that subsequently allows
messages to be sent or received, or the membership to be observed. As
the ProtocolFactory, at the semantic level it also encapsulates an implicit
service guarantee specification which is enforced for all messages ex-
changed. This object may be used as a key in hashtables.

Service A service encapsulates a specification of the guarantees to be enforced
on a particular message. Upon encountering a service specification that
is unknown or incompatible with group or protocol configuration, the
implementation must return some error. A partial order must be defined
on guarantees provided by services (i.e., some services may be stronger
than, and subsume, other services). Therefore, the application may use
the service interface to discover if a service guarantee is subsumed by
some other.

Annotation An annotation is an optional field that encapsulates semantic knowl-
edge about a message that may be used by the protocol. The contents
of the annotation are therefore implementation specific and protocols
should silently ignore unknown annotations without erroneous or un-
predictable behavior.

Configuration objects should be easily stored and retrived in configuration files
and directory services. The implementations should provide configuration ob-
jects with one or more of the following properties: are serializable and can be
constructed from properties files. For the same reason, these objects should not
be used to keep session state at runtime.

11

3.4 Common Interface 3 DESIGN

3.4 Common Interface

A protocol session is represented by a Protocol instance, obtained from the con-
figuration stored in a ProtocolFactory. Using a Protocol instance it is possible
to obtain, for a specific GroupConfiguration, a data and a control session. All
further operations must be invoked through one of these two interfaces. This
sequence is shown in Figure 1. Both data and control sessions identify group
members. Protocols may use different address formats and should wrap the
addresses.

Figure 1: Starting up a group communication instance.
nd:NamingService a:Application f:ProtocolFactory

lookup(proto)
 f
 createProtocol()

 «create»

p:Protocol

protocol
 lookup(group)

 group
 lookup(service)
 s
 openDataSession(group)

 «create»

d:DataSession

data
 openControlSession(group)
 «create»

c:ControlSession

control

Finally, exceptions thrown asynchronously within the protocol implementa-
tion are delivered to the application using the ExceptionListener interface. This
can be registered using either session object.

3.5 Data Interface

The data interface provides the methods for messages to be sent and received.
Whenever the application multicasts a message there is always a specific qual-
ity of service, i.e. a specific set of guarantees, associated with the request. The
guarantees may be implicitly derived from the group or protocol configuration
or explicitly set using a Service parameter. The data interface is as follows:

DataSession The data session provides methods for sending messages in both
multicast and peer groups. It also allows registering listeners for the var-
ious events.

Message This interface wraps payload and sender address. The only payload
supported is a byte array. The instances must be created by the DataSes-
sion. Implementors may provide this interface as a thin layer on imple-
mentation specific objects to avoid having to perform additional buffer
copy operations.

MessageListener Handles delivery of message payload. This is the main entry
point for incoming data. When no separate ServiceListener is being used,
implicitly does service notification.

12

3 DESIGN 3.5 Data Interface

ServiceListener Handles delivery of service notification events. Applications
that do not need to be optimized for concurrency may ignore this inter-
face.

The data interface may expose the early delivery feature to the application, us-
ing the Services interface. This should be done by delivering the payload to
the application as soon as it is received and then later notify the application
that the requested service has been ensured. This allows increased concur-
rency and masking of latency, by allowing the application to start processing
the message earlier, at least, by deserializing the message in parallel with the
execution of the remaining of the protocol. GCS should support this optimiza-
tion as described in Figure 2. The application registers a ServiceListener with
the DataSession. The protocol may deliver payload without ensuring services.
Upon handling the message, the application chooses how to proceed:

• Returns a context reference (any POJO) which the protocol associates
with the message. When the service is ensured, the protocol calls back
into the application providing references to both the context object and
the service object that has been achieved. The application then resumes
processing the message.

• Returns a null reference. This informs the protocol that no further notifi-
cations or service guarantees are required for this message and no further
callbacks should happen.

Protocols that do not natively support this interface may perform both call-
backs only after the final delivery.

Figure 2: Sending and receiving messages with the services.
sender:Application sds:DataSession toolkit: rds:DataSession ml:MessageListener sl:ServiceListener receiver:Application

setMessageListener(ml)

 setServiceListener(sl)

 createMessage()

 msg
 multicast(msg)
 multicast(msg)

 deliverMessage(msg)

 onMessage(msg)
 ctx
 ensure(se)

 onServiceEnsured(ctx,se)

On the sender side, the GCS also provides mechanisms to prevent the appli-
cation from being blocked when invoking the interface. For instance, a spe-
cific protocol implementation may not accept requests until some service is
ensured. Also, an implementation may perform end-to-end flow control, thus
throttling the sender in a similar fashion. The non-blocking interface works
as follows. Upon sending a message, an application may also specify a con-
text. This means that multicast does not block and the application gets notified
using the service listener callback.

GCS does not impose artificial limits to the application concurrency, namely
in the processing of incoming messages. This interface allows for concurrent

13

3.6 Control Interface 3 DESIGN

message delivery notifications whenever the requested service does not im-
pose ordering on messages. This applies both to payload deliveries, when no
service listener has been registered, as well as to service callbacks. Notice that
in the later, payload deliveries can always be performed concurrently, up to
an optimal concurrency degree, that may be coordinated with application con-
tainers.

Finally, the GCS provides support for the use of semantic knowledge. This
is achieved by letting application annotate messages with control information
that can be used by the group communication toolkit to selectively relax relia-
bility, order and view synchrony guarantees. For that purpose, the application
should obtain one or more annotation objects in an implementation specific
fashion. These are then handed to the protocol as parameters in the multicast
operation. Unknown semantic annotations should be ignored by the protocols.

