

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1

DELIVERABLE

Project Acronym: FLAVIUS

Grant Agreement number: ICT-PSP-250528

Project Title: Foreign LAnguage Versions of Internet and User generated Sites

D4.3 Translation Memory able to collect data

Revision: 1.5

Authors:

 Christophe Brun-Franc (Softissimo)

 Constantin Walter (Across)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2

Revision History

Revision Date Author Organization Description

0.1 February,

14th

Constantin Walter ACROSS Draft version

0.2 February,

21th

Christophe Brun-Franc Softissimo Revised version

1.0 March, 1st Christophe Brun-Franc Softissimo Version sent to EC.

1.5 Sept, 15th Constantin Walter ACROSS Revised version, included

appendices

Statement of originality:

This deliverable contains original unpublished work except where clearly

indicated otherwise. Acknowledgement of previously published material

and of the work of others has been made through appropriate citation,

quotation or both.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

3

Sommaire

1. Introduction .. 4

2. The Across Language Server ... 5

3. The Translation Memory crossTank .. 6

4. General API communication with Across Server ... 12

5. Modifications and Extensions in crossAPI .. 14

6. Implementation of FLAVIUS platform with Across Translation Memory 18

Appendix A (Advanced Code Samples) .. 21

Appendix B (QA by Unit Tests) ... 25

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

4

1. Introduction

FLAVIUS, Foreign LAnguage Versions of Internet and User-generated Sites, aims at bridging
the language gap between content publishers and users by providing an online platform
accessible to websites owners that will enable them to generate multilingual versions of their
site, quickly, easily and efficiently in as many languages as they want.

FAVIUS is a European project under the Competitiveness and Innovation framework

Programmme (call identifier: CIP-ICT-PSP-2009-3)

Objective of the deliverable

The objective of this deliverable is to describe the translation memory used in FLAVIUS and

its implementation

This deliverable contains an overview of the ACROSS translation memory and a description

of the implementation of this TM in FLAVIUS.

This report is deliverable D4.3 Translation Memory able to collect data.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

5

2. The Across Language Server

The Across Language Server is an integrated solution for Corporate Translation

Management (CTM) and provides the full set of features and components needed for

translation support as such as well as for project and workflow management. As a central

platform for corporate language resources and translation processes, it includes a

translation memory – called crossTank – and a terminology system – called crossTerm.

The Across Language Server is a relational database-supported system, based on a

client/server architecture. The use of a database enables central storage of all data,

including the source and target texts and project-related and personal data of translators

and customers. The database used by the Across Language Server is the Microsoft SQL

Server. With the client/server architecture the clients/users working with Across have

access to the same server/database and work with a common dataset.

Technically speaking the Across Language Server runs three different servers using each

a separate database instance within the SQL server:

 the Across Server, responsible for the administration of system data, task

management (translations, etc.) and workflows

 the crossTank Server, responsible for storing and providing translation memory

entries

 the crossTerm Server, responsible for terminology administration

In scope of FLAVIUS the components of subject are the system administration

component of the main Across Server and the crossTank Server as Translation

Memory.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

6

3. The Translation Memory crossTank

The Across translation memory is called crossTank. The crossTank Server manages a

database of legacy texts, subdivided into translation units i.e. pairs of source and target

segments (see crossTank Manager).

The crossTank works like common translation memories do: if crossTank finds an

identical or similar sentence in a new source text, it makes the translation available to the

translator.

The crossTank Manager

The crossTank Manager serves the management and maintenance of translation units

stored in the translation memory crossTank.

The crossTank Manger allows such operations as adding manually new translation units

and searching, editing, deleting or merging existing translation units as well as the import,

export and the maintenance of translation units.

Segmentation

The segmentation of the source and target texts is fundamental to the functioning of a

translation memory system because it is this that allows the system to find a previously

translated sentence or paragraph in the translation memory, to avoid having to translate it

again.

In Across, there are two different segmentation modes and by this means also two

different storing modes: segmentation (and storing) by sentences and segmentation (and

storing) by paragraphs.

Segmentation by sentences is the default segmentation type enabled for all document

formats in Across. This method first divides the source texts into paragraphs and

subsequently into sentences with the help of predefined sentence rules.

