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Introduction

This deliverable summarizes the work performed in months 13 to 21 in the scope of WP2. In this
period the originally planned schedule was followed, as it is reflected in the obtained results exposed
in this report. Nevertheless, special attention has been also paid to the comments made by the
project reviewers. Specifically, two short chapters have been included for dealing with the similarities
and differences between steganography and multimedia forensics (Chapter 1), and explaining three
examples of the synergies between WP2, and WP3 and WP4 (Chapter 4). Besides these two short
chapters, the main results obtained in this period of 9 months are split in a chapter dealing with
theoretical general topics (Chapter 2), and other chapter studying the modeling of operator chain
(Chapter 3).
Within Chapter 2, results on identification source identification game with training sequences have
been included. On the other hand Chapter 3 includes results on

• JPEG quantization followed by full-frame filtering

• Interpolation estimation

• Transform coder identification based on noiseless lattice estimation

• Reacquisition modeling

• Demosaicking localization
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Chapter 1

Similarities and differences
between forensics and steganalysis

In the field of multimedia security one can distinguish different problems; probably watermarking,
steganography, and lately forensics, are those that have received more attention. Hopefully, looking
at the evolution of the other problems of multimedia security will allow us to learn some lessons
about good directions to be followed by multimedia forensics. Due to the shared statistical undis-
tinguishability constraint, it seems that forensics is more closely related to steganalysis. Therefore,
the target of this chapter is to study the main parallelisms, and corresponding similarities and dif-
ferences between multimedia forensics and steganography; specifically, we will focus on the similar
role of forensics analyst and steganalyzer, and also on the similar target of counter-forensics player
and steganographer. Based on this discussion, we will summarize what are, in our opinion, the main
lessons to be learned. Finally, links to previous works in the literature will be pointed out.
For the sake of notational simplicity, we will use MMF for denoting MultiMedia Forensics, AF for
Anti-Forensics, FA for Forensics Analyst, ADFA for the anti-forensics player, ST for the steganogra-
pher, and ADST for the steganalyzer.

1.1 FA and ADST

From the point of view of the FA we can consider MMF as an estimation problem (if we want
to estimate the processing parameters), or a binary hypothesis problem (if we want to decide if a
given content was modified or not, or in an alternative way, if it comes from source A or source
B). ST counterparts to these two scenarios could be also considered, being the binary hypothesis
version the classical steganographic problem, and the estimation version the so-called “quantitative
steganalysis”.
Therefore, the ADST’s formal description of the steganalysis problem is nothing but a particular
example of the FA’s MMF formal description; this is the case for both the estimation and binary
versions of the two problems. Some considerations must be taken into account :

• Kind of processing to be considered: We can consider a set of possible processing/modifications
as broad as we want, although in general some constraints are imposed in that set in order
to have a problem which is feasibly resolved. For example, we can focus our attention on
the case of JPEG quantization+spatial filtering, cut+paste+footprint removal, information
embedding+footprint removal (=steganography; in this case, the FA is indeed an ADST).

5



CHAPTER 1. FORENSICS VS STEGANALYSIS 6

Even smaller sets could be considered, e.g. MPSteg detection; as far as we reduce the set (or
class) of possible processing, we have a more targeted scheme (following steganalysis naming).
Therefore, from that point of view, what distinguishes steganography as a particular
case of MMF is the analyzed set of feasible operators.

• If the null hypothesis does not only include the “no processing” case, but also some “light
processings” (meaning that the semantics of the content are not modified) are included, then
an additional multimedia security problem, namely authentication, could be also included in
this framework.1

• Summarizing, according to this approach the ADST is nothing but a FA using a particular
definition of the alternative hypothesis H1, where the analyzed set of feasible operators only
contains “stego-processing.”

Note that in the case of universal steganalyzers, the alternative hypothesis H1 is not well defined,
since the embedding algorithm is not known. Therefore, one-class classifiers (or composite hypothesis
testing) must be resorted. A similar conclusion can be derived for MMF.

1.2 ADFA and ST

Once the similarity between FA and ADST has been established, one wonders if this can be extended
to the similarity between ADFA and ST. Nevertheless, in this case there is an obvious difference
between the target of these two players: while in AF the goal depends on the kind of processing
the ADFA wants to hide (histogram stretching, compression, resizing, etc.), in steganography the
goal is transmitting secret information. Deep changes in the proposed approaches are implied.
Despite this difference on the target function, both ADFA and ST share the same constraints:

• Statistical undetectability.

• Perceptual distortion. Typically, the perceptual distortion used in steganographic applications
depends on the original signal (i.e., reference-based distortion measures are used). Nevertheless,
in MMF the definition of such kind of measure is more involved; for example, for cut and paste
attacks, one wonders how a reference-based distortion measure can be defined. However,
since the original signal will be typically not accessible to the receiver, the use of reference-
based distortion measures can be criticized even in the steganographic framework. If blind
(no-reference) distortion measures were used (e.g., [3]), then we can define the perceptual
distortion for both problems in much the same way.

From an application point of view, in both cases one must face the constrain of the processed
images looking natural to a human observer.

• The fact of the steganography problem having more players (legitimate decoder and possibly
the active warden) is “just” reflected on the definition of the target function the ST tries to
maximize.

• The ST strategy is defined by the embedding function, while the ADFA strategy is the manipu-
lation function. In both cases the feasible set of strategies is defined as that set that contains all
those functions that modify the original content while verifying the previous contraints. This

1The reader who is not accustomed to the basics on detection and/or estimation theory is referred to [1, 2].
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set is the same for both problems. The only change is the embedding/manipulation function
which is chosen in each case, since the target function is different in both cases.

Nevertheless, the impact of this difference is not trivial. Indeed, this yields the overall goal to
be different, as well as the kind of used techniques to differ:

– In stego an integrated approach is often used, in which the embedding function is chosen
to verify the statistical imperceptibility constraint.

– On the other hand, in MMF the attacker often adopts a post processing approach: first,
it applies the intended modification; then, it tries to remove traces without “spoiling”
the result of the modification. This two-steps strategy should be used as long as the
processing and the counterforensics steps are not carried out in different time instants, or
by different players. Other scenario where it makes sense is that where several processing
steps are applied, and the footprints of all of them are deleted in a single final step.

Nevertheless, probably there is not any fundamental reason for working in this case. For exam-
ple, one could introduce the watermark in the content (without caring about the detectability
constraint, e.g., using regular watermark embedding techniques) and then apply some post-
processing for removing the traces (reducing detectability). Alternatively, the MMF attacker
could devise the content modification taking in mind the detectability constraint. In general,
it seems that the two steps procedure (first doing the work and then solving the problems it
entails) will behave worse than the one step approach.

Consequently, it seems that the only reason for applying two-steps attacks is the complexity
reduction; being the application scenario requirements (including complexity ones) for ADFA

and ST completely different, is not surprising that different approaches to both problems have
been developed.

Summarizing, one can state that ADFA and ST techniques are very different. This was not
the case with the MMF FA and ADST, which basically share the same techniques (classifiers,
decision making, hypothesis testing, etc.).

1.3 Similarities

S1. The task of the ADST can be seen as a particular MMF task: detect the traces introduced by
the ST. Indeed, its task can be interpreted as completely equivalent to detecting the traces
left by any other processing tool. This makes steganalysis a particular instance of MMF.

S2. Quantitative steganalysis is a particular case of MMF, assuming that the FA does not only
want to detect processing traces but also to estimate some of the parameters characterizing
the processing.

S3. The constraints of the ST and the ADFA are also virtually identical, since both of them want
to modify a media (for different purposes) without leaving any kind (visible or statistical) of
trace. In this sense, steganography and anti-forensics are optimization problems that share
the same feasible set but differ in their target functions.

S4. Cachin’s perfect steganography [4] is similar to statistics preserving AF.

S5. Steganalysis and MMF share the difficulty deriving from the lack of a good statistical model
describing natural images.
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1.4 Differences

D1. Despite similarity number 3, steganography and AF are quite different since their ultimate goal
is very different: in AF the goal depends on the kind of processing the ADFA wants to hide
(histogram stretching, compression, resizing, etc.); in steganography the goal is transmitting
secret information.

D2. In Steganography we have 3 players, while in MMF we usually have 2.

D3. MMF is a much wider field, encompassing issues extraneous to steganography and steganalysis:
this is the case, for instance, of semantic-level MMF, like some works by Farid’s group (e.g.,
[5]). In these cases MMF resembles more computer vision than stego.

D4. The batch steganography concept does not seem to apply to MMF.

D5. Similarities exist only with steganography by cover modification, while steganography by cover
selection has nothing to share with MMF.

D6. From an application perspective stego and MMF are completely different, leading to rather
different constraints (if not goals), e.g., amount of images to be analyzed, target error proba-
bilities, etc.

1.5 Lessons to be learned

1. In the past years steganalysis has passed from classifiers based on few features, to a moderate
amount of features until the very large number of features characterizing the most powerful
schemes developed recently. One wonders if MMF should follow the same path.

2. In early days, steganography was focused on statistical indistinguishability, i.e., the ST was
aiming at keeping some statistical quantities untouched. More recently, it seems that mini-
mizing a properly defined distortion measure is a better choice. It is possible that AF will go
through the same path.

3. Calibration has played a crucial role in steganalysis. Similar techniques can be borrowed for
AF.

4. Steganalysis has switched from first order to higher order statistical analysis (and finally to
classifiers with a large number of features). Again, it is possible for MMF to follow the same
route.

5. Steganographers typically use one-step strategies, while most of ADFA’s approaches are based
on two steps. Since the two steps approach is in general suboptimal, one wonders if the one-step
strategies should be also adopted in counterforensics.

1.6 Links to previous works in the literature

The similarities and differences between steganography and counter-forensics are also studied in [6].
In that work the authors point out that both steganography and counter-forensics try to hide the
very fact of a class change, and their success can be measured by the Kullback-Leibler divergence.
Nevertheless, they also defend that steganography differs from counter-forensics in the amount and
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source of information to hide. These considerations are developed in our previous analysis, where
they are stated in terms of the target function and the optimization search space constraints.
Similarly, the connections between steganalysis and the forensics analyst, as well as the difference
between one-step and two-steps attacks (typically used in steganography and counter-forensics, re-
spectively) are also mentioned.



Chapter 2

General theory

2.1 Source identification game with training sequences

In the attempt to provide a mathematical background to multimedia forensics, we introduce the
source identification game with training data. The game models a scenario in which a forensic
analyst has to decide whether a test sequence has been drawn from a source X or not. In turn, the
adversary takes a sequence generated by a different source and modifies it in such a way to induce a
classification error. The source X is known only through one or more training sequences. We derive
the asymptotic Nash equilibrium of the game under the assumption that the analyst relies only on
first order statistics of the test sequence. A geometric interpretation of the result is given together
with a comparison with a similar version of the game with known sources. The comparison between
the two versions of the games gives interesting insights into the differences and similarities of the
two games.1

2.1.1 Introduction

Understanding the fundamental limits of multimedia forensics in an adversarial environment is a
pressing need to avoid the proliferation of forensic and anti-forensic tools each focused on countering
a specific action of the adversary but prone to yet another class of attacks and counter-attacks. The
most natural solution to avoid entering this never-ending loop is to cast the forensic problem into
a game-theoretic framework and look for the optimum strategies the players of the game (usually a
forensic analyst and an adversary) should adopt. Some early attempts in this direction can be found
in [9] and [10]. In [9], the authors introduce a game-theoretic framework to evaluate the effectiveness
of a given attacking strategy and derive the optimal countermeasures. In [9] the attacker’s strategy
is fixed and the game-theoretic framework is used only to determine the optimal parameters of the
forensic analysis and the attack. A more general approach is adopted in [10], where the source
identification game with known statistics, namely the SIks game, is introduced. According to the
framework defined in [10], given a discrete memoryless source (DMS) X with known statistics PX ,
it is the goal of the Forensic Analyst (FA) to decide whether a test sequence xn has been drawn
from X or not. In doing so, he has to ensure that the false positive probability, i.e. the probability
of deciding that the test sequence has not been generated by X when it actually was, stays below
a predefined maximum value. The goal of the adversary (AD) is to take a sequence generated from
a different and independent source Y ' PY and modify it so to let the FA think that the modified

1The reader who is not accustomed to the basics on game theory is referred to [7, 8].
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CHAPTER 2. GENERAL THEORY 11

sequence has been generated by X. In doing so the AD must satisfy a distortion constraint, i.e.
the distance between the original and the modified sequence must be lower than a threshold. The
payoff of the AD is the false negative error probability, i.e. the probability that the FA classifies a
sequence drawn from Y and further modified by the AD as a sequence drawn from X. The opposite
payoff applies to the FA, thus qualifying the SIks as a zero-sum, competitive game [11]. Under the
further assumption that the FA relies only on first order statistics (limited resources assumption)
for his analysis and that the sources X and Y are memoryless, the asymptotic Nash equilibrium of
the game can be found [10, 12], thus defining the optimum strategies for the FA and the AD when
the length of the test sequence tends to infinity. A problem with the analysis carried out in [10] is
the assumption that the FA and the AD know the probability mass function (pmf) of the source
X. This is not the case in many practical scenarios where sources are known only through one or
more training sequences. It is the goal of this chapter to reformulate the analysis carried out in [10]
to address this new more realistic version of the game. As a main result, we derive the asymptotic
Nash equilibrium of the new game, hereafter referred to as the SItr game, under the same limited
resources assumptions used in [10]. In doing so we will discover that the optimal strategies for the
FA and the AD deviate from those of the SIks game. In addition, at least in the case that the
training sequences available to the FA and the AD coincide, we can show that passing from the SIks
to the SItr version of the game is to the AD’s advantage.
The description of the work is organized as follows. In section 2.1.2 we introduce the notation that
will be used throughout the description. In section 2.1.3, we give a rigorous definition of the source
identification with training data game. In section 2.1.4, we derive the asymptotic Nash equilibrium
of the game. In section 2.1.5, we compare the results obtained in this work with those referring
to source identification with known sources. Section 2.1.6 concludes the description with some
perspective for future research.

2.1.2 Notation

In the rest of this chapter we will use capital letters to indicate discrete memoryless sources (e.g. X).
Sequences of length n drawn from a source will be indicated with the corresponding lowercase letters
(e.g. xn). In the same way, we will indicate with xi, i = 1, n the i−th element of a sequence xn.
The alphabet of an information source will be indicated by the corresponding calligraphic capital
letter (e.g. X ). Calligraphic letters will also be used to indicate classes of information sources (C).
The pmf of a discrete memoryless source X will be denoted by PX . With a slight abuse of notation,
the same symbol will be used to indicate the probability measure ruling the emission of sequences
from X, so we will use the expressions PX(a) and PX(xn) to indicate, respectively, the probability
of symbol a ∈ X and the probability that the source X emits the sequence xn. Given an event A
(be it a subset of X or Xn), we will use the notation PX(A) to indicate the probability of the event
A under the probability measure PX .
Our analysis relies heavily on the concepts of type and type class defined as follows (see [13] and [14]
for more details). Let xn be a sequence with elements belonging to an alphabet X . The type Pxn of
xn is the empirical pmf induced by the sequence xn, i.e. ∀a ∈ X , Pxn(a) = 1

n

∑n
i=1 δ(xi, a). In the

following we indicate with Pn the set of types with denominator n, i.e. the set of types induced by
sequences of length n. Given P ∈ Pn, we indicate with T (P ) the type class of P , i.e. the set of all
the sequences in Xn having type P .
The Kullback-Leibler (KL) divergence between two distributions P andQ on the same finite alphabet
X is defined as:

D(P ||Q) =
∑
a∈X

P (a) log
P (a)

Q(a)
, (2.1)
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where, as usual, 0 log 0 = 0 and p log p/0 = ∞ if p > 0. Empirical distributions can be used
to calculate empirical information theoretic quantities, like, for instance, the empirical divergence
between two sequences D(Pxn ||Pyn).
As we said, the goal of this study is to cast the source identification problem into a game-theoretic
framework, wherein identification is seen as a two-player, strategic, zero-sum game. In rigor-
ous terms, a game is defined as a 4-tuple G(S1,S2, u1, u2), where S1 = {s1,1 . . . s1,n1

} and S2 =
{s2,1 . . . s2,n2

} are the set of strategies (actions) the first and the second player can choose from, and
ul(s1,i, s2,j), l = 1, 2 is the payoff of the game for player l, when the first player chooses the strategy
s1,i and the second chooses s2,j . A pair of strategies s1,i and s2,j is called a profile. In a zero-sum
competitive game, the two payoff functions are strictly related to each other since for any profile we
have u1(s1,i, s2,j)+u2(s1,i, s2,j) = 0. A zero-sum game, then reduces to a triplet G(S1,S2, u), where
we have assumed u = u1 = −u2. Note that in strategic games the players choose their strategies
before starting the game so that they have no hints about the strategy actually chosen by the other
player. We say that a profile (s1,i∗ , s2,j∗) represents a Nash equilibrium if [15, 11]:

u1((s1,i∗ , s2,j∗)) ≥ u1((s1,i, s2,j∗)) ∀s1,i ∈ S1

u2((s1,i∗ , s2,j∗)) ≥ u2((s1,i∗ , s2,j)) ∀s2,j ∈ S2,
(2.2)

where for a zero-sum game −u2 = u1 = u.

2.1.3 Source identification with training data

Let C be the class of discrete memoryless sources with alphabet X , and let X ' PX be a source
in C. Given a test sequence xn, the goal of the Forensic Analyst (FA) is to decide whether xn was
drawn from X or not2. As opposed to the source identification game with known sources [10], here
we assume that the FA does not know PX , and that he has to base his decision by relying on the
knowledge of a training sequence tNFA drawn from X. On his side, the Adversary (AD) takes a
sequence yn emitted by another source Y ' PY still belonging to C and tries to modify it in such a
way that the FA thinks that the modified sequence was generated by X. In doing so the AD must
satisfy a distortion constraint stating that the distance between the modified sequence, say zn, and
yn must be lower than a predefined threshold. As the FA, the AD knows PX through a training
sequence tKAD, that in general may be different than tNFA. We assume that tNFA, tKAD, xn and yn are
generated independently. With regard to PY , we could also assume that it is known through two
training sequences, one available to the FA and one to the AD, however we will see that - at least
to study the asymptotic behavior of the game - such an assumption is not necessary, and hence we
take the simplifying assumption that PY is known neither to the FA nor to the AD. As in [10], we
define the game by casting the identification problem into a hypothesis decision framework. Let
then H0 be the hypothesis that the test sequence has been generated by X (i.e. the same source
that generated tNFA) and let Λ0 be the acceptance region for H0 (similarly we indicate with Λ1 = Λc0
the rejection region for H0). We have the following:

Definition 1. The SItr,a(SFA,SAD, u) game is a zero-sum, strategic, game played by the FA and
the AD, defined by the following strategies and payoff.

• The set of strategies the FA can choose from is the set of acceptance regions for H0 for which the
maximum false positive probability across all possible PX ∈ C is lower than a certain threshold:

SFA = {Λ0 : max
PX∈C

PX{(xn, tNFA) /∈ Λ0} ≤ Pfp}, (2.3)

2With a slight abuse of notation we use the symbol xn to indicate the test sequence even if strictly speaking it is
not known whether the test sequence originated from X or Y .
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where Pfp is a prescribed maximum false positive probability, and where PX{(xn, tNFA) /∈ Λ0}
indicates the probability that two independent sequences generated by X do not belong to Λ0.
Note that the acceptance region is defined as a union of pairs of sequences, and hence Λ0 ⊂
Rn ×RN .

• The set of strategies the AD can choose from is formed by all the functions that map a sequence
yn ∈ Xn into a new sequence zn ∈ Xn subject to a distortion constraint:

SAD = {f(yn, tKAD) : d(yn, f(yn, tKAD)) ≤ nD}, (2.4)

where d(·, ·) is a proper distance function and D is the maximum allowed per-letter distortion.
Note that the function f(·) depends on tKAD, since when performing his attack the AD will
exploit the knowledge of the training sequence.

• The payoff function is defined in terms of the false negative error probability (Pfn), namely:

u(Λ0, f) = −Pfn = −
∑

tNFA∈XN , tKAD∈XK
yn:(f(yn,tKAD),tNFA)∈Λ0

PY (yn)PX(tNFA)PX(tKAD), (2.5)

where the error probability is averaged across all possible yn and training sequences and where
we have exploited the independence of yn, tNFA and tKAD.

