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1 INTRODUCTION 
 

The Future Internet will include services and user-centric content from sectors, such as energy 

management, e-Health, and domotics. Until recently, those sectors developed their own 

communication infrastructure and system solutions, often built on non-IP technologies.  

As a matter of fact as already observed in Deliverable 5.2 [1], non-IP networks will continue to exist 

and a solution is needed to connect non-IP networks to IP networks. Such “connections” can be based 

on simple bridging solutions. However, to reach true cross-sector interoperability, scalability, and 

flexibility, a common middleware or service delivery layer is needed. This middleware layer 

converges and unifies functionality just as IP converged and unified available network resources. We 

have argued that the service-based architecture described in Deliverable 5.2 can partly be implemented 

using current technology, namely UPnP
1
.  

We implemented a proof-of-concept demonstrator which connects various non-IP networks to the IP 

network in the home. The corner stone of this implementation is a newly defined UPnP Control 

Network proxy. This proxy enables the discovery of non-IP devices from the IP network, and supports 

control networks from the energy management, e-Health, and domotics domains. Differences in device 

complexity, number of nodes, and approaches for standardisation led to two implementation 

approaches.  

In this document, we describe the implementation of the demonstrator and evaluate the possible 

alternatives with respect to standardisation. This deliverable is organised as follows. In Chapter 2 we 

describe the demonstration setup and its user interfaces. In Chapter 3 we describe the implementation, 

and the message flow between devices. In this chapter we also evaluate the implementation 

alternatives and their options for standardisation depending on domain and device complexity. In 

Chapter 4 we briefly describe the embedding of UPnP Control Network proxies in the overall 

FIGARO Architecture. Some final observations and remarks in Chapter 5 conclude this deliverable. 

 

                                                      
1 Notice that the original title of this deliverable, as indicated in the FIGARO DoW, assumed a DLNA-based solution. 

However, as UPnP recently started a working committee on e-Health and sensors, which is in-line with the technological 

choices and work reported in this document, while DLNA is not (yet) working on these topics, D5.3 title has been modified 

consequently as also discussed during the year 1 project review. 
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2 CONTROL NETWORKS DEMONSTRATOR 
 

2.1 Background 

For the implementation of the demonstrator we focused on the messaging and discovery framework. It 

is intended to show how non-IP networks can be connected to IP networks in a generic way. Instead of 

focusing on implementing an elaborate use case, our main goals are to show that: 

• Multiple types of networks can be connected. 

• Multiple device types can be described. 

• Messages can be sent from clients in the IP network to a non-IP device. 

• Messages and state change events from non-IP devices can be received by clients in the IP 

network. 

• A generic extension to all messages and devices as described by a non-IP network standard is 

feasible. 

A demonstrator in which lights and switches from multiple types of control networks are accessible 

from a client in the IP-network is suitable to investigate all these requirements. However, to ensure 

that requirements from the energy management, e-Health, and domotics domain are sufficiently 

covered, control networks applicable in these domains were chosen.  

Therefore we decided to analyse and implement four different control networks: ZigBee [4], Z-Wave 

[5], Bluetooth [6], and M-BUS Error! Reference source not found..  

ZigBee defines profiles for Home Automation, and Smart Energy management, and is used in the e-

Health domain as well.  E-Health standards like Continua and IEEE11073 define devices based on 

Bluetooth, and recent versions also include ZigBee. Z-Wave is used in domotics, and energy 

management applications.  

Since another important requirement in these domains is to allow service providers access to devices 

in the home we investigated the use of a TR-069/UPnP proxy. The combination of a TR69/UPnP 

proxy and UPnP Control Network proxies enables the remote access of devices that are part of a 

control network. 

In section 2.2 we describe two Control Network demonstrators. Then, in section 2.3 we describe the 

TR-069/UPnP proxy demo. 

2.2 UPnP Control Network proxy demos 

Two UPnP Control Network demonstrators were implemented. The first demo consists of three 

different types of control networks: 

• A ZigBee network containing lights and switches.  

• A Z-Wave network containing lights and switches. 

• An M-BUS connection to an electricity meter.  

The second UPnP Control Network demo is used to control: 

• A Bluetooth network containing a light. 

Each of these networks is represented on the IP-network by its own UPnP Control Network proxy 

device as shown in Figure 1. The proxies are responsible for connecting a control network to the IP-

based home network. Therefore, each UPnP proxy device has an Ethernet or Wifi connection, and a 

control network interface.  

Android phones and tablets are used as clients, providing user interfaces by means of apps 

implemented for this demo. The tablets and phones connect to the home network using Wifi. The app 
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detects the control networks, determines which devices are present in the control network, and 

provides a graphical user interface to control these devices. Additionally, a touch screen device was 

used to implement an M-BUS interface as well as a user interface to show energy readings and to 

control lights. 

TR-069 is a protocol which allows service providers to manage an end-user device, such as a set top 

box via the Internet. TR-069 does not support the management of devices in a home network. 

However, by combining TR-069 with a UPnP-proxy it is possible to create a system in which devices 

in the home can be remotely managed by a service operator. In this demo the TR-69/UPnP Proxy 

(Figure 1, bottom right) shows that devices in the control networks can be accessed remotely by a 

service operator.  

 
Figure 1: Control Network demo architecture 

 

In Figure 2, 3 and 4 we show photographs of the actual demo setup. Figure 2 illustrates the ZigBee 

setup, which consists of two ZigBee lights, a ZigBee switch, a UPnP proxy device, and a ZigBee USB 

dongle. The UPnP Control Network proxy is implemented on the small black PC displayed on the 

right hand-side of the same figure. 
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Figure 2: ZigBee demo 

 

Figure 3 shows the Z-Wave and M-BUS setup. This network contains two Z-Wave controllable lights. 