In paragraph segmentation, the source text is simply divided up into paragraphs. (This

can be useful, for example, to avoid sentences being inserted in the translation out of

context, e.g. in the case of a pre-translation.)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

7

Attribution of translation units

Unlike file-based translation memories crossTank as a database-supported translation

memory stores all translation units in one database. To enable the retrieval and use of

the needed data, along with the language data, crossTank stores various system

attributes. By default, crossTank uses system attributes for project, relation/customer,

and subject. Moreover, additional user-defined system attributes can be created. Detailed

filter settings enables the translator to narrow down his search and find the data he is

looking for.

Additionally crossTank logs extensive information about the use of translation units

stored in crossTank. For example, the history records how often each translation unit was

used, i.e. how often it was inserted in a translation (e.g. during pre-translation or manually

by a translator). Moreover, the history records when and by which translator a translation

unit was last used.

The status of translation units

In crossTank every translation unit has a status indicating the creation mode and

reliability of the translation units. The following states are used:

 Newly inserted: The entry was added manually in crossTank (by inserting it

manually in the crossTank Manager).

 Smartly inserted: The entry was inserted (semi-)automatically (without user

interaction) to crossTank (e.g. by translating a segment in the translation editor

crossDesk).

 Aligned: The entry was inserted within the scope of an alignment.

 Released: The entry was released by an authorized person.

Storing of rich translation contents (tags etc.)

The crossTank optionally stores rich translation contents, i.e. tags, styles, and other

characters (control characters, special characters, and white spaces).

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

8

This saving mode of crossTank is called Rich TM and is activated by default.

Auto-Adjustments

During pre-translation or when identifying and inserting translation units in the translation,

Across tries to adjust the translation units with respect to tags and formatting.

If, for example, the only difference between a segment to be translated and a translation unit

stored in crossTank is a different tag, the auto-adjustment function enables Across to identify

the translation unit as a 100% match. Without the auto-adjustment, the crossTank entry

would merely be a fuzzy match because of the deduction of a penalty.

Duplicates

The multiple storage of translations can result in unwanted redundancies in crossTank,

referred to as "duplicates". For example, this may happen when a sentence already

translated and stored in crossTank is edited and stored again in crossTank. It is possible to

prevent the storage of duplicates in crossTank, so that there will only be one translation for

every source sentence.

However, multiple storage may be desirable, e.g. if there are two different translations for a

sentence that are selected depending on the context. Therefore the translator can store

deliberately a duplicate if needed.

Fuzzy-Search

The fuzzy search displays translation units that are similar to the current segment. The

relative match rate is displayed for each suggested translation. The match rate is calculated

by the similarity between the current segment and the translation unit in crossTank.

Additionally penalties can be deducted due to differences e.g. in included tags. A minimum

match rate for suggested translation to be shown can be defined in the crossTank settings.

Filters can be set in order to display only translation units e.g. of a certain subject and/or of a

certain translation unit status.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

9

FLAVIUS platforms will only make use of the high-fuzzy-rate matches (100%). Otherwise

translations will be applied using the machine translation engine by Language Weaver.

It may be subject for discussion if exclusivly 100% matches are used or if a e.g. 98% match

contains already better quality than the machine-generated translation.

Concordance Search

The concordance search allows to quickly look for a word or several words in crossTank.

This allows to see at a glance the context a word has been used in the past and how others

or the translator him- or herself has translated it previously. The concordance search is

available in the crossTank Manager and in FLAVIUS context primarly used for administrative

checks.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
0

Concordance search options may be used during implementation to quick check population

of crossTank. If it is tried to perform this check using fuzzy search whole search phrases are

needed. Otherwise no result would be displayed because all potential return sets are below

the minimum fuzzy treshold of 50%.

Search filters

Various search filters are available for refining searches in crossTank. The following filters

can be used:

 Date

 Subject

 Relation/customer

 User-defined attributes

 Creator

 Modifier

 Project

 State

 Usage History (usage count, date of last usage,

last user)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
1

Penalties

To prevent unsuitable translation units, Across uses percentages (penalties) that are

deducted from the match rate due to differences, e.g. in the formatting or system attributes

(relation/customer, subject, etc.).

The following penalties can be used in Across:

 Different punctuation

 crossTank entries with the "Released" status.

 crossTank entries with the "Aligned" status.

 crossTank entries with the "Smartly inserted" status

 crossTank entries with the "Newly inserted" status

 Different other characters

 Different tags/inline objects

 Different formatting

 Wrong user-defined attribute

 Different relation

 Different project

 Different subject

 Switched words

 Wrong sublanguage

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
2

4. General API communication with
Across Server

Across consists now of various programming interfaces for other applications (so called

APIs).

crossAPI System Integration (SI)

This subset of the API is used for managing translation jobs or configurations inside Across.

crossAPI SI works more on the high level. Other systems may address for creating entire

translation projects to be assigned to other Across systems.