3.6 Control Interface

The control interface is subsetable and the most simple interface should be im-
plemented only by best-effort multicast protocols. The basic interface is com-
posed by the following:

ControlSession Provides methods for entering and leaving a group, as well as
for registering a listener for control events.

ControlListener Allows a simple notification of members entering and leav-
ing the group. Precise semantics of these events, namely regarding con-
currency with message deliveries, depends on the implementation.

This interface may be used separatly for failure detection or cluster manage-
ment infrastructure, which are not directly related to group communication.
The implementations may choose to distinguish members that have left the
group voluntarily and in a controlled fashion from members that have failed
and thus been forcibly excluded.

If the implementation supports view synchronous, the extensions of the control
session must be used. The extensions are reflected in the following interfaces:

Membership Describes a view of the group. This may be used to obtain a
ranked list of all members, whose sort order depends on the implemen-
tation but which should be the same everywhere. It may also be used
to obtain information on the event leading to the view change, namely,
which processes have just been included and excluded and why.

MembershipID Provides an opaque unique identifier of the view, suitable for
being exchanged and stored persistently. This may be obtained from the
currently installed Membership object.

MembershipSession Provides methods to obtain the current membership and
register the callback for view change events.

MembershipListener Handles notifications of view change.

14

3 DESIGN 3.6 Control Interface

BlockSession Should be used only by implementations enforcing sending view
delivery, providing methods for signaling that the application has blocked
and that view change can proceed.

BlockListener Handles requests by the protocol for the application to block.

Figure 3: Joining a group.
x:Application lcs:ControlSession toolkit: rcs:ControlSessionml:MembershipListenerbl:BlockListener y:Application

setMembershipListener(ml)

 setBlockListener(bl)

 join()

 join()

 block()

 onBlock()
 blockOk()

 newMembership()
 newMembership()

 onMembershipChange()

The Figure 3 shows how the system should work when a member joins a group.
Support for view synchronous group communication requires that member-
ship notifications are coordinated with message and service notifications per-
formed by the corresponding data session. The implementation must ensure
that the view change notification is mutually exclusive with any other view de-
pendent event, namely, message delivery and service ensured callbacks. This
means that notification must not be issued concurrently with the view change.
Protocol implementations may allow this restriction to be lifted, but this should
be possible only by explicitly selecting a configuration option. Block notifica-
tions may be issued without any concurrency restrictions. This means that it is
up to the application to synchronize with any other active threads.

15

4 API DESCRIPTION

4 API Description

The specification is contained in package net.sf.jgcs and net.sf.jgcs.membership.
A diagram outlining the relations between individual interfaces is shown in the
Figures 4 and 5.

Detailed descriptions of the specification are provided in the following sec-
tions.

16

4 API DESCRIPTION

Figure 4: Group communication interfaces.

 U
n
su
p
p
o
rt
e
d
S
e
rv
ic
e
E
xc
e
p
tio
n

 «
in
te
rf
a
ce
»

 S
e
rv
ic
e
L
is
te
n
e
r

 «
in
te
rf
a
c
e
»

 S
e
rv
ic
e

 «
in
te
rf
a
ce
»

 P
ro
to
co
lF
a
ct
o
ry

 «
in
te
rf
a
ce
»

 P
ro
to
co
l

C
re
a
te
s

1
..

*

1

 «
in
te
rf
a
ce
»

 G
ro
u
p
C
o
n
fig
u
ra
tio
n

U
s
e
s

1
..

*

1

 «
in
te
rf
a
ce
»

 D
a
ta
S
e
ss
io
n

D
e
fin
e
s

1

1

 «
in
te
rf
a
ce
»

 C
o
n
tr
o
lS
e
ss
io
n

D
e
fi
n
e
s 1

1

 N
o
tJ
o
in
e
d
E
xc
e
p
tio
n

 «
in
te
rf
a
ce
»

 M
e
ss
a
g
e
L
is
te
n
e
r

 «
in
te
rf
a
ce
»

 M
e
ss
a
g
e

 J
G
C
S
E
xc
e
p
ti
o
n

 D
a
ta
S
e
ss
io
n
E
x
ce
p
tio
n

 C
lo
se
d
S
e
ss
io
n
E
x
ce
p
tio
n

 «
in
te
rf
a
ce
»

 E
xc
e
p
tio
n
L
is
te
n
e
r

N
o
ti
fie
s

1

1 N
o
tif
ie
s

1

1

C
re
a
te
s

0
..

*

1

N
o
tif
ie
s 1

1

N
o
tif
ie
s

1

1

 «
in
te
rf
a
ce
»

 C
o
n
tr
o
lL
is
te
n
e
r

N
o
tif
ie
s 1

1

 «
in
te
rf
a
ce
»

 A
n
n
o
ta
tio
n

17

4 API DESCRIPTION

Figure 5: Extension interfaces for virtual synchrony.

 «
in

te
rf

a
ce

»

 M
e
m

b
e
rs

h
ip

S
e
s
si

o
n

 «
in

te
rf

a
ce

»

 M
e
m

b
e
rs

h
ip

L
is

te
n
e
r

N
o
tif

ie
s

1

1

 «
in

te
rf

a
ce

»

 M
e
m

b
e
rs

h
ip

ID
 D
e
fin

e
s

1

1

 «
in

te
rf

a
ce

»

 M
e
m

b
e
rs

h
ip

D
e
fi
n
e
s

1

1

 «
in

te
rf

a
ce

»

 B
lo

c
k
S

e
s
si

o
n

 «
in

te
rf

a
ce

»

 B
lo

c
k
L
is

te
n
e
r

N
o
ti
fie

s

1

1

18

4 API DESCRIPTION 4.1 Package net.sf.jgcs

4.1 Package net.sf.jgcs

4.1.1 Interface Annotation

This class defines a Annotation. An Annotation should be used by the applica-
tion to give semantic information about the message to the Channel protocols
implementation.

