

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

1

DELIVERABLE

Project Acronym: FLAVIUS

Grant Agreement number: ICT-PSP-250528

Project Title: Foreign LAnguage Versions of Internet and User generated

Sites

D2.4 Platform able to translate websites
automatically

Revision: 2.2

Authors:

Joël Benchitrit (Softissimo)

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

2

Revision History

Revision Date Author Organization Description

0.1 March, 14th Christophe Brun-Franc Softissimo Draft version

1.0 March, 31st Christophe Brun-Franc Softissimo Version sent to EC

2.0 December,

7th

Joel Benchitrit Softissimo New version of D2.4

2.1 December

26th

Elsa Monségur Softissimo Revised version

2.2 December

26th

Joel Benchitrit Softissimo Final version sent to

EC

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

3

Table of contents

1. Document References ...6

2. Introduction ..6

3. Translation workflow overview ...7

4. User Account and authentication ...8

4.1 Overview ..8

4.2 User account and authentication ..8

4.2.1 Roles ...8

4.2.2 Properties management ..9

5. Job configuration ... 12

5.1 Overview .. 12

5.2 Website Crawling (“URL” scenario) .. 12

5.2.1 Crawling issues ... 13

5.3 XML Processing (“File” scenario) .. 15

5.3.1 Use of XPATH technology ... 16

5.3.2 Flavius XML Parser ... 17

5.3.3 Existing template configuration files ... 18

5.4 Processing of source texts .. 22

5.4.1 General Overview .. 22

5.4.2 Flavius Queue System .. 22

5.5 Encoding management ... 27

5.6 SQL database and file systems .. 27

6. Grammar and spell-checking ... 28

6.1 Overview .. 28

6.2 Use of Daedalus API for Flavius (“File” scenario) ... 28

7. Translation memory ... 31

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

4

7.1 Overview .. 31

8. Personal Dictionary ... 32

8.1 Overview .. 32

8.2 Online entry editing ... 32

9. Automatic translation ... 33

9.1 Overview .. 33

9.2 Use of LW SMT Engine .. 33

9.2.1 Configuration file ... 33

10. Post-edition .. 35

10.1 Overview .. 35

11. Data retrieval.. 35

11.1 Overview .. 35

11.2 Website publishing (“URL” scenario) .. 35

11.2.1 File Copy ... 35

11.2.2 Flavius intrusive bottom bar generation ... 36

11.2.3 Website hosting and SEO .. 38

11.2.4 Translation of meta-tag description and keyword ... 38

11.2.5 Google Analytics ... 38

11.2.6 Indexing Websites and Terms of use ... 40

11.2.7 Publishing issues ... 42

11.3 ZIP Archive Download (“File scenario”) .. 43

12. Flavius API ... 44

12.1 Overview .. 44

12.2 Security Management ... 45

12.3 API Definition .. 46

12.3.1 Create a new job ... 47

12.3.2 Cancel a job .. 50

12.3.3 Delete a job ... 51

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

5

12.3.4 Get job Status .. 52

12.3.5 Retrieve the job result .. 54

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

6

1. Document References

Deliverable D2.2 Website specification document v2

Deliverable D2.5 Interface to create personal dictionaries

Deliverable D4.4 Translation Memory Module able to provide translation

2. Introduction

The objective of this deliverable is to describe the technical implementation aspects of the first

version of the FLAVIUS platform delivered at M18. This deliverable is mainly based on the

Website functional specifications from D2.2. For a general overview of the architecture, please

refer to D2.2.

FLAVIUS, Foreign LAnguage Versions of Internet and User-generated Sites, aims at bridging
the language gap between content publishers and users by providing an online platform
accessible to websites owners that will enable them to generate multilingual versions of their
site, quickly, easily and efficiently in as many languages as they want.

FLAVIUS is a European project under the Competitiveness and Innovation framework

Programme (call identifier: CIP-ICT-PSP-2009-3)

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

7

3. Translation workflow overview

The workflow is implemented as described in D2.2:

- without the post-edition module (it will be delivered in D2.6)

- with the spell-checking option only in the “File” scenario (for the “URL” scenario it will

be delivered in D2.9)

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

8

4. User Account and authentication

4.1 Overview

The authentication is implemented as described in D2.2:

- Without the reviewer management (it will be delivered in D2.6 with post-edition)

4.2 User account and authentication

4.2.1 Roles

The security of the FLAVIUS platform is based on the role-based security and user

authentication model provided by .Net Framework.

The role-based security model is a means of implementing an authorization mechanism

that eases the work of the Administrator and allows handling the notion of group of users.

The users could belong to different roles:

- Guest (Anonymous)

- Basic (Authenticated user with basic rights)

- Premium (Authenticated user with advanced rights)

- Administrator (Admin role)

A “Guest” user can go to the Flavius home page, create an account and browse published

websites.

A “Basic” user can create a translation job with some limitations in terms of number and size of

files to be translated. He/she also can view his/her completed translation jobs and update

his/her user account.

A “Premium” user is a “Basic” user that can create a translation job with fewer limitations.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

9

4.2.2 Properties management

A set of properties can be defined by an administrator in Flavius:

Property name Description Default Value

RET_pathRepository Path for processing translation and storing data C:\Flavius\Data\Job

PUB_pathPublishing Path for publishing websites C:\Flavius\Publishing

RET_SizeMaxUrl Max size allowed for retrieving websites data 500Ko

RET_FileCountMaxUrl Max file count allowed for retrieving websites data 2500

RET_LevelCrawlUrl Max level allowed for crawling websites 1

TRS_DefaultWS Default Web service for non granted users *

TRS_DefaultIdEngine Default Engine Id for non granted users *

TRS_pathTranslation Path for processing translation C:\Flavius\Data\Processing\Translation

GEN_FlagCountDisplay Maximum flag count to display in list 3

GEN_PathParameter Parameters Path C:\Flavius\Data\Config

EXT_PathParameterXmlTemplate
Path to locate the xml template file for Data

extraction C:\Flavius\Data\Config\XMLTemplate

RET_MaxSizeZip Max size allowed for retrieving zip files 500ko

RET_MaxSizeXml Max size allowed for retrieving xml files 30000ko

PUB_urlPublishing URL for publishing http://flaviuspub.reverso.net/

GEN_EmailFrom Sender of email flavius@reverso.net

TM_idServer Translation Memory server 5ae747ff-c3cc-4e6f-81ad-3aaa3ef32084

TM_usrLogin Translation Memory login default

TM_usrPassword Translation Memory password

TM_LevelSimiliraty Translation Memory similarity 90

RET_Cumulative_MaxSizeUrl Cumulative quota for URL scenario 30000ko

RET_pathTMXRepository Path for imported translation memory C:\Flavius\Data\TM

EXT_PathParameterTmxDtd Path to locate the TMX Dtd file for TMX validation C:\Flavius\Data\Config\TM

EXT_PathParameterTmxImportTempl
ate

Path to locate the TMX import template for TMX
import C:\Flavius\Data\Config\Across

TRS_pathRevision Path for processing spell check C:\Flavius\Data\Processing\Revision

TRS_pathWget Path to Wget application C:\Program Files\GnuWin32\bin

EXT_PathParameterConfigFlavius Path to FLAVIUS SMT configuration file
C:\Flavius\Data\Config\MT\ConfigFlavius.