For the FLAVIUS use case, crossAPI SI can be used to create new attribute sets like

subjects or relation to separate the TM for content of different sites.

The crossAPI SI runs as a web service (SOAP) on the Across application server.

It will be addressed by the FLAVIUS platform via http.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
3

crossAPI Interactive (IA)

The crossAPI IA is designed for more granular functionality requests from the Across Server.

I.e. other systems may ask for the best translations of a given text segment.

It is the major interface for integration of FLAVIUS platform with the Across Language Server

environment.

The following chapter describes the necessary steps and changes in detail.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
4

5. Modifications and Extensions in
crossAPI

Separation of API and crossTank core

Before setting up the Across Server environment the first time on FLAVIUS platform

ACROSS had to work on the ability to separate API and application server.

ACROSS solved this by splitting up the program components. With this several task were

related.

Communication issue

Instead of a direct communication between API and core application we had to establish

communication of crossAPI Interactive component with crossTank core by TCP/IP.

 Extension of crossAPI IA with TCP connectivity

 Extension of crossTank core to allow direct TCP socket connections from API

 Introduction of dedicated logging

 Testing and QM

Deployment issue

The Across Language Server setup procedures are designed to deploy all components

(except database server) on a single machine. The installation procedure had to be

extended.

 Creation of separate MSIs

 Changing setup wizard to support multiple MSIs in this case

 Introducing support of configuration files during setup (using generic softkey files)

 Testing and QM

Implementation of additional methods

In detail several objects or methods needed enhancement.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
5

Improving IcTaSearcher method set

For Flavius it is vital to be able to distinguish between different customer TMs and also to

manage non released entries or test imports.

Responsible for this function set is the IcTaSearcher interface. It contains the structures for

supporting this functionality.

Changes in this interface affect all functions contained. These are:

 AdjustTranslation

 SearchConcordance

 SearchConcordanceEx

 SearchConcordanceEx2

 SearchConcordanceRich

 SearchTranslations

 SearchTranslationsByID

 SearchTranslationsByIDRich

 SearchTranslationsEx

 SearchTranslationsEx2

 SearchTranslationsRich

 SearchTranslationsRichEx

 SearchTranslationsRichEx

In Flavius context only the SearchTranslation* functions are of interest, but it is not possible

to limit the extension on them (and exclude the concordance search functions).

From the implementation point of view fuzzy search is an extension of concordance search.

Concordance search provides a result set where the words from query string are present.

Fuzzy search performs quite the same in it’s first step. But furthermore it checks also for

sequence of words and calculates the similarity value.

Internally a concordance search query makes use of the same SQL Stored Procedures as

the Fuzzy Search. So the parameters for filtering are also available in concordance search.

In fact it would have been additional effort to limit the filter functionality on Fuzzy Search.

But anyway - Concordance Search via crossAPI could be also useful in future if Flavius

platform incorporates additional functionality for TM management.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
6

Added function UpdateTranslations.editor

The interface IcTaEditor did not contain an option to update existing translations in a

convenient way (of course it would be possible to delete the old one and add the updated

translation new, but this is not convenient enough).

For this we introduced the function UpdateTranslations and UpdateTranslationsRich (for

tagged content).

Improved interface IcTaFactory

Now IcTaFactory has function GetTranslationMemoryInfo. This functions returns an object

that contains statistical information about population of the translation memory.

Flavius platform makes use of this by monitoring state and population of customer TMs.

Added Across.ISDD

This interface provides functions that are used for getting and applying sentence delimitation

detection on whole phrases.

One major issue in querying translations from the translation memory is using the same

segmentation rules in queries as the translation units are stored in TM. Across already offers

segmentation rules for processing documents to be translated, but it is also necessary to

provide this service to a service requester via crossAPI to have a consistent rule set for

sentence detection inside Across TM and Flavius platform integration.

Prototype application for demonstration and testing

To demonstrate and assist the FLAVIUS platform developers in finding the right integration

points with the Across Language Servers APIs ACROSS developed and provided a sample

application how communication with ACROSS TM could happen.

This additional application has several purposes:

 Emphasizing the functions needed for integration

 Supporting implementation by providing sample illustration

 Support in testing general connectivity

 Tool for validating results as collected by the FLAVIUS platform

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
7

Illustration of sample sentence in crossTank

Same sentence in test application

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
8

6. Implementation of FLAVIUS platform
with Across Translation Memory

Technical architecture

Across Language Server with the Translation Memory module (crossTank) is installed on a

physical server (distinct from the SQL Database Server).