Declaration public interface Annotation

4.1.2 Interface ControlListener

This class defines a ControlListener. This listener must be used by clients that
wish to be notified of changes in the members that join, leave or fail in a simple
group.

Declaration public interface ControlListener

Methods

• onFailed
void onFailed(java.net.SocketAddress peer)

– Description
Notification of a member that was detected as failed. This notifica-
tion means also that the member does not belong to the group any
more.

– Parameters

∗ peer – the address of the member that failed.

• onJoin
void onJoin(java.net.SocketAddress peer)

– Description
Notification of a new member in the group.

– Parameters

∗ peer – the address of the new member.

• onLeave
void onLeave(java.net.SocketAddress peer)

– Description
Notification of a member that leaved the group.

– Parameters

∗ peer – the address of the leaved member.

19

4.1 Package net.sf.jgcs 4 API DESCRIPTION

4.1.3 Interface ControlSession

This class defines a ControlSession. This Session is used to join and leave a
simple group. It is also used to register a ControlListener. An instance of this
session must be created by the Protocol interface.

4.1.4 See also

– 4.1.13, page 25

Declaration public interface ControlSession

All known subinterfaces MembershipSession (in 4.2.7, page 37), BlockSession
(in 4.2.2, page 33)

Methods

• getLocalAddress
java.net.SocketAddress getLocalAddress()

– Description
Gets the local address. It should return null if the member is not
joined to any group.

– Returns – the local address.

• isJoined
boolean isJoined()

– Description
Verifies if the member belongs to a group.

– Returns – true if the member is correctly joined, false otherwise.

• join
void join()
throws net.sf.jgcs.ClosedSessionException,
net.sf.jgcs.JGCSException

– Description
Joins the group. It must block until the join process is finished.

• leave
void leave()
throws net.sf.jgcs.ClosedSessionException,
net.sf.jgcs.JGCSException

– Description
Leaves the group. It must block until the leave process is finished.

20

4 API DESCRIPTION 4.1 Package net.sf.jgcs

• setControlListener
void setControlListener(ControlListener listener)

– Description
Adds a listener to deliver group membership notifications.

– Parameters

∗ listener – The listener to be bound to the membership ser-
vice.

• setExceptionListener
void setExceptionListener(ExceptionListener exception)
throws net.sf.jgcs.ClosedSessionException

– Description
Adds a listener to deliver exceptions related to message reception
and membership notifications.

– Parameters

∗ exception – the exception thrown by the implementation of
the interface.

4.1.5 Interface DataSession

This class defines a DataSession. This Session must be used to send and receive
messages to/from the group. An instance of a DataSession must be created on
the Protocol interface.

4.1.6 See also

– 4.1.13, page 25

Declaration public interface DataSession

Methods

• close
void close()

– Description
Closes the session. All resources that the session holds should be
freed and therefore no subsequent communication can be done.

• createMessage
Message createMessage()
throws net.sf.jgcs.ClosedSessionException

– Description
Creates an empty message that can be used (transmitted) through
the session.

21

4.1 Package net.sf.jgcs 4 API DESCRIPTION

– Returns – The message created.

• getGroup
GroupConfiguration getGroup()

– Description
Gets the group associated with this session.

– Returns – the group associated with this session.

• multicast
void multicast(Message msg, Service service,
java.lang.Object cookie, Annotation[] annotation)
throws java.io.IOException, net.sf.jgcs.UnsupportedServiceException

– Description
Sends a message to the group.

– Parameters

∗ msg – The message to be sent.
∗ service – the service needed by the application for message

delivery (e.g. total order) or null to use the default channel ser-
vice.

∗ cookie – a cookie used to identify the message in the future
(e.g. service notifications).

∗ annotation – semantic information provided by the applica-
tion to be used by communication protocols (e.g. semantic reli-
ability).

– Throws

∗ java.io.IOException –

• send
void send(Message msg, Service service,
java.lang.Object cookie, java.net.SocketAddress des-
tination, Annotation[] annotation)
throws java.io.IOException, net.sf.jgcs.UnsupportedServiceException

– Description
Sends a message to one particular member of the group.

– Parameters

∗ msg – The message to be sent.
∗ service – the service needed by the application for message

delivery (e.g. total order) or null to use the default channel ser-
vice.

∗ cookie – a cookie used to identify the message in the future
(e.g. service notifications).

∗ destination – the destination of the message.

22

4 API DESCRIPTION 4.1 Package net.sf.jgcs

∗ annotation – semantic information provided by the applica-
tion to be used by communication protocols (e.g. semantic reli-
ability).

– Throws
∗ java.io.IOException –

• setExceptionListener
void setExceptionListener(ExceptionListener exception)
throws net.sf.jgcs.ClosedSessionException

– Description
Adds a listener to deliver exceptions related to message reception.

– Parameters
∗ exception – the exception thrown by the implementation of

the interface.

• setMessageListener
void setMessageListener(MessageListener listener)
throws net.sf.jgcs.ClosedSessionException

– Description
Adds a listener to deliver messages from this channel.

– Parameters
∗ listener – The listener to be bound to the channel.

• setServiceListener
void setServiceListener(ServiceListener listener)
throws net.sf.jgcs.ClosedSessionException

– Description
Adds a listener to deliver notifications from this channel.

– Parameters
∗ listener – the listener to be bound to the channel.

4.1.7 Interface ExceptionListener

This class defines a ExceptionListener. This listener must be used to receive
exceptions that could occour on message reception.

Declaration public interface ExceptionListener

Methods

• onException
void onException(JGCSException exception)

– Description
Notification of an exception that occurred when the underlying im-
plementation was receiving a message.

– Parameters
∗ exception – the exception.