Some explanations are in order with regard to the definition of the payoff function. As a matter
of fact, the expression in (2.5) looks problematic, since its evaluation requires that the pmf’s PX
and PY are known, however this is not the case in our scenario since we have assumed that PX is
known only through tNFA and tKAD, and that PY is not known at all. As a consequence it may seem
that the players of the game are not able to compute the payoff associated to a given profile and
hence have no arguments upon which they can base their choice. While this is indeed a problem in
a generic setup, we will show later on that asymptotically (when n, N and K tend to infinity) the
optimum strategies of the FA and the AD are uniformly optimum across all PX and PY and hence
the ignorance of PX and PY does not represent a problem. One may wonder why we did not define
the payoff under a worst case assumption (from FA’s perspective) on PX and/or PY . The reason is
that doing so would result in a meaningless game. In fact, given that X and Y are drawn from the
same class of sources C, the worst case would always correspond to the trivial case X = Y for which
no meaningful forensic analysis is possible3.
Slightly different versions of the game are obtained by assuming a different relationship between the
training sequences. In certain cases we may assume that the FA has a better access to the source
X than the AD. In [16], for example, the availability of a number of pictures taken from a camera
X and made publicly available is exploited by the AD to take an image produced by a camera Y
and modify it in such a way that the fake picture looks as if it were taken by X. The FA, exploits
his better access to the source X and the knowledge of the images potentially available to the AD
to distinguish the images truly generated by X and the fake images produced by the AD. In our
framework, such a scenario can be quite faithfully modeled by assuming that the sequence tKAD is a
subsequence of tNFA, leading to the following definition.

Definition 2. The SItr,b(SFA,SAD, u) game is a zero-sum, strategic, game played by the FA and
the AD, defined as the SItr,a game with the only difference that tKAD = (tFA,l+1, tFA,l+2 . . . tFA,l+K)
with l and K known to the FA.

3Alternatively, we could assume that X and Y belong to two disjoint source classes CX and CY . We leave this
analysis for further research.
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Yet another version of the game is obtained by assuming that the training sequence available to the
AD corresponds to that available to the FA.

Definition 3. The SItr,c(SFA,SAD, u) game is a zero-sum, strategic, game played by the FA and
the AD, defined as the SItr,a game with the only difference that K = N and tKAD = tNFA (simply
indicated as tN in the following). The set of strategies of the FA and the AD are the same as in the
SItr,a game.

In the rest of this description we will focus on the SItr,c game, leaving the other versions for future
research.

2.1.4 Asymptotic equilibrium for the SItr,c game with limited-resources

Studying the existence of an equilibrium point for the SItr,c game is a prohibitive task due to
the difficulty of determining the optimum strategies for the FA and the AD, hence we consider a
simplified version of the game in which the FA can only base his decision on a limited set of statistics
computed on the test and training sequences. Specifically, we require that the FA relies only on the
relative frequencies with which the symbols in X appear in xn and tN , i.e. Pxn and PtN . Note that
Pxn and PtN are not sufficient statistics for the FA, since even if Y is also a memoryless source,
the AD could introduce some memory within the sequence as a result of the application of f(·).
In the same way it could introduce some dependencies between the attacked sequence zn and tN .
It is then necessary to treat the assumption that the FA relies only on Pxn and PtN as an explicit
- additional - requirement. As in [10], we call this version of the game ”source identification with
limited-resources”, and we refer to it as the SI lrtr,∗ game. As a consequence of the limited resource
assumption, Λ0 can only be a union of cartesian products of pairs of type classes, i.e. if the pair
of sequences (xn, tN ) belongs to Λ0, then any pair of sequences belonging to the cartesian product
T (Pxn) × T (PtN ) will be contained in Λ0. Since a type class is univocally defined by the empirical
pmf of the sequences contained in it, we can redefine the acceptance region Λ0 as a union of pairs
of types (P,Q) with P ∈ Pn and Q ∈ PN . In the following, we will use the two interpretations of
Λ0 (as a set of sequences or a set of types) interchangeably, the exact meaning being always clearly
recoverable from the context. We are interested in studying the asymptotic behavior of the game
when n and N tends to infinity. To avoid the necessity to consider two limits with n and N tending
to infinity independently, we decided to express N as a function of n, and study what happens when
n tends to infinity. With the above ideas in mind, we can state the following:

Definition 4. The SI lrtr,c(SFA,SAD, u) game is a zero-sum, strategic, game played by the FA and
the AD, defined by the following strategies and payoff:

SFA = {Λ0 ⊂ Pn × PN(n) : (2.6)

max
PX∈C

PX{(xn, tN(n)) /∈ Λ0} ≤ 2−λn},

SAD = {f(yn, tN(n)) : d(yn, f(yn, tN(n))) ≤ nD}, (2.7)

u(Λ0, f) = −Pfn = −
∑

tN(n)∈XN(n)

yn:(f(yn,tN(n)),tN(n))∈Λ0

PY (yn)PX(tN(n)). (2.8)

Note that we ask that the false positive error probability decay exponentially fast with n, thus
opening the way to the asymptotic solution of the game. Similar definitions obviously hold for the
a and b versions of the game.
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2.1.4.1 Optimum FA strategy

We start the study of the asymptotic equilibrium point of the SI lrtr,c game determining the optimum
decision region for the FA. In doing so we will use an analysis similar to that carried out in [17] to
analyze a statistical problem with observed statistics (the main difference between our analysis and
[17] is the presence of the AD, i.e. the game-theoretic nature of our problem). The derivation of
the optimum strategy for the FA passes through the definition of the generalized log-likelihood ratio
function h(xn, tN(n)). Given the test and training sequences xn and tN(n), we define the generalized
log-likelihood ratio function as ([17, 18])4:

h(xn, tN ) = D(Pxn ||PrN+n) +
N

n
D(PtN ||PrN+n), (2.9)

where PrN+n indicates the empirical pmf of the sequence rN+n, obtained by concatenating tN and
xn, i.e.

rN+n =

{
ti i ≤ N
xi−N N < i ≤ n+N

. (2.10)

Observing that h(xn, tN ) depends on the test and the training sequences only through their empirical
pmf, we can also use the notation h(Pxn , PtN ). The derivation of the Nash equilibrium for the SI lrtr,c
game passes through the following lemmas.

Lemma 1. For any PX we have:

nD(Pxn ||Prn+N )+ND(PtN ||Prn+N ) ≤ (2.11)

nD(Pxn ||PX) +ND(PtN ||PX),

with equality holding only if PX = Prn+N .

The proof of Lemma 1 is given in the appendix.

Lemma 2. Let Λ∗0 be defined as follows:

Λ∗0=

{
(Pxn , PtN ) : h(Pxn , PtN )<λ−|X | log(n+ 1)(N + 1)

n

}
(2.12)

with

lim
n→∞

log(N(n) + 1)

n
= 0, (2.13)

and let Λ∗1 be the corresponding rejection region. Then:

1. maxPX PX{(xn, tN(n)) /∈ Λ∗0} ≤ 2−n(λ−δn), with δn → 0 for n→∞,

2. ∀Λ0 ∈ SFA defined as in (2.6), we have Λ1 ⊆ Λ∗1.

Proof. Being Λ∗0 (and Λ∗1) a union of pairs of types (or, equivalently, unions of cartesian products of
type classes), we have:

max
PX

Pfp = max
PX∈C

PX{(xn, tN ) /∈ Λ∗0} (2.14)

= max
PX∈C

∑
(xn,tN )∈Λ∗1

PX(xn, tN )

= max
PX∈C

∑
(Pxn ,PtN )∈Λ∗1

PX(T (Pxn)× T (PtN )).

4To simplify the notation sometimes we omit the dependence of N on n.
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For the class of discrete memoryless sources, the number of types with denominators n and N is
bounded by (n+ 1)|X| and (N + 1)|X| respectively [13], so we can write:

max
PX

Pfp ≤ max
PX

max
(Pxn ,PtN )∈Λ∗1

(2.15)

[(n+ 1)|X |(N + 1)|X |PX(T (Pxn)× T (PtN ))]

≤ (n+ 1)|X |(N + 1)|X |·
max
PX

max
(Pxn ,PtN )∈Λ∗1

2−n[D(Pxn ||PX)+N
n D(PtN ||PX)],

where for the last inequality we have exploited the independence of xn and tN and the property of
types according to which for any sequence xn we have PX(T (Pxn)) ≤ 2−nD(Pxn ||PX) (see [13]). By
exploiting lemma 1, we can write:

max
PX

Pfp ≤ (n+ 1)|X |(N + 1)|X | (2.16)

max
(Pxn ,PtN )∈Λ∗1

2−n[D(Pxn ||PrN+n )+N
n D(PtN ||PrN+n )]

≤ (n+ 1)|X |(N + 1)|X | 2−n(λ−|X| log(n+1)(N+1)
n )

= 2−n(λ−2|X | log(n+1)(N+1)
n ),

where the last inequality derives from the definition of Λ∗0. Together with (2.13), equation (2.16)

proves the first part of the lemma with δn = 2|X | log(n+1)(N+1)
n .

Let now (xn, tN ) be a generic pair of sequences contained in Λ1 (with Λ0 ∈ SFA), due to the limited
resources assumption the cartesian product between T (Pxn) and T (PtN ) will be entirely contained
in Λ1. Then we have:

2−λn ≥ max
PX

PX(Λ1) (2.17)

(a)

≥ max
PX

PX(T (Pxn)× T (PtN ))

(b)

≥ max
PX

2−[D(Pxn ||PX)]+N
n D(PtN ||PX)

(n+ 1)|X |(N + 1)|X |

(c)
=

2−[D(Pxn ||PrN+n)]+N
n D(PtN ||PrN+n )

(n+ 1)|X |(N + 1)|X |
,

where (a) is due to the limited resources assumption, (b) follows from the independence of xn and
tN and the lower bound on the probability of a pair of type classes [13], and (c) derives from lemma
1. By taking the logarithm of both sides we have that (xn, tN ) ∈ Λ∗1, thus completing the proof.

The first part of the lemma shows that, at least asymptotically, Λ∗0 belongs to SFA, while the second
part implies the optimality of Λ∗0. The most important consequence of lemma 2 is that the optimum
strategy of the FA is univocally determined by the false positive constraint. This solves the apparent
problem that we pointed out when defining the payoff of the game, namely that the payoff depends
on PX and PY and hence it is not fully known to the FA. Another interesting result is that the
optimum strategy of the FA does not depend on the strategy chosen by the AD, thus considerably
simplifying the determination of the equilibrium point of the game. As a matter of fact, since the
optimum Λ∗0 is fixed, the AD can choose his strategy by relying on the knowledge of Λ∗0. A last
consequence of lemma 2 is that Λ∗0 is the optimum FA strategy even for versions a and b of the SI lrtr
game.
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2.1.4.2 Asymptotic Nash equilibrium

To determine the Nash equilibrium of the SI lrtr,c game, we start by deriving the optimum strategy
for the AD. This is quite an easy task if we observe that the goal of the AD is to take a sequence
yn drawn from Y and modify it in such a way that:

h(zn, tN ) < λ− |X | log(n+ 1)(N + 1)

n
, (2.18)

with d(yn, zn) ≤ nD. The optimum attacking strategy, then, can be expressed as a minimization
problem, i.e.:

f∗(yn, tN ) = arg min
zn:d(yn,zn)≤nD

h(zn, tN ). (2.19)

Note that to implement this strategy the AD needs to know tN , i.e. equation (2.19) determines the
optimum strategy only for version c of the game.
Having determined the optimum strategies for the FA and the AD, we can state the fundamental
result of this work, summarized in the following Theorem.

Theorem 1. The profile (Λ∗0, f
∗) defined by lemma 2 and equation (2.19) is an asymptotic Nash

equilibrium point for the SI lrtr,c game.

Proof. We have to prove that:

u(Λ∗0, f
∗) ≥ u(Λ0, f

∗) ∀Λ0 ∈ SFA (2.20)

−u(Λ∗0, f
∗) ≥ u(Λ∗0, f) ∀f ∈ SAD. (2.21)

The first relation holds because of lemma 2, while the second derives from the optimality of f∗ when
Λ∗0 is fixed, hence proving the theorem.

2.1.5 Discussion and comparison with the SI lrks game.

In this section we give an intuitive meaning to the results proved so far. To do so we will compare
the optimum strategies of the SI lrtr,∗ game to those of the SI lrks, i.e a version of the game in which
the FA and the AD know the pmf PX ruling the emission of symbols from the source X. In [10] it
is shown that the optimum strategy for the FA relies on the divergence between the empirical pmf
of the sequence xn and PX , i.e.:

Λ∗0,ks =

{
Pxn ∈ Pn : D(Pxn ||PX) < λ− |X | log(n+ 1)

n

}
. (2.22)

One may wonder why the optimum FA strategy for the SI lrtr,∗ game does not correspond to the
comparison of the empirical divergence between xn and that of the test sequence. The reason for
the necessity of adopting the more complicated strategy set by lemma 2 is that in the current
version of the game, the FA must ensure that the false positive probability is below the desired
threshold for all possible sources in C. To do so, he has to estimate the pmf that better explains
the evidence provided by both xn and tN . In other words he has to find the pmf under which the
probability of observing both the sequences xn and tN is maximum. This is exactly the role of
Prn+N (see equation (A3)), with the generalized log-likelihood ratio corresponding to the log of the
(asymptotic) probability of observing xn and tN under Prn+N (a geometrical interpretation of the
decision strategies for the two versions of the game is given in Figure 2.1).
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D(Pxn||PX)
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D(Pxn||PrN+n)

D(PtN ||PrN+n)

Figure 2.1: Geometric interpretation of the optimum FA strategies for the SI lrks (left) and the SI lrtr,∗
(right) games.

Another interesting observation regards the optimum strategy of the AD. As a matter of fact,
the functions h(Pxn , PtN ) and D(Pxn ||PtN ) share a similar behavior: both are positive and convex
functions with the absolute minimum achieved when Pxn = PtN , so one may be tempted to think
that from the AD’s point of view minimizing D(Pxn ||PtN ) is equivalent to minimizing h(Pxn , PtN ).
While this is the case in some situations, e.g. for binary sources or when the absolute minimum
can be reached, in general the two minimization problems yield different solutions. It is possible,
and quite easy in fact, to find two pmf’s P ′xn and P ′′xn for which D(P ′xn ||PtN ) > D(P ′′xn ||PtN ), while
h(P ′xn , PtN ) < h(P ′′xn , PtN ).
Our final comment regards the comparison of the payoff at the equilibrium for the SI lrtr,c and the

SI lrks games. Let us consider the two optimal acceptance regions, that for sake of clarity we will
indicated with Λ∗0,ks and Λ∗0,tr. The comparison between Λ∗0,ks and Λ∗0,tr is not straightforward since
the former depends only on Pxn (for a given PX) while the latter depends both on Pxn and PtN . In
order to ease the comparison we assume that PX ∈ Pn and that PtN is also fixed and equal to PX .
We can show that under this assumption, and for large n, we have Λ∗0,ks ⊆ Λ∗0,tr. To do so we note
that with some algebra the log-likelihood ratio can be rewritten in the following form:

h(Pxn , PtN ) = D(Pxn ||PtN )− N + n

n
D(Prn+N ||PtN ). (2.23)

From the above equation we see that h(Pxn , PtN ) ≤ D(Pxn ||PtN ), hence for PtN = PX and n large
enough5, the acceptance region for the game with training data contains that of the game with
known sources. As a consequence, it is easier for the AD to bring a sequence yn generated by a
source Y within Λ∗0,tr and fool the FA. Version c of the SI lrtr game is then more favorable to the

attacker than the SI lrks game. While, the above argument holds only when PtN = PX , we argue
that this is the case even in a general setting. We leave a rigorous proof of the above property to a
subsequent work.

5If n is large the terms
log(n+1)

n
and

log(n+1)(N+1)
n

in Λ∗0,ks and Λ∗0,tr tend to zero.
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2.1.6 Conclusions

Following the definition of the SIks game, extensively treated in [10, 12], we took a further step
towards the construction of a theoretical background for multimedia forensics. The source identi-
fication game with training data, in fact, is significantly closer to real applications than the game
with know sources. The solution of version c of the game provided interesting insights into the
optimal strategies for the FA and the AD, that somewhat differ from those that one would have
obtained by simply extending the optimum strategies of the known source case. Additional, even
more interesting, results are likely to derive from the solution of versions a and b of the SItr game,
which will be the goal of our future work, together with the analysis of the optimal strategies and
the resulting payoff for specific cases of particular interest (e.g. for Bernoulli sources). Other in-
teresting directions for future research include the analysis of a version of the game in which the
test sequence xn may have been generated by a (limited) number of sources each known through
training sequences. The extensions of the analysis to sources with memory and continuous sources
is also worth attention.

2.2 Taking advantage of source correlation in forensic anal-
ysis

In a wide range of practical multimedia scenarios several correlated contents are available. The
aim of this work is to quantify the gain that can be achieved in forensic applications by jointly
considering those contents, instead of analyzing them separately. The used tool is the Kullback-
Leibler Divergence between the distributions corresponding to different operators; the Maximum
Likelihood estimator of the applied operator is also obtained, in order to illustrate how the correlation
is exploited for estimation. Our detailed analysis is constrained to the Gaussian case (both for the
input signal distribution and the processing randomness) and linear operators. Several practical
scenarios are studied, and the relationships between the derived results are established. Finally, the
links with Distributed Source Coding are highlighted.

2.2.1 Introduction

In the last decades the number of multimedia contents and their impact in our lives has dramatically
increased. A paradigmatic example of both the cost reduction and ubiquity of capture devices and
the growth of digital networks where those contents can be published, shared and distributed, is
the wide use of mobile devices (e.g., smart phones) that jointly offer the capturing and connec-
tivity functionalities. Multimedia contents have been converted not only in valuable evidence of
our personal evolution and social life, but also in a weapon that can be used to harm the public
image of individuals and organizations. In fact, simultaneously with this growth, a huge number of
editing tools available in applications for non-skilled users have proliferated, thus compromising the
reliability of those contents, and strongly constraining their use in some applications, for example
as court evidence. As a consequence, trust on multimedia contents has steadily decreased.
In this context, multimedia forensics, an area of multimedia security, has appeared as a possible
solution to the decrease of confidence on multimedia contents. The target of multimedia forensics
can be summarized as assessing the processing, coding and editing steps a content has gone through.
Despite the large attention that multimedia forensics has deserved during the last years (see, for
instance, [19] and the references therein), most of the previous works deal with single sources, i.e.,
they perform the forensic analysis of video, audio or still images, but they do not consider in a joint
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way several correlated instances of those media. However, examples of those correlated contents can
be found in a number of practical situations, for example:

• Multimodal content: one of the most interesting cases are video files with audio tracks. For
example, both the visual and audio contents provide environment information that should
be coherent; otherwise, inconsistencies would indicate that at least one of the modalities was
tampered with. This idea is explored in [20], where the volumetric characteristics of the capture
environment are estimated both from the video and audio signals.

• Multitrack files: obviously, the left and right channels of stereo audio files are not independent;
the correlation between them could be exploited for forensic purposes. The same idea is
applicable to 3-D video, or multi-channel audio.

Be aware that the common characteristic of those scenarios is that a number (typically 2) of corre-
lated sources is considered. In this work we will try to measure, by taking a theoretical approach,
the advantage of jointly considering these contents for performing the forensic analysis of the total
multimedia contents; specifically, we will quantify the gain that can be achieved by considering them
in a joint way. Both information-theoretic and estimation tools will be used.
The rest of the paper is organized as follows: Sect. 2.2.2 introduces the used notation and the
goals of the detection and estimation forensic problems. The proposed target functions and general
strategies are introduced in Sect. 2.2.3, while they are particularized to the linear and Gaussian case
in Sect. 2.2.4. Numerical results are introduced in Sect. 2.2.5, and conclusions are summarized in
Sect. 2.2.6.

2.2.2 Notation and objectives

Random vectors will be denoted by capital bold letters (e.g., Y), while their outcomes, and deter-
ministic vectors in general, will use lower case bold letters (e.g., y). ΣX will be used for denoting the
covariance matrix of random vector X, and µX its mean. Subindices will be used for denoting the
vector component at ith position (e.g., Yi, or yi); for the sake of notational simplicity

(
µX

)
i

= µXi .
The element at the ith row and jth column of a general matrix A will be denoted by (A)i,j .
Let X1, X2, . . . , XL denote L random variables, which model the correlated sources we consider;
X will be used for denoting (X1, X2, . . . , XL). Throughout this work we will assume the statistics
(mean vector and covariance matrix) of X to be perfectly known at the detector/estimator.
We assume that each of those variables goes through a particular processing Yi = gi(Xi),

6 where
1 ≤ i ≤ L, gi ∈ G, and G denotes the space of memoryless proccesing operators. In general, these
operators can be randomized; this randomness will be modeled by variables Zi, 1 ≤ i ≤ L, where
the statistics of Z will be assumed to be also perfectly known at the detector/estimator. For the
sake of notational simplicity, we will define every gi ∈ G by two sets of parameters, namely, ϕi and
φi, so gi(·) = g(·, ϕi, φi). These two sets of parameters are used for making the distinction between
those that we want to estimate/detect, and those which we do not (typically known as unwanted or
nuisance parameters [1]), respectively.
For the study of the Maximum Likelihood (ML) processing operator estimator, N independent ob-
servations of Z will be considered, i.e., we will assume each of those L sources and the corresponding
processing to be memoryless. Each of those N observations of Z will be denoted by Zi, 1 ≤ i ≤ N .
In the information theoretic analysis, and due to the independence among the N observations, the

6In one of the scenarios analyzed in the following sections, specifically, for that considered in Sect. 2.2.4.5, we have
adopted a more general approach.
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Figure 2.2: Distinguishability problem framework for L = 2.
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Figure 2.3: Estimation problem framework for L = 2.

obtained results will be proportional to N ; consequently, and for the sake of notational simplicity,
we will skip the superindex.
In this work we focus on two different problems:

• study of the distinguishability between gi and hi, gi ∈ G and hi ∈ G. First, we analyze the
case where only the marginal probability density function (pdf) of Yi is considered, and then
we compare it with its counterpart where the joint pdf of Y is exploited. Of course, one would
expect that whenever the joint pdf is employed, the distinguishability is improved; in that
sense, one of the main contributions of the current work is to consider several scenarios that
model practical signal processing operations, and to quantify the improvement achieved by
using the correlation between the sources (i.e., the joint pdf instead of the marginal). The
block diagram of this scenario is plotted in Fig. 2.2 for the case L = 2.