xml

TM_DBConnectionString Connection string to DB TM Server *******

http://flaviuspub.reverso.net/
mailto:flavius@reverso.net

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

10

TM_DBMain Main DB name across

TM_DBTank Optional DB name ctank_across

RET_pathEngineDictionaryRepository Path for imported dictionary C:\Flavius\Data\EngineDictionary

TM_MaxEntriesPerDirection TM max entries per direction 400

TM_MaxSizeEntries TM max size entries 1000

ED_MaxEntriesPerDirection Dictionary max entries per direction 400

ED_MaxSizeEntries Dictionary max size entry 120

ED_MaxSizeFile Dictionary max size file 50000ko

TM_MaxSizeFile TMX max size file 500ko

RET_Cumulative_MaxSizeXML Cumulative quota for XML scenario 50000ko

RET_MaxSizePerFileXML Max size allowed per XML file 30000ko

PUB_mailReportAbuse Email for reporting an abuse flavius@reverso.net

SPC_ConfidenceLevel Confidence level for spell checking 90

SPC_idServer Spelling checker server http://api.daedalus.es/flavius

SPC_usrLogin Spelling checker login ********

RET_SegmentBlockCharCount Max char to send in one block for the translation 2000

TRS_ShowToolTip Show source text in tooltip 1

PUB_pathPublishingArchive Path for archiving published website C:\Flavius\Data\PublishingArchive

GEN_availableCultures Flavius translation available fr:français;en:english

TRS_SourceCodeToolTip Path to Reverso Tooltip source code C:\Flavius\Data\Config\MT\tooltip.txt

TRS_SourceCodeGoogle Path to Google Analytics source code C:\Flavius\Data\Config\MT\google.txt

TRS_SourceCodeToolBar Path to Toolbar source code C:\Flavius\data\Config\MT\toolbar.txt

These properties can be used at three levels:

 Flavius level (this is the default properties)

 Role level (the default properties are overridden by the role ones)

 User level (The role properties are overridden by the user ones)

These properties could be used for example to put some quota on the size of crawled data

(RET_SizeMaxUrl). This limitation could be set for the application as a default value, for a

specific role (ex: Premium), or for a specific user.

As a matter of fact, users inherit the properties and rights of their role. For instance, the

limitation of the platform use is defined for each role.

mailto:flavius@reverso.net

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

11

The “Administrator” users are allowed to change the value of these properties at each level.

Here is the description of the retrieval process:

 When a global property is required:

o Get the property value at Flavius level

 When a role property is required:

o Get the property value of the role

o If the role property does not exist get the property at Flavius level

 When a user property is required:

o Get the property value for this user

o If the user property does not exist, get the property at Role level

o If the role property does not exist, get the property at Flavius level

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

12

5. Job configuration

5.1 Overview

The job configuration for “URL” and “File” scenario is implemented as described in D2.2:

- Without the PHP format for “File scenario” (it will be delivered in D2.9)

- Without the XLIFF format for “File scenario” (it will be delivered in D2.9)

5.2 Website Crawling (“URL” scenario)

After a “URL” job is created, the website is crawled from the URL entry point provided by the

user. The website crawling is done by WGET tool:

(http://gnuwin32.sourceforge.net/packages/wget.htm). This crawling tool is able to manage

most of websites. Some remaining issues still exist on some websites (see “Crawling issues”

section).

According to the user access rights, the crawling is restricted:

- By the depth level

- By the total website size to be crawled

The WGET tool does not accept a file count quota. It is therefore not possible to set easily a

file count limitation.

These constraints can be defined through Flavius properties at any level (Global, Role, and

User).

We also set a list of parameters for WGET:

- Convert Links = true: The links of web pages are converted so to point to local crawled

pages instead of to original ones.

http://gnuwin32.sourceforge.net/packages/wget.htm

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

13

- Reject list = gif, jpg, jpeg, swf, png: This list indicates the file extensions that are not to

be crawled (images, Flash, etc.). The crawled webpages containing references to

these files are pointing to the original files.

- UserAgent: The Firefox user agent is defined to allow WGET to work with the greatest

number of websites.

- Quota: The maximum file size to crawl (by default, 3000ko)

- RecLevel: The depth level to crawl (by default, 1, which means first page with its

external links)

The global crawling process can be summarized in the following steps:

 First, the user configures and creates a “URL” job by clicking on the “create a job”

button.

 A new WGET task is launched in the Post Processing Windows Service (See

“Processing of source texts” section). The crawled files are saved on the job directory.

 Once the crawling is completed, the log file generated by WGET (wget.log) is parsed,

and page information is extracted and saved in database:

o Original crawled URL

o File path of the crawled page

o Size of the webpage in bytes

o Extension File Type extracted from the Content Type of the original HTTP

header page (Html, CSS, JavaScript)

5.2.1 Crawling issues

JavaScript links

The main remaining issues of the crawling step are related to JavaScript. Sometimes, links

inside HTML pages are dynamically generated by JavaScript, and cannot be found by WGET

tool. These links cannot be retrieved and it generates some dead links.

A first approach to manage them is to detect some JavaScript patterns with regular

expressions, inside some specific HTML tags and attributes (ex: onclick):

 div onclick="document.location.href='http://foo.com/'">

 <tr onclick="myfunction('index.html')">new page

 <a href="javascript:void(0)" onclick="window.open

('welcome.html')">open new window

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

14

Then, we could try to rebuild these links and crawl the associated pages. After some tests on a

set of 20 websites, it appears that it will cover most of the problems encountered, but it will not

address all the cases (highly dynamic AJAX sites, etc.).

Page redirection

Sometimes, websites make some page redirection, using JavaScript, or using HTTP headers.

During the crawling step, we want to access to the final page, not to the intermediate page.

For the JavaScript redirection, it could be managed by the solution above (See “JavaScript

links”). For HTTP header redirection, it is managed by the crawling tool by detecting

Redirection HTTP header (HTTP 301 code, etc.).

Ajax calls

Some websites (like http://www.lemonde.fr/) get their content from AJAX calls (in

asynchronous calls in JavaScript).

During the crawling, we do not execute the JavaScript code, so this dynamic content is never

retrieved and translated. Moreover, if the URL called by the AJAX scripts is a relative one, it

will cause a JavaScript error (The URL that deliver dynamic content called by AJAX is not

present on the Flavius Publishing Server). If the URL is an absolute URL, the content will be

retrieved, but not translated (it will come from the original website).

One solution could be to interpret the JavaScript on crawled page (with a JavaScript

Interpreter) and to intercept the Ajax calls. As it is a whole research project, it is out of the

Flavius scope and we will not address it for now.

Global dead links management

Another solution could be to manage failed requests (JavaScript, AJAX, Webpages, etc.) once

the website is published. When a user is navigating, if we get a 404 Not Found response from

the Publishing Flavius Server, we could redirect the request to the original server, get the file,

translate it if needed in real time (for html files), and publish it.

Advantages:

- We will not have some “dead links” anymore (JavaScript, HTML pages, etc.)

Disadvantages:

- We need to manage quotas more deeply with these new files.

http://www.lemonde.fr/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

15

- We need to translate the new file in “real time” (The Flavius Queue System cannot be

used)

- We need to re-integrate the new file in the workflow (for post edition, etc.)

- We need to ensure that the “404 code” is a “real not crawled web page”, and not a

random URL typed by the user (We could check it on the original server)

5.3 XML Processing (“File” scenario)

XML is a universal data format, used by the largest part of developers to process and

exchange their data. Most of the content management systems (CMS like WordPress, Drupal,

SharePoint, etc.) have a way (native or with external plugins) to export their data in XML.