23

4.1 Package net.sf.jgcs 4 API DESCRIPTION

4.1.8 Interface GroupConfiguration

This class defines a GroupConfiguration. Interface that provides a Group con-
figuration to open Sessions (in 4.1.5, page 21). This Interface must be used to-
gether with the Protocol (in 4.1.13, page 25) to create a DataSession (in 4.1.5, page
21) and a ControlSession (in 4.1.3, page 20).

4.1.9 See also

– 4.1.5, page 21
– 4.1.3, page 20
– 4.1.13, page 25

Declaration public interface GroupConfiguration

4.1.10 Interface Message

This class defines a Message. Messages exchanged using the underlying toolkit
must implement this interface. Instances of this interface must be retrieved
from the DataSession (in 4.1.5, page 21).

Declaration public interface Message

Methods

• getPayload
byte[] getPayload()

– Description
Gets the payload from the message.

– Returns – the payload from the message.

• getSenderAddress
java.net.SocketAddress getSenderAddress()

– Description
Gets the sender address.

– Returns – the sender address

• setPayload
void setPayload(byte[] buffer)

– Description
Sets the payload for the message.

– Parameters

∗ buffer – The payload to be stored in the message.

24

4 API DESCRIPTION 4.1 Package net.sf.jgcs

• setSenderAddress
void setSenderAddress(java.net.SocketAddress sender)

– Description
Sets the sender address.

– Parameters
∗ sender – the sender address.

4.1.11 Interface MessageListener

This class defines a MessageListener. This listener must be used to receive
messages.

4.1.12 See also

– 4.1.5, page 21
– 4.1.16, page 27
– 4.1.17, page 27

Declaration public interface MessageListener

All known subinterfaces ServiceListener (in 4.1.17, page 27)

Methods

• onMessage
java.lang.Object onMessage(Message msg)

– Description
Delivers a message from the channel to the application. To use this
listener together with the Services, a cookie must be returned by the
application.

– Parameters
∗ msg – The message received from the channel.

– Returns – the cookie of the message.

4.1.13 Interface Protocol

This interface defines a Protocol represents an instance of the toolkit used to
implement the Group Communication Service (GCS). This interface must be
used to create instances of DataSession and Control Session.

4.1.14 See also

– 4.1.5, page 21
– 4.1.3, page 20
– 4.1.8, page 24

25

4.1 Package net.sf.jgcs 4 API DESCRIPTION

Declaration public interface Protocol

Methods

• openControlSession
ControlSession openControlSession(GroupConfiguration
group)
throws net.sf.jgcs.JGCSException

– Description
Creates a new Control Session. This session must be used to join a
group and register a listener to receive asynchronous notifications
about the other members of the group (join, leave, fail).

– Parameters

∗ group – the group configuration.

– Returns – a new control session.

– Throws

∗ net.sf.jgcs.JGCSException –

• openDataSession
DataSession openDataSession(GroupConfiguration group)
throws net.sf.jgcs.JGCSException

– Description
Creates e new Data Session. This session must be used to send mes-
sages and to register a listener to receive messages from the other
members of the group.

– Parameters

∗ group – the configuration.

– Returns – a new data session.

– Throws

∗ net.sf.jgcs.JGCSException –

4.1.15 Interface ProtocolFactory

This class defines a ProtocolFactory This factory must be used to create in-
stances of Protocols. It should be stateless and represents one toolkit.

Declaration public interface ProtocolFactory

Methods

• createProtocol
Protocol createProtocol()
throws net.sf.jgcs.JGCSException

26

4 API DESCRIPTION 4.1 Package net.sf.jgcs

– Description
Creates a new Protocol that represents a toolkit.

– Returns – a new protocol.

– Throws

∗ net.sf.jgcs.JGCSException –

4.1.16 Interface Service

This class defines a Service. A Service is some functionality that the channel
needs to provide to the application. One example is the optimistic total or-
der. If an application creates a channel that provides optimistic total order, the
application will receive the message payload with out guarantees and will be
notified later about optimistic delivery, regular delivery, uniform delivery, etc.
These notifications must implement this interface. All related services must be
comparable with each other (e.g. uniform delivery is a stronger service than
regular delivery, so if the message is uniform, it’s also regular and optimistic –
optimistic lower than regular lower than uniform).

Declaration public interface Service

Methods

• compare
int compare(Service service)
throws net.sf.jgcs.UnsupportedServiceException

– Description
Compares two Services of the same protocol. return 0 if the services
are the same, -1 if the service has lower properties than the given
service, 1 if the service has greater properties than the given service.

– Parameters

∗ service – the service to compare.

– Returns – 0 - same service, 1 greater service, -1 otherwise

– Throws

∗ net.sf.jgcs.UnsupportedServiceException – if the
service is not comparable.

4.1.17 Interface ServiceListener

This class defines a ServiceListener. Listeners interested in receiving notifica-
tions about guarantees of requested services on messages must implement this
interface.

27

4.1 Package net.sf.jgcs 4 API DESCRIPTION

4.1.18 See also

– 4.1.5, page 21
– 4.1.16, page 27

Declaration public interface ServiceListener
extends MessageListener

Methods

• onServiceEnsured
void onServiceEnsured(java.lang.Object context, Service
service)

– Description
Notifies the application that one certain service to a message deliv-
ery is already ensured. The message is identified by the context.
This context must be previously provided by the application.

– Parameters

∗ context – context previously provided by the application that
identifies a message.

∗ service – service ensured.

4.1.19 Exception ClosedSessionException

This class defines a ClosedSessionException.

Declaration public class ClosedSessionException
extends net.sf.jgcs.JGCSException (in 4.1.21, page 29)

Constructors

• ClosedSessionException
public ClosedSessionException()

• ClosedSessionException
public ClosedSessionException(java.lang.String s)

• ClosedSessionException
public ClosedSessionException(java.lang.String s,
java.lang.Throwable t)

4.1.20 Exception DataSessionException

This class defines a DataSessionException.