• estimate the applied operator. Again, intuition says that the more data we consider, the
better (or at least not worse) the estimation will be. We analyze how the correlation between
sources is exploited by the processing operator estimation. The block diagram of this scenario
is plotted in Fig. 2.3 for the case L = 2.

2.2.3 General case

Although already well-known in information theory, the Kullback-Leibler Divergence (KLD), also
known as relative entropy, has been just recently proposed for distinguishing between different
sources [10], and processing operators [21] in multimedia forensics. The KLD for continuous L-
dimensional random variables is defined as

D(f0||f1) =

∫
RL
f0(x) log

(
f0(x)

f1(x)

)
dx,

where f0 denotes the pdf under the null hypothesis, and f1 under the alternative one (the two
hypotheses under analysis). Its use is based on its asymptotical (when the dimensionality of the
problem goes to infinity) optimality, since it is asymptotically equivalent to the Neyman-Pearson
criterion, which is known to be the most powerful test for the binary hypothesis problem. Indeed,
Chernoff-Stein’s Lemma [13] states that the false positive probability error exponent achievable
for a given non-null false negative probability asymptotically converges to the KLD between the
pdfs under the null and alternative hypotheses (as long as the KLD takes a finite value) when the
dimensionality of the problem goes to infinity.
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In the case where we only want to distinguish between the values of some of the applied signal
processing operator parameters (those that we have previously denoted by ϕi), but we are not
interested in distinguishing between different values of the remaining ones (i.e., φi) we will follow
a worst case approach. Specifically, given that we are interested in studying the distinguishability
between the processing corresponding to ϕi and ϕ′i, we will look for those values of φi and φ′i
minimizing the relative entropy, i.e., to quantify the distinguishability between fg(X,ϕi,·) and fg(X,ϕ′i,·)
we compute

min
φi

min
φ′i

D(fg(X,ϕi,φi)||fg(X,ϕ′i,φ′i)).

This approach resembles the strategy which is typically followed in the literature for statistical
detection theory with unwanted parameters (c.f., [1]), since it maximizes the performance of the
system (by using the optimal distinguishability measure, the KLD) for the worst case scenario,
ensuring the predicted performance. This strategy is also coherent with the approach proposed in
[21] for quantifying the distinguishability between different classes of processing operators.
On the other hand, the ML estimate of processing gi requires the calculation of

ĝi = arg max
gi∈G

fY(y|gi).

Again, if we are interested in estimating only some of the parameters defining gi, i.e. ϕi, then we
must solve

ϕ̂i = arg max
ϕi

max
φi∈Φ

fg(X,ϕi,φi),

where Φ is the feasible set of values of φi. This framework encompasses the case where φi is known
to have a fixed value φ∗, as in such case Φ = {φ∗}. Note that, since in this case we are looking
for the most probable operator, instead of a maxmin, a maxmax strategy will be followed; in other
words, in the estimate problem it does not make sense to use a worst case approach, as one does not
have to consider the probability of confusing with an alternative hypothesis.
Finally, we would like to mention that the improvement on the performance of the estimation of
gi could be also interpreted from an information-theoretic point of view. Indeed, if one considers
Gi to be randomly chosen following a given distribution, then, based on fundamental properties
of the entropy [13] we can bound h(Gi|Yi) ≥ h(Gi|Y), i.e., the consideration of the output of the
other processing branches will reduce (or at least not increase) the uncertainty about the processing
undergone by Xi.

2.2.3.1 Links with Distributed Source Coding

In source coding, the exploitation of correlation between sources has been extensively used for
improving the performance of the coding scheme in those scenarios where the coders do not share
access to their input data, i.e., the Distributed Source Coding (DSC) problem [22, 23]. Indeed,
this correlation is typically modeled as a virtual channel, and channel coding techniques are used
for source coding purposes. Nevertheless, due to the differences in the target function between the
current problem, where the processing undergone by the different sources is to be detected/estimated,
and the DSC problem, where one wants to minimize the transmitted data, the traslation of the
channel-coding based techniques to the forensic application seems to be unfeasible.
Another related problem is the Distributed Hypothesis Testing [24], where one wants to determine
how the data should be compressed in order to minimize the transmitted information when the goal
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is not the reproduction, but the inference from those data. Although in this case we have indeed
a detection problem, in the forensic application we are not interested in reducing the transmitted
data; consequently, the traslation of the results in [24] to the current problem appears to be very
difficult.

2.2.4 Gaussian signals and linear operators

In order to provide close formulas that allow a clear comparison between the considered scenarios,
we particularize the proposed framework to the case where Gaussian variables and linear processing
is considered. Therefore, in this section we will consider the processing defined by Yi = aiXi + Zi,
where ai is a real constant, X ∼ N (µX,ΣX), and Zi ∼ N (µZi , σ

2
Zi

) is a Gaussian random variable
independent of X and independent of Zj , 1 ≤ j ≤ L, j 6= i. Random variable Zi might model
the randomness of the processing, for example, the effect of quantizing the processed signal in a
different domain, e.g., an image operator that scales the 8× 8-block DCT coefficients depending on
the frequency location, and then quantizes the image in the pixel domain; although the quantization
error is not independent of the DCT coefficients, it is typically modeled as being so (see, for example,
[25]), as a lot of different contributions are summed up when performing the DCT and IDCT.
Based on the definition of Y, and the distributions of X and Z, Y is also Gaussian, i.e., Y ∼
N (µY,ΣY), where

µYi = aiµXi + µZi ,

and (
ΣY

)
i,j

= aiaj
(
ΣX

)
i,j

+ σ2
Ziδ[i− j].

The main advantage of the Gaussian case, that drives us to consider this scenario with special detail,
is the fact that closed formulas exist for the KLD of two Gaussian multivariate distributions. Indeed,
if we consider Y ∼ N (µY,ΣY) and Y′ ∼ N (µY′ ,ΣY′), then

D(fY||fY′) =
1

2

[
tr
(

Σ−1

Y′
ΣY

)
+
(
µY′ − µY

)T
Σ−1

Y′
(
µY′ − µY

)
− log

( |ΣY|
|ΣY′ |

)
− L

]
, (2.24)

where tr(·) is the trace operator, and |Σ| is the determinant of matrix Σ.
Taking into account the form of Yi considered in this section, gi is entirely specified by ai and
σ2
Zi

. In most practical scenarios we will be interested in estimating ai, whereas σ2
Zi

is an unwanted
parameter; therefore, following the notation introduced in the previous section, ϕi = ai, and φi =
σ2
Zi

. Consequently, the ML estimate of gain ai requires the calculation of

âi = arg max
ai∈R

(
max
σ2
Zi
∈R+

L(y, ai, σ
2
Zi)

)
,

where

L(y, ai, σ
2
Zi) ,

(
y − µY

)T
Σ−1

Y

(
y − µY

)
+ log(|ΣY|).

On the other hand, if the unwanted parameter is indeed known a priori, then that knowledge can
be exploited in the estimation. Continuing with the estimate of ai, but assuming that σ2

Zi
is known

to be, say,
(
σ2
Zi

)∗
, we have that

âi = arg max
ai∈R

L(y, ai,
(
σ2
Zi

)∗
).
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In the following we consider 4 particular scenarios for L = 2 and different definitions of Y2 (Sects. 2.2.4.2-
2.2.4.5), while keeping the same definition of Y1. For all of them, we detail the theoretical results of
both the ML estimator and the KLD. The target of this analysis is to illustrate how the knowledge
of Y2 helps to estimate/detect the processing undergone by Y1 in comparison to the scenario where
only Y1 is available (Sect. 2.2.4.1). In order to keep the mathematical tractability, we will assume
Σ2
Zi

= µXi = µZi = 0, for i = 1, 2. The noisy case (randomized processing operators) and non-zero
mean will be considered in Sect. 2.2.5 by numerical results.
The proposed scenarios can be linked with real applications in the case of audio stereo files, where
each audio channel goes through an equalization filter; the samples of each channel are windowed,
frequency transformed, and then each frequency coefficient is subjected to a different scaling. This
effect can be roughly modeled by a frequency dependent scaling, and the differences between this
model and the real processing (encompassing, for example, the windowing effect, the lack of block
periodicity, and the quantization of the filtered samples in the time domain) will be modeled by Zi.
Of course the frequency coefficients do not fit the theoretical model studied in this section, but the
consideration of this application scenario showcases the power of the proposed methodology. We
will particularize this illustrating application for each scenario.

2.2.4.1 Scenario Y1 = a1X1 + Z1

Application Scenario: mono file, or only one of the stereo channels is considered for processing
estimation/detection.
Under the hypotheses mentioned above,

â1 = ±

√√√√∑N
i=1 (Y i1 )

2

N
(
ΣX

)
1,1

, (2.25)

that is, the variance-based estimator, which in general is biased.
Concerning the KLD between Y1 = a1X1 + Z1 and Y ′1 = b1X1 + Z ′1, one obtains

D(fY1
||fY ′1 ) =

1

2

(
−1 +

a2
1

b21
− log

[
a2

1

b21

])
. (2.26)

2.2.4.2 Scenario Y1 = a1X1 + Z1, Y2 = a2X2 + Z2, a2 = a1

Application Scenario: stereo case, when we know that the same equalization is applied to both
channels.
The ML estimator can be computed as

â1 = ±

√√√√√∑N
i=1 (Y i1 )

2 (
ΣX

)
2,2

+ (Y i2 )
2 (

ΣX
)

1,1
− 2 (Y i1Y

i
2 )
(
ΣX

)
1,2

2N
[(

ΣX
)

1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

] .

Be aware that whenever X1 and X2 are independent, i.e.,
(
ΣX

)
1,2

= 0, then the derived ML

estimator is

â1 = ±

√√√√ 1

2N

[∑N
i=1 (Y i1 )

2(
ΣX

)
1,1

+

∑N
i=1 (Y i2 )

2(
ΣX

)
2,2

]
, (2.27)

which is obvioulsy related to the ML estimator in (2.25).
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Concerning the KLD between (Y1, Y2) = (a1X1 +Z1, a2X2 +Z2) and (Y ′1 , Y
′
2) = (b1X1 +Z ′1, b2X2 +

Z ′2), we obtain

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) = −1 +

a2
1

b21
− log

[
a2

1

b21

]
, (2.28)

which is nothing but twice (2.26). This result makes sense, since we are considering the same
processing for both channels and the noiseless case, and consequently the correlation between X1

and X2 does not provide any additional information; therefore, from the KLD point of view one
would expect to have the same result that is achieved when two independent realizations of Y1 are
available. This result also makes sense at the light of (2.27), although in the derivation of the latter
we assumed

(
ΣX

)
1,2

= 0.

2.2.4.3 Scenario Y1 = a1X1 + Z1, Y2 = a2X2 + Z2. a2 is known

Application Scenario: stereo, we know the equalization applied to one channel, and want to
estimate the other one.
The ML estimator is

â1 =

{
N∑
i=1

−a2

(
ΣX

)
1,2
Y i1Y

i
2 +

( N∑
i=1

a2

(
ΣX

)
1,2
Y i1Y

i
2

)2

+ 4Na4
2

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

] (
ΣX

)
2,2

N∑
i=1

(
Y i1

)2
]1/2

[
2Na2

2

((
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

)]−1

. (2.29)

Concerning the KLD between (Y1, Y2) = (a1X1 +Z1, a2X2 +Z2) and (Y ′1 , Y
′
2) = (b1X1 +Z ′1, b2X2 +

Z ′2), we obtain

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2)) =− 1− 1

2
log

(
a2

1a
2
2

b21b
2
2

)
+

(
a2

2b
2
1 + a2

1b
2
2

) (
ΣX

)
1,1

(
ΣX

)
2,2
− 2a1a2b1b2

(
ΣX

)2
1,2

2b21b
2
2

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

] . (2.30)

Note that whenever
(
ΣX

)
1,2

= 0

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) = 1

2

[
−1 +

a2
1

b21
− log

(
a2

1

b21

)
− 1 +

a2
2

b22
− log

(
a2

2

b22

)]
,

which also follows the intuition for the KLD of multivariate Gaussian distributions of diagonal
covariance matrices.
The scenario Y1 = a1X1 +Z1, Y2 = a2X2 +a3X1 +Z2 (so Y2 6= g2(X2)), where a2 and a3 are known,
was also studied, although the obtained results are not shown here due to spatial constraints. Let
only mention that it corresponds to the stereo case, where channel 2 is not only equalized, but edited
by combining it with a filtered version of channel 1. Our target would be to estimate the equalizer
undergone by output 1, that depends only on channel 1 input.
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2.2.4.4 Scenario Y1 = a1X1 + Z1, Y2 = a2X2 + Z2. a2 is not known

Application Scenario: stereo, we want to estimate the equalizer applied to one of the channels,
but we do not know about the equalization applied to the other one.
In this framework, the value of a2 (as a function of a1) maximizing the ML target function is

−ξ+

√
ξ2+4Na1

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2

1,2

]∑N
i=1 a1

(
ΣX

)
1,1

(Y i2 )2

2Na1

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2

1,2

] ,

where ξ ,
∑N
i=1

(
ΣX

)
1,2
Y i1Y

i
2 , yielding the ML estimator

â1 = ±

√√√√√√√
(
ΣX

)
2,2
κ−

√(
ΣX

)
2,2(

ΣX
)

1,1

(
ΣX

)2
1,2
κ
[∑N

i=1 Y
i
1Y

i
2

]2
N
[(

ΣX
)

1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

]∑N
i=1 (Y i2 )

2
,

where κ ,
[∑N

i=1

(
Y i1
)2] [∑N

i=1

(
Y i2
)2]

. Note that whenever
(
ΣX

)
1,2

= 0, then this estimator is

equivalent to (2.25).
On the other hand, in the computation of the KLD, and given that we study the distinguishability
between the processing corresponding to a1 and b1, we will look for those values of a2 and b2
minimizing the KLD. In the current scenario, the derivative of the KLD with respect to a2 is

− 1

a2
+
b1a2

(
ΣX

)
1,1

(
ΣX

)
2,2
− a1b2

(
ΣX

)2
1,2

b1b22

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

] ,

which has roots with respect to a2 at
b2

(
a1

(
ΣX

)2

1,2
+γ

)
2b1
(

ΣX
)

1,1

(
ΣX

)
2,2

, where γ ,

√
a2
1

(
ΣX

)4
1,2 + 4b21

(
ΣX

)
1,1

(
ΣX

)
2,2

[(
ΣX

)
1,1

(
ΣX

)
2,2 −

(
ΣX

)2
1,2

]
.

If one replaces (2.2.4.4) into the relative entropy, the result does not depend on b2, so the minimiza-
tion over that variable is indeed not necessary. The obtained value is

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) =− 1

2

+
a2

1

[
2
(
ΣX

)2
1,1

(
ΣX

)2
2,2
−
(
ΣX

)4
1,2

]
− a1

(
ΣX

)2
1,2
κ

4b21
(
ΣX

)
1,1

(
ΣX

)
2,2

[(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
ΣX

)2
1,2

]
− 1

2
log

a2
1

[
a1

(
ΣX

)2
1,2

+ κ
]2

4b41
(
ΣX

)2
1,1

(
ΣX

)2
2,2

 .

An interesting scenario, is that where
(
ΣX

)
1,2

= 0; under that assumption, the derivative of the

KLD with respect to a2 is equal to − 1
a2

+ a2

b22
, yielding the condition a2

2 = b22. Indeed, in that

particular framework the KLD can be written as (check the obvious relationships with (2.26))

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) =

1

2

(
−1 +

a2
1

b21
− log

[
a2

1

b21

])
+

1

2

(
−1 +

a2
2

b22
− log

[
a2

2

b22

])
,
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and consequently we can minimize the KLD over
a2

2

b22
; straightforwardly, the achieved solution is

a2
2

b22
= 1, providing a null contribution to the total KLD, whose value will be

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) =

1

2

(
−1 +

a2
1

b21
− log

[
a2

1

b21

])
, (2.31)

i.e., the same value achieved in (2.26). The implications of this result are evident:

• Since X1 and X2 are independent, the consideration of Y2 and Y ′2 will not provide any knowl-
edge that can improve the distinguishability between a1 and b1.

• Therefore, if we look for those values of a2 and b2 minimizing the KLD, we will find that
a2

2 = b22 (due to the symmetry obtained by assuming zero-mean random variables).

• Consequently, we go back to the framework studied in Sect. 2.2.4.1.

Another asymptotical scenario, that is also particularly interesting, is that where
(
ΣX

)
1,2
→

±
√(

ΣX
)

1,1

(
ΣX

)
2,2

, i.e., if X1 and X2 are (almost) deterministically related. It can be checked

that in that framework the KLD goes to infinity whenever a2 6= a1b2
b1

. The intuition behind this

result is also interesting: since X1 and X2 are related by a fixed factor, if we compute Y1

Y2
= a1

a2
it

will be trivial to distinguish that scenario from
Y ′1
Y ′2

= b1
b2

unless a1

a2
= b1

b2
.7

Therefore, in order to follow our worst case approach, we will choose a2 to be a1b2
b1

. By doing so,
the resulting KLD value is

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2 )) = −1 +

a2
1

b21
− log

[
a2

1

b21

]
,

which is nothing but twice (2.26) (and therefore twice (2.31)), and exactly the same than (2.28),
although in that case this value was obtained for a generic covariance matrix.
Again, this result illustrates what one would intuitively expect; the larger the correlation between
the sources, the easier it will be to distinguish between the operators. Indeed, the two limit behaviors
are also very enlightening:

• Whenever the considered sources are independent, the achieved KLD is equivalent to that
where only Y1 is considered. Of course in this framework Y2 does not provide any knowledge
on Y1, and consequently we can just neglect that variable.

• Whenever the relationship between the sources is deterministic, the problem is equivalent to
having two independent observations, coming from a single source.

2.2.4.5 Scenario Y1 = a1X1 + Z1, Y2 = a2X2 + a3X1 + Z2, so Y2 6= g2(X2). a2 and a3 are
known.

Application Scenario: stereo, channel 2 is not only equalized, but edited by combining it with a
filtered version of channel 1. We want to estimate the equalizer undergone by output 1, that depends
only on channel 1 input.

7Take into account that we assume this equality to hold before taking the limit
(
ΣX

)
1,2
→ ±

√(
ΣX

)
1,1

(
ΣX

)
2,2

.

In the limit the covariance matrix of X becomes singular (with computational problems arising when computing

(2.24)), so it is important to note that by considering a1
a2

= b1
b2

the KLD does not depend on the covariance matrix of

X.
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The ML estimator is

â1 =

∑N
i=1

[
−
(
a3

(
ΣX

)
1,1

+ a2

(
ΣX

)
1,2

)
Y i1Y

i
2

]
2Na2

[
a2

(
ΣX

)
1,1

(
ΣX

)
2,2
− 2a3

(
ΣX

)
1,1

(
ΣX

)
1,2
− a2

(
ΣX

)2
1,2

]
+

( N∑
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(
a3

(
ΣX

)
1,1
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(
ΣX

)
1,2

)
Y i1Y

i
2

)2

+4Na2
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(
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N∑
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3

(
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2

(
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2,2
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Y 2

1
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{

2Na2

[
a2

(
ΣX

)
1,1

(
ΣX

)
2,2
− 2a3

(
ΣX

)
1,1

(
ΣX

)
1,2
− a2

(
ΣX

)2
1,2

]}−1

.

One can check that under the current analysis hypotheses, whenever a3 = 0, the latter estimator is
equivalent to (2.29).
Concerning the KLD,

D(f(Y1,Y2)||f(Y ′1 ,Y
′
2)) =− 1

+
−2a1b1

(
a3

(
ΣX

)
1,1
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(
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2
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− 1
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log
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[
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1,1

(
ΣX

)
2,2
−
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1,2

(
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(
ΣX

)
1,2

+ 2a3
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b21b2

[
b2
(
ΣX

)
1,1

(
ΣX

)
2,2
−
(
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1,2

(
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(
ΣX

)
1,2

+ 2b3
(
ΣX

)
1,1

)]
 ;

again, if a3 = 0 we obtain (2.30) as a particular case of the last formula.