The database server - SQL Server 2008 - is configured with the three database required for

Across Language Server (Across, ctank_Across, cterm_Across).

The ctank_Across data is the repository for the translation memory.

A registered user FLAVIUS was created. This account will be the one used to access the

Translation Memory through the CROSS API Interactive.

A relation attribute - called Owner - is used to link TM entries to a specific FLAVIUS web

account.

Translation memory

Farm

Applicative Server +

MS Queue Server

Web Server Farm

Database cluster

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

1
9

Use of CROSS API Interactive

FLAVIUS is communicating with Translation memory through the crossAPI Interactive (see
chapter 4). This API is integrated in the FLAVIUS platform as an external reference
(interface) and called through C#.

public crossClient(string installation_guid,string username, string

password)

 {

 this.installation_guid = installation_guid;

 this.username = username;

 this.password = password;

 }

This API allows not coping with the physical location of the FLAVIUS web application and
Translation Memory. The remote communication is handled by the crossAPI interactive and
is not handled by the FLAVIUS web application.

Thus, the TM part of the FLAVIUS web application is more focused on the functional
aspects.

The crossAPI interactive is used in FLAVIUS for:

 Translating text using the TM

 Enriching the TM

Translating text using the Translation Memory

The translation process is performed in the FLAVIUS Translation module.

The module is called for each file with the list of segments extracted by the parser module.

The translation module calls the translation memory through the SearchTranslation function.
For each segment, the module check if there is a match.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
0

According to the result:

 the translation is kept and no call will be done to the SMT engine

 the module calls the SMT engine to get an automatic translation

Once the entire file is translated, the module generates the new list of translated segments. A

new version of the file will be generated from the list of translated segments and saved in the

translated directory of the job.

Enriching the TM (through post-edition)

The Translation Memory is enriched with validated sentence through the post-edition
interface.

During the post edition phase, the edited segments will be flagged as ready for an insertion
in the translation memory.

At the end of the post edition process, the flagged segments will be extracted from the job
data, and will be inserted in the translation memory through the UpdateTranslations function
of the API.

The FLAVIUS platform adds several metadata to the segment unit - which is composed of
the source text and the translation -. These metadata are:

 Owner

 Date of creation

 Author

 Status : Smartly inserted

 Project : the job name

 File : the file name

 Subject

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
1

Appendix A (Advanced Code Samples)

Code samples for frequently used functions

Function: SearchTranslations

Carries out a similarity search in crossTank.

Syntax

TRANSLATION[] SearchTranslations(int SessionID, int Similarity, SENTENCEINFO Pattern,
int TargetLcid, FILTER SearchFilter);

Parameters

SessionID: The ID of a crossTank session.

Similarity: The minimal similarity in percent.

Pattern: The search pattern.

TargetLcid: The LCID of the target language.

SearchFilter: The filter that should be used for the search.

Return value

An array of the translations found.

Example of usage:
public TRANSLATION[] FuzzySearch(string query, int similarity, string

relation, int source_lcid, int target_lcid)

{

 TRANSLATION[] translations = null;

 sessions = cross_tank.GetSessions();

 int session_id = sessions.CreateSession(this.instalation_guid);

 IcTaSearcher searcher = cross_tank.GetSearcher();

 SENTENCEINFO sentence_info = new SENTENCEINFO();

 sentence_info.Lcid = source_lcid;

 sentence_info.Sentence = query;

 FILTER filter = new FILTER();

 filter.ResultLimit = -1; //Get all results

 filter.TimeFilter = TimeFilterMode.TimeFilterUnknown;

 filter.ServerContextGuids = servers.ToArray();

translations = (TRANSLATION[])searcher.SearchTranslations(session_id,

similarity, sentence_info, target_lcid, filter);

 sessions.CloseSession(session_id);

 return translations;

}

mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e58342.html
mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e57662.html
mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e58510.html

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
2

Function: UpdateTranslations

Edits translations in crossTank.

Syntax

void UpdateTranslations(int SessionID, ref TRANSLATION[] Results);

Parameters

SessionID: The ID of a crossTank session.

Results

Contains all information necessary to edit translations. After the update is completed it also contains

the automatically generated information such as ID.