28

4 API DESCRIPTION 4.1 Package net.sf.jgcs

Declaration public class DataSessionException
extends net.sf.jgcs.JGCSException (in 4.1.21, page 29)

Constructors

• DataSessionException
public DataSessionException()

– Description
Creates a new DataSessionException.

• DataSessionException
public DataSessionException(java.lang.String message)

– Description
Creates a new DataSessionException.

– Parameters

∗ message – the error message.

• DataSessionException
public DataSessionException(java.lang.String message,
java.lang.Throwable cause)

– Description
Creates a new DataSessionException.

– Parameters

∗ message – the error message
∗ cause – the thowable that caused this exception.

4.1.21 Exception JGCSException

This class defines a JGCSException.

Declaration public class JGCSException
extends java.io.IOException

All known subclasses UnsupportedServiceException (in 4.1.23, page 32),
NotJoinedException (in 4.1.22, page 31), DataSessionException (in 4.1.20, page 28),
ClosedSessionException (in 4.1.19, page 28)

Constructors

• JGCSException
public JGCSException()

– Description
Creates a new JGCSException.

29

4.1 Package net.sf.jgcs 4 API DESCRIPTION

• JGCSException
public JGCSException(java.lang.String s)

– Description
Creates a new JGCSException.

– Parameters
∗ s – the error message.

• JGCSException
public JGCSException(java.lang.String s, int code)

– Description
Creates a new JGCSException.

– Parameters
∗ s – the error message.
∗ code – the error code.

• JGCSException
public JGCSException(java.lang.String s,
java.lang.Throwable cause)

– Description
Creates a new JGCSException.

– Parameters
∗ s – the error message.
∗ cause – the throwable that caused this exception.

• JGCSException
public JGCSException(java.lang.String s,
java.lang.Throwable cause, int code)

– Description
Creates a new JGCSException.

– Parameters
∗ s – the error message
∗ cause – the throwable that caused this exception.
∗ code – the error code

Methods

• getCause
public java.lang.Throwable getCause()

– Description
Gets the throwable that caused this exception.

• getErrorCode
public int getErrorCode()

– Description
Gets the error code that identifies the error ocurred.

– Returns – the error code.

30

4 API DESCRIPTION 4.1 Package net.sf.jgcs

4.1.22 Exception NotJoinedException

This class defines a NotJoinedException.

Declaration public class NotJoinedException
extends net.sf.jgcs.JGCSException (in 4.1.21, page 29)

Constructors

• NotJoinedException
public NotJoinedException()

– Description
Creates a new NotJoinedException.

• NotJoinedException
public NotJoinedException(java.lang.String s)

– Description
Creates a new NotJoinedException.

– Parameters
∗ s – the error message

• NotJoinedException
public NotJoinedException(java.lang.String s, int code
)

– Description
Creates a new NotJoinedException.

– Parameters
∗ s – the error message.
∗ code – the error code.

• NotJoinedException
public NotJoinedException(java.lang.String s,
java.lang.Throwable cause)

– Description
Creates a new NotJoinedException.

– Parameters
∗ s – the error message.
∗ cause – the throwable that caused this exception.

• NotJoinedException
public NotJoinedException(java.lang.String s,
java.lang.Throwable cause, int code)

– Description
Creates a new NotJoinedException.

– Parameters
∗ s – the error message.
∗ cause – the throwable that caused this exception.
∗ code – the error code.

31

4.1 Package net.sf.jgcs 4 API DESCRIPTION

4.1.23 Exception UnsupportedServiceException

This class defines a UnsupportedServiceException.

Declaration public class UnsupportedServiceException
extends net.sf.jgcs.JGCSException (in 4.1.21, page 29)

Constructors

• UnsupportedServiceException
public UnsupportedServiceException()

– Description
Creates a new UnsupportedServiceException.

• UnsupportedServiceException
public UnsupportedServiceException(java.lang.String mes-
sage)

– Description
Creates a new UnsupportedServiceException.

– Parameters

∗ message – the error message.

• UnsupportedServiceException
public UnsupportedServiceException(java.lang.String mes-
sage, java.lang.Throwable cause)

– Description
Creates a new UnsupportedServiceException.

– Parameters

∗ message – the error message.
∗ cause – the throwable that caused this exception.

32

4 API DESCRIPTION 4.2 Package net.sf.jgcs.membership

4.2 Package net.sf.jgcs.membership

4.2.1 Interface BlockListener

This class defines a BlockListener. This listener must be used to receive notifi-
cations that a group membership will block.

Declaration public interface BlockListener

Methods

• onBlock
void onBlock()

– Description
Block notification. Upon this notification, the application must flush
all pending messages and notify the session with the (in 4.2.2, page
33) method. The view change will not continue if this does not hap-
pen. After the group is blocked, the members cannot send more
messages until a new Membership view is received.

4.2.2 Interface BlockSession

This class defines a BlockSession. This session should be used by toolkits
that implement Group Communication with flush of messages before a view
change.

Declaration public interface BlockSession
extends MembershipSession

Methods

• blockOk
void blockOk()
throws net.sf.jgcs.NotJoinedException,
net.sf.jgcs.JGCSException

– Description
This method must be used by the application after it received a
block notification and flushed all pending messages. After calling
this method, the application cannot send any more messages until it
receives a notification of a membership change.

– Throws

∗ net.sf.jgcs.NotJoinedException – if the member is not
in a group.

∗ net.sf.jgcs.JGCSException – if an error ocurs.

33

4.2 Package net.sf.jgcs.membership 4 API DESCRIPTION

• isBlocked
boolean isBlocked()
throws net.sf.jgcs.NotJoinedException

– Description
Verifies if the group is blocked or not.