Additionally it shows an electricity meter. The touch screen device (Figure 3 bottom) implements the 

UPnP CN proxy device as well as a UPnP Control point. The same Android app that was used to 

control the ZigBee lights is also used to control the Z-Wave lights, and to display the energy readings 

on the tablet (Figure 3 top). 

 

 

 

Figure 3: Z-Wave and M-BUS demo 
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Figure 4 shows the Bluetooth demo. The Bluetooth network contains one controllable light, 

implemented by means of a led. The laptop is used to run the UPnP CN proxy device, communicating 

to both the Bluetooth and the Wifi network. The Android tablet implements the UPnP Control Point 

and shows the control app.  

 

 

 

Figure 4: Bluetooth demo 

 

 

2.2.1 UPnP Control Network Proxy User Interfaces 

Although complex from a network implementation perspective, the demo shows that for users it is 

easy to control devices. Networks and devices are automatically detected; lights can simply be 

controlled by pressing a button in the UI, and switches can be bound to lights.  

We implemented two different Android apps to experiment with, and evaluate two different 

implementation strategies. The first app is used to control devices in the ZigBee and Z-Wave 

networks, and follows the first implementation strategy (see Section 3.4). The second Android app is 

used to control the Bluetooth devices, and follows the second implementation strategy (see Section 

3.5).  

Figure 5 shows screen shots of the first app. In this app the user first selects which network to control 

(ZigBee or Z-Wave), although a stored preset, or controlling all networks would have been possible 

too. Next the system shows the nodes that it detects in the ZigBee network, in this case two colour 

lamps and a switch (Figure 5a). 

Just pressing the lights in the UI will switch the light on or off.  A long press on the colour light will 

allow the user to select a different colour (Figure 5b). A long press on the switch or lamp will trigger 

the binding control (Figure 5c). This allows the user to select which lamps will react to the switch.    
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Figure 5: a) Lights UI      b) Colour control          c) Binding control 

 

When multiple tablets or mobile phones are used to control the lights, the state of the lights is reflected 

in all user interfaces. If a light is turned on or its colour is changed on one tablet, the resulting state is 

automatically shown in the user interfaces on other tablets or phones. The user interface also allows 

changing the name of a device. This information is not local to the UI, therefore, a change in the name 

on one tablet will also be reflected on other tablets. 

 

The second Android app is used to control the Bluetooth network. Although from a network 

perspective this app operates in a different way (see section 3.5) from a user’s point of view it is very 

similar. Figure 6a shows that Bluetooth devices are automatically discovered (in this case the 

BinaryLight [8]). Figure 6b shows how the user can select a device and control it. 

 

        

Figure 6: a) Discovery of Bluetooth proxy   b) Bluetooth binary light control 

 

2.2.2 Demonstrator components and development 

In the following, the components that were used to develop the demos  are briefly described. 

 

ZigBee Lamp and switch 

The ZigBee lamp is a modified Philips Living colour lamp (Figure 7a). This lamp contains a TI 

CC2530 chip. For this chip TI provides a ZigBee Pro as well as a ZigBee RF4CE stack. For this demo 

the TI SDK was used to create a new ZigBee RF4CE based firmware and a ZigBee Pro based 

firmware allowing us to define custom RF4CE commands and experiment with the ZigBee Cluster 

Library. Rewriting the software in the lamp is accomplished by attaching the lamp to the TI SmartRF 

evaluation board [9] as shown in Figure 7b. (The SmartRF evaluation board acts as a flash 

programming tool). The same evaluation board was used to implement a switch. Since this board 

contains a few micro switches it served as a good starting point to experiment with the TI SDK.  
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Figure 7: a) Reprogramming the TI CC2530 in the lamp b) TI SmartRF Evaluation Board 

 

ZigBee USB dongle 

To send and receive ZigBee messages a ZigBee USB dongle from TI was used (see Figure 8). This 

USB dongle contains a TI chip that is very similar to the chip used in the living colour lamps. We used 

the TI SDK to implement a program which forwards messages over USB. The protocol over USB is a 

serial terminal. A message received from the ZigBee network is translated to a text message and send 

to the USB host (PC or embedded device). Text messages received from the PC are translated to 

ZigBee messages. 

 

 

 

Figure 8: ZigBee USB dongle with program-cable 

 

UPnP device implementation 

A Mini-ITX PC (Figure 9) running Linux was used to implement the UPnP Control Network proxy 

device. The UPnP device was implemented to C and ported to the ARM-based embedded device (see 

Figure 9). The embedded device shows how in a product a control network can be connected to the 

IP-based home network, requiring only a small device with a cheap CPU. 
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Figure 9: UPnP device prototypes 

 

Arduino Bluetooth BinaryLight 

To demonstrate the functionality of a Bluetooth UPnP proxy a simple service was chosen: the binary 

light. Since no Bluetooth controlled light exists, a device was build using an Arduino development 

board. The Arduino board [10] combines a Bluetooth component and a led light (Figure 10). The 

logic is programmed on the Arduino microcontroller. This setup allowed for fast prototyping of the 

Bluetooth BinaryLight device. 

 

 

Figure 10: Arduino Bluetooth prototype 

 

Z-Wave 

Since Z-Wave [5] products are readily available, there was no need to prototype a Z-Wave device. In 

this case we used two e-domotica switches as shown in Figure 11. Z-Wave USB dongles are available 

as well. However, since no standard exists for the Z-Wave communication over USB, a software 

component needed to be developed on the PC to communicate with the Z-Wave dongle.  
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Figure 11: Z-Wave controllable power plug 

 

Touch screen device 

The device shown in Figure 12 is an intelligent control device which can be mounted to a wall. It is 

mainly intended to obtain information on energy consumption, and to act as a central heating 

thermostat. It includes interfaces to Z-Wave, M-BUS and OpenTherm, and to Ethernet. In this demo it 

was used to implement the UPnP CN proxy functionality, as well as a UPnP Control Point to control 

lights.  