In addition, some web technologies use XML format to localize their content (ex: ASP.NET),

and to manage their resources. XML also became a standard to store documents (see DOCX

and ODT format). XML processing in Flavius will permit to meet a large part of user needs.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

16

5.3.1 Use of XPATH technology

Flavius Platform allows users to translate any XML files.

To separate useful from useless data, the system uses a dedicated template to define which

XML nodes need to be translated. The filter is based on the XPATH standard

(http://www.w3.org/TR/xpath/). The data contained in a node matched by the XPATH will be

extracted to be translated. The data contained in the other nodes will be ignored.

Sample of a XPATH template configuration file used in Flavius

<?xml version="1.0" encoding='ISO-8859-1'?>

<!--

 transType values:

 0 - do not translate

 1 - replace and if not found, do not translate it

 2 - translate

 3 - replace and if not found, translate it

 defaultBehavior - unrefferencedTags values:

 true - all unrefferenced tags will be translated by default

 false - all unrefferenced tags will NOT be translated by default

-->

<configuration>

 <defaultBehavior>

 <unrefferencedTags translate='false'/>

 </defaultBehavior>

 <config_item>

 <xpath value="/rss/channel/title"/>

 <transType value="2"/>

 </config_item>

</configuration>

In this example, we do not want to translate any tags (default behavior), except the ones that

match the XPATH “/rss/channel/title”.

http://www.w3.org/TR/xpath/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

17

In the XML file below, the following section (in red) will be translated:

<?xml version="1.0" encoding='ISO-8859-1'?>
<rss>

 <channel>

 <title>Title of my article</title>

 <author>John Doe</author>

</channel>

</rss>

5.3.2 Flavius XML Parser

At first, we check if the XML provided by the Flavius user is syntactically correct. Then, the

XML Parser extracts the translatable content from the XML file (with the XPATH technology),

divides it in segments, and stores it in a sequential manner. These segments are processed by

the different engines (Speller, Translation Memory, and Machine Translation) and the result is

stored in the same order on the disk. Then, the original XML file is parsed a second time to be

able to replace the initial segments with the new ones, and to rebuild the final XML file.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

18

Information

The XML can contain HTML segments (from CMS for example) with encoded tags:

<?xml version="1.0" encoding="UTF-8"?>

<root>

<node1><div> Text to translate & </div> </node1>

</root>

5.3.3 Existing template configuration files

Currently, the templates cannot be uploaded by the user, so he has to select an existing

template. For now, the following templates have been implemented for Flavius:

 «All Data» Template

All content inside XML tags is considered valid for the translation process. This template is

used when the user provides an XML file with a proprietary XML format containing only data

ready for translation.

 RESX template

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

19

This template allows translating a .NET resource file. In ASP.NET development, a developer

who wants to localize easily his website should separate his work in two parts:

- The source code containing the website behavior,

- The resources files containing all the localizable information like labels or messages

(RESX file).

In this case, the user only needs to translate the RESX files to generate a new translated

website.

Using XPATH template configuration files, adding the support of a new XML format is very

easy: it could be done just with configuration.

Example of a RESX .Net file

<?xml version="1.0" encoding="utf-8"?>

<root>

 <resheader name="resmimetype">

 <value>text/microsoft-resx</value>

 </resheader>

 <resheader name="version">

 <value>2.0</value>

 </resheader>

 <resheader name="reader">

 <value>System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

 </resheader>

 <resheader name="writer">

 <value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

 </resheader>

 <data name="btn_createnewuser_text" xml:space="preserve">

 <value>Create user</value>

 </data>

 <data name="btn_login_text" xml:space="preserve">

 <value>login</value>

 </data>

 <data name="lbl_createnewuser_details_country_text" xml:space="preserve">

 <value>Country</value>

 </data>

</root>

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

20

 XPath Template used for Resx:

<?xml version="1.0" encoding='ISO-8859-1'?>

<configuration type="WordPress">

 <defaultBehavior>

 <unrefferencedTags translate='false'/>

 </defaultBehavior>

 <config_item>

 <xpath value="/root/data/value"/>

 <transType value="2"/>

 </config_item>

</configuration>

 WordPress template

This template allows translating a WordPress export XML file. The translated XML could

be imported in a new WordPress instance.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

21

XPath Template used for WordPress:

<?xml version="1.0" encoding='ISO-8859-1'?>

<configuration type="WordPress">

 <defaultBehavior>

 <unrefferencedTags translate='false'/>

 </defaultBehavior>

 <config_item><xpath value="/rss/channel/title"/></config_item>

 <config_item> <xpath value="/rss/channel/wp:category/wp:cat_name"/></config_item>

 <config_item> <xpath value="/rss/channel/wp:tag/wp:tag_name"/></config_item>

 <config_item> <xpath value="/rss/channel/description"/></config_item>

 <config_item> <xpath value="/rss/channel/item/title"/></config_item>

 <config_item> <xpath value="/rss/channel/item/category"/></config_item>

 <config_item> <xpath value="/rss/channel/item/wp:post_name"/> </config_item>

 <config_item><xpath value="/rss/channel/item/wp:comment/wp:comment_content"/>

 </config_item>

 <config_item><xpath value="/rss/channel/item/content:encoded"/></config_item>

</configuration>

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

22

5.4 Processing of source texts

5.4.1 General Overview

The processing of each specific operation (translation, text correction, etc.) is handled by a
dedicated Windows Service. For a more detailed description, please refer to D2.2 / section
“Flavius Back Office”.

Currently, three Windows Services are deployed in Flavius platform:

 A Windows Service which hosts the Pre and Post Processing steps : website crawling,

extracting and parsing XML files

 A Windows Service which sends extracted segments to the Spell Checking API (See

Flavius Queue System below)

 A Windows Service which sends extracted segments to the translation API (See

Flavius Queue System below)

5.4.2 Flavius Queue System

The Queue system mainly works with the notion of “job”. A job represents the process of

translating (or spell checking, etc.) one or several files in a sequential manner and is formed

internally of several important steps:

1- Iterate the folder to be translated and push all the file names and paths that meet the

selection criteria (chosen in the interface) to a dedicated queue (described later)

2- De-queue one file at a time (sequential file processing) and process it:

o According to the type of file (e.g. .xml), send it for pre-processing. For xml files,

the pre-processing is actually the process of breaking down the respective xml

file into several smaller xml part called “units”. For the rest of the file types (e.g.

HTML), a unit is considered to be the entire file.

o Push each unit into a dedicated queue (described later) until all units that form

the main file, are there

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

23

o De-queue several units at a time (concurrent unit processing) and send them for

processing (translation, spell checking, etc.) – the number of units processed at

a time is configurable (described later in configuration files); the processing of

each unit is done in a separate thread (see thread management) and is formed

by a call to the corresponding WebService (Daedalus API, LW API, etc.).

o Push the results from the previous step into a dedicated queue (described later)

3- Monitor the result queue and detect when all the units forming the file being processed

are there

o Build the processed file; since the unit processing is done in a concurrent

manner, the units need to be ordered correctly (for non XML files, no ordering is

necessary because they only have 1 unit)

o Save it with a different name

4- Continue from Step 2 until all files have been processed

5- Build a status report for the processed job

Flavius Queue System uses an internal queuing system for managing all aspects related with

a job. The system is integrated based on Microsoft Message Queuing version 3.0 (higher

versions can be used).