2.2.5 Numerical results

In this section we will provide a glance at some of those Gaussian linear cases that have not been
studied in the previous section due to their cumbersome mathematical expressions. First of all,
we will consider the effect of the processing noise Z. The continuous lines in Fig. 2.4 show the
results obtained when a2 = a1 (correspondingly, b2 = b1), i.e., the scenario studied in Sect. 2.2.4.2.
Be aware that in that framework, and as it was previously discussed, the fact of considering twice
the same processing operator helps to our estimation. Nevertheless, if the observations are noisy,
the closer they are, the more difficult will be to appreciate the different information that each

observation provides; indeed, when they get very close (i.e., when
(
ΣX

)
1,2
→
√(

ΣX
)

1,1

(
ΣX

)
2,2

)

the distinguishability will be equivalent to having a single observation (the KLD decreases to half
the value we have for

(
ΣX

)
1,2

= 0). This illustrates that a very high correlation between sources is

not always positive for distinguishability.
On the other hand, Fig. 2.4 also contains the results when a2 and b2 are not known, i.e., the scenario
considered in Sect. 2.2.4.4; the curve obtained for σ2

Z = 0 corresponds to the results derived there.
As mentioned in Sect. 2.2.3 we have decided to follow a worst case approach for this scenario. Indeed,
for the noisy case the values of a2 and b2 minimizing the KLD are a2 = 0 and b2 = 0; the intuitive
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Figure 2.4: KLD when a2 = a1 and b2 = b1 (continuous lines) and when a2 and b2 are not known
(discontinuous ones), for different values of σ2
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idea behind this result is also clear: in the worst case we cannot trust the second observation, as it
is only noise. In that case the KLD is

1

2

[
a2

1

(
ΣX

)
1,1

+ σ2
Z

b21
(
ΣX

)
1,1

+ σ2
Z

− log

(
a2

1

(
ΣX

)
1,1

+ σ2
Z

b21
(
ΣX

)
1,1

+ σ2
Z

)
− 1

]
,

which is independent of the correlation term, as expected.
Finally, the influence of the mean of the original signal on the distinguishability is illustrated in
Fig. 2.5, which clearly shows that the larger the mean of the signal, the easier will be to distinguish
the considered processing operators.

2.2.6 Conclusions

In this work we have quantified the advantages of using the joint distribution of composite objects for
improving the distinguishability between processing operators. Although for the sake of tractability
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we have focused on the linear Gaussian case, it is evident that the principles derived here would
be applicable to more general frameworks. Among these principles, we can mention the behavior
of the distinguishability measures in different scenarios, and how, for example, the case where the
correlated sources are known to share their processing is equivalent to having independent sources.
It also interesting to note that for the case where the unwanted processing is unknown, for the
noiseless case the distinguishability achieved for deterministically correlated sources is double the
one obtained for independent sources, but for the noisy case the obtained value is independent of
that correlation, as the second observation is considered to be pure noise. Finally, we would like
to mention the a priori striking result showing that a larger correlation between sources does not
always imply a better distinguishability between operators.



Chapter 3

Operator chain modeling

3.1 JPEG Quantization and full-frame filtering

A plethora of forensics techniques have been proposed in the literature so far, aiming at identifying
specific processing operators applied to images [26], but little attention has been paid on the forensic
analysis of chains of operators. In such a scenario, difficulties in the detection may arise since the
statistical footprints exploited to detect a specific processing may be wiped off by the application of
a second one. We propose here to continue and extend our previous work, where we analyzed the
Discrete Cosine Transform (DCT) statistical properties of a JPEG image, post-processed with linear
processing operators. In this scenario, some well-known statistical properties of a JPEG image are
perturbed, thus complicating the application of previous forensic works (e.g. [25],[27]). We derive
an accurate mathematical model that establishes a precise relationship between DCT coefficients
before and after filtering. Finally, the presented analysis is exploited to build a model for the DCT
distribution of JPEG images filtered with various linear kernels. We will assume in this work the
quantization to be fixed and known, although future work will be devoted to remove this assumption.
By mean of the χ2 histogram distance, we measure the distinguishability between the derived models
(each model depends on the applied filter kernel) and the actual distribution of a to-be-tested image,
aiming at identifying the linear operator which has been applied. Other distinguishability measures
may be employed. The choice of χ2 distance was primarily due to the widespread use of the χ2

goodness of fit test (also known as Pearsons test [28]) as one of the most accepted non-parametric
statistical test for determining if an observed frequency distribution matches with a theoretical
one or not. It has been successfully employed in many research areas, e.g., near duplicate image
identification [29], shape and texture classification [30] and steganography [31]. Moreover, in [32] it
has been shown that out of a number of non-parametric test statistics, χ2 metric gets some of the
best results in terms of accurate distance metric for probability density functions.
To the best of our knowledge, the presented work constitutes a first attempt to study the statistical
perturbation introduced by linear operators on JPEG images and, although their detection is not
necessarily proof of malicious tampering, the derived framework represents a valuable mean to
disclose the processing history.
In Section 3.1.1 we briefly review the needed mathematical background, while in Section 3.1.2 we
recall our previous work on the definition of the mathematical model characterizing the statistical
properties of a JPEG linearly filtered image. Following, in Section 3.1.3 we present the experimental
tests we carried out in order to verify the efficacy of the proposed method. We collect some conclusion
and describe some still open issues to be further investigated in Section 3.1.4.

31
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3.1.1 Block-wise JPEG compression and full-frame linear filtering

The JPEG standard provides a block-based compression scheme, which operates on 8 × 8 non-
overlapping blocks of DCT coefficients. In its most commonly used format, it is well known to
be a lossy scheme, i.e., some information is lost during the process, mainly due to a quantization
operation.
In particular, an image I of size (Mx×My), here just considering the luminance channel for simplicity,
is firstly partitioned into (Bx ×By) non-overlapping blocks of size 8× 8. Each block (bx, by) is then
independently transformed from the spatial to the frequency domain, using the DCT:

d(bx,by)(i, j) =
c(i)

2

c(j)

2

7∑
n1=0

7∑
n2=0

o(bx,by)(n1, n2) cos

(
2n1 + 1

16
πi

)
cos

(
2n2 + 1

16
πj

)
, (3.1)

where d(bxby)(i, j) is the frequency coefficient at position (i, j) in the (bxby)-th block, with (i, j) ∈
{0, . . . , 7}2, and o(bxby)(n1, n2) is the pixel at position (n1, n2) in the (bxby)-th block of the input
image. Moreover, c(s) = 1 if s > 0, and c(s) = 1/

√
2 if s = 0.

Depending on the compression quality, a specific 8 × 8 quantization table is employed to quantize
each DCT frequency:

d(bx,by)
q (i, j) = round

(
d(bx,by)(i, j)

∆(i, j)

)
,

where ∆(i, j) are the quantization steps associated with each frequency (i, j). Such quantized co-
efficients are finally entropy-encoded (Huffman coding) and stored in the JPEG file format. The
compressed data stream can be decompressed, applying all the steps in reverse order. Specifically,
a DCT coefficient is reconstructed as

d̂(bx,by)
q (i, j) = ∆(i, j) · round

(
d(bx,by)(i, j)

∆(i, j)

)
, (3.2)

and is finally transformed from the frequency to the spatial domain by applying the Inverse DCT
on each 8× 8 block:

J (bx,by)(i, j) =

7∑
k1=0

7∑
k2=0

c(k1)

2

c(k2)

2
d̂(bx,by)
q (k1, k2) cos

(
2i+ 1

16
πk1

)
cos

(
2j + 1

16
πk2

)
, (3.3)

where J (bx,by)(i, j) is the pixel value at position (i, j) in the (bx, by)-th block of the JPEG image.
From (3.2), the de-quantized coefficients are mapped to multiples of the quantization step ∆(i, j),
resulting in specific artifacts in the coefficient distribution. Fig. 3.1(a) shows the histogram of the
DCT coefficients at frequency (1, 2) collected from a subset of 669 un-compressed images [33], while
Fig. 3.1(b) depicts the distribution of the same data after quantization, with ∆(1, 2) = 10. It
becomes clear that the structure of such histogram is related to the employed quantization factor.
For the sake of presentation we disregard the round-off and truncation errors, in the pixel domain,
introduced by the compression scheme, without affecting the conducted analysis. Previous works in
the literature demonstrate that, by exploiting the described artifacts in the distribution, it is possible
to discover instances of previous JPEG compression and even estimate the used quantization steps
[25, 27, 34, 35]. However, it is very likely that later in its life the JPEG-compressed image will
be processed by a further operator to enhance its quality. For example, it is frequent the use
of full-frame operators aimed at reducing the JPEG-compression block effects. By doing so, the
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Figure 3.1: Panel (a) shows the original DCT histogram for frequency (1, 2) collected from a subset of
669 uncompressed images and its curve fitting. In panel (b), the same distribution after quantization with
∆(1, 2) = 10 is presented. Panel (c) shows the given distribution when a linear filtering operator (an average
filter of size 3×3) has been further applied, together with the derived model for such distribution (red line).

characteristic artifacts present in the DCT distribution of JPEG images may be partially perturbed,
making harder the application of those forensic algorithms. In this work, we study the combination
of JPEG compression and full-frame linear filtering operations. Up to now, very little attention
has been paid to study such a scenario. Specifically, linear filtering represents an interesting case
study since it is a very common and useful linear tool applied for image enhancement, such as edge
sharpening, noise removal illumination correcting and deblurring. It operates by convolving the
original image with an appropriate filter kernel. The result of such a convolution is a filtered image,
whose pixel values are a weighted sum of a certain number of neighboring pixels:

F (x, y) =

N∑
s1=−N

N∑
s2=−N

h(s1, s2)J(x+ s1, y + s2),

where J(x, y) , J (bx,by)(i, j), i = xmod8, j = ymod8, bx = dx8 e, by = dy8 e, x ∈ {0, ...,Mx − 1}
and y ∈ {0, ...,My − 1}, and h is the filter kernel of size (2N + 1) × (2N + 1). Fig. 3.1(c) shows
the histogram of the DCT frequency coefficients of panel (b) after filtering with an Average 3 × 3
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filter; the characteristics of the histogram of the quantized coefficients are clearly perturbed, but
new patterns appear, depending both on the employed quantization factor and the filter kernel.
The aim of this research is to study such artifacts in order to identify the filter kernel a JPEG
image has undergone. In order to do this, we mathematically analyze the DCT distribution of
compressed and filtered images and derive an accurate model for them. Specifically, we investigate
the statistical characteristics in the distribution of the DCT coefficients and, as a first result of that
analysis, show that the extended assumption about the image AC DCT coefficients for different
frequencies being independent, and for the same frequency being i.i.d. [36][37], does not hold;
indeed, the inter- and intra-block redundancy of the quantized DCT coefficients must be taken into
account. By considering those redundancies on the provided analysis, the studied processing can be
accurately modeled and a general mathematical model for the distributions of DCT coefficients of
JPEG filtered images can be derived, depending on the applied kernel and assuming the quantization
to be fixed and known. Fig. 3.1(c) serves as an example of the derived model for the probability
distribution of JPEG filtered images. Later, we build a dictionary-based database for the derived
models corresponding to different applied filters and a distinguishability measure is calculated to
quantify the difference between the theoretically derived models and the actual distribution of an
image. In this analysis, we employ the χ2 histogram distance, which comes from the χ2 test [38],
commonly used to compare observed frequencies with a theoretical distribution (e.g., it has been
successfully used in steganography to detect if some embedding has taken place [31]). For discrete
signals, the χ2 distance is defined as follows:

χ2 =
1

2

∑
i

(Pi −Qi)2

(Pi +Qi)
, (3.4)

where P and Q are two probability distributions to be compared. Intuitively, the χ2 distance would
tend to zero when the two distributions are very close. So, in our scheme, a lower χ2 measure will
be an evidence that will allow to identify the filter operator applied to the under-test image.

3.1.2 Mathematical model

We derive a theoretical model to describe the statistical properties of an image that has been first
JPEG compressed and then linearly filtered. In order to do that, we mathematically express the
deterministic relation between the quantized DCT coefficient d̂q(x, y) and that of the JPEG and
filtered image df (x, y). Then, by exploiting the knowledge about the statistical properties of the

distribution of d̂q(x, y), we further analyze the histograms of df (x, y), assess the dependency of the
different frequencies and derive a model to theoretically characterize the probability distribution of
the DCT coefficients of a JPEG image filtered with a given filter kernel.
The study case here concerned is shown in Fig. 3.2. Following the scheme backwards, we start
considering the DCT coefficients df (x, y) of a JPEG compressed and filtered image and, according
to (3.1), transform them into the spatial domain F (x, y). Through a linear convolution operation
with the filter kernel h, we can further express df (x, y) as a function of the pixels of the compressed

image J , which represents the Inverse DCT of d̂q(x, y) (3.3). Exploiting the linearity property of
both the filtering operation and the DCT transform, we are able to mathematically formulate the
relation between the DCT coefficients of a quantized image d̂q(·, ·) and the DCT coefficients of the
further filtered image df (·, ·). Specifically, given a filter kernel of size smaller than or equal to 17,

the coefficients d̂q(x, y) contributing in the calculation of df (x, y) are those from the same block of
df (x, y) plus those from the 8 immediate surrounding blocks, resulting in 24 × 24 coefficients. It
becomes clear that for filter kernels of sizes larger than 17, the number of contributing coefficients
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Figure 3.2: Block scheme of the considered processing operations. The aim is to establish a math-
ematical relationship between the quantized DCT coefficient d̂q(x, y) and that of the JPEG and

filtered image df (x, y) in order to exploit the statistical properties of the distribution of d̂q(x, y).

df (x, y) =DCTα,β

([
h ∗ IDCTα,β

(
d̂q(x, y)

)]b x8 c+7,b y8 c+7

b x8 c,b
y
8 c

)
+

∑
(k1,k2)∈{−8,...,15}2,(k1,k2)6=(α,β)

DCTα,β

([
h ∗ IDCTα′,β′

(
d̂q

(⌊x
8

⌋
+ k1,

⌊y
8

⌋
+ k2

))]b x8 c−b k1
8 c+7,b y8 c−b

k2
8 c+7

b x8 c−b
k1
8 c,b

y
8 c−b

k2
8 c

)
.

(3.6)

would increase, involving more surrounding blocks. In Section 3.1.2.1, we will show that only a
subset of all the DCT coefficients is effectively relevant for the computation of each coefficient
df (x, y). Finally, we make explicit the contribution of the DCT coefficient d̂q(x, y) at the same
position of df (x, y), as follows:

df (x, y) = γ · d̂q(x, y) +N, (3.5)

where γ,N ∈ R are a scaling factor and a noise term, respectively. These two terms can be calculated,
through some math, according to (3.6), where α = xmod8, β = ymod8, α′ = k1mod8, β′ = k2mod8,
DCTx,y is the (x, y)-th DCT coefficient obtained from an 8×8 pixel block, IDCTx,y is the 8×8 pixel
block (located at {bx8 c, . . . , bx8 c + 7} × {by8 c, . . . , b

y
8 c + 7}) obtained by applying the IDCT to the

(x, y) DCT coefficient, ∗ denotes the bidimensional convolution, and [A]c,da,b denotes the submatrix
of an arbitrary matrix A with first index taking values in {a, . . . , b}, and second index in {c, . . . , d}.
N stands for the second term in the summation in (3.6).

3.1.2.1 Probability distribution

Once we have derived the deterministic expression in (3.5) for df (x, y), we can exploit the knowledge

about the distribution of the quantized coefficients d̂q(x, y) to analyze the distribution of the DCT
coefficients of the final image F .
Usually, the probability distribution of DCT coefficients in natural images is modeled as a zero-mean
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Generalized Gaussian (Fig. 3.1(a)):

fGGD(d(i, j)) =
s

2aΓ(1/s)
exp− (|t|/a)s, (3.7)

where Γ denotes the gamma function, a and s are the scale and the shape parameter, respectively.
Due to quantization, the probability distribution of each quantized DCT coefficient will be [25]
(Fig. 3.1(b))

Lλ(k∆) ,f(d̂q(i, j) = k∆|∆)=

∫ (k+ 1
2 )∆

(k− 1
2 )∆

fGGD(τ)dτ, (3.8)

where k ∈ Z and, for the sake of notation simplicity, ∆ = ∆(i, j). Therefore the probability mass
function of each frequency coefficient of a JPEG image is

f(d̂q(i, j) = τ |∆) =
∑
k

δ(τ − k∆)Lλ(k∆). (3.9)

It becomes clear that the distribution of (3.9) presents specific artifacts, whose structure is related
to the quantization step. In particular, the DCT coefficients corresponding to the (i, j)-th frequency
will be located at multiples of the applied quantization step ∆(i, j), as illustrated in Fig. 3.1(b).
From probability theory [39], given two discrete independent random variables, the probability den-
sity function (pdf) of their sum is the convolution of their corresponding pdfs. Therefore, according
to the derived mathematical model in (3.5), and based on the common DCT coefficients models,
which typically assume the different frequency components to be independent and the coefficients
in a given frequency to be i.i.d. [40], we would expect the probability distribution of the DCT coef-
ficients df (x, y) to be the result of a convolution between a train of impulses located at γ · k∆(i, j),
with γ ∈ R and k ∈ Z, and a noise component due to the contributions of all the neighboring
coefficients (3.5). Moreover, we will model the noise components as a GGD distributed variable,
according to (3.7), with GGD parameters depending on each centroid γ · k∆(·, ·) about which such
noise is centered.
However, we will illustrate that indeed the typical assumptions on the DCT coefficients distribution
of natural images do not hold, thus resulting in a deviation between the classical theoretical models
and the empirical data. Specifically, a scaling between the peaks in the histogram of the DCT
coefficients of the compressed and filtered image and the impulse train identifying the location of
the translated quantization step γ · k∆(·, ·) is observed. This suggests the need for a different
model for the noise component in (3.5), which cannot any longer be considered as the addition of
independent variables (coefficients of different frequencies) and i.i.d. components (coefficients in the
same frequency). Therefore, we analyze the mean of the noise component and verify that for real
images it monotonically increases with the quantized samples value. As an example, in Fig. 3.3 the
red curve represents the mean of the noise component when a Moving Average filter of size 3 × 3
is applied, plotted with respect to each translated quantized value γ · k∆(i, j); similar behaviors
have been verified for different filter kernels. Moreover, for each coefficient df (x, y), we isolate the
contribution of each 24× 24 coefficient and analyze their influence. In Fig. 3.3 (a)-(b) we show the
specific pattern of coefficients mainly contributing to the noise, for all the AC coefficients (1, 2) and
(2, 1). The red curve represents the mean of the total noise component over γ · k∆(·, ·), the blue
curve represents the contribution of a specific set of coefficients and the black curve corresponds
to the contribution of all the remaining coefficients not specified in the previous set. This set was
determined by isolating those coefficients that provided a significant noise contribution, in absolute
value, over all γ ·k∆(·, ·) (i.e., above an empirically determined threshold.) Note that the 24×24 grid
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Figure 3.3: Inter- and intra-block spatial redundancy affecting to df (x, y), over the entire image database.
In each panel, corresponding to the frequencies (1, 2) and (2, 1), respectively (black cross in the grid in the
upper left of each subplots), the total mean of the noise component (red curve) is plotted with respect to
the values of the quantized filtered coefficients γ · k∆q(i, j). The blue curve represents the contribution of
a set of coefficients (depicted in blue in the grid) and the black curve corresponds to the contribution of all
the remaining coefficients not specified in the previous set.

in the upper left part of each plot corresponds to the 9 DCT blocks taken into account in (3.5), when
employing a kernel filter of size smaller than or equal to 17. The black dot identifies the considered
frequency and the blue dots correspond to set of coefficients which mainly influence the total noise,
as verified by the curve matching. Note that due to space restrictions, we report only the behavior
for the coefficients (1, 2) and (2, 1), but the 8 lowest frequencies in an 8× 8 DCT block, discarding
higher frequencies which are more likely to be quantized to zero, have been analyzed giving similar
results.
Therefore, an accurate model for the distribution of the DCT coefficients of a filtered JPEG image
can be derived, taking into account the scaling inferred by the noise component. In Fig. 3.4 it is
shown how the translated impulses, now centered in γ ·k∆(·, ·) plus the mean of the noise component,
match with the peaks of the histogram.
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Figure 3.4: Probability distribution, at frequency (1, 2), quantized with a step q(1, 2) = 10 and filtered with
a 3 × 3 averaging filter. The red impulses represent the location of γ · k∆(1, 2) while the yellow ones are
translated by the mean of the Noise component. The latter perfectly match with location of the peaks in
the histogram.