 

 

 

Figure 12: Touch screen device 

 

Electricity meter 

The electricity meter shown in Figure 13 is an electricity meter containing an M-BUS interface. This 

type of meter is used in the meter cabinet in many homes.  
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Figure 13: Electricity meter 

 

2.3 TR-069/UPnP proxy demo 

The implementation of the TR-069/UPnP runs on a laptop and comprises the applications ACS, Proxy 

and STB Device. ACS and Proxy communicate by means of TR-069 and the Proxy and STB Device 

use UPnP for communication. In reality the applications run on different networked devices, here they 

all are running on one machine. There are 3 screens for demonstration Browser, UI Proxy and UI STB 

Device. The Browser shows a list from the ACS listing all connected TR-069 devices, see Figure 15, 

configured parameters, see Figure 15, and enables parameters reconfiguring. 

 

   

Figure 14: Browser screens of ACS: present devices 
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Figure 15: Browser screens of ACS:  device parameters 

 

 

 
(a)                                                                 (b) 

Figure 16: (a) TR-069/UPnP proxy: start/stop function and terminal screen; (b) managed UPnP STB 

device: start/stop button, terminal screen, configuration and display of 2 parameters and their values. 
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The Proxy and the STB Device can be started/stopped with respectively, UI Proxy and UI STB 

Device, see Figure 16a and b. 

Steps in the demo scenario are:  

a. Showing present devices in the ACS browser (Figure 14). 

b. Starting the Proxy (Figure 16a), resulting in appearance of the proxy in ACS browser list. 

c. Starting the set top (STB) device (Figure 16b) and watching the appearance of the 

corresponding STB Device parameter in the ACS browser (Figure 15). 

d. Changing parameter values in the ACS webpage in the browser and watching parameter 

updates in the UI STB device. 

e. Changing other parameter values in UI STB Device and watching updates of other parameters 

in the ACS webpage.  

The demo results in automatic parameter updates in the ACS with TR-069 due to parameter changes in 

the STB Device with UPnP and the vice versa.  
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3 UPNP CONTROL NETWORK PROXY DESIGN 
 

3.1 Introduction 

In the previous chapter we described two UPnP CN Proxy demos, and a TR-069/UPnP Proxy demo. In 

this chapter (sections 3.2-3.7) we will focus on the software architecture of the UPnP CN Proxy demos 

and show the message flow in the network from a UPnP perspective. In section 3.8 we describe the 

design and implementation of the TR-069/UPnP Proxy demo. 

 

3.2 UPnP basics 

UPnP defines devices and control points. Devices announce themselves on the network. Control points 

can discover these devices, request information, and invoke functions on a device. Usually control 

points are implemented to discover specific devices.  A media application discovers media servers on 

the network and invokes a “browse”-command on a media server device. The results which are 

returned are displayed in the user interface.  

To discover devices, control points send an M-Search multicast message to the network. Devices 

respond by sending SSDP (Simple Service Discovery Protocol) messages. Each SSDP message 

contains a URL. This URL refers to a device description document. Control points retrieve this device 

description document to determine the device type. This device description is an XML document 

containing information about the device, the friendly name, the manufacturer etc. It also contains links 

to service description documents. The service description documents define exactly which actions 

(functions) are supported by a device and which parameters are needed to invoke the action.  

If a device of the type the control point is looking is detected, the control point can invoke actions. 

These SOAP (Simple Object Access Protocol) based actions, are basically remote procedure calls 

including in and out parameters. The semantics of each action are defined by the UPnP standard [2] 

for a certain device, i.e. the UPnP Media Server standard describes actions like “browse” and “search”, 

and the UPnP Media Renderer standard defines actions such as “SetAVTransportURI”, and “play”. 

Devices contain state variables. When the state of such a variable changes a GENA (General Event 

Notification Architecture) event is generated. Control Points can subscribe to events by sending a 

subscription message to the device.   

 

3.3 UPnP proxy design alternatives 

To connect non-IP networks to IP networks a UPnP Control Network Proxy was designed. For the 

design of the proxy itself different approaches are possible. In the following sections we describe two 

approaches:  

1. In the first solution the connection between the two types of networks is based on the UPnP 

CN Proxy device without any additional devices.  

2. In the second solution each device in the control network is represented by the UPnP CN 

Proxy as a virtual UPnP device.  

In second solution, where a device is represented by a virtual UPnP device, a light in the control 

network shows up in the IP network as a UPnP Binary Light device. This device has its own set of 

actions and state variables. Which of the two solutions is the best choice depends on the application, 

and also has impact on the standardization. Therefore, we decided to investigate and implement both 

options. The first option was used to implement a ZigBee, ZWave and an M-BUS UPnP CN Proxy 

device. For the second option we decided to implement a Bluetooth UPnP CN Proxy device. These 
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choices are not relevant for the analysis of each approach. It would also have been possible to 

implement the Bluetooth proxy using the first approach, or implement the two proxy types for all four 

networks. To gain further insights into the differences between these two options (with and without 

virtual devices) we will describe the message flow for each option in the following sections. 

 

3.4 Message flow for Proxy without virtual devices 

In this section we describe the message flow of a proxy device without embedded devices. In Section 

3.5 we then describe the message flow of a proxy containing embedded virtual devices. 

 

3.4.1 Control Point start up 

Each client contains a UPnP CN Control Point implementation. The UPnP CN CP (UPnP Control 

Network Proxy Control Point) consists of a generic UPnP software stack. This stack sends out an M-

Search and parses the SSDP messages of the various UPnP devices in the network. The SSDP 

message (see Figure 17) contains a URL to a device description.  