– Returns – true if the group is blocked, false otherwise.

– Throws

∗ net.sf.jgcs.NotJoinedException – if the member is not
in a group.

• setBlockListener
void setBlockListener(BlockListener listener)
throws net.sf.jgcs.JGCSException

– Description
Registers a listener for the block notification.

– Parameters

∗ listener – the listener to register.

– Throws

∗ net.sf.jgcs.JGCSException – if an error ocurs.

4.2.3 Interface Membership

This class defines a Membership.

Declaration public interface Membership

Methods

• getCoordinatorRank
int getCoordinatorRank()

– Description
Gets the rank of the coordinator of this group.

– Returns – the rank of the coordinator of the group.

• getFailedMembers
java.util.List getFailedMembers()

– Description
Gets a list of members that failed since the previous membership.

– Returns – a list of failed members or null if there are none.

• getJoinedMembers
java.util.List getJoinedMembers()

34

4 API DESCRIPTION 4.2 Package net.sf.jgcs.membership

– Description
Gets a list of members that joined the group since the previous mem-
bership.

– Returns – a list of new members or null if there are none.

• getLeavedMembers
java.util.List getLeavedMembers()

– Description
Gets a list of members that leaved the group since the previous
membership.

– Returns – a list of old members or null if there are none.

• getLocalRank
int getLocalRank()
throws net.sf.jgcs.NotJoinedException

– Description
Gets the local rank of the member in this membership.

– Returns – the local rank of this member.

– Throws

∗ net.sf.jgcs.NotJoinedException – if the member is not
in a group.

• getMemberAddress
java.net.SocketAddress getMemberAddress(int rank)

– Description
Gets the socket address of the member that has the given rank.

– Parameters

∗ rank – the rank of the member.

– Returns – the socket address of the member.

• getMemberRank
int getMemberRank(java.net.SocketAddress peer)

– Description
Gets the member rank that has the given socket address, or null if
there is no matching rank.

– Parameters

∗ peer – the socket address of the member.

– Returns – the rank of the member.

• getMembershipID
MembershipID getMembershipID()

– Description
Gets the current membership ID.

– Returns – the current membership ID.

35

4.2 Package net.sf.jgcs.membership 4 API DESCRIPTION

• getMembershipList
java.util.List getMembershipList()

– Description
Gets the current view of the membership.

– Returns – the current view of the membership.

4.2.4 Interface MembershipID

This class defines a MembershipID. It represents an ID of the member-
ship, that must change and grow on every view change, according to the
java.lang.Comparable interface.

4.2.5 See also

– java.lang.Comparable

Declaration public interface MembershipID
extends java.lang.Comparable

4.2.6 Interface MembershipListener

This class defines a MembershipListener. This listener must be used to receive
membership, when the control session used implements the MembershipSes-
sion or BlockSession interfaces.

Declaration public interface MembershipListener

Methods

• onExcluded
void onExcluded()

– Description
Notification from the membership to indicate that the registered
member does not belong to the group any more. This should hap-
pen when the member lost intermediate views (for instance, when
using primary views) and lost some messages. After receiving this
notification, the member may try to rejoin again.

• onMembershipChange
void onMembershipChange()

– Description
Notification of a MembershipChange. This should happen due to
joining, leaving or failure of group members, but also because of
merging or partitioning of memberships. The new membership can
be retrieved from the MembershipSession.

36

4 API DESCRIPTION 4.2 Package net.sf.jgcs.membership

4.2.7 Interface MembershipSession

This class defines a MembershipSession. This session should be implemented
when the underlying toolkit provides extended view synchrony semantics.

Declaration public interface MembershipSession
extends net.sf.jgcs.ControlSession

All known subinterfaces BlockSession (in 4.2.2, page 33)

Methods

• getMembership
Membership getMembership()
throws net.sf.jgcs.NotJoinedException

– Description
Gets the current Membership.

– Returns – a membership.

– Throws

∗ net.sf.jgcs.NotJoinedException – if the member is not
joined

• getMembershipID
MembershipID getMembershipID()
throws net.sf.jgcs.NotJoinedException

– Description
Gets the current membership ID

– Returns – the current membership ID

– Throws

∗ net.sf.jgcs.NotJoinedException – if the member is not
joined

• setMembershipListener
void setMembershipListener(MembershipListener listener)

– Description
Registers a listener for the membership changes.

– Parameters

∗ listener – the listener to register.

37

5 SAMPLES

5 Samples

5.1 Third party configurator

This sample shows how to setup a group communication toolkit that was pre-
viously configured using a Naming and Directory Interface.

The sample uses virtual synchrony and implements all the listeners used to
receive messages, exceptions and membership notifications.

public class JNDITest implements MessageListener, ControlListener,
MembershipListener, BlockListener, Runnable {

private static final int NUM_MESSAGES=10;
private ControlSession control;
private DataSession data;
private Context ctx;
private Service service;

public JNDITest(Context x) throws JGCSException, NamingException {
this.ctx=x;

The first object to lookup is the protocol factory. This object represents the
toolkit that will be used by this application.

ProtocolFactory pf = (ProtocolFactory) x.lookup("myProto");

A protocol can now be created. This object represents an instance of the toolkit
that will be used for group communication.

Protocol p = pf.createProtocol();

The application must also lookup a GroupConfiguration object that represents
a configuration of the group communication.