The system uses three types of queues based on the action they serve:

- Request queues

- Response queue

- Context queue

There are two request queues:

- File queue

o used for storing all files to be processed in a job

o only allowsfiles from a single job at a time (Two jobs cannot run at the same

time)

o it stores only the file name and path of the file to be processed and not the

entire content of the file

- Unit queue

o used for storing all the units that form a file – for HTML files, a unit is equivalent

to the entire file; for XML files, a unit is a small part of the file

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

24

o it stores information related to the unit to be processed (unit id, job id, file name,

etc.)

Both request queues work in a sequential manner, meaning that first the File queue is filled in

with the job files, then the first file is extracted and converted into units, units which are pushed

into the Unit queue.

The results of the process are stored in a single Result queue. The Result queue becomes

active as soon as the first unit from the Unit queue has been processed, and continues to be

active until all the units have been processed. While the request queues are populated in a

sequential ordered manner, the Result queue is exactly the opposite, meaning that results are

pushed concurrently (because units are processed concurrently) and thus the order is not

maintained.

Besides the request and response queues, there is also a Context queue. The context queue

is used for storing context related information like the current job in progress, file in progress,

total number of units of the file in progress and number of processed units from the file in

progress. All this information is used for allowing job restoration in case of failure: if the

application crashes from different reasons (internal crash or external causes like power failure

etc.), the first time you start the application, the context queue will be used to restore the job in

progress and continue from where it crashed.

All the queues are private transactional queues and can only be accessed from local computer

(computer on which the Windows Service has been deployed). All the operations related to

queues are done in a transactional manner, meaning that no information is lost if the system

encounters a failure.

Neither of the queues uses the internal prioritization of messages, meaning that all messages

share the same priority within the queue.

Thread Management

The translation of each unit is done on a separate thread. This allows for concurrent
processing of units, and thus improves the overall time needed to finish a job.

Thread management is done using an internal pooling system (Dispatcher) based on manual
reset events class from .NET Framework (Alert one or several waiting threads that an event
occurred). The feeding of translation threads is done using a balancer that automatically
cycles all the available threads avoiding the overload of a single thread (similar to Round
Robin mechanism).

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

25

The reason for which a custom pooling mechanism was used instead of the internal .NET

thread pool was to allow a more in depth control over the entire pool of threads; some of the
advantages gained by building the custom pool are:

- Allow stopping any thread at any time during the process (the thread is not aborted –
because it would cause a ThreadAbortedException which would disrupt the entire
process – but it is allowed to finish its work and then it is blocked from receiving new
work)

- Allow freeing resources at any time without relying on the .NET suppression
mechanism – useful when the user aborts the job

Once a unit has been processed, it is placed in the Result queue. In case the status of the
unit is failed (failed because of internal processing causes from Spell Checking API, or SMT
API), the unit is sent back for reprocessing – it is pushed at the end of the Unit queue and will
be reprocessed at the end. The total number of times that a unit can be reprocessed is
configurable in the configuration file.

Besides the threads used for units processing, the application uses several new threads:

- File manager thread
o Used to push/de-queue files for current job into the File queue
o Used to preprocess the file in progress (break down into units)
o Used to send the units into the Unit queue
o Used to update the progress display in GUI (in the Flavius Website Database)

- Unit manager thread
o Used to de-queue units and send them for processing
o This is the thread where the Dispatcher resides (custom thread pool)

 Within each translation thread (managed by the Dispatcher) the
processed unit is pushed into the Result Queue

- Result manager thread
o Used to monitor the results queue and de-queue all the units once the file in

progress is completely processed
o Used to rebuild the processed file from the processed units

- GUI progress display thread
o Used to display job progress information/status

After a file has been processed, it is automatically rebuilt by the Result manager thread. All
units will be assembled back in the same order as in the original file, and this includes also the
failed units; the failed units will be placed back into the output file without being altered (same
content from original file).

At the end of a file processing, all failed units (if any) will be reprocessed if the

reprocessing counter is higher than 1 in configuration file.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

26

The units that failed completely will be placed also in a separate file that can be used for

post analysis and eventually re-processing.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

27

5.5 Encoding management

In this version, the Flavius platform is implemented to be compliant only with UTF-8 encoding

files. LW and Daedalus APIs can only manage UTF-8 for now.

For the “File” scenario, users are warned if their file sent is not an UTF-8 encoding file (or is

not detected as an UTF-8 encoding file), but in any case, the job is processed.

To detect the file encoding, we check the following two points:

 The XML header (for xml files) declares that the file is encoded in UTF-8:

<?xml version="1.0" encoding="UTF-8"?>

 The UTF-8 BOM exists at the beginning of the file

Otherwise, the file is not detected as an UTF-8 encoding file.

For “URL” scenario, every encoding is accepted in Flavius, but crawled files are sent to the LW

API and Daedalus API as UTF-8.

5.6 SQL database and file systems

The data are stored both in a SQL database and in the File System.

The SQL database is used to stored configuration data and workflow steps: job
description, job workflow, statistics, user account, etc. The Flavius database is shared by
the Flavius Website and the Windows Services.

The File System is used to store source files (crawled website, xml, etc.), intermediate
results (spell checked files, etc.) and final result (translated files, archives, etc.)

Each process creates its own subfolder (in the corresponding job folder) to store files:

 Source : contains the source files

 Revised : contains the spell-checked files

 Translated : contains the translated files

Finally, the ZIP archive that contains all these files is created and saved in the job folder.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

28

6. Grammar and spell-checking

6.1 Overview

The Spell Checking is implemented as described in D2.2:

- Only for “file scenario” (the spell-checking option for URL scenario will be delivered in

D2.9)

- Some minor interface design

6.2 Use of Daedalus API for Flavius (“File”
scenario)

The Flavius Spell checking Process is done through the Daedalus API. If spell checking is

enabled in the “Job Creation” panel, the process is launched using the Flavius Queue System

(See Processing of Source text section). The spell-checking option is available on the interface

only for the following source languages:

- French

- English

- Spanish

- Italian

The Daedalus API (See Deliverable D3.0 Specification document for text correction

adaptation) is called on each segment, with the following parameters:

- Input format = txt: HTML or plain text segments

- Confidence score = 90: Minimal confidence score for auto replacement

- Output format = auto: The segment is auto-corrected by the API, according to the

confidence score and the result (auto-corrected segment + error detail) is sent in a

XML stream.

During spell-checking of a XML file, we serialize (in XML for now) each XML API result (one

result by segment) in a unique file with the same name and a “.speller” extension.

Here is an example of a serialized “speller” file:

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

29

<SpellCheck xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://schemas.datacontract.org/2004/07/Softissimo.Module.SpellCheck.Daedalus">

 <SpellCheckResults>

 <SpellCheckResult>

<SpellCheckResult>

 <AutoCorrectedSegment><p f="bl">Webpages list</p></AutoCorrectedSegment>

 <OriginalSegment><p f="bl">Webpages list</p></OriginalSegment>

 <SpellCheckUnits>

 <SpellCheckUnit>

 <Changed>false</Changed>

 <EndOffset>18</EndOffset>

 <ErrorMessage>Possible spelling error.</ErrorMessage>

 <ErrorType>Spelling</ErrorType>

 <OriginalText>Webpages</OriginalText>

 <SpellCheckSuggestions>

 <SpellCheckSuggestion>

 <Confidence>48</Confidence>

 <SuggestedText>Web pages</SuggestedText>

 </SpellCheckSuggestion>

 </SpellCheckSuggestions>

 <StartOffset>10</StartOffset>

 </SpellCheckUnit>

 </SpellCheckUnits>

 <Status>OK</Status>

 </SpellCheckResult>

 </SpellCheckResults>

</SpellCheck>

Then, we replace original segments by auto-corrected segments if needed (depending on the

confidence score) and continue the process with the translation step.