 

NOTIFY * HTTP/1.1 

HOST: 239.255.255.250:1900 

CACHE-CONTROL: max-age = seconds until advertisement expires 

LOCATION: URL for UPnP description for root device 

NT: search target 

NTS: ssdp:alive 

USN: advertisement UUID 

Figure 17: Structure of an SSDP alive message 

 

Next the control point uses the location URL to retrieve the device_description.xml from each device. 

This message flow is depicted in Figure 18. It parses the device description documents and filters out 

the detected UPnP CN Proxy devices. The list of detected UPnP CN Proxy devices is sent to the user 

interface, and the user selects which network to control. Next the control point sends a GENA 

subscribe message to the CN Proxy device, which instructs the device that it should send GENA [13] 

events to the tablet for any change in its state. For a light the state, for example, indicates whether it is 

on or off, or indicates the dimming value. 

 

  

 

Figure 18: Discovery messages 
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3.4.2 Displaying ZigBee devices in the Tablet UI 

After detection of the proxy device, the control point needs to determine which nodes (devices) are 

present in the control network. The UPnP CN Proxy device contains an action to list all detected nodes 

in the control network (see Figure 19). The Control point invokes this action, and the proxy device 

returns a list of nodes in the control network. For each node the control point invokes the 

GetNodeDescription action. The messages that are returned are XML messages describing the node 

capabilities. The control point recognizes the definition of nodes defined in the ZigBee Home 

Automation standard, and renders a representation in the UI (in this demo two color lights and a 

switch). Note that in the current implementation the ZigBee USB dongle is aware which nodes are 

present in the ZigBee network, and no discovery messages are sent into the ZigBee network. 

  

 

Figure 19: Obtaining Node Info 

 

UPnP uses the SOAP (Simple Object Access Protocol) to trigger actions on a device. In Figure 20 and 

Figure 21 generic templates for a SOAP action and a SOAP response are shown (for a GetNodeList or 

GetNodeDescription action, the action name and the argument names need to be replaced by the 

relevant values) 

 

POST path of control URL HTTP/1.1 

HOST: host of control URL:port of control URL 

CONTENT-TYPE: text/xml; charset="utf-8" 

SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName" 

s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

    s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

  <s:Body> 

 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v"> 

      <argumentName>in arg value</argumentName> 

      other in args and their values (if any) go here 

    </u:actionName> 

  </s:Body> 

</s:Envelope> 

Figure 20: SOAP action 
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HTTP/1.1 200 OK 

CONTENT-TYPE: text/xml; charset="utf-8" 

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

    s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

  <s:Body> 

    <u:actionNameResponse 

        xmlns:u="urn:schemas-upnp-org:service:serviceType:v"> 

      <argumentName>out arg value</argumentName> 

      other out args and their values (if any) go here 

    </u:actionNameResponse> 

  </s:Body> 

</s:Envelope> 

Figure 21: SOAP response 

 

3.4.3 Sending a message to a node in the Control network 

When the user selects a light in the user interface, the control point invokes the sendAction function on 

the UPnP proxy device. Again this is a SOAP action. This action has two parameters. The first is the 

node identifier (which was previously obtained from the GetNodeList call). The UPnP CN proxy 

device uses this identifier to send a message to the correct node in the ZigBee network. The second 

parameter is an XML message describing the content of the message to send to the ZigBee node. The 

UPnP CN proxy will read the XML content and create a message that is compliant to the ZigBee 

standard. 

 

 

Figure 22: Sending a message to the control network 

 

 

3.4.4 Receiving a message from a node in the control network 

When a node in the control network sends a message to the USB dongle, this message needs to be 

forwarded to the control point. We opt for using the GENA event mechanism to send messages to 

control points. A control point can subscribe to GENA messages coming from the UPnP CN Proxy 

device.  
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NOTIFY delivery path HTTP/1.1 

HOST: delivery host:delivery port 

CONTENT-TYPE: text/xml 

NT: upnp:event 

NTS: upnp:propchange 

SID: uuid:subscription-UUID 

SEQ: event key 

<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0"> 

  <e:property> 

    <variableName>new value</variableName> 

  </e:property> 

  Other variable names and values (if any) go here 

</e:propertyset> 

Figure 23: GENA message structure 

 

When the user presses a switch in the network this message is received by the USB dongle. The UPnP 

CN proxy parses the received ZigBee message and generates a corresponding XML structure. This 

XML message is send as part of the GENA message (see Figure 24). To adhere to the UPnP structure 

of GENA events, this XML message will be passed as the value of a variable. (In the generic GENA 

structure shown in Figure 23 the XML will appear as the variable’s new value.) 

 

 

Figure 24: Message from Control Network 

 

Since the messages coming from a control network are implemented as events, also state changes are 

automatically sent to the subscribed control points. When multiple control points are used, the changes 

generated by one UI are also reflected in the other UIs due to the state change events. 

 

3.5 Message flow for Proxy using virtual devices 

As described in section 3.4 we investigated and implement two different methods to represent control 

network nodes in the IP-network. In this section we describe the second option in which control 

network nodes are represented as virtual UPnP devices in the IP-network. 