Example of usage:
public bool UpdateTranslation(TRANSLATION translation)

{

 try

 {

 int session_id = sessions.CreateSession(this.instalation_guid);

 IcTaEditor editor = cross_tank.GetEditor();

 System.Array translations = new TRANSLATION[] { translation };

 editor.UpdateTranslations(session_id, ref translations);

 }

 catch

 {

 }

 return true;

}

mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e58342.html

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
3

Function: GetTranslationMemoryInfo

Returns statistical information about crossTank.

Syntax

TMINFO[] GetTranslationMemoryInfo(int SessionID, FILTER SearchFilter);

Parameters

SessionID: The ID of a crossTank session.

SearchFilter: A filter that specifies which information should be entered in the statistics.

Return value

An array containing the statistical information about crossTank.

Example of usage:
public int GetTranslationsCount()

{

 sessions = cross_tank.GetSessions();

 int session_id = sessions.CreateSession(this.instalation_guid);

 FILTER filter = new FILTER();

IcTaTMInfo cTaTMinfo = cross_tank.GetTranslationMemoryInfo();

 var info = cTaTMinfo.GetTranslationMemoryInfo(session_id, filter);

 sessions.CloseSession(session_id);

 return ((TMINFO)inf.GetValue(0)).TranslationCount;

}

mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e58683.html
mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e58510.html

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
4

Interface: ISDD

This interface provides access to the SDD functionality.

Function: DetectAlphaWords

Used to retrieve the ranges of alphanumerical words in the supplied text.

Syntax

ISddRangeList DetectAlphaWords(string text);

Parameters

text: The text where the words should be detected.

Return value

A ISddRangeList object. Contains one range per detected alpha word.

Example of usage:

public int GetAlphaWordsCount(string text)

{

client = new CrossClientClass();

client.Open(this.instalation_guid, this.username, this.password);

sdd = client.GetSDDInterface("");

var rangeList = sdd.DetectAlphaWords(text);

return rangeList.GetCount();

}

mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e60518.html
mk:@MSITStore:D:/Documentation/Across/2_SDK/Documentation/v5.0_SP1/100909%20across%20SDK.chm::/d0e60518.html

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
5

Appendix B (QA by Unit Tests)

Establish connection test.

Tests if the connection to the crossAPI IA could be successfully established and the session could be

opened, using correct installation GUID, user name and password.

var connection = new Across.Client.Connection();

connection.Open(InstallationGuid);

Assert.IsTrue(connection.IsOpened);

var session = connection.CreateSession(Login, Password);

Assert.IsNotNull(session);

Result: Passed

Reject connection test

Tests if the connection function throws correct exception (Across.Client.AuthorizationException), if

the invalid credentials are used for establishing connection to crossAPI IA.

[TestMethod]

[ExpectedException(typeof(AuthorizationException))]

public void InvalidCredentialsTestConnection()

{

 //Establishing connection with wrong credentials

}

Result: Passed (The generated exeption is of the [ExpectedException] type)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
6

Add simple translation test

Tests if the simple text is added correctly to TM and can be then found with the 100% similarity

search.

[TestMethod]

public void TestAddTranslations()

{

 //Insert some test translation in TM

var resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translation was added correctly

 Assert.IsNotNull(resultTranslations);

 Assert.IsTrue(resultTranslations.Count() == 1);

Assert.AreEqual(TestSourceText,

resultTranslations.First().Source.Text);

Assert.AreEqual(TestTargetText,

resultTranslations.First().Target.Text);

}

Result: Passed. The translation that was found after insertion has the same source- and

target-text.

Special characters insertion test

Tests if the sentences that contain special characters could be correctly inserted to the TM (could be

then found with the same special characters).

[TestMethod]

public void TestAddTranslationWithSpecialCharacters()

{

 //Insert some text with special characters.

var resultTranslations =

FindExactly(TestTextWithSpecialCharacters,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translation was found correctly

 Assert.IsNotNull(resultTranslations);

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
7

 Assert.IsTrue(resultTranslations.Count() == 1);

Assert.AreEqual(TestTextWithSpecialCharacters,

resultTranslations.First().Source.Text);

Assert.AreEqual(TestTextWithSpecialCharacters,

resultTranslations.First().Target.Text);

}

Result: Passed. The test string "€£¥©®™±≠≤≥÷×∞µαβπΩ∑" was successfully found after

insertion

Number differences search test

Tests if the sentence could be correctly found if the search pattern has the difference only in some

number.

[TestMethod]

public void TestSearchOnlyNumberDifferences()

{

 //Insert some text with number.