Once the spell-checking process is finished, the “speller” file can be read and displayed on the

web interface inside a paginated Data Grid. In the “context” column, we display the original

words in red (using the offset position given by the API), and three words (before and after)

around the error. We also group errors and compute the occurrence count.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

30

Spell Checking report for RESX (XML file) translation

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

31

7. Translation memory

7.1 Overview

The translation memory implementation is described in deliverable D4.4. “Translation Memory

Module able to provide translation”.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

32

8. Personal Dictionary

8.1 Overview

The personal dictionary is implemented as described in D2.2.

The personal dictionary implementation is described in deliverable D2.5 “Interface to create

personal dictionaries.” (without online entry editing, described below).

8.2 Online entry editing

In addition to the CSV import mode, we added an online entry editing feature for dictionaries

(See D2.2).

We can now manually add / edit / delete dictionary entries. The entries (in CSV import mode or

editing mode) are saved in Flavius Database. Thus, if the user leaves the editing page without

saving, he will not loose his modifications. The edited dictionary is sent to the LW API globally,

when the user clicks on the “submit” button: The former dictionary is deleted from the

Language Weaver API side and a new one is created including all edited entries (currently, we

only allow one dictionary per direction). The creation and deletion steps use the same

Language Weaver API calls than the former CSV import (See D2.5).

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

33

9. Automatic translation

9.1 Overview

The automatic translation module is implemented as described in D2.2.

9.2 Use of LW SMT Engine

The translation in Flavius is done through the LW API (See deliverable D4.5 V2).

All information about web service addresses, engines used and directions are read and stored

into the Flavius platform cache. Moreover, the system can combine different engines from

different providers. For now, we configured it with Language Weaver engines, but we could

support some additional engines (ex: French <=> Russian from Softissimo, etc.).

When the language direction does not exist in LW API, we can configure some “pivot”

language and use it in Flavius as it would be a real direction. For example, for French to

Romanian, we use English as a pivot language: we first translate French to English, and then

English to Romanian.

9.2.1 Configuration file

A configuration file allows the customization of the platform.

Web service section

This section enumerates the web services which can be reached from the Flavius platform.

 <webservices>
 <webservice name="LW">
 <URL value="http://193.39.117.4/riws_dev/translation.asmx" />
 <User value="flavius" />
 <Password value="********"/>
 <Engine value="*" />
 <TimeOut value="60000" />
 <Block value="40" />

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

34

 </webservice>
 </webservices>

 Name: Web service name. Mandatory to identify the Web Service.

 URL: Web Service URL

 User/Password: Access rights to the Web Service

 Engine: Id engine list to publish

o 1,5 engines 1 and 5 are allowed

o 6 engine 6 is allowed

o * all engines are allowed

 Timeout: time out in millisecond.

 Block: Segment count to send in one block to the translation Web Service.

Direction section

This section shows the directions available for the user:

 [0] [Virtual Engine]
 [1] [Reverso 5]
 [2] [LEC and partners]
 [3] [Softissimo ERRE]
 [4] [LanguageWeaver]
 [5] [LanguageWeaver(Saas)]
 [6] [Prompt9]

 <directions>
 <direction source="fr" target="en" pivot=" " ws1="LW" eg1="5"/>
 <direction source="fr" target="es" pivot=" " ws1=" LW" eg1="5"/>
 <direction source="fr" target="de" pivot=" " ws1=" LW" eg1="5"/>
 <direction source="fr" target="it" pivot=" " ws1=" LW" eg1="5"/>
 <direction source="fr" target="ro" pivot="en" ws1=" LW" eg1="5" ws2="LW" eg2="5"/>
 <direction source="fr" target="ru" pivot="en" ws1="LW" eg1="1" ws2="LW" eg2="3"/>
…

 Source: source language of the direction

 Target: target language of the direction

 Pivot: if the direction needs a pivot language

 Ws1/eg1: web service name / id engine which provide direction

 Ws2/Eg2: web service name / id engine which provide direction for the second

direction if pivot is needed.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

35

10. Post-edition

10.1 Overview

The functional specifications of the Post-Edition module are described in the deliverable D2.2.

The implementation part for “URL” and “File” scenario will be described in the deliverable

D2.6.

11. Data retrieval

11.1 Overview

Data retrieval has been implemented as described in D2.2:

- The download of the translated versions (for URL scenario) is disabled for now, only

publishing is available

- The feedback suggestion module is not yet implemented and will be delivered in D2.8.

11.2 Website publishing (“URL” scenario)

Website publishing follows several steps:

11.2.1 File Copy

First, the translated files are copied from the translation folder repository to the publishing

server in a specific folder. The hierarchy structure of the Website is kept.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

36

Assuming that the translated pages are located in the translation folder jobs

\[idjob]\translated\[lng], they are copied in the publishing folder to [domainName]\[idjob]\[lng].

11.2.2 Flavius intrusive bottom bar
generation

The published translated pages are not included in HTML Frame object anymore.

A JavaScript bottom bar is used to navigate among the different language versions of the

Website. This bottom bar is generated using a JavaScript file (bottomBar.js) and a CSS file

(bottomBar.css) shared by all published website. Thus, we can change the bottom bar design

without having to republish former published websites. The variable content of the bottom bar

for each page is displayed by setting parameters to the JavaScript function (See below).

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

37

The JavaScript code is inserted on each page, just before the “</body>” tag:

<script type="text/javascript" src="/bottomBar.js"></script>

<script type="text/javascript">

 $(document).ready(function() {

 InitBottomBar('en',

 'fr',

 'http://reverso.softissimo.com/en/company',

 'http://flaviuspub.reverso.net/reverso-softissimo/753/fr/en/company.html',

 new Array('http://flaviuspub.reverso.net/reverso-

softissimo/753/fr/en/company.html'),

 new Array('fr'));

 });

</script>

This bottom bar can be collapsed or expanded:

The bottom bar is expanded

The bottom bar is collapsed.

Note:

To avoid CSS / JavaScript conflicts with the existing content of the published Website, main

styles attributes of the bottom bar are overloaded (highest priority of cascading style sheets).

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

38

With this new bottom bar solution, some new issues were raised. If the user navigates and

clicks on external links (for example, absolute links pointing on the original website), the user

will leave the publishing Website and will not be alerted. One solution could be to add some

JQuery code to listen to the unload event of the page and to display a warning popup.

Handling error

Some published pages could have dead links (page not crawled because of quota limitation,

etc.). For now, we use the internal IIS mechanism to replace the 404 error page with a specific

HTML page, indicating that the page called is not translated.

11.2.3 Website hosting and SEO

One of the main goals of Flavius is to index the published websites to search engines (Google,

Bing, etc.). With the bottom bar “solution”, published Flavius Websites are now well indexed

(no more IFrame issues).

We still need to make some analysis on the impact on SEO, by testing the ranking on a set of

testing published Websites. The indexing also depends significantly on the original website

structure and on the backlinks pointing to the Flavius published website.

11.2.4 Translation of meta-tag description
and keyword

Description and keyword meta-tags are extracted from each page, aggregated and inserted

into a temporary HTML file. This file is translated in the different target languages.