 

3.5.1 Control Point start up 

The startup sequence of the control point is very similar to the first implementation option. The 

Control sends out an M-SEARCH and listens for incoming SSDP messages. This way the UPnP proxy 

device is discovered. The only difference with the first option is that in this case additional SSDP 

messages from each of the embedded devices are received by the control point. In Figure 18 only 

SSDP messages from the CN Proxy devices are send to the control point, while in Figure 25 SSDP 

messages are send for each recognized device as well. 
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Figure 25: Obtaining device info 

 

 

3.5.2 Displaying control network nodes in the tablet UI 

Instead of invoking actions on the UPnP CN device to retrieve information about nodes, these nodes 

are now represented as UPnP devices. These “embedded” UPnP devices are part of the UPnP CN 

device, but send out their own SSDP messages. In the demo the network contains one device. During 

the initial setup of the node, it was assigned to the control network (paired). Therefore, the UPnP CN 

proxy device is aware that the Bluetooth network contains a single node; a Binary Light in this case. 

The UPnP CN root device creates a UPnP Binary Light device as an embedded device of the proxy 

root device. This embedded UPnP Binary Light announces itself on the network in the same way as 

any other UPnP device would do. The control point receives an SSDP message, parses it, and uses the 

URL stored in the SSDP message to retrieve a device description. This device XML description will 

show that a standard UPnP Binary Light is present in the network, and the Control Point will show the 

Binary Light controls in the user interface. 

 

3.5.3 Sending a message to a node in the Control network 

When the user selects the Binary Light in the user interface, the Control Point needs to trigger actions 

as defined by the UPnP Binary Light standard.  To turn on the light, the SetTarget action will be 

invoked, using the value 1 as its parameter (see Figure 26). The Control Point can subscribe to the 

GENA events of the UPnP Binary Light device to be informed of status updates. This way each UI 

will show the correct state of the light, even when multiple Control Points are controlling the Binary 

Light device.  

 

 

Figure 26: Sending a message to the control network 
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3.5.4 Receiving a message from a node in the control network 

When the state of the Bluetooth Light changes, the UPnP Binary Light device will generate a GENA 

event to notify any subscribers about the status change. The Control Points that are subscribed will 

receive the GENA event and can update their user interface accordingly. 

 

3.6 Implementation 

In the following sections we describe the design of the UPnP Proxy solutions from a software design 

perspective.  

 

3.6.1 Software components of the UPnP proxy without embedded devices 

The UPnP Control Network proxy device without embedded devices was used to implement Zigbee, 

Z-Wave and M-BUS to UPnP proxies. As the three implementations are based on the same software 

design we will use the ZigBee implementation as an example. In the implementation of the Zigbee 

proxy, nodes are detected in the Zigbee network and presented to UPnP as a node list. The Device 

Discovery function shown in Figure 27 communicates with the ZigBee stack to be informed about 

nodes in the control network. Currently the Device Manager just maintains a list of detected nodes. In 

the future this component can be extended to verify authentication and control accessibility of devices.  

 

 

Figure 27: Internals of the Zigbee UPnP Proxy 

 

The Protocol Translator shown in Figure 27 plays a crucial role in the translation of messages, and 

consists of two parts. The first part receives message from control network, in this case ZigBee, and 

translates them to XML to allow insertion into a GENA event. The XML message is passed to the 

UPnP stack which sends a GENA event to all subscribed Control Points. The second part is 

responsible for translating the contents of a send action to the ZigBee message format.  

 

In Figure 22 the SendAction used to send a message to a node, has two parameters. The first 

parameter identifies a node in the control network, while the second parameter contains the message 

payload. The Protocol translator takes this message payload in XML format and translates it to a 

ZigBee message. The ZigBee stack will then pass the message on to the appropriate node.  

 

3.6.2 Software components of the UPnP proxy with embedded devices 

The UPnP Control Network proxy device with embedded devices was used to implement to proxy a 

Bluetooth network to the IP network. In this implementation an embedded device is generated for each 
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device in the Bluetooth network. As shown in Figure 28 the Bluetooth UPnP proxy consists of generic 

components, the proxy configuration and device specific components. 

 

Bluetooth stack

UPnP stack

Device Discovery

Known devices

Device Manager

Proxy Device 
Type A

Proxy Device 
Type B

Proxy Device 
Type C

UPnP Device Proxy Manager

Generic 

component
Configuration

Device 
specific 
component

Device 
specific 
component

Device 
specific 
component

 

Figure 28: internals of the Bluetooth UPnP proxy 

 

The proxy uses a standard Bluetooth stack to interact with the Bluetooth radio network. The Device 

Discovery module continuously monitors what Bluetooth devices are available. Whenever a Bluetooth 

device is discovered the Device Discovery module checks if this Bluetooth device is configured to be 

used with the proxy. The information about known devices and device types is stored in the Known 

Device configuration of the proxy. 

 

 

Figure 29: The device discovery flow of the Bluetooth UPnP proxy 

 

If the proxy is configured to use a detected Bluetooth device, the device is passed to the Device 

Manager. The Device Manager determines what the capabilities of the Bluetooth device are. It can get 

this information from the Bluetooth device profile or from the Known Devices configuration. In the 

case of the Bluetooth Binary Light the device type was preconfigured in the proxy. 
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The Device Manager looks up the device type of the Bluetooth device that was found by the Device 

Discovery. For every device-type that is known by the proxy there should be a specific device 

component implementing the device characteristics. The device component knows how to translate 

messages between the UPnP domain and the Bluetooth domain and vice versa. The Device Manager 

creates an instance of the device specific component and passes this instance to the Proxy Manager. 

The Proxy Manager makes the device instance available on the UPnP network and adds the device to 

the proxy’s root device. The device instance and the Proxy Manager interact with the UPnP network 

via a common-of-the-shelf UPnP stack. 

 

3.7 Comparison of the UPnP Proxy solutions 

In this section we analyze the differences between the two UPnP Proxy solutions described above. To 

clarify which solution is referred to in the comparison, we will indicate the solution without embedded 

devices as solution 1. The proxy solution that represents each control network node as a virtual UPnP 

device in the IP network will be referred to as solution 2.  