3.1.3 Proposed forensic approach

The main idea of the proposed forensic approach is to estimate the filter operator an image has been
gone through. We note that linear filtering is a very powerful tool employed for image enhancement.
As a first attempt in this forensic case study, we assume the quantization applied to the image during
compression to be known a priori. Future work will release this assumption. The main idea is to
model the probability distributions of the DCT coefficients of an image being filtered with one of
the linear filters present in a predefined dictionary.
To build a generalized model associated with each filter in the dictionary, we proceed as follows:

• We collect the (1, 2), (2, 1) and (2, 2) DCT frequency coefficients from a random half of the 1338
images present in the UCID- Uncompressed Image Database [33]. We then fit, for each fre-
quency, a Generalized Gaussian distribution, as in (3.7). This fitting is as shown in Fig. 3.1(a).

• We evaluate the distribution of the quantized coefficients, according to (3.8). In this work we
simulated a uniform scalar quantizer with step size ∆ = 10 (Fig. 3.1(b)).

• We select a set of linear filters to be part of the dictionary, among which, Moving Average,
Gaussian, Laplacian, with different settings for the window size, the variance σ2 or the scale
parameter α, as reported in Tab. 3.1.

• For each filter and AC DCT coefficient, we calculate γ in (3.5), according to (3.6).

• For each γ · k∆(·, ·) the corresponding noise component is modeled as a GGD.

• The distribution of DCT coefficients, quantized and filtered with a given kernel, will be the
sum of many GGDs, each of them centered in γ · k∆(·, ·) translated by the mean of the noise
component and with amplitude depending on the distribution of the quantized and not filtered
coefficients, i.e., (3.8).

An example of the generalized model for the average filter with window size 3 × 3 is reported in
Fig. 3.1(c).
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1. LP Average [3× 3] 3. LP Gaussian [3 × 3],
σ2= 0.5

9. LP Laplacian, σ2=
0.2

2. LP Average [5× 5] 5. LP Gaussian [3 × 3],
σ2= 0.5

10. LP Laplacian, σ2=
0.7

4. LP Gaussian [3 × 3],
σ2= 1

7. HP Laplacian, σ2= 0.2 11. HP Average [3× 3]

6. LP Gaussian [5 × 5],
σ2= 1

8. HP Laplacian, σ2= 0.7 12. HP Average [5× 5]

Table 3.1: Filters selected to be part of the dictionary-based filter database, grouped according to
the similarity of their frequency response.

To verify the distinguishability among the derived models for the considered filters, we calculate the
χ2 distance, as defined in (3.4). Following [32], we combine the independently calculated comparisons
for each analyzed frequency coefficient by summing their values, according to Minkowski norm:

χ2
tot =

∑
r

(χ2
r(P,Q))p

where χ2
r is the distance, as in (3.4), between distributions P and Q calculated for the r-th frequency

coefficient and p has been empirically shown to be optimal if set equal to 1. As a result, a good
distinguishability has been observed, even if very low χ2 values may mislead the correct classification
of the filter, as in the case of χ2 among filters (1)-(2)-(4)-(6). This is due to the similarity of the
frequency response of those filters for the analyzed DCT coefficients, and consequently, of their
corresponding models. This issue is not specific of the presented framework, but a general constraint.
Tab. 3.1 shows groups based on the similarity of the frequency response of the filters selected to be
part of the dictionary.
Given the models for all the distributions corresponding to a specific filter, the performance of
the proposed algorithm is verified in terms of percentage of correct classification over the image
database. To each image in the database, not previously used to build the models, we apply different
compressions with quality factors QF ∈ {40, 50, 60, 70, 80, 90} and post-process them with each of
the filter kernels present in the dictionary. We then compare the obtained DCT histogram, for each of
the selected frequency, with all the corresponding DCT coefficient pdfs derived in the steps described
above. As a preliminary study we selected some frequency coefficients to be a representative set
of low, medium and high frequencies. As a future work, we plan to further explore the effect of
different frequency coefficients.
The estimated applied filter is that providing the minimum χ2 distance. Correct classification results
are reported in Tab. 3.2. Accuracy is reported for each of the 12 filters in the dictionary, when a
given quality factor QF is applied. For each compression, a set of frequency coefficients is specified,
indicating the best combination of the considered coefficients which better help identifying the
applied filter in terms of the highest accuracy. Finally, the average accuracies for each quality factor
are reported. These results are very promising and show the efficacy of the proposed technique.
Intuitively, lower frequencies will be more significant when dealing with low-pass filters, while higher
frequencies will be needed to correctly identify high-pass filters. Based on this idea, we performed
classification by building two separated filters database, composed by low-pass and high-pass filters,
respectively. Results are reported in Tabs. 3.3-3.4, where an improved accuracy for each set of filters
is proven.
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QF 40 [%] 50 [%] 60 [%] 70 [%] 80 [%] 90 [%]
H
HHH

HH
Filter

Coeffs (1,2), (2,1)
(6,3)

(1,2), (2,1)
(6,4), (6,1)

(1,2), (2,1)
(6,4), (6,1)

(1,2), (2,1)
(5,4),(6,4),(6,1)

(2,1) , (6,4)
(6,1)

(1,2), (5,4)
(6,3),(6,4),(6,1)

1 81.8 71.7 82.8 68.2 71.7 82.4

2 96.3 98.1 99.1 92.8 92.4 94.9

3 73.6 91.9 86.7 91.5 89.8 82.5

4 82.2 59.2 70.4 66.5 68.3 77.1

5 73.5 92.1 86.7 91.5 89.8 82.7

6 93.6 85.1 93.4 79.8 80.7 84.6

7 97.6 96.7 94.8 83.0 64.0 34.8

8 93.9 93.8 94.0 82.2 63.8 52.8

9 98.9 98.8 99.0 98.8 99.2 95.5

10 98.9 98.7 99.0 98.4 99.1 93.4

11 68.0 68.5 61.4 58.9 71.2 68.8

12 98.4 96.6 94.17 92.4 88.3 77.9

Mean 88.05 87.6 88.5 83.7 81.5 77.3

Tab. 3.2: Percentages of correct classification when each filter is applied to each image in the
database, compressed with different quality factors QF .

3.1.4 Conclusion

We have presented a mathematical model to characterize the DCT coefficients distributions of a
full-frame linearly-filtered JPEG image. We explicitly express the theoretical relationship between
the DCT coefficients before and after filtering and as a first result we show that, in the considered
scenario, AC DCT coefficients for different frequencies cannot be any longer considered independent,
nor those for the same frequency be i.i.d. By considering the inter- and intra-block redundancy of the
quantized DCT coefficients, we have accurately analyzed the effect of the considered processing. The
derived theoretical model allows building a dictionary-based database of theoretical distributions of
quantized images being filtered with a given kernel. We then exploit such dictionary for estimating
the filter given the quantization, by using the χ2 histogram distance as target function. The presented
framework represents a first attempt to analyze the effects of full-frame linear operations on block-
based compressed images. Future work will be devoted to enlarge the dictionary for the employed
filter kernels and to eliminate the assumption on the knowledge of the quantization, so that eventually
this framework may be regarded as a forensically helpful means to jointly disclose the applied
compression factors and the filter kernel. Moreover, we plan to develop tools enabling to decide if
the considered filter is low-pass or high-pass.
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QF 40 [%] 50 [%] 60 [%] 70 [%] 80 [%] 90 [%]

H
HHH

HH
Filter

Coeffs (1,2), (2,1)
(2,2) (3,7)

(1,2),(2,2),(5,4)
(6,4), (6,1)

(1,2), (2,2)
(2,8)

(1,2) , (5,4)
(6,4),(6,1)

(2,1) , (5,4)
(6,4) , (6,1)

(6,3) , (6,4)
(6,1)

1 90.3 82.9 91.8 78.8 80.0 93.4

2 98.8 98.6 98.95 99.1 98.2 86.1

3 95.2 88.9 94.8 94.9 90.1 91.0

4 80.4 69.5 85.8 73.8 77.6 87.0

5 65.2 88.9 94.8 95.1 90.3 91.0

6 95.4 90.6 96.4 84.75 85.8 91.9

9 99.6 98.9 99.9 97.9 99.1 92.4

10 99.4 98.5 99.7 96.6 97.9 88.5

Mean 94.3 89.7 95.3 90.1 89.8 90.2

Tab. 3.3: Percentages of correct classification when only low pass filters are considered.

QF 40 [%] 50 [%] 60 [%] 70 [%] 80 [%] 90 [%]

HH
HHHH

Filter
Coeffs (8,1),(6,1)

(1,8)
(8,1),(6,1)

(2,8)
(8,1), (6,2)

(2,8)
(2,1) , (8,2), (7,1)
(6,1),(6,2) , (2,8)

(8,1) , (7,2)
(3,8)

(1,2),(8,1),(8,2)
(7,2),(6,1),(3,8)

7 97.6 97.3 98.1 99.3 97.6 98.4

8 96.4 96.3 96.9 98.8 96.7 97.5

11 99.7 98.9 99.3 98.6 99.9 98.5

12 100 99.9 100 99.8 98.7 96.9

Mean 98.4 98.1 98.5 99.2 98.2 97.8

Tab. 3.4: Percentages of correct classification when only high pass filters are considered.

3.2 Interpolation estimation

The problem of resampling factor estimation for tampering detection is addressed following the
maximum likelihood criterion in this section. By relying on the rounding operation applied af-
ter resampling, an approximation of the likelihood function of the quantized resampled signal is
obtained. From the underlying statistical model, the maximum likelihood estimate is derived for
one-dimensional signals and a piecewise linear interpolation. The performance of the obtained esti-
mator is evaluated, showing that it outperforms state-of-the-art methods.

3.2.1 Introduction

A well-known problem in this research area is the detection of resampling traces as a means to
unveil the application of a geometric transformation and the estimation of the resampling factor for
specifying the parameters of the applied transformation.
Seminal works addressing this topic [41, 42, 43], were focused on the detection of the particular
correlation introduced between neighboring pixels by the resampling operation inherently present
when a spatial transformation (e.g., scaling or rotation) has been performed.
Since the resampling operation can be modeled as a time-varying filtering that induces periodic
correlations, links between this problem and the cyclostationarity theory have been established
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in [44] and [45], providing a theoretical framework for the estimation of the parameters of the
transformation. Within this framework, two different approaches have been proposed for finding the
optimum prefilter that might be applied to a resampled image for achieving the best performance
in the estimation of the resampling factor [46, 47].
At some point, all the mentioned approaches perform an analysis in the frequency domain for the
detection or estimation of this periodic behavior, by looking at spectral peaks corresponding to
underlying periodicities. Nevertheless, the frequency analysis presents some drawbacks: 1) a con-
siderably large number of samples is needed to obtain reliable results; 2) the presence of periodic
patterns in the content of the image usually misleads the detector and the estimator; and 3) the win-
dowing effect impairs the performance of the mentioned methods when slight spatial transformations
are employed (i.e., with a resampling factor near 1).
With these shortcomings in mind, in this section we will address the estimation of the resampling
factor following the Maximum Likelihood (ML) criterion. The approximation of the likelihood
function of the resampled signal will rely on the rounding operation applied after the resampling.
Therefore, by correctly modeling the relationship between the distribution of the quantization noise
and the quantized resampled signal, an optimum estimator of the resampling factor will be provided.
The proposed approach will only consider one-dimensional (1-D) signals, but the idea can easily be
extended to the two-dimensional case, to be applied to images. The three discussed drawbacks of
the previous methods will be sorted out with the proposed estimator.

3.2.2 Preliminaries and problem formulation

A digital image forgery can be done in many different ways, but it usually involves cropping some
region from a particular image and pasting it into a different one. The adjustment of this new content
to a specific scene is commonly carried out by applying geometrical transformations (e.g., rotation
or scaling) that inherently need to perform a resampling operation. Since the tampering should
not introduce visible distortions, only slight transformations will be applied, thus requiring that the
resampling estimator should achieve good performance for resampling factors near 1. This work
just studies the case where the resampling factor is larger than 1. Of course, the use of resampling
factors smaller than 1 are commonly used; however, the analysis is formally quite different, so we
leave the study of such case for a future work.
The problem of resampling estimation is addressed for 1-D signals because the derivation of the
Maximum Likelihood Estimate (MLE) of the resampling factor is more tractable and affordable
than considering directly the two-dimensional (2-D) case. However, we will see in Section 3.2.3
that the obtained method following the ML criterion can be easily extended to the 2-D case. The
same holds for the considered interpolation filter. The use of a piecewise linear interpolation scheme
is a clear limitation of our work, which should be considered in this regard as a first attempt to
introduce MLE principles in the resampling estimation problem. We notice that the methodology
here introduced can be extended to include more general filters.

3.2.2.1 Notation

A time-dependent 1-D signal will be represented as x(n). Random variables will be denoted by
capital letters (e.g., X) and their realizations by lowercase letters (e.g., x). Random vectors will be
represented with bold capital letters (e.g., X), their outcomes with lowercase letters (e.g., x) and
each ith component will be denoted as xi. The length of a vector x will be expressed as Lx ∈ N+ and,
for convenience, the index i to identify each component of the vector will satisfy i ∈ {0, . . . , Lx− 1}.
A vector of length N starting from the nth component, will be denoted by xn = (xn, . . . , xn+N−1)T .
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Floor and ceiling functions will be represented by b·c and d·e, respectively. To denote the set of all
integer numbers multiple of a given integer value n, we will use the notation nZ. For a compact
notation, we will use mod(a, b) to denote the modulo operation: a mod b.

3.2.2.2 Problem formulation

In the following, we will mathematically describe all the steps involved in the change of the sampling
rate of a 1-D signal x(n), by a resampling factor denoted by ξ. This description will allow us to
set out an approach based on the ML criterion in Section 3.2.3, for the estimation of the applied
resampling factor.
Let us start by defining the resampling factor ξ as the ratio between the applied upsampling factor
L and downsampling factor M , i.e., ξ , L

M with L ∈ N+ and M ∈ N+. To ensure a unique
representation of ξ, we will consider that L and M are coprime, but note that this is not a limitation.
As it was stated above, the possible range of values for the resampling factor will be ξ > 1. For
this range of resampling factors, the general expression for a resampled signal y(n) is given by the
following relation with the original signal x(n):

y(n) =
∑
k

x(k)h

(
n
M

L
− k
)
,

where h(t) with t ∈ R represents the interpolation filter. As it was previously indicated, the inter-
polation filter used during the resampling process will be assumed linear, with the following impulse
response

h(t) =

{
1− |t|, if |t| ≤ 1

0, otherwise
.

Therefore, considering this interpolation filter, each component of the resampled vector can be
computed as the linear combination of at most two samples from the original signal,

y(n) =

 x
(⌊
nML

⌋) (
1−mod

(
nML , 1

))
+ x

(⌊
nML

⌋
+ 1
)

mod
(
nML , 1

)
, if n /∈ LZ

x
(
nML

)
, if n ∈ LZ

.

Regarding the set of values that the original signal can take, we will consider that all the samples
x(n) have already been quantized by a uniform scalar quantizer with step size ∆, in order to fit
into a finite precision representation. Even though the interpolated values y(n) will be generally
represented with more bits, a requantization to the original precision is often done prior to saving the
resulting signal. This quantized version of the resampled signal, denoted by z(n), will be expressed
as

z(n) =

 Q∆

(
x
(⌊
nML

⌋) (
1−mod

(
nML , 1

))
+ x

(⌊
nML

⌋
+ 1
)

mod
(
nML , 1

))
, if n /∈ LZ

x
(
nML

)
, if n ∈ LZ

, (3.10)

where Q∆(·) represents a uniform scalar quantization with step size ∆ (i.e., the same one used for
the original signal).
From the second condition in (3.10), it is evident that some of the original samples are “visible” in
the quantized resampled version. On the other hand, the remaining values of the resampled signal
are the combination of “visible” and “non-visible” samples from the original signal that are later
quantized. This fact will help to define the likelihood function of the quantized resampled signal.
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3.2.3 ML approach to resampling estimation

For the definition of the MLE of ξ, the original signal will be represented by the vector x with Lx
samples and the corresponding quantized resampled signal by the vector z with Lz samples. For
convenience, we will assume that the length of the original signal is Lx = N + 1 with N a multiple
of M , and so, the corresponding length of the resampled signal will be Lz = ξN + 1. We will find
it convenient to model vectors x and z as outcomes of random vectors X and Z, respectively.
Based on the above analysis, the estimation of the resampling factor ξ̂ following the ML criterion
relies on finding the value of ξ that makes the observed values of the quantized resampled vector z
most likely. Nevertheless, given a vector of observations, their components zi could be misaligned
with the periodic structure of the resampled signal in (3.10). Hence, a parameter φ must be consid-
ered to shift the components of the vector, in order to align the periodic structure of zi with z(n).
The possible values of φ lie in the range 0 ≤ φ ≤ L− 1. Therefore, the MLE of ξ becomes

ξ̂ = arg max
ξ>1

max
0≤φ≤L−1

fZ|Ξ,Φ(z|ξ, φ).

Note that we are not considering a set of possible parameters for the interpolation filter because
in the case of a piecewise linear interpolation, once we fix the resampling factor, then the filter
is automatically determined (cf. Eq. (3.10)). On the other hand, given that the shift φ is not a
determining factor for the derivation of the target function, for the sake of simplicity, we will assume
that the vector of observations is correctly aligned and, thus, the MLE can be written as

ξ̂ = arg max
ξ>1

fZ|Ξ(z|ξ).

For the calculation of that joint probability density function (pdf) we will exploit the fact that some
samples of the interpolated signal exactly match the original (cf. Eq. (3.10)), and also the linear
relation established between the remaining samples.

3.2.3.1 Derivation of fZ|Ξ(z|ξ)
Along the derivation of the joint pdf fZ|Ξ(z|ξ), for the sake of notational simplicity, we will refer
to this one as fZ(z), considering implicitly that we are assuming a particular resampling factor ξ.
From the dependence between the quantized resampled signal and the original one, the joint pdf
can be written in a general way as

fZ(z) =

∫
RN+1

fZ|X(z|x)fX(x)dx.

We assume that no a priori knowledge on the distribution of the input signal is available. This is
equivalent to considering that fX(x) is uniform and, consequently, the joint pdf can be approximated
by the following relation

fZ(z) ≈
∫
RN+1

fZ|X(z|x)dx.

Equation (3.10), indicates that every L samples of the observed vector z, we have a visible sample
from the original signal. This implies that the random variable Zi, given Xk, is deterministic
whenever i ∈ LZ and k ∈MZ. For this reason, the previous joint pdf can be obtained by processing
(Lz − 1)/L = N/M distinct and disjoint blocks, i.e.,

fZ(z) ≈
N/M−1∏
j=0

∫
RM

fZLj |XMj
(zLj |xMj)dxMj , (3.11)
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Figure 3.5: Illustrative example, showing the last two possible cases for zi. Pdfs obtained are shown
graphically. Note that ∆ = 1.

where ZLj and XMj (and also their corresponding outcomes) are vectors of size L and M , respec-
tively.
The calculation of the contribution of each block of L samples from the vector of observations zLj
in (3.11), will depend on its relation with the corresponding M samples of the vector of the original
signal, i.e., xMj . This relation is determined by the assumed resampling factor ξ.
Therefore, considering an arbitrary sample zi that will be linearly related with at most two original
samples xk and xk+1, with k ,

⌊
iML
⌋

(cf. Eq. (3.10)), three cases are possible:

• zi is a visible sample, thus deterministic. Consequently

fZi|Xk(zi|xk) = δ(zi − xk),

where δ(·) represents the Dirac delta.

• zi is the only sample between two original ones as it is shown in Fig. 3.5(a). In this case, if the
variance of the original signal is large enough with respect to the variance of the quantization
noise, then the quantization error can be considered uniform (we will call this the “fine-
quantization assumption”), and the obtained pdf is

fZi|Xk,Xk+1
(zi|xk, xk+1) = Π

(
aixk + bixk+1 − zi

∆

)
,

where Π(t) denotes a rectangular pulse that is 1 if t ∈
[
− 1

2 ,
1
2

]
and 0 otherwise. In this case,

for the sake of clarity, we have used ai , (1 − mod(iML , 1)) and bi , mod(iML , 1), obtained
from (3.10). A graphical representation, depicted in Fig. 3.5(b), shows how the rectangular
pdf is derived from zi.
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• zi is one of several resampled values between two original samples, as it is shown in Fig. 3.5(c).
As before, the following pdf is valid if the fine-quantization assumption holds, hence

fZi|Xk,Xk+1
(zi|xk, xk+1)

=
∏
m

Π

(
amxk + bmxk+1 − zm

∆

)
,

where m will increase from i to the number of resampled values located between the two
original samples. Fig. 3.5(d) shows the resulting pdf for the considered example.

Each time we obtain the pdf for a particular zi (or a group of them), the corresponding integral in
(3.11) must be evaluated with respect to the corresponding original sample xk. Intuitively, we can
observe that the calculation of (3.11) will finally be the convolution of several rectangular functions,
leading to a feasible and easy implementation. Note that those uniform distributions are obtained
only if the fine-quantization assumption holds. Given the importance of this assumption, its effect
on the performance of the MLE will be analyzed in Section 3.2.4.