Then, during the publishing step, these meta-tags are inserted in the corresponding translated

page.

11.2.5 Google Analytics

We added a global tracking system to monitor the traffic generated by published Flavius

websites.

For now, the traffic is logged through Google Analytics using a global Flavius Account. Google

Analytics was chosen because of its statistic visualisation module and its simplicity.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

39

This JavaScript code (see below) is inserted during the Website publishing step, on each

page:

<script type="text/javascript">

 var tryNb = 5;

 function checkIfAnalyticsLoaded() {

 if (window._gaq && window._gaq.push) {asyncPageTracking();}

 else if (window._gat && window._gat._getTracker) {asyncPageTracking();}

 else if (window.urchinTracker) {

asyncPageTracking();

 insertAnalyticsCode();

 }

 else {

 if (tryNb > 0) {

 tryNb--;

 setTimeout('checkIfAnalyticsLoaded()', 100);

 }

 else {

 asyncPageTracking();

 insertAnalyticsCode();

 }

 }

 }

 function asyncPageTracking() {

 var _gaq = _gaq || [];

 _gaq.push(['flaviusTracker._setAccount', 'UA-25814413-1']);

 _gaq.push(['flaviusTracker._trackPageview']);

 }

 function insertAnalyticsCode() {

 var _gaq = document.createElement('script'); _gaq.type = 'text/javascript'; _gaq.async = true;

 _gaq.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-

analytics.com/ga.js';

 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(_gaq, s);

 }

 checkIfAnalyticsLoaded();

</script>

This JavaScript code is compliant with the new version of the Google Analytics API.

If the webmaster already inserted some Google Analytics JavaScript code in his original

pages, we try to detect his Google Analytics version, and adapt our call to the Google API.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

40

11.2.6 Indexing Websites and Terms of use

Indexing

Webmasters can now decide if their translated websites should be indexed or not by search

engines.

Publishing confirmation popup

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

41

The indexing choice is stored in the database and used to generate dynamically:

 The “robots.txt” file for the Flavius publishing Web Server: this file is used by search

engines to know which part of a website should be indexed.

 The list of published Websites available on the Flavius Homepage (and on the "All

Website" page).

Here is a sample of a generated robots.txt file preventing search engines to index the Website

published in the “/reverso/648” folder:

User-agent: *

Disallow: /reverso/648/

Terms and conditions

We added a “term of use” validation when a user creates an account in Flavius. Also, during

the publishing step, he must validate a second time that he is the real website owner (See

publishing confirmation popup above).

We also added a “report an abuse” link on all published Website allowing visitors to alert us if

a Website has been published without authorization. In the admin panel of Flavius, we can

now remove a Website from publishing.

A validation system based on the one used by Google could be added but some users risk to

give up using Flavius. For example, adding a meta tag in the homepage header is not always

easy, and sometimes this is not possible at all: (ex: Overblog). Moreover, allowing the user to

add a marker anywhere in the page (like in a published article for example, to overcome the

Overblog case) is dangerous because visitors could also add it in a comment and they will still

be able to publish the website in Flavius.

However, if we have lots of “abuse notifications” after reaching a certain traffic, we will analyse

them and if required, we will add such strong validation system (special file checking on

server, or tag added to the homepage header).

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

42

11.2.7 Publishing issues

The publishing of a generated website is a complex step, which requires some fine-tuning in

order to resolve the remaining issues.

Dead links

Some websites (e.g. http://reverso.softissimo.com/) use JavaScript to build dynamically HTML

links inside theirs pages. Thus, these pages are not crawled by the Flavius crawling module,

and the link is not rewritten. When the user navigates on the published page, the link is built

with the relative original URL (ex: /products) and the page cannot be retrieved.

One solution is to use a URL rewriting module to rewrite all the published pages of the Flavius

Publishing Server, with the same relative URL than the original one.

In our case, navigating on “http://flaviuspub.reverso.net/reverso-softissimo/300/fr/products/”,

should display the associated crawled page (for example “product.html”).

Advantages:
- We avoid some “dead links” problems on some websites

Disadvantages:

- The rewritten URL cannot be localized in the target language (bad point for SEO)

Forms

Lots of websites have forms to gather some information from the users (ex: Contact forms,

etc.). The published website cannot manage the forms. One solution could be to intercept with

JavaScript all the form requests (links from “<input>” HTML tag for example) and to redirect

the POST content to the form page of the original Website. Another solution could be to

rewrite all the form links during the publishing step to point to the original Form page.

Both solutions could be explored but we will get the original page response, without

translation. A last solution to explore could be to intercept all requests containing POST data,

redirect the request to the original page, get the response result and dynamically translate it

(See Crawling issue section).

http://reverso.softissimo.com/
../../../../../jbenchitrit.DOM_SOFTISSIMO/Documents/reverso/Flavius/Technical%20and%20Functional%20Documentation/Publishing/:%20http:/reverso.softissimo.com/en/products
http://flaviuspub.reverso.net/reverso-softissimo/300/fr/products/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

43

11.3 ZIP Archive Download (“File scenario”)

Once the files are processed for the File scenario, a ZIP archive is generated and ready to be

downloaded. The ZIP archive is created using the .NET Open Source Library SharpZipLib:

http://www.icsharpcode.net/opensource/sharpziplib/.

The archive directories are described in the “12.3.5 Retrieve the job result” section.

http://www.icsharpcode.net/opensource/sharpziplib/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

44

12. Flavius API

12.1 Overview

Concerning the API, we defined a first version after some discussion with the power users of

the consortium (Overblog, TVTrip, and Qype). The API covers a small part of future Flavius

users, and we focused for now on the power user’s needs. It will be implemented in the next

phases (See deliverable D2.3: Implementation plan) and delivered in D2.9.

The Flavius API will be a REST based Application Programming Interface (API) accessible

over the Internet and using existing technologies and protocols such as HTTP, SSL, and XML.

REST

REST (Representational State Transfer) is an architectural style in which clients can make

requests to the server, which will send responses to those requests. Requests and responses

are built around the transfer of representations of resources.

REST uses HTTP methods for accessing and manipulating the state of the resources that are

identified by a URI, as implemented on the World Wide Web.

The following methods are typically used to access and manipulate resources:

• HTTP POST + URI = Create a new resource

• HTTP GET + URI = Retrieve a representation of a resource

• HTTP DELETE + URI = Delete a resource

The Flavius API will be asynchronous. To meet the requirements defined by power users, it

will provide the ability to:

- Create a job

- Cancel a job

- Delete a job

- Get a job status

- Retrieve a job result

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

45

12.2 Security Management

The Flavius API will be secured by a custom security mechanism. Every request will be

authenticated. This is accomplished by attaching a custom header. Flavius API will use HTTP

as the communication protocol and all data will be encrypted with SSL (HTTPS).

Softissimo will provide to each power user a username and a password that will be used to

authenticate the access rights to the Flavius API.

The password will never be sent in any HTTP request. Every HTTP request to Flavius API

should contain the following HTTP headers:

- Created: Contains the current date and time (ex: Flavius_date: “”11/25/2011 19:04:40”)

- Username: Contains the username

- Signature: Contains the signature string used to authenticate the request.(ex:

Signature:”afsfsqfzf=fzsfs354”)

Created:

This date is used to mark the exact date and time of the call.

Username:

The username will be the client login.

Signature:

The signature is generated by concatenating the first two fields (Username, Created) and

encrypting them using a secured hash algorithm.