 //Search for a sentence that has only number-difference

var resultTranslations = FindSimilar(TestNumber2Text,

SourceLanguageLCID, TargetLanguageLCID, 99);

 Assert.IsNotNull(resultTranslations);

 Assert.IsTrue(resultTranslations.Count() == 1);

Assert.AreEqual(TestNumber1Text,

resultTranslations.First().Source.Text);

Assert.AreEqual(TestNumber1Text,

resultTranslations.First().Target.Text);

}

Result: Passed. The added sentence was “This is the number 1 example”, the search pattern

was “This is the number 2 example”. The source sentence was found.

Remarks: Difference in numbers results in a penalty (1% penalty per one number). That is why

user must use the search with similarity less than 100% and filter the result set for the 100%

matches that were created by ACROSS auto adjustment of numbers.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
8

Big test insertion test

Test if big text blocks can be successfully added to the TM. The translations that bigger than 255

characters, has a type Ntext in the database. The maximal size is 2.147.483.647 Byte.

[TestMethod]

public void TestBigTextInsertion()

{

 //Insert some big text.

var resultTranslations = FindExactly(TestBigText,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translation was found correctly

 Assert.IsNotNull(resultTranslations);

 Assert.IsTrue(resultTranslations.Count() == 1);

Assert.AreEqual(TestBigText,

resultTranslations.First().Source.Text);

Assert.AreEqual(TestBigText,

resultTranslations.First().Target.Text);

}

Result: Passed. The test text contains 20007 characters. The text was successfully added and

then found. The 100% match search execution time on the test PC was 0.0041 milliseconds.

Insertion operation time – 7.12 seconds.

Update simple translation test

Tests if the translation could be successfully updated.

[TestMethod]

public void TestUpdateTranslation()

{

InsertExampleTranslation();

var resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 // Update found example translation(-s)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

2
9

 foreach (var resultTranslation in resultTranslations)

 {

 resultTranslation.Target.Text = TestUpdatedText;

 }

resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translation was updated correctly

 foreach(var resultTranslation in resultTranslations)

 {

 resultTranslation.Target.Text = TestUpdatedText;

Assert.AreEqual(resultTranslation.Target.Text,

TestUpdatedText);

 }

}

Result: Passed. The target text of the translation, that was found, was correctly updated.

Delete translation test

Tests if the deletion operation works correct.

[TestMethod]

public void TestDeleteTranslation()

{

 InsertExampleTranslation();

var resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translation(-s) was added to the TM

 Assert.IsTrue(resultTranslations.Count() > 0);

 // Delete translations from the TM

 foreach (var resultTranslation in resultTranslations)

 {

 resultTranslation.Delete();

 }

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

3
0

// Search the deleted translations in the TM and check

that //they are not exist.

resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 Assert.IsTrue(resultTranslations.Count() == 0);

}

Result: Passed. There was found no translation after delete operation.

ImportTMX test

Tests if a tmx file is successfully imported in the ACROSS TM.

[TestMethod]

public void TestImportTmx()

{

// First delete this example if it exists in the TM

 DeleteExampleTranslation();

 ImportTMX(tmxFile);

var resultTranslations = FindExactly(TestSourceText,

SourceLanguageLCID, TargetLanguageLCID);

 // Check if the translations was added correctly in TM

 Assert.IsNotNull(resultTranslations);

 Assert.IsTrue(resultTranslations.Count() == 1);

Assert.AreEqual(TestSourceText,

foundedTranslations.First().Source.Text);

Assert.AreEqual(TestTargetText,

resultTranslations.First().Target.Text);

}

Result: Passed. The test translation was successfully found after importing test tmx file.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

3
1

Import corrupted .tmx file test

Tests if the API aborts correctly if the TMX to be imported is corrupted.

[TestMethod]

public void TestImportCorruptedTmx()

{

//Import TMX file, that has corrupted structure

 ImportTMX(corruptedFile);

// Check if an error has occurs during importing

corrupted TMX // file

Assert.IsTrue(crossApiProxy.TankManager.GetJobStatus(resu

lt) == 2);

}

Result: Passed. This test waited for a error code (2) from the API. The code = 2 was returned.

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

C Confidential, only for members of the consortium and the Commission Services

3
2

Final Remarks

All these tests are written using Visual Studio S2010 Unit Testing framework, so the developer should

not install some additional software.

The described implementation of unit tests runs inside the ACROSS development system when a new

built is created. These tests are also imlemented inside FLAVIUS platform to verify the appropriate

functionality there.

Passing the unit test results inside Visual Studio:

Unit Testing result