3.2.3.2 Method description

For a better understanding on how the obtained MLE can be easily implemented, we will exemplify
the calculation of the target function fZ|Ξ(z|ξ) when a particular resampling factor ξt is tested. In
this illustrative example we will consider a vector of observations z (already aligned), corresponding
to a signal that has been resampled by a factor ξ = 5

3 . In Fig. 3.6(a), an example of this vector of
observations is shown, along with the corresponding vector of original samples x. In the mentioned
figure, solid lines are used for representing the resampled values (consequently, also the original
samples that are visible), while dashed lines are used for representing the non-visible samples of the
original signal.
Since the calculation of the target function fZ|Ξ(z|ξ) can be split by processing blocks of L samples of
the observed vector, in this example, we will show how to process a single block. For the calculation
of the remaining blocks, the same process should be repeated. Assuming that the resampling factor
under test is ξt = 5

3 , these are the followed steps:

1. The first sample z0 is a visible one, then we know that z0 = x0 and, thus, fZ0|X0,Ξ(z0|x0, ξt) =
δ(z0 − x0).

2. The second sample z1 is located between two original samples, i.e., the visible x0 and the
non-visible x1. Hence, we have fZ1|X0,X1,Ξ(z0|x0, x1, ξt) = Π

(
a1x0+b1x1−z1

∆

)
.

Fig. 3.6(b) shows with a red line the linear relation between the interpolated value and the
original ones y1 = a1x0 + b1x1, with the value of x0 fixed, i.e., from the previous step x0 = z0.
From the value of z1 we obtain the feasible interval of x1 (represented with dashed black
lines). Finally, the resulting pdf after the convolution of the rectangular function with the
delta obtained in Step 1 is plotted in green.

3. The third and fourth samples, z2 and z3, are located between the two original samples x1 and
x2. In this case, we have seen that fZ2|X1,X2,Ξ(z2|x1, x2, ξt) = Π

(
a2x1+b2x2−z2

∆

)
Π
(
a2x1+b2x2−z3

∆

)
.

Fig. 3.6(c) shows in this case the corresponding two linear relations for y2 = a2x1 + b2x2 and
y3 = a3x1 + b3x2. Be aware that in this case x1 can take any value in the range obtained in
Step 2, and that is the reason why the dashed red lines are plotted. From the product of the
two rectangular pdfs, we obtain the feasible interval for x2 (whose pdf is represented in cyan).



CHAPTER 3. OPERATOR CHAIN MODELING 47

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

 

 
Original signal
Resampled signal

x
0

z
0

z
1

x
1

z
2

z
3

x
2

z
4

z
5

x
3

(a) Original and resampled signals

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

Δ

z
1

x
1

(b) Resulting pdf in Step 2

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

Δ

Δ

x
2

z
2 z

3

(c) Feasible interval for x2

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

x
2

(d) Resulting pdf in Step 3

−2 0 2 4 6

0

0.5

1

1.5

2

2.5

3

x
3

(e) Resulting pdf in Step 4

Figure 3.6: Graphical representation of the method description. Note that ∆ = 1.

At this point, it is important to note that when the resampling factor under test does not
match the true one, the previous product of rectangular pdfs could lead to an empty feasible
set for x2. If this happened, then we would automatically infer the infeasibility of the tested
resampling factor, so the estimation algorithm would move to the next resampling factor in
the candidate set.

If the factor cannot be discarded, then we must compute the convolution of the uniform pdf
here obtained with the one resulting from Step 2. The result is plotted in green in Fig. 3.6(d).

4. The fifth sample z4 is processed in the same way as in Step 2, but considering that now
the linear relation y4 = a4x2 + b4x3 must be evaluated with the set of possible values of x2.
Proceeding this way, we obtain the feasible interval for x3 and the corresponding pdf. Both
are shown in Fig. 3.6(e).

5. At this point, we have finished processing the L samples in the block and we have the resulting
pdf as a function of x3. Since the next sample is visible, i.e., z5 = x3, to determine the
contribution of these L samples to the target function fZ|Ξ(z|ξt), we evaluate the resulting
pdf taking into account the actual value of z5.
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As before, if the value of z5 falls outside the possible range of x3, then the resampling factor
under test is discarded.

Following this procedure, the maximization of the target function fZ|Ξ(z|ξ) is performed over the

set of candidate resampling factors ξ > 1 that have not been discarded, achieving the MLE ξ̂. After
this qualitative explanation, it is clear that the 2-D extension of this method is straightforward.

3.2.4 Experimental results

The experimental validation of the obtained MLE is divided in two parts. In the first one, the
performance of the estimator is evaluated by using synthetic signals and its behavior in terms of the
fine-quantization assumption is analyzed. In the second part, natural 1-D signals from the audio
database in [48] (which contains different music styles) are used to test the estimator in a more
realistic scenario. To confirm that the described method is able to sort out the drawbacks pointed
out in the Introduction, comparative results with a 1-D version of the resampling detector proposed
by Popescu and Farid in [41] are also provided.

3.2.4.1 Performance analysis with synthetic signals

In this case, we consider as synthetic signal a first-order autoregressive (AR) process, parameterized
by a single correlation coefficient ρ. The AR(1) model is commonly used for characterizing the
correlation between samples of natural signals, where the value of ρ adjusts the model. Typically,
close to 1 values are considered for modeling natural signals, as it is done with images [49]; hence,
ρ = 0.95 will be used in the following simulations. The AR(1) process has the following form

u(n) = w(n) + ρu(n− 1),

where w(n) is a Gaussian process with zero mean and variance σ2
W . Note that in this case, the

process w(n) is actually the innovation from one sample to another of the AR(1) process, so results
will be drawn as a function of σ2

W to evaluate the validity of the fine-quantization assumption.
To reproduce the conditions of the considered model, the original signal x(n) is obtained by quantiz-
ing the generated AR(1) process, i.e., x(n) = Q∆ (u(n)) with ∆ = 1. Regarding the set of considered
resampling factors, for the sake of simplicity, we use a finite discrete set, obtained by sampling the
interval (1, 5] with step size 0.05 (from 1.05 to 2) and 0.5 (from 2 to 5). Be aware that we use the
same set for the true resampling factor ξ and the values tested by the ML estimator, ξt. We consider
that the estimation of the resampling factor is correct if ξ̂ = ξ, i.e., if the estimated value is indeed
the one used for resampling the original signal, up to the precision used when griding ξ and ξt. For
all the experiments, the length of the vector of observations is Lz = 400.
Fig. 3.7 shows the percentage of correct estimation for some of the resampling factors in the set as
a function of σ2

W . From this plot, we can observe that the performance of the estimator strongly
depends on the mentioned variance of innovation, as well as on the true resampling factor used.
For instance, by resampling the AR process with ξ = 5, a very small value for the variance of
innovation (σ2

W = 0.5), is required to correctly estimate the resampling factor for all the experiments;
nevertheless, for ξ = 2, almost a value of σ2

W = 50 will be necessary for getting the same estimation
performance. In general, and in accordance with the assumptions backing the analysis introduced
in the previous section, the higher σ2

W , the better the estimation will be.
Although ML-based estimators are frequently thought to be computationally demanding, if the fine-
quantization assumption holds, then the estimation proposed in the previous section is very cheap
and only a few samples are required for correctly estimating the actual resampling factor. Remember
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Figure 3.7: Correct resampling factor estimation percentage for different resampling factors as a
function of σ2

W . ρ = 0.95, and 500 Monte Carlo realizations are considered.
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resampling factor is ξ = 3
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that when a resampling factor under test does not match the true one, then it can be discarded
when an empty set is obtained for a non-visible sample or when a visible sample falls outside the
obtained interval (cf. Steps 3 and 5 in Section 3.2.3.2).
This is illustrated at Fig. 3.8, where the number of samples required for discarding the candidate
resampling factor is shown for different values of σ2

W , when ξ = 3
2 . As it can be checked in that

figure, whenever the ξt = ξ, the tested resampling factor will not be discarded, even when the full
vector of observations is considered, as it should be expected. It is also important to point out that
the larger the value of σ2

W , i.e., the more accurate the fine-quantization assumption is, the smaller
number of samples is required for discarding a wrong ξt.

3.2.4.2 Performance analysis with real audio signals

For the evaluation of the estimator in a real scenario, we consider the “Music Genres” audio database
[48], composed of 1000 uncompressed audio files with 10 different music styles (for instance some



CHAPTER 3. OPERATOR CHAIN MODELING 50

1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

70

80

90

100

ξ (true resampling factor)

C
or

re
ct

 r
es

am
pl

in
g 

fa
ct

or
 e

st
im

at
io

n 
[%

]

 

 

L
z
=64

L
z
=128

L
z
=256

L
z
=512

Figure 3.9: Comparison of the correct estimation percentage of the proposed MLE versus the method
proposed in [41]. Solid lines represent the obtained results with the MLE, while dashed lines are
used for the method [41].

of them are blues, country, jazz, pop or rock). The performance of the proposed estimator will be
checked by fixing the number of available samples, and looking for inconsistencies in the resampled
signal with respect to the tested resampling factor. For comparison, the same tests will be performed
with a state-of-the-art resampling detector, i.e., the one proposed by Popescu and Farid in [41].1

The set of resampling factors that we will consider in this case will be in the interval (1, 2] (sampled
with a step size of 0.05). Since we are interested in comparing the performance with different
sizes for the vector of observations, we perform the experiments with the following set of values
Lz ∈ {64, 128, 256, 512}.
The results obtained with both methods are shown in Fig. 3.9. As we can observe, the method
proposed by Popescu and Farid is highly dependent on the number of available samples, whereas
our proposed MLE is essentially independent of this parameter. In the same way, the performance
achieved by their method is poor when the applied resampling factor is close to 1, which is neither
an issue for our estimator. These two limitations of Popescu and Farid’s method come from the
frequency analysis performed (once the pmap has been computed) for the detection of the resampling
factor, as we pointed out in the Introduction. From these results, it is clear that the MLE method
becomes very useful for estimating the resampling factor when a small number of samples are
available, thus leading to a very practical forensic tool.
Although the performance of the MLE is very good, if we consider a noisy vector of observations
then the method of Popescu and Farid is expected to be more robust than the proposed MLE. The
reason is that in their model for the EM algorithm, they assume Gaussian noise, and in our case,
we are only assuming the presence of uniformly distributed noise, due to the quantization. We note,
however, that it is possible to extend our model to the case of Gaussian noise. Such extension is left
for future research.

1The neighborhood of the predictor is set to N = 3, yielding a window of length 7.
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3.2.5 Conclusions

The problem of resampling factor estimation following the ML criterion has been investigated in this
section for the 1-D case. The derived MLE from this analysis has been tested with audio signals
showing very good performance. The most distinctive characteristic of the proposed approach is
that only a few number of samples of the resampled signal is needed to correctly estimate the used
resampling factor.
Since the scenario where the proposed resampling factor estimator can be employed is quite limited,
future work will focus on improving this aspect. As a first step, the 2-D extension of the obtained
method will be explicitly derived. Introduction of new parameters in the model such as general inter-
polation filters, noisy observations or resampling factors smaller than one will be studied. Possible
links between this work and set membership algorithms will also be considered.

3.3 Transform coder identification based on quantization foot-
prints and lattice theory

Transform coding is routinely used for lossy compression of discrete sources with memory. The
input signal is divided into N -dimensional vectors, which are transformed by means of a linear
mapping. Then, transform coefficients are quantized and entropy coded. In this section we consider
the problem of identifying the transform matrix as well as the quantization step sizes. We study the
challenging case in which the only available information is a set of P transform decoded vectors. We
formulate the problem in terms of finding the lattice with the largest determinant that contains all
observed vectors. We propose an algorithm that is able to find the optimal solution and we formally
study its convergence properties. Our analysis shows that it is possible to identify successfully both
the transform and the quantization step sizes when P ≥ N + δ where δ is a small integer, and the
probability of failure decreases exponentially to zero as P −N increases.

3.3.1 Introduction

Due to its centrality to any type of multimedia data, transform coding theory is now extensively
used in a new range of applications that rely on the possibility of reverse-engineering complex chains
of operators starting from the available output signals. Indeed, the lifespan of a multimedia signal is
virtually unbounded. This is due to the ability of creating copies and the availability of inexpensive
storage options. However, signals seldom remain identical to their original version. As they pass
through processing chains, some operators, including transform coding, are bound to leave subtle
characteristic footprints on the signals, which can be identified in order to uncover their processing
history. This insight might be extremely useful in a wide range of scenarios in the field of multimedia
signal processing at large including, e.g.,: i) forensics, in order to address tasks such as source device
identification [50] or tampering detection [51][35]; ii) quality assessment, to enable no-reference
methods that rely solely on the received signals [52][53]; iii) digital restoration, which requires prior
knowledge about the operations that affected a digital signal [54].
In this context, several works have exploited the footprints left by transform coding. In [55], a method
was proposed to infer the implementation-dependent quantization matrix template used in a JPEG-
compressed image. Double JPEG compression introduces characteristic peaks in the histogram of
DCT coefficients, which can be detected and used, e.g, for tampering localization [56][35]. More
recently, similar techniques were applied to video signals for the cases of MPEG-2 [57][58], MPEG-
4 [59][60] and H.264/AVC [61].
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All the aforementioned works require prior knowledge of the type of standard being considered. This
implies that the specific transform in use is assumed to be known, whereas the quantization step
sizes need to be estimated. In practice, it might be useful to be able to infer which transform was
used in order to understand, for example, whether an image was compressed using the DCT-based
JPEG or the wavelet-based JPEG 2000 and, in the latter case, which wavelet transform was used.
Similarly, it would be good to be able to infer if a video sequence was compressed using MPEG-2,
MPEG-4 or H.264/AVC. Some efforts in this direction can be found in [62].
Most of the above methods focus only on a specific type of multimedia signal (e.g., only images or
only videos) and are to some extent heuristic. It is therefore natural to try and develop a universal
theory of transform coder identification that is independent of the specific application at hand. To
this end, here we consider a general model of transform coding that can be tailored to describe a
large variety of practical implementations that are found in lossy coding systems, including those
adopted in multimedia communication. Specifically, a 1-dimensional input signal is encoded by
partitioning it into non-overlapping N -dimensional vectors, which are then transformed by means
of a linear mapping. Then, transform coefficients are quantized and entropy coded. At the decoder,
quantization symbols are entropy decoded and mapped to reconstruction levels. Then, the inverse
transform is applied to obtain an approximation of the signal in its original domain.
Given the output produced by a specific transform coding chain, we investigate the problem of iden-
tifying its parameters. To this end, we assume both the size and the alignment of the transform to
be known, as they can be estimated with methods available in the literature [58][55]. We propose an
algorithm that receives as input a set of P transform decoded vectors embedded in a N -dimensional
vector space and produces as output an estimation of the transform adopted, as well as the quan-
tization step sizes, whenever these can be unambiguously determined. We leverage the intrinsic
discrete nature of the problem, by observing the fact that these vectors are bound to belong to a
N -dimensional lattice. Hence, the problem is formulated in terms of finding a lattice that contains
all observed vectors. We propose an algorithm that is able to solve the problem and we formally
study its convergence properties. Our analysis shows that it is possible to successfully identify both
the transform and the quantization step sizes with high probability when P > N . In the experiments
we found that an excess of approximately 6-7 observed vectors beyond the dimension N of the space
is generally sufficient to ensure successful convergence. In addition, the complexity of the algorithm
is shown to grow linearly with N .
It is important to mention that the method used to solve the problem addressed in this work
is related to Euclid’s algorithm, which is used to find the greatest common divisor (GCD) in a
set of integers. Indeed, when N = 1 and P = 2, the proposed method coincides with Euclid’s
algorithm. However, in this case the problem reduces to estimating the quantization step size, as
the transform is trivially defined. Note that, lattice theory has been widely used for source and
channel coding (e.g., [63, 64, 65]). However, to the best of the authors’ knowledge, this theory has
not been employed to address the problem of identifying a linear mapping using the footprint left by
quantization. Only [25] uses similar principles but their goal is to investigate the color compression
history, i.e., the colorspace used in JPEG compression. Therefore, the solution proposed is tailored
to work in a 3-dimensional vector space, thus avoiding the challenges that arise in higher dimensional
spaces.
Also, it is important not to confuse the problem addressed here with the classical problem of lattice
reduction [65]. In the latter case, given a basis for a lattice, one seeks an equivalent basis matrix
with favorable properties. Usually, such a basis consists of vectors that are short and with improved
orthogonality. There are several definitions of lattice reduction with corresponding reduction criteria,
each meeting a different tradeoff between quality of the reduced basis and the computational effort
required for finding it. The most popular one is the Lenstra-Lenstra-Lovasz (LLL) reduction [66],
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which can be interpreted as an extension of the Gauss reduction to lattices of rank greater than 2.
The rest of this section is organized as follows. Section 3.3.2 introduces the necessary notation
and formulates the transform identification problem and Section 3.3.3 provides the background on
lattice theory. The proposed method is described in Section 3.3.4. Then, a theoretical analysis of the
convergence properties is presented in Section 3.3.5. The performance of the transform identification
algorithm is evaluated empirically in Section 3.3.6. Finally, Section 3.3.7 indicates the open issues
and stimulating further investigations.

3.3.2 Problem statement

The symbols x, x and X denote, respectively, a scalar, a column vector and a matrix. A M × N
matrix X can be written either in terms of its columns or rows. Specifically,

X =
[

x1 x2 . . . xN
]

=


x̄T1
x̄T2
· · ·
x̄TM

 . (3.12)

Let x denote a N -dimensional vector and W a transform matrix, whose rows represent the transform
basis functions.
Transform coding is performed by applying scalar quantization to the transform coefficients y = Wx.
Let Qi(·) denote the quantizer associated to the i-th transform coefficient. We assume that Qi(·) is
a scalar uniform quantizer with step size ∆i, i = 1, . . . , N . Therefore, the reconstructed quantized
coefficients can be written as ỹ = [ỹ1, ỹ2, . . . , ỹN ]T , with

ỹi = Qi(yi) = ∆i · round

[
yi
∆i

]
, i = 1, . . . , N. (3.13)

The reconstructed block in the original domain is given by x̃ = W−1ỹ.
Let {x̃1, . . . , x̃P } denote a set of P observed N -dimensional vectors, which are the output of a
transform coder. Due to quantization, the unobserved vectors representing quantized transform
coefficients {ỹ1, . . . , ỹP } are constrained to belong to a lattice Ly described by the following basis:

By =


∆1 0 . . . 0
0 ∆2 . . . 0
...

...
. . .

...
0 0 . . . ∆N

 (3.14)

Therefore, the observed vectors {x̃1, . . . , x̃P } belong to a lattice Lx described by the basis:

Bx = [bx,1, . . . ,bx,N ] = W−1By, (3.15)

with bx,i = ∆iŵi, i = 1, . . . , N , W−1 = [ŵ1, . . . , ŵN ].
In this work we study the problem of determining Bx from a finite set of P ≥ N distinct vectors
{x̃1, . . . , x̃P }. That is, we seek to determine the parameters of a transform coder based on the
footprints left on its output. We propose an algorithm to solve this problem and we study its
convergence properties. In addition, we show that the probability of correctly determining Bx

(or, equivalently, another basis for the lattice Lx) is monotonically increasing in the number of
observations P , and rapidly approaching one when P > N .



CHAPTER 3. OPERATOR CHAIN MODELING 54

b1

b2

P(B)

(a)

b1

z

← B · �B−1z�

Pz(B)
b1

b2

(b)

b1

b2P(B)

(c)

P(B) →

P(B)

b1

b2

b2

b1

(d)

Figure 3.10: Examples of lattices. (a) The fundamental parallelotope of a lattice defined by a basis
B. (b) Parallelotope enclosing an arbitrary vector z. (c) Another (equivalent) basis for the lattice
in (a). (d) An example of a sub-lattice of the lattice L(B).