 

3.7.1 SSDP messages 

In the proxy without embedded devices (solution 1) only the UPnP Proxy is visible in the network. In 

the solution 2, a virtual embedded UPnP device is generated for each recognized node type. This 

means that many more SSDP messages will be send in the network. A ZigBee home automation 

network can easily consist of dozens of nodes. While “network flooding” is often mentioned as a 

problem, it is unlikely that the SSDP messages will use a lot of network bandwidth in the IP-network. 

However, for each device any network client needs to keep track of previously recognized devices. A 

control point which is interested in discovering media server devices will receive SSDP messages for 

dozens of devices. It needs to maintain a list of UUIDs in these SSDP messages and retrieve the 

description.xml. It basically needs to filter out the media server devices it is interested in from a large 

amount of other devices. Although this creates extra load for all clients in the network, even CPU- and 

memory-limited devices can easily maintain lists of hundreds of devices. 

 

3.7.2 Dynamic description of devices 

When nodes appear and disappear in the control network this has to be reflected in the UPnP proxy. In 

the case where no virtual embedded devices are created (solution 1), the UPnP CN Proxy passes 

information about the control network nodes by invoking actions. Using this mechanism it is fairly 

easy to dynamically generate the returned information. In the case where nodes in the control network 

are represented as virtual embedded devices (solution 2), one option is to dynamically update the 

device description. Also the generation of SSDP messages would need to be adapted when nodes are 

added or removed from the control network. While it is possible to implement the dynamic addition 

and removal of embedded devices this way, it is not a trivial implementation. An easier alternative 

would be to create a less dynamic implementation. Nodes usually do not appear suddenly appear in a 

control network. A user buys a new device, and needs to “pair” it with the control network. At this 

time it would be possible to extend the device description and generate the additional SSDP messages. 

When a node is turned off, the embedded devices do not need to be removed. The embedded device 

could have a state-variable, which indicates whether the device is turned on or off. If the state variable 

is evented, control points can be informed when a node is turned on or off.  
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3.7.3 GENA 

In a system where only the UPnP CN Proxy device itself is visible in the IP network (solution 1), 

obviously control points can only subscribe to GENA messages from the Proxy device. In solution 2 

the UPnP proxy with virtual devices allows control points to subscribe to the GENA events of 

individual devices. This means that Control Points can choose to subscribe to events of one node in the 

non-IP network and not to another node. In contrast, in solution 1, Control points will receive all 

events from all nodes in the network. This means that if an application is interested in events from a 

temperature sensor, but not from a switch it cannot subscribe individually. It will need to ignore 

received events it is not interested in.   

 

3.7.4 Extendibility to future nodes 

In the first solution, only the proxy is visible as a UPnP device. The proxy needs to translate messages 

from nodes in the non-IP network to GENA events, which will be sent to all subscribed control points. 

The information contained in a message needs to be packed into a GENA event. Depending on the 

complexity of the message standard used in the control network, a generic translation to XML as 

described in section 3.6.1 can be feasible. In that case the proxy can be agnostic about the device types 

in the control network. This means that when a new type of devices is standardized in the control 

network, the UPnP CN Proxy is able to translate the messages of the new device to GENA events.  

The control points in the UPnP network however, must be able to understand the payload of the 

GENA events to represent it to the user in a meaning full way.  

Therefore, whenever a new device type becomes available in the control network the control point 

software needs to be updated to show an appropriate user interface for the new device. In the demo we 

used Android apps to present the user interface to control devices. To control a new device, the app 

software could be extended. The user is notified by the Android system that an update for the app is 

available. Just accepting the app update allows the user to control the new device. However, when the 

newly standardized device adds extensions to the standard which are beyond the scope of the proxy’s 

translator, the proxy would need to be updated too.  

In solution 2, devices in the control network are fully being proxied in the UPnP network. This means 

that the proxy itself should be able to translate messages from the control network into UPnP actions 

and vice versa. This requires the proxy to be aware of all the device types in the control network. 

Whenever a new type of device appears on the market, UPnP needs to define a standard for it, and the 

proxy would need to be updated. Also the user interface and the control point implementation need to 

be updated to control the new device. 

 

3.7.5 Evaluation 

The comparison of the UPnP CN proxy with and without embedded devices as described in the 

sections above does not yield a clear winner. Which of the two solutions is preferred depends on the 

use case, the network type and the required standardization effort. 

For a network with potentially hundreds of very small nodes, and dynamic appearance and 

disappearance of nodes the solution without embedded devices clearly has benefits. It simply 

maintains a list of nodes, and forwards all events of all nodes to the subscribed control points. From a 

standardization perspective it means that only the UPnP CN Proxy device needs to be specified. 

However, the mapping from the control network format to XML and vice versa, also needs to be 

standardized.  

The messaging part of the Z-Wave specification is not as complex as the ZigBee standard. Therefore, 

it is likely that a generic translation of Z-Wave to XML is feasible. This means that all standardized Z-
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Wave functions and devices, would be supported by the UPnP Control Network proxy, and in that 

case a control point could control any Z-Wave device. 

For a ZigBee network based on the ZigBee home automation, or ZigBee smart energy standards [14] 

the situation is more complicated. These standards are based on the ZigBee cluster library. The ZigBee 

cluster library groups functions that are supported by nodes into clusters. Examples of clusters are the 

On/Off cluster, and the identify cluster. Zigbee defines several profiles that are based on the cluster 

library specification. These profiles constitute the highest layers in the Zigbee standard. Examples of 

standardized profiles are the Home Automation Profile, the Building Automation profile, and the 

Energy Management profile. First experiments indicate that translation of ZigBee cluster library 

functions to XML is feasible. To what extend a generic implementation is feasible, and whether 

additional profile specific XML structures are useful, remains to be investigated.   