The algorithm used should be HMAC-SHA1 which is a type of message authentication code

(MAC) calculated using a specific algorithm involving a cryptographic hash function (SHA-1) in

combination with a secret key. The HMAC process mixes a secret key with the message data,

hashes the result with the hash function, mixes this hash value with the secret key again and

then applies the hash function a second time. The secret key will be the client password

provided by Softissimo.

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

46

Server Side Authentication Checking

If the header is not present in the header section, the call will be rejected. Also if either the

Username or Created field is empty (no set), the call will also fail. If the above conditions are

met successfully, the authentication continues by generating the signature locally (at Flavius

server) and checking it with the one provided in the custom header. The key used to generate

the signature is in fact the client’s password. If the signatures match, a further checking is

made: the creation date of the custom header is checked against the client’s last call. If the

creation date is higher than the last call date, authentication succeeds (if not call is rejected

with a specific error message).

12.3 API Definition

The global access will be:

https://flavius.reverso.net/api/v1/<resource>/

Every API function will return an HTTP response code as well as an XML document. The XML

document will provide the response data for the API function call if the HTTP response code is

an HTTP 200 OK. The XML document will provide the error data for the API function call if the

HTTP response code is an HTTP 40x.

Error XML format

In case of error, the XML document will be sent in the following format:

<Error xmlns="http://www.flavius.reverso.net/flaviusAPI/">
 <ErrorException> INTERNAL_ERROR_EXCEPTION</ ErrorException >
 <ErrorMessage>Error message</ErrorMessage>
 <ErrorSource> Error source</ErrorSource>
 </Error>

https://flavius.reverso.net/api/v1/%3cresource%3e/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

47

12.3.1 Create a new job

URL Resource

https://flavius.reverso.net/api/v1/job/

Description

HTTP POST: This submits a Job creation request to Flavius. Each job created will be

launched in an asynchronous way (See getting job progress). The parameters must be

supplied via HTTP POST.

Mandatory Parameters description

inputFormat: {xml; xmlZip; url; php; xliff; resx; xmlWordpress}. This parameter contains the

input format to process in Flavius:

o xml: An xml file

o xmlZIP: An archive in ZIP format that contains xml files at the root directory

o url: the URL of the website home page to crawl and to process.

o xliff: A XLIFF file to process

o xmlWordPress: an XML file in the WordPress export format.

o resx: A .NET Resource file

inputContent: The file content to upload in binary format:

 In case of inputFormat = url, it should contain the Homepage URL to

process (ex: http://reverso.softissimo.com).

 In case of inputFormat = xml, it should contain a well formed XML file

with an *.xml extension (UTF-8 with BOM).

 In case of inputFormat = xmlZIP, it should contain a valid ZIP archive

with only xml files at the root directory.

 In case of inputFormat = xliff, it should contain a valid XLIFF file

according to the DTD:

http://www.oasis-open.org/committees/xliff/documents/xliff.dtd (V1.2)

 In case of inputFormat = xmlWordPress: it should contain a valid export

xml file from the WordPress default export module (V3)

 In case of inputFormat = resx, it should contain a valid RESX file

generated by .NET applications.

https://flavius.reverso.net/api/v1/job/
http://reverso.softissimo.com/
http://www.oasis-open.org/committees/xliff/documents/xliff.dtd

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

48

srcLanguage: {en;fr:es;de;it;pl;ro;sv} This parameter specifies the source language using the

two-letter convention (ex: “fr” for French, “en” for English, etc.).

tgtLanguages: {en;fr:es;de;it;pl;ro;sv} This parameter specifies the target languages using the

two-letter convention (ex: “fr” for French, “en” for English, etc.). To use multiple target

languages, they should be separated by semi-colons, without spaces (ex: fr;en).

Optional Parameters description

xmlTemplate: {AllData} This parameter contains the name of the XML template to apply. By

default, the “AllData” template is used for xml input format.

inputEncoding: {UTF-8} This parameter allows to define the input encoding format used by

your input content. For now, Flavius API will support only UTF-8 as the encoding for the input

content. By default, the UTF-8 encoding is used.

enableSpellCheck: {false;true} This parameter enables / disables the spell check of the input

content. The spell-checking module will correct errors detected automatically.

The enableSpellCheck parameter will be ignored for url input format (always disabled).

By default, this parameter is set to true.

enableDictionary: {false;true} This parameter enables / disables the use of dictionary created

and enabled in the Flavius Website interface.

By default, this parameter is set to false.

enableTM {false;true} This parameter enables / disables the use of TMX created and enabled

in the Flavius Website interface for the requested language direction.

By default, this parameter is set to true. If no TMX exists for the requested direction, this

parameter will be ignored.

crawlDepth {1-5}.This parameter specifies the crawl depth for web crawling (inputFormat =

url). For example, a crawl depth of 1 will “crawl” the first page and its external links. If the input

format is not set to url, this parameter will be ignored.

By default this parameter is set to 1.

callbackUrl {ValidURL}: When the job is finished, if this parameter is set with a valid URL, this

URL will be called by FLAVIUS using HTTP protocol. The use of callbackUrl is recommended

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

49

to avoid Flavius system overload. If the callback failed (Timeout, etc.), the job status can still

be retrieved with the “Get Job status” call.

Output Response

Successful HTTP requests will return an HTTP 200 response code and an XML document:

<FlaviusResponse xmlns="http://www.flavius.reverso.net/flaviusAPI/">

<jobid>33</jobid>

</ FlaviusResponse>

This is a non-blocking method. The job id will be required to view the progress result and to

download it.

Error Response

Failed HTTP requests will result in an HTTP 400 response code as well as an XML document

containing an error message (See error XML format)

Error Exception Error Message Error source

SECURITY_HEADER_NOTFOUND no security header has
been provided for the call

AuthenticateRequest

SECURITY_HEADER_INVALID when the provided
security header is invalid

AuthenticateRequest

SECURITY_HEADER_INVALID_DATE the provided security
header contains an invalid
date

AuthenticateRequest

LANGUAGE_PAIR_NOTFOUND the provided direction is
not available

JobCreationRequest

XML_TEMPLATE_NOT_AVAILABLE The xml template
provided is not available

JobCreationRequest

INTERNAL_ERROR_EXCEPTION An internal error
exception occurred

JobCreationRequest

CRAWLDEPTH_OVER_QUOTA The crawl depth is over
quota for this user

JobCreationRequest

NO_TM_ENABLED_OR_DEFINED No tmx enabled or
defined for this direction

JobCreationRequest

NO_DICTIONARY_ENABLED_OR_DEFINED No dictionary enabled or
defined for this direction

JobCreationRequest

INPUT_ENCODING_NOT_FOUND The encoding specified is
not found

JobCreationRequest

INPUT_CONTENT_NOT_FOUND The input content is not
found

JobCreationRequest

INVALID_INPUT_FORMAT The input format is invalid JobCreationRequest

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

50

12.3.2 Cancel a job

URL Resource

https://flavius.reverso.net/api/v1/canceljob/{JobId}

Description

HTTP POST: it submits a job cancellation request to Flavius. If the job is in progress, the job is

cancelled. Each job cancellation will be launched in an asynchronous way. The {JobId} should

be to the job id to cancel (id generated by “create a job” request).

Output Response

Successful HTTP requests will return an HTTP 200 response code and an XML document:

<FlaviusResponse xmlns="http://www.flavius.reverso.net/flaviusAPI/">

<ResponseStatus>OK</ResponseStatus>

</ FlaviusResponse>

This is a non-blocking method. The job id will be required to view the progress result.