Note that when determining Bx, the proposed method does not make any assumption on the struc-
ture of the transform matrix W. In the general case, given Bx, it is not possible to uniquely
determine W and the quantization step sizes ∆i, i = 1, . . . , N . Indeed, the length of each basis
vector bx,i can be factored out as ‖bx,i‖2 = ∆i‖ŵi‖2. However, in the important case in which W
represents an orthonormal transform, the quantization step sizes ∆i, i = 1, . . . , N , and the transform
matrix W can be immediately obtained from Bx. Indeed, W−1 = WT , ŵi = w̄i, i = 1, . . . , N ,
with ‖w̄i‖2 = 1. Therefore:

∆i = ‖bx,i‖2, i = 1, . . . , N, (3.16)

w̄i = bx,i/‖bx,i‖2 i = 1, . . . , N. (3.17)

3.3.3 Background on lattice theory

In this section we provide the necessary background on lattice theory. Further details can be found,
e.g., in [67][68][65]. Let L denote a lattice of rank K embedded in RN . Let B = [b1,b2, . . . ,bK ]
denote a basis for the lattice L. That is,

L = {x|a1b1 + a2b2 + . . .+ aKbK , ai ∈ Z}. (3.18)
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In order to make the mapping between a basis and the corresponding lattice explicit, the latter can
be expressed as L(B).
Any lattice basis also describes a fundamental parallelotope according to

P(B) =

{
x|x =

K∑
i=1

θibi, 0 ≤ θi < 1

}
. (3.19)

When K = 2, 3, P(B) is, respectively, a parallelogram or a parallelepiped. As an example, Fig-
ure 3.10(a) shows the fundamental parallelotope corresponding to a lattice basis B when K = 2.
Given a point z ∈ RK , let Pz(B) denote the parallelotope enclosing z. Pz(B) is obtained by
translating P(B) so that its origin coincides with one of the lattice points. More specifically,

Pz(B) =

{
x|x = B ·

⌊
B−1z

⌋
+

K∑
i=1

θibi, 0 ≤ θi < 1

}
. (3.20)

Figure 3.10(b) illustrates Pz(B) for an arbitrary vector z.
Different bases for the same lattice lead to different fundamental parallelotopes. For example,
Figure 3.10(a) and Figure 3.10(c) depict two different bases for the same lattice, together with the
corresponding fundamental parallelotopes. However, the volume of P(B) is the same for all bases
of a given lattice. This volume equals the so-called lattice determinant, which is a lattice invariant
defined as

|L| =
√

det(BTB). (3.21)

If the lattice is full rank, i.e., K = N , the lattice determinant equals the determinant of the matrix
B, |L| = |det(B)|.
Let L denote a sub-lattice of L. That is, for any vector x ∈ L, then x ∈ L. A basis B for L can be
expressed in terms of B as

B = BU, (3.22)

where U is such that uij ∈ Z. Moreover, let det(U) = ±m, then

|L|
|L| = |det(U)| = m (3.23)

and we say that L is a sub-lattice of L of index m. For example, Figure 3.10(d) shows two lattices
L and L, such that L ⊂ L. In this case, the matrix U is equal to

U =

[
−4 −5
3 −1

]
, (3.24)

and L is a sub-lattice of index m = 19.

3.3.4 An algorithm for transform identification

In this section we propose an algorithm that is able to determine the parameters of a transform
coder from its output, i.e., a set of observed vectors {x̃1, . . . , x̃P }. This is accomplished by finding
a suitable lattice L∗ such that {x̃1, . . . , x̃P } ⊂ L∗. In Section 3.3.5.3 we will show that, with
probability approaching one, L∗ ≡ Lx, provided that P −N > 0.
The problem of determining a basis for the lattice Lx is complicated by the fact that we typically
observe a finite (and possibly small) number of vectors P embedded in a possibly large dimensional
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space. More precisely, {x̃1, . . . , x̃P } belong to a bounded lattice, in virtue of the fact that each
transform coefficient yi is quantized with a finite number of bits Ri, to one of 2Ri reconstruction
levels. Let R̄ denote the average number of bits allocated to transform coefficients. The number of
potential lattice points is equal to

N∏
i=1

2Ri = 2
∑N
i=1 Ri = 2NR̄, (3.25)

and only P of them are covered by observed vectors. Thus, we note that, given R̄, the number
of lattice points increases exponentially with the dimension N and that in most cases of practical
relevance P � 2NR̄.
Another issue arises from the fact that, for a set of vectors {x̃1, . . . , x̃P }, there are infinitely many
lattices that include all of them. Indeed, any lattice L̄ such that Lx ⊂ L̄ is compatible with the
observed set of vectors. Note that any basis of the form B = BxU

−1, with det(U) = ±m, with m
an integer greater than one defines a compatible lattice L̄. A simple example is obtained setting
U = aI, a ∈ N, a > 1.
In order to resolve this ambiguity, we seek the lattice L∗ that maximizes the lattice determinant |L|,
within this infinite set of compatible lattices. That is,

maximize
L(B)

|L(B)|
subject to {x̃1, . . . , x̃P } ⊂ L(B).

(3.26)

For example, for the set of observed points {x̃1, x̃2, x̃3} depicted in Figure 3.11(a), Figure 3.11(g)
illustrates a basis for the lattice that is the optimal solution of (3.26). In contrast, the lattice in
Figure 3.11(h) is a feasible solution of (3.26), but it is not optimal, since it is characterized by a
lower value of the lattice determinant.
The proposed method used to solve the problem above is detailed in Algorithm 1. The method
constructs an initial basis for an N -dimensional lattice (line 1). This is accomplished by considering
the vectors in O until N linearly independent vectors are found. These vectors are used as columns
of the starting estimate B(0) and to populate the initial set of visited vectors S. We denote with U
the set of vectors in O that have not been visited yet. Then, the solution of (3.26) is constructed
iteratively, by considering the remaining vectors in U one by one. At each iteration, the function
recurseTI returns a basis for a lattice that solves (3.26), in which the constraint is imposed only on
the subset of visited vectors S, that is, S ⊂ L(B). As such, the algorithm starts finding the solution
of an under-constrained problem and additional constraints are added as more vectors are visited.
Figure 3.11 shows an illustrative example when N = 2 and three vectors {x̃1, x̃2, x̃3} are observed
(Figure 3.11(b)). The initial basis (line 1) is constructed using x̃1 and x̃2, since they are linearly inde-
pendent (Figure 3.11(b)). Then, the point x̃3 is selected (line 6 and Figure 3.11(c)) and the function
recurseTI (line 9) returns a basis that solves (3.26), i.e., a basis with the largest lattice determinant
that includes all observed vectors. Figure 3.11(f) illustrates such a basis, and Figure 3.11(g) shows
an equivalent basis obtained after lattice reduction.
The core of the method is the recursive function recurseTI. When describing this function, we
keep a clear distinction between algorithm template and algorithm instance, as it is customary
in computer science. We start describing the template in Algorithm 2, which does not specify
the function entirely. Then, a concrete instance of the template is detailed in Algorithm 3. The
rationale of maintaining this distinction is motivated by the fact that the correctness of the method is
a property that descends from the template alone, as further discussed in Section 3.3.5.1. Conversely,
the rate of convergence depends on the specific algorithm instance, as explained in Section 3.3.5.2.
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Figure 3.11: An example of transform identification. A set of three observed vectors is given in (a).
Then, (b)-(h) show, step-by-step, how the solution to problem (3.26) is sought by Algorithm 1.

3.3.4.1 An algorithm template for recurseTI

The function recurseTI receives as input a set of visited vectors S and the current estimate of a
basis B for the lattice L(B). If S ⊂ L, i.e., all the vectors in S belong to the lattice defined by B,
the recursion is terminated (line 1 in Algorithm 2). Otherwise, one of the vectors x̃ that does not
belong to L is selected (line 4) and the parallelotope which encloses it is identified (line 5). Then, a
vector d is computed as the difference between x̃ and one of the vertices of the parallelotope (line 6).
The intuition here is to capture a short vector that cannot be represented by the current lattice, and
to modify the current basis in such a way that (upon convergence) it can be represented. Hence,
the updated basis is constructed by replacing one of the columns of B with d (line 8). Among the
N possible cases, any choice such that Bi is non-singular represents a valid selection (line 10).
In the example in Figure 3.11, two recursive steps are performed before terminating recurseTI.
In the first call, it is verified that x̃3 does not belong to the lattice defined by the current basis
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ALGORITHM 1: TI algorithm

Input: Set of observed vectors O = {x̃1, . . . , x̃P }
Output: A basis B of the lattice solution of (3.26)

1. B(0) = initBasis(O);
2. S = {b1, . . . ,bN};
3. U = O \ S;
4. r = 0
5. while card{U} > 0;
6. Pick x̃ in U ;
7. U = U \ {x̃};
8. S = S ∪ x̃;
9. B(r+1) = recurseTI(B(r),S);

10. r = r + 1
11. end

ALGORITHM 2: recurseTI(B,S)

Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.
Output: A basis of a lattice L with maximum determinant |L|, such that S ⊂ L

1. if S ⊂ L(B)
2. return B
3. else
4. Pick z ∈ S \ L(B).
5. Determine Pz(B).
6. Pick a vertex v of Pz(B).
7. Compute d = z− v.
8. Compute Bi, replacing the i-th column of B with d.
9. Pick an index l, such that det(Bl) 6= 0.

10. recurseTI(Bl,S);
11. end

(Figure 3.11(c)), and the updated basis is constructed (Figure 3.11(d)) by replacing one of the two
basis vectors with the difference vector between x̃3 and one of the vertices of Px̃3

(B). In the second
call it is verified that neither x̃3 nor x̃2 belong to the updated lattice. Therefore, one of the two
difference vectors (e.g., the one representing the difference between x̃2 and one of the vertices of
Px̃2(B)) is used to replace one of the two basis vectors. In the third call the recursion is terminated,
because all points in S belong to the lattice.
In Section 3.3.5.1, it is shown that the recursion always terminates in a finite number of steps and
leads to the optimal solution of (3.26). The solution the algorithm converges to, though, might be
a sub-lattice of the underlying lattice Lx, i.e., L∗ ⊂ Lx. Fortunately, this is a very unlikely event,
even when the number of observed points P is only slightly larger than N , as further discussed in
Section 3.3.5.3.

3.3.4.2 An algorithm instance for recurseTI

A practical instantiation of the template presented in Algorithm 2 requires to specify how to perform
the choices at line 4, 6 and 9, which were left undefined. Note that these choices are arbitrary and
have no effect on the correctness of the method, although they might affect the number of recursive
steps needed to achieve convergence.
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ALGORITHM 3: recurseTI(B,S)

Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.
Output: A basis of a lattice L with maximum determinant |L|, such that S ⊂ L

1. if condnum(B) > T
2. B = LLL(B)
3. end
4. x̂i = B · round(B−1x̃i), i = 1, . . . , S;
5. if (maxj=1,...,S ‖x̃j − x̂j‖2) = 0
6. return B
7. else
8. f = arg minj∈{l|‖x̃l−x̂l‖2>0} ‖x̃j − x̂j‖2;
9. d = x̃f − x̂f ;

10. θ = B−1d;
11. l = arg minj∈{p|θp 6=0} |θj |;
12. recurseTI(Bl,S);
13. end

In our specific implementation, the selection of the vector x̃ ∈ S \ L(B) (line 4 in Algorithm 2), the
vertex of the parallelotope (line 6) and the column to be replaced (line 9) are carried out as detailed
in Algorithm 3. The rationale is to construct a new basis related to a lattice with the smallest
lattice determinant |L(B)|, so as to tighten the upper bound on the value of the optimal solution,
i.e., |L∗| ≤ |L(B)|.
Specifically, given a basis B as input, we compute the vector x̂ = B · round(B−1x̃), which represents
one of the vertices of the parallelotope enclosing x̃ (line 4 in Algorithm 3). In order to prevent
numerical instability induced by the inversion of the matrix B, we perform basis reduction according
to the LLL algorithm (line 2) and we find a nearly orthogonal basis which is equivalent to B, but
has a smaller orthogonality defect. In our implementation, we perform basis reduction only when
the condition number is greater than a threshold T , which was set equal to 104 (line 1).
Then, the selected point z = x̃f is the one that minimizes the distance from the corresponding
vertex (line 8). That is,

f = arg min
j∈{l|‖x̃l−x̂l‖2>0}

‖x̃j − x̂j‖2, (3.27)

so as to minimize the length of the new basis vector d. Similarly, the choice of the new basis among
the set of (up to) N candidate bases Bi (line 11) is to select the one that leads to the smallest lattice
determinant, after excluding those that do not have rank N . From Cramer’s rule, it follows that
det(Bi) = θidet(B), where θ = B−1d is the expansion of d in the basis B. Hence, we replace the
l-th column of B, which is the one corresponding to the entry of θ with the least strictly positive
absolute value. That is,

l = arg min
j∈{p|θp 6=0}

|θj |. (3.28)

3.3.5 Analysis

3.3.5.1 Convergence

In this section, we prove that the proposed algorithm converges in a finite number of recursive steps
to the solution L∗ of (3.26). To this end, we rely on the specifications of the algorithm template in
Algorithm 2.
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Let B(0) denote the initial estimate of a basis of the lattice, which is constructed, for example, by
selecting as its columns a subset of N linearly independent vectors in O (Algorithm 1, line 1). Hence,
each vector of the initial basis B(0) can be expressed as a linear combination with integer coefficients
of the columns of Bx. Thus, we can write B(0) = BxA, with det(A) = m and m ∈ Z \ {0}. From
this, it follows that |L(B(0))| = m · |Lx| and |Lx| ≤ |L(B(0))|
Let B(r) denote the estimate obtained after the r-th call of the recursive function recurseTI. It is
possible to prove the following lemma:

Lemma 3. |L(B(r+1))| ≤ |L(B(r))|, with equality if and only if S ⊂ L(B(r)) = L(B(r+1))

Proof. If S ⊂ L(B(r)), then B(r+1) = B(r) and the recursion terminates. Otherwise, let z ∈
S \ L(B(r)) be any of the points which does not belong to the lattice defined by B(r), v any of the
vertices of Pz(B(r)) and d = z− v. The vector d can be expressed in terms of the basis B(r) as

d = B(r)θ. (3.29)

By definition, the vector z belongs to Pz(B(r)), hence −1 ≤ θi ≤ 1. Since z /∈ L(B(r)), z does not
belong to the vertices of Pz(B(r)). It follows that there is at least one coefficient θl in the basis
expansion of d, such that 0 < |θl| < 1.

The vector d replaces the i-th column of B(r) to obtain B
(r)
i . From Cramer’s rule,

det(B
(r)
i ) = θidet(B(r)) (3.30)

Therefore, if we select l, such that 0 < |θl| < 1,

|L(B(r+1))| = |det(B(r+1))| = |det(B
(r)
l )| = |θl||det(B(r))| < |det(B(r))| = |L(B(r))| (3.31)

Note that there must be at least one such an index l, as indicated above.

We construct the sequence of integer numbers

sr = |L(B(r))|, r = 0, 1, . . . , R. (3.32)

Let R denote the smallest integer such that |L(B(R))| = |L(B(R+1))|. That is, R is the number of
steps needed to achieve convergence. It is possible to prove the following theorem:

Theorem 2. Algorithm 1 converges to the solution of (3.26).

Proof. Let L∗ denote the solution of (3.26), i.e., the lattice with maximum volume that includes all
observed vectors S. We need to prove that L(B(R)) = L∗.
First, we prove that |L(B(R))| cannot decrease beyond |L∗|, i.e., |L∗| ≤ |L(B(R))|. To this end, let
L(B(R−1)) denote the lattice obtained at the iteration just before convergence. Hence, there is at
least one observed vector x̃ ∈ L∗ such that x̃ /∈ L(B(R−1)). Lemma 3 establishes that |L(B(R))| <
|L(B(R−1))|.
Let d denote the difference vector as in line 7 of Algorithm 2. By construction, d ∈ L∗. Let B∗

denote a basis for L∗. Then, it is possible to write d = B∗θ∗, θ∗i ∈ Z. L(B(R−1)) is a sublattice of
L∗. Hence, B(R−1) = B∗A, where A is a matrix of integer elements such that det(A) = m, with
m ∈ Z \ {0}, and |L(B(R−1))|/|L∗| = m.
It is possible to express d in the basis expansion of B(R−1). That is,

θ = (B(R−1))−1d = (B∗A)−1B∗θ∗ = A−1θ∗ =
1

det(A)
cofactor(A)θ∗. (3.33)
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Note that both the cofactor matrix cofactor(A) and θ∗ have integer elements. Hence, the vector
cofactor(A)θ∗ has integer elements. Any nonzero element of θ is an integer multiple of 1/det(A) =
1/m. Therefore, if θi 6= 0, |θi| ≥ 1/m.
From the proof of Lemma 3, we know that

|L(B(R))| = |θl||L(B(R−1))| ≥ 1

m
|L(B(R−1))| = |L∗|, (3.34)

where θl is one of the nonzero elements of θ.
To prove that |L(B(R))| = |L∗|, it remains to be shown that cannot be |L(B(R))| > |L∗|. Indeed, if
this were the case, L(B(R)) would be the optimal solution of (3.26), since it includes all observed
points S and has volume larger than |L∗|.

Note that R <∞, i.e., convergence is achieved in a finite number of steps. Indeed, {sr} is a sequence
of integer values. The sequence is monotonically decreasing due to Lemma 3, until convergence is
achieved and S ⊂ L(B(R)). In addition, it is bounded from below by |Lx|. Therefore, convergence
is achieved in up to |L(B(0))|/|Lx| number of steps. In the following section we show that with
a specific instantiation of Algorithm 2 given in Algorithm 3 it is possible to ensure a significantly
faster convergence rate.

3.3.5.2 Rate of convergence

It is possible to prove that the proposed method implemented according to the instance presented
in Algorithm 3 converges in a number of steps that is upper bounded by dlog2(|L(B(0))|/|Lx|)e. To
show this, it suffices to demonstrate that the value of the lattice determinant is (at least) halved
between two consecutive calls of recurseTI, as stated by the following theorem.

Theorem 3. If S 6⊂ L(B(r)), then |L(B(r+1))|
|L(B(r))| ≤

1
2

Proof. Since S 6⊂ L(B(r)), then maxj=1,...,S ‖x̃j − x̂j‖2 > 0, and the recursion is not terminated.
Consider the vector d = x̃f − x̂f , which can be expressed in the basis B(r) as d = B(r)θ. Dropping
the superscript (r), it is possible to write

θ = B−1d = B−1(x̃f − x̂f ) (3.35)

= B−1x̃f −B−1(B · round(B−1x̂f )) (3.36)

= B−1x̃f − round(B−1x̂f ) = a− round(a), (3.37)

where we set a = B−1x̂f . Due to the properties of rounding, −1/2 ≤ θi < 1/2. Thus, replacing any
of the columns of B(r) such that θl 6= 0, we obtain, using Cramer’s rule,

|L(B(r+1))|
|L(B(r))| = |θl| <

1

2
(3.38)

Based on Theorem 3,

|L(B(r))| ≤
(

1

2

)r
|L(B(0))|, ∀r > 0,S 6⊂ L(B(r)) (3.39)
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Hence, convergence is achieved in up to ⌈
log2

|L(B(0))|
|Lx|

⌉
(3.40)

number of steps.
Note that this upper bound on the convergence rate is guaranteed solely on the basis of the way the
vertex of the parallelotope is selected, whereas it does not depend neither on which point is selected,
nor on which column is replaced. However, the heuristics applied in Algorithm 3 are based on the

rationale of reducing the ratio |L(B(r+1))|
|L(B(r))| as much as possible.

3.3.5.3 Probability of success

In Section 3.3.5.1, we showed that the proposed method converges to the optimal solution L∗
of (3.26). In this section, we show that it converges to the correct (and unique) lattice Lx (i.e.,
L∗ ≡ Lx) with high probability, provided that the number of observed vectors P is greater than N .
Given a lattice Lx of rank N embedded in RN , there is more than one sub-lattice L of L of index
m. It can be shown that the number of sub-lattices is equal to [69]

fN (m) =

q∏
i=1

N−1∏
j=1

pti+ji − 1

pji − 1
=

q∏
i=1

ti∏
j=1

pN+j−1
i − 1

pji − 1
, (3.41)

where m = pt11 · · · p
tq
q is the prime factorization of m. That is, p1, . . . , pq are the prime factors of m,

and ts is the multiplicity of the factor ps.
For example, when N = 2 and m = 2, f2(2) = 3. Given the basis B = I, the corresponding
sub-lattices of L(B) are generated by, e.g, the following bases

B1 =

[
1 −1
−1 1

]
, B2 =

[
2 0
0 1

]
, B3 =

[
0 2
1 0

]
. (3.42)

In order to determine analytically a lower bound on the probability of converging to the correct
solution, we need to prove the following lemma, which provides bounds on the number of sub-
lattices.