GroupConfiguration g = (GroupConfiguration) x.lookup("myGroup");

A service object is needed to send messages. The application may use differ-
ent services for different messages, if it need to send messages with different
qualities of service.

service = (Service) ctx.lookup("myService");

Using the configuration object provided by a the configuration process and the
previously created protocol, instances of data and control sessions can now be
created. A data session will be used to send and receive messages. The control
session will be used to join the group and receive notifications concerning the
other elements of the group.

this.control = p.openControlSession(g);
this.data = p.openDataSession(g);

The listeners must be set before the application starts using the group commu-
nication toolkit.

data.setMessageListener(this);
control.setControlListener(this);
if (control instanceof MembershipSession)

((MembershipSession) control).setMembershipListener(this);
if (control instanceof BlockSession)

((BlockSession) control).setBlockListener(this);
}

38

5 SAMPLES 5.1 Third party configurator

This method will run after the creation of the class. At this point, all the nec-
essary objects were already retrieved from the lookup service. The application
joins the group, sends some messages and finally leaves the group.

public void run() {
try {

control.join();
for (int i = 0; i < NUM_MESSAGES; i++) {

Thread.sleep(1000);

A new message object must be created using the data session.

Message message = data.createMessage();
message.setPayload("hello world!".getBytes());

The message is sent to the group using the service previously retrieved from
the lookup service.

data.multicast(message, service, null);
}
Thread.sleep(5000);

All resources should be freed in the control and data sessions.
control.leave();
data.close();

} catch(Exception e) {
e.printStackTrace();

}
}

This method represents the message listener. Every time that a message is sent
to the group, it is received in this callback by all elements of the group. The
application can return an object to identify this particular message in the future,
but this feature is not used at the moment. This feature is discussed in other
sample.

public Object onMessage(Message msg) {
System.out.println("Message from "+msg.getSenderAddress()

+": "+new String(msg.getPayload()));
return null;

}

These call backs are used to notify the application that some member has joined,
left or failed. This is not necessary if the application is using a Membership or
Block sessions.

public void onJoin(SocketAddress peer) {
System.out.println("-- JOIN: " + peer);

}

public void onLeave(SocketAddress peer) {
System.out.println("-- LEAVE: " + peer);

}

public void onFailed(SocketAddress peer) {
System.out.println("-- FAILED: " + peer);

}

This notification is issued every time that the group membership changes. It is
only used if the membership extentions were implemented and may be used
instead of the previous call backs. The new membership may be retrieved from
the membership session.

39

5.1 Third party configurator 5 SAMPLES

public void onMembershipChange() {
try {

System.out.println("-- NEW MEMBERSHIP: " +
((MembershipSession) control).getMembership());

} catch (NotJoinedException e) {
e.printStackTrace();
data.close();

}
}

This call back notifies the application that the group will block and a new mem-
bership will be received. The application must flush any pending messages at
this time and call the blockOk method from the control session. The member-
ship will not be received if the application do not call this method.

public void onBlock() {
try {

((BlockSession) control).blockOk();
} catch (JGCSException e) {

e.printStackTrace();
}

}

This call back is used to notify the application that it was removed from the
group.

public void onExcluded() {
System.out.println("-- REMOVED from group.");

}

public static void main(String[] args) {
try {

Context x = new InitialContext();
Runnable test = new JNDITest(x);
test.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

40

5 SAMPLES 5.2 Early deliveries

5.2 Early deliveries

This sample shows how to send and receive messages using a toolkit that was
configured to make early deliveries and service notifications.

The sample uses extended virtual synchrony and implements all the listeners
used to receive messages, exceptions and membership notifications.

public class EarlyDeliveryTest implements MembershipListener,
ServiceListener, Runnable {

private static final int NUM_MESSAGES=10;
private ControlSession control;
private DataSession data;
private Context ctx;
private Service uniformService;

public EarlyDeliveryTest(Context x)
throws JGCSException, NamingException {

this.ctx=x;

The startup is similar to the other sample.
ProtocolFactory pf = (ProtocolFactory) x.lookup("myProto");
Protocol p = pf.createProtocol();
GroupConfiguration g = (GroupConfiguration) x.lookup("myGroup");
uniformService = (Service) ctx.lookup("myService");
this.control = p.openControlSession(g);
this.data = p.openDataSession(g);

The application must register it self on both message and service listeners.
data.setMessageListener(this);
data.setServiceListener(this);
if (control instanceof MembershipSession)

((MembershipSession) control).setMembershipListener(this);
}

public void run() {
try {

control.join();
for (int i = 0; i < NUM_MESSAGES; i++) {

Thread.sleep(1000);
Message message = data.createMessage();
message.setPayload("hello world!".getBytes());

The message is sent to the group using the service previously retrieved from
the lookup service.

data.multicast(message, uniformService, null);
}
Thread.sleep(5000);
control.leave();
data.close();

} catch(Exception e) {
e.printStackTrace();

}
}

This method represents the message listener. Every time that a message is
sent to the group, it is received in this callback by all elements of the group.
In this example, the application assumes that the group communication was
configured to make early deliveries of messages. This means that the message
payload is delivered before the requested service is ensured. In this example,
the application may process the message but will not show that message until
the required service is received.

41

5.2 Early deliveries 5 SAMPLES

Note that the processing of these messages is not complex (in this example)
but some applications can have complex processing based on the message con-
tents, that can be done before printing results to the user or writing results to
physical storage.

public Object onMessage(Message msg) {
String messageToPrint = "Message from "+msg.getSenderAddress()

+": "+new String(msg.getPayload());
return messageToPrint;

}

This method represents the service listener. For each message, several services
can be provided. These services have an order relation. This example only
prints the messages that have already the uniform property.

public void onServiceEnsured(Object context, Service service) {
try {

if(service.compare(uniformService) >= 0){
String messageToPrint = (String) context;
System.out.println(messageToPrint);

}
} catch (UnsupportedServiceException e) {

e.printStackTrace();
}

}

public void onMembershipChange() {
try {

System.out.println("-- NEW MEMBERSHIP: " +
((MembershipSession) control).getMembership());