For networks with a limited number of devices, the creation of virtual UPnP devices for each node in 

the control network is a good approach. For complex devices, standardization of a dedicated UPnP 

device is preferred to provide a clear definition of the functionality. In these cases solution 2, where 

the proxy is responsible for generating virtual UPnP devices in the IP-network, is the best option.  

To create a proxy for an M-BUS to IP connection, both proxy solutions are equally suitable. The M-

BUS typically contains just one device of moderate complexity. For the first solution, the M-BUS 

protocol needs to be mapped to XML in a standardized way. For the second solution a new UPnP 

device needs to be standardized to describe the electricity or gas meter connected to the M-BUS.  

 For e-Health devices the second solution in which each e-Health device is represented in the IP-

network by a virtual UPnP device is a good choice. The number of e-Health devices in a network is 

typically small, and e-Health devices are more complex than simple lights and switches. The 

IEEE11073 [3] standard for e-Health devices defines about ten different devices. Based on this 

standard, a dedicated UPnP device can be defined for each device. However, the IEEE11073 standard 

also defines a data exchange protocol (IEEE11073-20601). The data definitions are based on ASN 

[15], for which solutions for automatic translation to XML exist. A standardized translation of 

IEEE11073 messages to and from XML, would enable implementation of the first solution in which 

the proxy devices forwards messages using XML. Therefore, which solution to chose is mainly 

determined by which standardization bodies are willing to define a concrete specification. 

 

3.8 Implementation of the TR-069/UPnP proxy 

The implementation of the TR-069/UPnP Proxy consists of a bridge between a TR-069 client and a 

UPnP Control Point both programmed in C and compiled together (see Figure 30).  
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Figure 30: Interface between the RG’s UPnP CP and CWMP client 

 

Figure 31 presents the different management steps between an ACS and an End Device via a HG with 

CWMP client and a UPnP Control Point. With steps 1-3 the UPnP device announces his presence to 

the HG using Simple Service Discovery Protocol (SSDP). The HG then asks the device for its 

parameters (4-5), turns the received parameters (6-7) into a data model object (8) using the TR-106 

[11] template, and communicates it to the ACS (9-10). 
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Figure 31: Turning the 2-step UPnP discovery and description process into a single CWMP description 
. 

The STB Device program is a stub talking UPnP with the UPnP Control Point in the Proxy and having 

a limited data model. Both the Proxy and the STB Device run in a Linux (Fedora 5) environment (see 

Figure 32). A Java program catches the associated terminal streams of the Proxy and STB Device 

programs and relays them to the respective applications UI Proxy and UI STB Device. The Java 

program performs start/stop of the device applications Proxy and STB Device, displays the terminal 

streams on both UI’s and provides parameter changeability by the user. 

The Automatic Configuration Server (ACS) consists of testing software of Dimark [12], running in a 

Windows XP environment and providing an ACS webpage in the browser.  
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Figure 32: TR-069/UPnP proxy 
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4 UPNP CN PROXIES IN THE FIGARO ARCHITECTURE 
 

4.1 FIGARO architecture 

The overall FIGARO architecture defines a gateway centric system in which, residential gateways 

undertake the federator role, internally as well as externally.  The external federation interconnects 

multiple gateways to form a cooperative overlay across residential networks. This federation enables 

further collaboration to offer added value in terms of, for example, access and sharing of content, 

storage and network capacity.  In this deliverable we focussed on the architectural choices for the 

internal federation, which enables accessing and sharing resources in control networks in the home.  

In the previous sections we described the design and implementation of UPnP Control Network (CN) 

proxy devices. These proxies connect control networks to IP environments where the applications live 

that want to make use of these control networks. In this section we briefly describe how the defined 

proxies relate to the overall FIGARO architecture. To allow a shared access to resources the FIGARO 

architecture defines components, which include shared access to services, authentication and remote 

access. The internal federation will make use of the functions and services offered through these 

components.    

Here we will focus on three main aspects: 

• The location of services; Services can be implemented in the gateway or in the network.  

• Federation Control; The FIGARO architecture will contain a control system to support which 

users can gain access to which functions. For the internal federation, a dedicated internal 

federation control may exist, or it may be integrated in a common federation control 

component. 

• Authentication, Authorization and Accounting; A centralized AAA component will be present 

in the FIGARO architecture, to support other components. For example to determine who is 

allowed to access which services. 

 

4.2 Physical location of proxy devices 

From an architectural point of view, the UPnP CN proxy provides its bridging functions “close” to the 

Control Networks. Physically however, UPnP CN proxies may be implemented on any device on 

which the proxy can run, and that have both an IP interface, and an interface to the control network. 

Therefore the UPnP CN proxies can be implemented in a number of ways: 

 

1. UPnP CN proxies can be implemented within a dedicated physical device, which solely 

provides the bridging function. Typically, one control network proxy device would be used 

per control network within the home. 

2. UPnP CN proxies can be integrated in the residential gateway if this gateway is equipped or 

can be equipped with the required control network interface. This gateway would perform its 

generic gateway tasks (DSL or cable mode, set-top box) and run the UPnP CN proxy.  

3. UPnP CN proxies can be implemented within devices that are part of the control network 

itself. For instance, the UPnP CN proxy functionality could be implemented within a white-

good appliance. 

4. UPnP CN proxy implementations can be combined with other functions on a device. For 

example, a wall mounted intelligent thermostat can implement a local UI as well as the proxy 

function.  
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The market situation will dictate which of these solutions will appear in the home. Therefore, in the 

FIGARO architecture we have to assume that some proxy functionality will be available in the 

gateway, while other proxies are implemented on various physical devices in the home network.  