Error Response

Failed HTTP requests will result in an HTTP 400 response code as well as an XML document

containing an error message (See error XML format).

Error Exception Error Message Error source

SECURITY_HEADER_NOTFOUND no security header has
been provided for the call

AuthenticateRequest

SECURITY_HEADER_INVALID when the provided
security header is invalid

AuthenticateRequest

SECURITY_HEADER_INVALID_DATE the provided security
header contains an invalid
date

AuthenticateRequest

JOBID_NOT_FOUND the provided job id is not
found

JobCancelRequest

JOB_STATUS_INVALID The is not
IN_PROGRESS or
WAITING_FOR status

JobCancelRequest

INTERNAL_ERROR_EXCEPTION An internal error
exception occurred

JobCancelRequest

https://flavius.reverso.net/api/v1/canceljob/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

51

12.3.3 Delete a job

URL Resource

https://flavius.reverso.net/api/v1/job/{JobId}

Description

HTTP DELETE: This submits a Job delete request to Flavius. If the job is in progress, the job

cannot be deleted. Each job deletion will be launched in a synchronous way. The {JobId}

should be to the job id to delete (id generated by “create a job” request).

Output Response

Successful HTTP requests will return an HTTP 200 response code and an XML document:

<FlaviusResponse xmlns="http://www.flavius.reverso.net/flaviusAPI/">

<ResponseStatus>OK</ResponseStatus>

</ FlaviusResponse >

Error Response

Failed HTTP requests will result in an HTTP 400 response code as well as an XML document

containing an error message (See error XML format).

Error Exception Error Message Error source

SECURITY_HEADER_NOTFOUND no security header has
been provided for the call

AuthenticateRequest

SECURITY_HEADER_INVALID when the provided
security header is invalid

AuthenticateRequest

SECURITY_HEADER_INVALID_DATE the provided security
header contains an invalid
date

AuthenticateRequest

JOBID_NOT_FOUND the provided job id is not
found

JobDeleteRequest

JOB_STATUS_INVALID The job is not in ENDED
status

JobDeleteRequest

INTERNAL_ERROR_EXCEPTION An internal error
exception occurred

JobDeleteRequest

https://flavius.reverso.net/api/v1/job/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

52

12.3.4 Get job Status

URL Resource

https://flavius.reverso.net/api/v1/job/{JobId}

Description

HTTP GET: it submits a Job status request to Flavius. Each job status request will be

launched in a synchronous way. The {JobId} should be to the job id of the job to consult (id

generated by “create a job” request).

Output Response

Successful HTTP requests will return an HTTP 200 response code and an XML document:

<FlaviusResponse xmlns="http://www.flavius.reverso.net/flaviusAPI/">

<JobStatus>{JobStatusCode}</JobStatus>

<WorkflowStep>{WorkflowStepCode}</WorkflowStep>

<StepProgressStatusPercentage>

{StepProgressStatusPercentage}

</StepProgressStatusPercentage>

</ FlaviusResponse>

{JobStatusCode} describes the progress status of the job and can have the following values:

- UNKNOWN: Not used for now

- WAITING_FOR: The job is waiting for a user action.

- CANCELED: The job is cancelled.

- IN_PROGRESS: The job is in progress.

- ABORTED: The Job is aborted.

- ENDED: The job successfully ended. It can be retrieve with the job retrieve request.

{WorkflowStepCode} indicates the current workflow step of the job and can have the following

values:

- UNKNOWN: Not used for now

- EXTRACTING: “extracting” step (Crawling, Archive unzipping)

https://flavius.reverso.net/api/v1/job/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

53

- MANUAL_EXTRACTING_VALIDATION: The job is waiting for a user action in

“extracting step.

- REVISING: Spell checking step.

- MEMORY_TRANSLATING: Translation memory matching step.

- AUTO_TRANSLATING: Machine translation step.

- MANUAL_EDITING: Post editing step (Manual post edition from the user)

- ARCHIVING: Archiving step (Zip archive creation, publishing)

{StepProgressStatusPercentage} indicates the progress status of the current step in

percentage. This tag is filled only for AUTO_TRANSLATING and REVISING step.

Error Response

Failed HTTP requests will result in an HTTP 400 response code as well as an XML document

containing an error message (See error XML format).

Error Exception Error Message Error source

SECURITY_HEADER_NOTFOUND no security header has
been provided for the call

AuthenticateRequest

SECURITY_HEADER_INVALID when the provided
security header is invalid

AuthenticateRequest

SECURITY_HEADER_INVALID_DATE the provided security
header contains an invalid
date

AuthenticateRequest

JOBID_NOT_FOUND the provided job id is not
found

JobStatusRequest

INTERNAL_ERROR_EXCEPTION An internal error
exception occurred

JobStatusRequest

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

54

12.3.5 Retrieve the job result

URL Resource

https://flavius.reverso.net/api/v1/job/{JobId}/files

Description

HTTP GET: This submits a Job retrieval request to Flavius. Each job retrieval request will be

launched in a synchronous way. The {JobId} should be the job id of the job to retrieve (id

generated by “create a job” request). This request should be called only if the job status is in

“ENDED” status (“job status” request).

Optional Parameters description

includeOriginalFiles: {false;true} This parameter disables / enables the sending of Original files

in the archive result (OriginalFiles directory, see below)

By default, this parameter is set to false.

Output Response

Successful HTTP requests will return an HTTP 200 response code and an XML document:

<FlaviusResponse xmlns="http://www.flavius.reverso.net/flaviusAPI/">

 <Filename>{ArchiveFileName}</Filename>

<OutputContent>{BinaryStream}</OutputContent>

</ FlaviusResponse >

{Filename} contains the file name of the ZIP archive.

{OutputContent} contains the binary stream of a ZIP archive containing the result files.

For File scenario, it contains all translated versions of the requested files, with the following

tree structure:

/OriginalFiles/

/FlaviusSpellCheckedFiles/

/FlaviusTranslatedFiles/

https://flavius.reverso.net/api/v1/job/

Project co-funded by the European Commission within the ICT Policy Support
Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission
Services

55

For URL scenario, it contains all translated versions of the requested website, with the

following tree structure:

/OriginalFiles/

/OrginalFiles/{Original Website Domain}

/OriginalFile/{Original Crawled Website Domain}/{Original Crawled Files}

/FlaviusTranslatedFiles/

/FlaviusTranslatedFiles/{language code requested}

/FlaviusTranslatedFiles/{language code requested}/{Original Website Domain}

/FlaviusTranslatedFiles/{language code requested}/{Original Website Domain}/{Translated

Files}

Error Response

Failed HTTP requests will result in an HTTP 400 response code as well as an XML document

containing an error message (See error XML format).

Error Exception Error Message Error source

SECURITY_HEADER_NOTFOUND no security header has
been provided for the call

AuthenticateRequest

SECURITY_HEADER_INVALID when the provided
security header is invalid

AuthenticateRequest

SECURITY_HEADER_INVALID_DATE the provided security
header contains an invalid
date

AuthenticateRequest

JOBID_NOT_FOUND the provided job id is not
found

JobRetrieveRequest

JOB_STATUS_INVALID The job to retrieve is not
in ENDED status

JobRetrieveRequest

INTERNAL_ERROR_EXCEPTION

An internal error
exception occurred

JobRetrieveRequest