} catch (NotJoinedException e) {
e.printStackTrace();
data.close();

}
}

public void onExcluded() {
System.out.println("-- REMOVED from group.");

}

public static void main(String[] args) {
try {

Context x = new InitialContext();
Runnable test = new EarlyDeliveryTest(x);
test.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

42

A LICENSE

A License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPY-
RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CON-
TAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CON-
DITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing
works, such as a translation, adaptation, derivative work, arrangement of music or other al-
terations of a literary or artistic work, or phonogram or performance and includes cinemato-
graphic adaptations or any other form in which the Work may be recast, transformed, or
adapted including in any form recognizably derived from the original, except that a work that
constitutes a Collection will not be considered an Adaptation for the purpose of this License.
For the avoidance of doubt, where the Work is a musical work, performance or phonogram,
the synchronization of the Work in timed-relation with a moving image ("synching") will be
considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and an-
thologies, or performances, phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the selection and arrangement of
their contents, constitute intellectual creations, in which the Work is included in its entirety in
unmodified form along with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a collective whole. A
work that constitutes a Collection will not be considered an Adaptation (as defined above) for
the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work through
sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the
terms of this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals,
entity or entities who created the Work or if no individual or entity can be identified, the pub-
lisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers,
and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform lit-
erary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a performance or other sounds;
and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License includ-
ing without limitation any production in the literary, scientific and artistic domain, whatever
may be the mode or form of its expression including digital form, such as a book, pamphlet
and other writing; a lecture, address, sermon or other work of the same nature; a dramatic
or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are assimilated works
expressed by a process analogous to cinematography; a work of drawing, painting, architec-
ture, sculpture, engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an illustration, map,
plan, sketch or three-dimensional work relative to geography, topography, architecture or sci-
ence; a performance; a broadcast; a phonogram; a compilation of data to the extent it is pro-
tected as a copyrightable work; or a work performed by a variety or circus performer to the
extent it is not otherwise considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previ-
ously violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

43

A LICENSE

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members
of the public may access these Works from a place and at a place individually chosen by them;
to perform the Work to the public by any means or process and the communication to the
public of the performances of the Work, including by public digital performance; to broadcast
and rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any
uses free from copyright or rights arising from limitations or exceptions that are provided for in
connection with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copy-
right) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

c. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme cannot be waived,
the Licensor reserves the exclusive right to collect such royalties for any exercise by You of
the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to col-
lect royalties through any statutory or compulsory licensing scheme can be waived, the
Licensor waives the exclusive right to collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that ad-
ministers voluntary licensing schemes, via that society, from any exercise by You of the
rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically nec-
essary to exercise the rights in other media and formats, but otherwise you have no rights
to make Adaptations. Subject to Section 8(f), all rights not expressly granted by Licensor are
hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and lim-
ited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the dis-
claimer of warranties with every copy of the Work You Distribute or Publicly Perform. When
You Distribute or Publicly Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the Work from You to exercise
the rights granted to that recipient under the terms of the License. This Section 4(a) applies to
the Work as incorporated in a Collection, but this does not require the Collection apart from
the Work itself to be made subject to the terms of this License. If You create a Collection, upon
notice from any Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(b), as requested.

44

A LICENSE

b. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has
been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor desig-
nate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor’s copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(b) may be implemented in any reasonable manner; pro-
vided, however, that in the case of a Collection, at a minimum such credit will appear, if a credit
for all contributing authors of the Collection appears, then as part of these credits and in a man-
ner at least as prominent as the credits for the other contributing authors. For the avoidance of
doubt, You may only use the credit required by this Section for the purpose of attribution in the
manner set out above and, by exercising Your rights under this License, You may not implicitly
or explicitly assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the Original Author, Licensor and/or
Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as
part of any Collections, You must not distort, mutilate, modify or take other derogatory action
in relation to the Work which would be prejudicial to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUD-
ING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARIS-
ING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Collections from You
under this License, however, will not have their licenses terminated provided such individuals
or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive
any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to stop distributing the Work at any
time; provided, however that any such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under the terms of this License), and
this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to
the recipient a license to the Work on the same terms and conditions as the license granted to
You under this License.

45

A LICENSE

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and without
further action by the parties to this agreement, such provision shall be reformed to the mini-
mum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such
waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utiliz-
ing the terminology of the Berne Convention for the Protection of Literary and Artistic Works
(as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty
of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the rel-
evant jurisdiction in which the License terms are sought to be enforced according to the corre-
sponding provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes additional
rights not granted under this License, such additional rights are deemed to be included in the
License; this License is not intended to restrict the license of any rights under applicable law.

46

	Introduction and Background
	Introduction
	The GORDA Project
	Relation with GCS
	Document Conventions
	Definitions
	Formatting Conventions

	Contributors
	Feedback

	Scope and Requirements
	Goals
	Non-Goals

	Design
	Approach and Terminology
	Overview
	Configuration Interface
	Common Interface
	Data Interface
	Control Interface

	API Description
	Package net.sf.jgcs
	Interface Annotation
	Interface ControlListener
	Interface ControlSession
	See also
	Interface DataSession
	See also
	Interface ExceptionListener
	Interface GroupConfiguration
	See also
	Interface Message
	Interface MessageListener
	See also
	Interface Protocol
	See also
	Interface ProtocolFactory
	Interface Service
	Interface ServiceListener
	See also
	Exception ClosedSessionException
	Exception DataSessionException
	Exception JGCSException
	Exception NotJoinedException
	Exception UnsupportedServiceException

	Package net.sf.jgcs.membership
	Interface BlockListener
	Interface BlockSession
	Interface Membership
	Interface MembershipID
	See also
	Interface MembershipListener
	Interface MembershipSession

	Samples
	Third party configurator
	Early deliveries

	License