 

4.3 Internal Federation Control 

With multiple UPnP CN proxies implemented in the home network and in the residential gateway, a 

federation control component integrated in the gateway provides centralized control. This component 

will be responsible for determining which control networks, or even which nodes, are accessible from 

outside the home. When the home network is accessed remotely, the UPnP proxies enable access to all 

nodes in the control networks. However, this is not always desirable. For security reasons remote 

access to some nodes may need to be prevented (for example, to the electric garage door opener).  

The federation control function will also be responsible for controlling operator access. The TR-

69/UPnP proxy enables service provider access to devices in the home network. Through the UPnP 

CN proxies it is even possible to define a system in which service providers gain access to nodes in the 

control network. However, also in this case service providers should not automatically gain access to 

any node in a control network. 

The federation control component could also include message forwarding of messages from one UPnP 

CN proxy to another. This way it is possible, for example, to connect a Z-Wave switch to a ZigBee 

lamp. However, whether such a use case is important enough to warrant implementation of such 

functionality in the federation control component remains to be investigated. 

 

4.4 Authentication, Authorization and Accounting 

The functionality of the federation control component as described in the previous section is tightly 

linked to the AAA (Authentication, Authorization, and Accounting) component in the FIGARO 

Architecture. To define a security and permissions system that controls which users, and which 

applications may control which nodes, federation control relies on the AAA component. Also the 

UPnP CN Proxies can be extended to use the authentication mechanism provided by the AAA 

components.  

 



v.1.0 FIGARO  

 D5.3: Evaluation of converged gateway-centric, UPnP-based FI-

architecture for energy management, e-Health, and social 

community services 

 

 

31 

5 CONCLUSIONS 
 

In this deliverable we describe the implementation of two UPnP Control Networks proxy 

demonstrators, and a TR-069/UPnP Proxy. While the latter allows service providers to access device 

in the home network, the newly defined UPnP Control Network proxies enable connecting non-IP 

networks to IP based home network. Based on UPnP technology clients in the IP network can 

automatically detect the presence of control networks, check which devices are present in a control 

network, and control these devices. 

Our main focus has been on implementation alternatives and the message flow. Therefore, we have 

chosen to implement a simple use case: the detection and control of lights. However, since one of the 

crucial aspects in the internal federation is to support multiple types of control networks implemented 

four control networks (ZigBee, Z-Wave, Bluetooth, and M-BUS). Each of these networks is connected 

to the IP-network by means of a UPnP Control Network proxy.  

To detect and control devices in a control network, clients in the IP network need to implement a 

UPnP Control Point. We implemented two different Android apps containing a UPnP control point. 

The apps discover the control networks, present a view of the detected devices in the control network, 

and allow the user to invoke actions such as turning a light on or off.   

We evaluated two solutions for the proxy implementation from a network messaging and 

standardisation perspective. The first solution presents the UPnP Control Network proxy in the IP 

network. The second solution also presents the UPnP Control Network proxy in the IP network, but 

additionally generates a virtual UPnP device for each device in the control network.  

Analyzing these two solutions reveals that the first solution is particularly suitable for control 

networks which contain potentially hundreds of simple devices. Especially, if a generic translation 

from the control network’s message format to XML (and vice versa) can be defined, standardisation is 

greatly facilitated. Initial investigations indicated that such generic translation is likely to be feasible 

for Z-Wave and ZigBee. The second solution lends itself well to control networks containing fewer 

devices of a higher complexity, as is the case for e-Health devices. From a standardisation perspective 

this means that for each device type in the control network, a UPnP device needs to be standardised.  

The TR-069/UPnP proxy provides service providers access to devices beyond the gateway. Through 

the UPnP Control Network proxies the TR-069/UPnP proxy can even allow service providers access 

to devices within a control network. 

In general the proof-of-concept demonstrator shows that the UPnP Proxy based solutions, are capable 

of connecting various types of control networks to the IP network and the Internet, and fits well with 

the overall goal of federating networks as pursued within the FIGARO context.  

 



v.1.0 FIGARO  

 D5.3: Evaluation of converged gateway-centric, UPnP-based FI-

architecture for energy management, e-Health, and social 

community services 

 

 

32 

 

6 REFERENCES 
 

[1] FIGARO project, “Deliverable D5.2: Architecture for service federation in residential 

networks”, 31.08.2011 

[2] UPnP Forum: http://www.upnp.org/ 

[3] IEEE11073:  http://en.wikipedia.org/wiki/ISO/IEEE_11073 

[4] Zigbee Alliance: http://www.zigbee.org 

[5] Z-Wave: http://www.z-wave.com 

[6] Bluetooth: http://www.bluetooth.com 

[7] M-BUS:  http://www.m-bus.com 

[8] UPnP BinaryLight specification: http://www.upnp.org/specs/ha/UPnP-ha-BinaryLight-v1-

Device.pdf 

[9] TI SmartRF05EB Evaluation Board: www.ti.com/lit/ug/swru210a/swru210a.pdf 

[10] Arduino board: http://www.arduino.cc 

[11] Data Model Template for TR-069-Enabled Devices, Technical Report TR-106, Issue 1 

Amendment 2, November 2008, Broadband Forum, 

http://www.broadband-forum.org/technical/download/TR-106_Amendment-2.pdf 

[12] Issue 1 Amendment 2, November 2008, Broadband ForumDimark Dimark Software, Inc., 

19925 Stevens Creek Blvd., Suite 100, Cupertino, CA 95014, USA, http://www.dimark.com/ 

[13] GENA Specification: http://tools.ietf.org/html/draft-cohen-gena-client 

[14] Zigbee Standards overview: http://www.zigbee.org/Standards/Overview.aspx 

[15] ASN (Abstract Syntax Notation): http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One 

 

 

 

 

 