Lemma 4. Given a lattice Lx of rank N embedded in RN , the number fN (m) of sub-lattices of
index m is bounded by

mN−1 < fN (m) < mN . (3.43)

Proof. It is possible to derive both an upper and a lower bound on the number of sub-lattices that
are independent from the prime factorisation of m starting from (3.41). Since for all cases of interest
N > 1, we have:

pN+j−1
i − 1

pji − 1
>
pN+j−1
i

pji
. (3.44)

Substituting in (3.41), we have a function fN (m) that is guaranteed to yield values below fN (m):

fN (m) =

q∏
i=1

ti∏
j=1

pN+j−1
i

pji
. (3.45)



CHAPTER 3. OPERATOR CHAIN MODELING 63

This can be simplified to:

fN (m) =

q∏
i=1

p
ti(N−1)
i . (3.46)

This is equivalent to the (N − 1)th power of the product of the prime factors of m. That is, the
lower bound of fN (m) can be expressed as:

fN (m) = mN−1. (3.47)

In terms of the upper bound of fN (m), we proceed similarly by starting with the observation that:

pN+j−1
i − 1

pji − 1
<
pN+j
i

pji
. (3.48)

By substituting back into (3.41), we can observe that:

q∏
i=1

ti∏
j=1

pN+j
i

pji
= mfN (m). (3.49)

Hence, it is easy to see that the upper bound on fN (m) can be expressed as:

fN (m) = mN . (3.50)

Therefore, since fN (m) < fN (m) < fN (m), we have:

mN−1 < fN (m) < mN . (3.51)

Now, consider a specific sub-lattice L ⊂ Lx of index m and a set of P vectors from the original
lattice Lx. In the case of uniformly distributed vectors, the probability that one vector belong to
the sub-lattice L is equal to (1/m). Thus, the probability that all P vectors belong to the same
sub-lattice L is equal to (1/m)P , assuming statistical independence among the set of vectors.
Let pfail(N,P ) denote the probability of failing to detect the underlying lattice Lx of rank N , when
P points are observed. Then, psucc(N,P ) = 1− pfail(N,P ). A failure occurs whenever all P vectors
fall in any of the sub-lattices of index m. Hence, we can write

pfail(N,P ) <

∞∑
m=2

fN (m)

(
1

m

)P
<

∞∑
m=2

mN

(
1

m

)P
=

∞∑
m=2

1

mP−N = ζ(P −N)− 1 (3.52)

The first inequality is a union bound, i.e., the probability of failure is upper bounded by the sum
of the probabilities of observing all P vectors in a given sub-lattice. The second inequality follows
from the upper bound given by Lemma 4. The last expression contains ζ(·), which is the Riemann’s
zeta function. That is,

ζ(s) =

∞∑
m=1

1

ms
. (3.53)

Note that the infinite series converges when the real part of the argument s is greater than 1. In our
case, this requires P −N > 1 or P > N + 1. Then, the probability of success is lower bounded by

psucc(N,P ) > 2− ζ(P −N). (3.54)
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Figure 3.12: Upper bound on the probability of failure pfail(P,N).

It is interesting to observe that the probability of failure/success depend solely on the difference
P −N . Hence, the number P of observed vectors needed to correctly identify the underlying lattice
grows linearly with the dimensionality N of the embedding vector space, despite the number of
potential lattice points grows exponentially with N , as indicated in Section 3.3.4.
Figure 3.12 shows that the upper bound on the probability of failure rapidly decreases to zero even
for modest values of P −N .

3.3.6 Experiments

Section 3.3.5 provided a lower bound on the probability of successfully identifying the transform
and the quantization step sizes. In this section, this aspect is evaluated experimentally. In addition,
we provide further insight on the complexity of the algorithm, expressed in terms of the number of
recursive steps needed to compute the sought solution.
To this end, we generated data sets of N -dimensional vectors, whose elements are sampled from
a Gaussian random variable N (0, σ2). We considered the adverse case in which the elements are
independent and identically distributed. Therefore, the distribution of the vectors is isotropic and
no clue could be obtained from a statistical analysis of the distribution. Without loss of generality,
we set σ = 2, W = I and ∆i = 1, i = 1, . . . , N . The same results were obtained using different
transform matrices and quantization step sizes.
Figure 3.13(a) shows the empirical probability of success when N = 2, 4, 8, 16, 32, 64, and the number
of observed vectors P is varied, averaged over 100 realizations. As expected psucc(N,P ) = 0 when
the number of vectors P does not exceed the dimensionality of the embedding vector space, i.e.,
P ≤ N . Then, as soon as P > N , psucc(N,P ) grows rapidly to one, when just a few additional
vectors are visited. More specifically, Figure 3.13(b) illustrates the number of observed vectors P
needed to achieve psucc(N,P ) > 1 − ε, where ε was set equal to 10−15. It is possible to observe
that, when N > 2, the number of observed vectors needs to exceed by 6-7 units the dimensionality,
and such a difference is independent from N , as expected based on the analysis in Section 3.3.5.
Note that the results shown in Figure 3.13 are completely oblivious of the specific implementation
of Algorithm 2.
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Figure 3.13: (a) Empirical probability of success of Algorithm 1 in identifying the transform and the
quantization step sizes as a function of the number of observed vectors P and the dimensionality of
the embedding vector space N . (b) Number of observed vectors P needed to achieve psucc(N,P ) >
1− ε, with ε = 10−15.

At the same time, it is interesting to evaluate the complexity when the specific instance of Algo-
rithm 2, namely Algorithm 3, is adopted. Figure 3.14 shows the total number of recursive calls
needed to converge to the solution of (3.26). Note that when a large enough number P of vectors is
observed, the algorithm converges to the correct lattice Lx. Thus, visiting additional vectors does
not increase the number of recursive calls, since the base step of the recursion is always met. Fig-
ure 3.14 shows two cases, that differ in the way the set of observed vectors is visited, i.e., randomly,
or sorted in ascending order of distance from the origin of the vector space. In both cases, the
number of recursive calls grows linearly with N . This is aligned with the analysis in Section 3.3.5.2,
which shows that convergence proceeds at a rate such that the number of recursive steps is upper
bounded by dlog2 |L(B(0))|/|Lx|e. A (loose) bound on the lattice determinant is given by

|L(B(0))| = |det(B(0))| ≤ ‖b(0)
1 ‖2‖b

(0)
2 ‖2 · ‖b

(0)
N ‖2 ≤ ‖b(0)

max‖N2 , (3.55)

where the first inequality stems from Hadamard inequality and b
(0)
max is the column of B(0) with the

largest norm. Therefore,

dlog2 |L(B(0))|/|Lx|e ≤ dN log2(‖b(0)
max‖2)/|Lx|e (3.56)

This explain the dependency on N , as well as the fact that sorting the vectors so as to initialize B(0)

with shorter vectors reduces the number of recursive calls.

3.3.7 Conclusions

In this section we proposed a method which is able to identify the parameters of a transform coder
from a set of P transform decoded vectors embedded in a N -dimensional space. We proved that it is
possible to successfully identify the transform and the quantization step sizes when P > N and this
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Figure 3.14: Total number of recursive calls to recurseTI as a function of the dimensionality of the
space N and the strategy adopted to visit the observed vectors.

despite of the huge number of potential quantization bins, which grows exponentially with N for a
target bitrate. In addition, we proved that the probability of failure decreases exponentially to zero
when P −N increases. In our experiments we found that an excess of approximately 6-7 observed
vectors beyond the dimension N of the space is generally sufficient to ensure successful convergence.
In this work, we focused on a noiseless scenario, in which we observe directly the output of the
decoder. In some cases, though, signals are processed in complex chains, in which multiple transform
coders are cascaded, thus introducing noise in the observed vectors. Consequently, the observed
vectors do not lie exactly on lattice points. Extending the proposed method to this new scenario
represents an interesting research avenue to be investigated.
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3.4 Modeling reacquisition

In this section, we focus on modelling chains of multiple A/D and D/A conversion. Specifically, we
focus on the case of single recapture, according to the pipeline shown in Fig. 3.15. Throughout
the study, the input signal considered is modeled as a step function since in 2-D this feature would
correspond to a straight edge - a feature abundant in natural images - and study under which
conditions we can detect recapture and identify parameters of the original A/D and D/A operators.
Ultimately, we aim to provide a complete end-to-end analytical method for reverse engineering of
acquisition chains.
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Figure 3.15: Problem statement diagram for signals with FRI in the chain of signal acquisition.

3.4.1 Preliminaries and Problem Setup

The process of sampling and acquisition of a signal is depicted in Figure 3.16, where the signal x(t)
is filtered before being uniformly sampled. This leads to the measurements y[n] = 〈x(t), ϕ(t/T −n)〉,
where the sampling kernel is the time reversed and scaled version of the filter′s impulse response h(t).
Reconstruction is achieved using the linear filter λ(t) which yields x̂(t) =

∑
n∈Z y[n]λ(t/T −n). We

assume λ(t) is a polynomial spline or a MOMS function [70] of order R, therefore x̂(t) is a piecewise
polynomial function of maximum order R. We also assume x̂(t) 6= x(t).
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Figure 3.16: Classical signal acquisition and reconstruction model.

The sampling and reconstruction operations are then put in series as shown in Fig. 3.15. The
parameters ϕ1(t), T1, ϕ2(t), and T2, are the sampling kernels and sampling periods of the first and
the second acquisition devices respectively. With this chain structure, the problem conditions are
set as follows:

1. The input signal is fixed as a box function f(t) = u(t− t1)− u(t− t2), where t1 and t2 are the
unknown locations of the unit step functions and t1 < t2. First we consider t2 →∞, thus the
input f(t) can be approximated by a step u(t− ts). The role of t2 will be discussed in Section
3.4.3.

2. The type of interpolation is polynomial interpolation with maximum degree R.
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3. The second sampling kernel ϕ2(t) is one of those introduced in [71] and has the special prop-
erties that it can reproduce polynomials or exponentials.

Given access to only a query digital signal with an edge q[n], the key questions for the problem of
reverse engineering the acquisition chain are:

• What stages in the chain are the samples q[n] from? That is, was q[n] obtained by acquiring
f(t) directly with ϕ2(t) or was q[n] the reacquired signal ĝ[n] in Figure 3.15.

• In the case of reacquisition, how can we retrieve the following important parameters: i) maxi-
mum order of polynomial used for interpolation (R) ii) sampling period T1, and iii) sampling
kernel ϕ1(t) ?

• Under which condition on ϕ2, T2 can we solve (b)?

3.4.2 Sampling Theory for Signals with Finite Rate of Innovation

In this section we provide the preliminary mathematical background in FRI theory for our analysis
in the next section. A signal with Finite Rate of Innovation (FRI) is defined as a signal which
has a finite number of degrees of freedom per unit of time. Given a finite number of shifts tk and
amplitudes αk,r, a signal with FRI x(t) can be described by known functions {fr(t)}R−1

r=0 as follows:

x(t) =
∑
k∈Z

R−1∑
r=0

αk,rfr(t− tk). (3.57)

Examples of signals with FRI include a stream of Diracs, a stream of differentiated Diracs, and
piecewise polynomial functions. Calling the classical sampling diagram in Figure 3.16, now let us
consider a sampling scheme for signals with FRI. Let the input signal x(t) be a train of K Diracs
which is described by K pairs of free parameters: the locations tk and the amplitudes ak as follows:

x(t) =

K−1∑
k=0

akδ(t− tk). (3.58)

The input is then sampled with sampling kernel ϕ(t) with period T before discrete samples y[n] are
obtained. In this work, we assume that the sampling kernel used is a function that can reproduce
polynomials as described in [71]. For polynomial reproducing kernels there exists a set of coefficients
cn,p such that: ∑

n∈Z
cn,pϕ(

t

T
− n) = tp ; p = 0, 1, 2, ..., P. (3.59)

Next, the moments τp of order p of the signal can be computed as follows:

τp =
∑
n

cn,py[n]
(a)
= 〈x(t),

∑
n

cn,pϕ(t/T − n)〉

(b)
= 〈

K−1∑
k=0

akδ(t− tk),
∑
n

cn,pϕ(t/T − n)〉

(c)
=

K−1∑
k=0

akt
p
k ; p = 0, 1, 2, ..., P, (3.60)
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where (a) follows from the linearity of inner product while (b) and (c) are from equations (3.58)
and (3.59) respectively. Once the moments τp; p = 0, 1, ..., P and P ≥ 2K have been computed, the
following Toeplitz matrix is constructed:

S =


τK τK−1 · · · τ0
τK+1 τK · · · τ1

...
...

. . .
...

τP τP−1 · · · τP−K

 . (3.61)

Note that, one can show [71] that S has always rank K (number of Diracs in x(t)) and that x(t) is
determined from the knowledge of the null space of S. Next let us consider an input signal which is
a piecewise polynomial signal with K pieces of maximum degree R > 0, that is

x(t) =

K∑
k=1

R∑
r=0

ak,r(t− tk)r. (3.62)

Clearly the (R + 1) order derivative x(R+1)(t) = d(R+1)x(t)
dt(R+1) is given by a train of differentiated Diracs

at the locations tk as follows:

x(R+1)(t) =

K−1∑
k=0

R∑
r=0

r!ak,rδ
(R−r)(t− tk). (3.63)

We observe that x(R+1)(t) is a FRI signal with non-zero values ak,r at the locations tk of disconti-
nuities of the input x(t). We note that the finite difference z(1)[n] satisfies [71]:

z(1)[n] = y[n+ 1]− y[n]

= 〈x(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

= 〈dx(t)

dt
, ϕ(t/T − n) ∗ β0(t/T − n)〉. (3.64)

Therefore, the moments of the derivative of x(t) are given by τp =
∑
n c

(1)
n,pz(1)[n], where c

(1)
n,p are

the polynomial reproduction coefficients of (3.59) for the new kernel ϕ(t) ∗ β0(t). The moments of
the R + 1 derivative of x(t) can be obtained similarly. Finally, it is again possible to show that the
Toeplitz matrix S of the moments of x(R+1)(t) has rank proportional to the degrees of freedom of
x(R+1)(t) .

3.4.3 Reacquisition Detection and the Retrieval of Chain Parameters

We are given a query digital signal q[n] representing a 2D edge, and we would like to understand
whether this is the result of a single capture of a unit step function f(t) = u(t − ts) with ϕ2(t)
or whether this is the result of reacquisition. An illustrative example of the two possible shapes
of q[n] is shown in Figure 3.17. In Figure 3.17 (c) we show the case of a single acquisition of f(t)
shown in Figure 3.17 (a), whereas Figure 3.17 (d) shows a reacquired signal obtained after linear
interpolation of (c) to yield 3(b) and sampling of 3(b) with ϕ2(t). We note that g[n] and ĝ[n] are
hardly distinguishable yet they still contain all the information necessary to reverse engineering the
acquisition chain as shown next.
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Figure 3.17: Comparative plots of continuous input signals (a) step input f(t) (b) reconstructed

signal f̂(t) with corresponding discrete samples (c) g[n] and (d) ĝ[n] and reconstructed locations
using FRI sampling theory (e) and (f) respectively.

The input signal f(t) is a unit step function which is described by only one free parameter - the loca-
tion of step ts. When the input signal f(t) is acquired, the observed samples g[n] are distorted by the
sampling kernel. All possible g[n], however, are still determined by one free parameter. In contrast,

f̂(t) is obtained from polynomial interpolation and is a polynomial function with discontinuities at
locations multiple of period T1. The signal is a special case of FRI signals in (3.62).
We thereby use this principle to create an algorithm for reacquisition detection. We first aim to
detect whether the query q[n] was the result of single or double acquisition. Since a step function
is a piecewise polynomial of maximum degree R = 0, the moments are computed using a first order
finite difference of the query as τp =

∑
n cn,pq

(1)[n]. The moments are then used to construct the
Toeplitz matrix S. The matrix S of size 2x2 is sufficient for reacquisition detection. Essentially the
matrix is always rank-deficient with rank = 1 if q[n] is acquired from a step input. On the other
hand, if S is full rank, it means q[n] stems from a recapture.
If the query signal is determined to be recaptured, the interesting question is how we can retrieve
some important parameters of the chain including the sampling period T1, interpolation function
λ(t), and the first sampling kernel ϕ1.
Firstly, the maximum order R of polynomial interpolation function λ(t) can be retrieved from the
properties of FRI reconstructed signals. According to Section 3.4.2, piecewise polynomial functions
of maximum order R are fully suppressed by differentiation of order R + 1. If we measure the
number of degrees of freedom using Toeplitz matrix S, the matrix will be full rank until the finite
difference of order r ≥ R + 1 is applied to a query samples q[n]. When r = R + 1, the matrix will
be rank deficient with rank K, equal to the number of K pieces of piecewise polynomial function.
Figure 3.18 summarizes the retrieval algorithm for the order R using iterative finite difference and
rank measurement until S is rank deficient.
Next, all the locations of discontinuities tk and the continuous function f̂(t) can be retrieved using the
annihilating filter method as discussed in [71]. Each tk represents the location of samples g[n] used
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Figure 3.18: Iterative algorithm for the retrieval of maximum order R of polynomials used in inter-
polation function λ(t).

in interpolation. From the retrieval results in Figure 3.17 (f), the distances between differentiated

Diracs f̂ (2)(t) are uniform and the sampling period T1 can be estimated from the average of the
distances.
The retrieved f̂(t) and T1 then can be used to estimate the samples g[n] through the reverse sampling.
Finally, the retrieval of ϕ1 can be further achieved using the best matching between the samples
and all possible dictionary elements as proposed in [72], which was previously included as part of
D3.2. Instead we focus on providing the sufficient conditions on ϕ2 and T2 that allow us to retrieve
the chain.
First, the maximum degree P of polynomials which the second kernel ϕ2 can reproduce must be
sufficiently large. From [71], the kernel must be able to reproduce polynomials of maximum degree
P > 2(R + 1)K − R − 2 in order to achieve perfect reconstruction of a piecewise polynomial of
maximum degree R with K discontinuities. In our case, the unit step input signal is sampled with
uniform sampling period T1 and the samples are then interpolated to continuous domain again. The
number of discontinuities can be computed as K 6 L1

T1
+ 1, where L1 is the support of the first

sampling kernel ϕ1. Therefore, the order P which provides the precise retrieval results is given by
P > 2(R+ 1)L1

T1
+R.

Second, we consider the role of t2 which is now the constant and t2 > t1. Consequently the input is
a rectangular pulse f(t) = u(t - t2) - u(t - t1). It is then acquired and reproduced by the chain. Since
signal reconstruction creates a new group of K piecewise polynomials from samples of a unit step
input, one needs to assure that two groups of piecewise polynomials are sufficiently distant in order
to avoid the overlap. The minimum interval required is greater than 2KT1. From[71], a piecewise
polynomial function with two groups of K pieces of maximum degree R can influence an interval of
size 2K(L2 +R+ 1)T2. One therefore can calculate the bound T1 > (L2 +R+ 1)T2, which imposes
a constrain on the maximum sampling period T2. Here L2 is the support of ϕ2(t).
When sampling signals satisfying the above requirements, one-to-one mapping between discrete
samples and chains structures is guaranteed. We conclude by providing a counter example to show
that signals obtained from different acquisition chains can be indistinguishable when the sufficient
conditions are violated. Let qa[n] and qb[n] are query discrete samples acquired from different
chain structures. The signal qa[n] is obtained from single acquisition of the step input fa(t) =
u(t − (T2 + T2

2 )) using a box spline kernel [73] and T1 = T2 or ϕ1a(t) = β0( t
T2

) . On the other

hand, qb[n] is from reacquisition. Given that fb(t) = u(t − (T2 + T2

4 )) is the initial input, the

signal is sampled using ϕ1b(t) = β0( 2t
T2

) before the samples are reproduced to f̂b(t) again by linear
interpolation. From Figure 3.19, one can compute q[n] = 〈f(t), ϕ2(t/T2 − n)〉 and we have qa[n] =
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Figure 3.19: Counter examples when sampling fa(t) and f̂b(t) with a sampling kernel ϕ(t) = β0( t
T2

)

qb[n] = [0 1
2 1 1

2 0]. The signals from different chains become indistinguishable because the kernels
used can reproduce polynomials up to degree P=0 which violates the condition. Thus one-to-one
mapping is not guaranteed and the proposed algorithm cannot retrieve unique chain solution.

3.4.4 Conclusions

We have presented a theoretical scheme for the retrieval of a signal acquisition chain. With the
theory of sampling signals with FRI, we are able to classify discrete samples from different stages in
the chain model and create reacquisition detection algorithm. In addition, the method allows us to
develop a retrieval algorithm for important parameters in the reacquisition chain. We finally have
discussed the sufficient conditions to the retrieval of the parameters of the acquisition chain.
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3.5 Demosaicking localization

An image coming from a digital camera, in the absence of any successive processing, will show
specific traces due to the demosaicking algorithm applied on color filter array (CFA) elements. The
analysis of such traces at the local level may be a powerful instrument to verify the history of
a digital image, since demosaicking inconsistencies between different parts of the image will put
image integrity in doubt. In this section, we will introduce a statistical model that can be used to
characterize demosaicking artifacts at a local level. Namely, we propose a new feature that is related
to the presence/absence of these artifacts on a patch as small as a single CFA element, and we will
show that such a feature can be modeled by introducing a simple Gaussian mixture model (GMM).

3.5.1 CFA interpolation

During the CFA interpolation process, the estimation of the values in the new lattice based on the
known values can be locally approximated as a filtering process through an interpolation kernel
periodically applied to the original image to achieve the resulting image. Thus, the identification of
artifacts due to CFA demosaicing can be seen as a particular case of the detection of interpolation
artifacts.
In [43], Kirchner demonstrated that for a resampled stationary and non-constant signal s(x), with
x ∈ Z, the variance of the residue of a linear predictor Var[e(x)] is periodic with a period equal to
the original sampling rate. Hence, if we consider the signal resampled according to an integer inter-
polation factor r, we have Var[e(x)] =Var[e(x+ r)], since the original sampling period corresponds
to r samples of the resampled signal.
For the case of CFA demosaicking, if we consider a single dimension, the general result presented in
[43] turns into Var[e(x)] =Var[e(x+2)], that is the variance of the prediction error assumes only two
possible values, one for the odd positions and another one for the even positions. In more detail,
considering for example the interpolation of the green color channel G(x) in a particular row of the
image, the acquired signal sA(x) is

sA(x) =

{
G(x) x even
0 x odd

(3.65)

If we consider a simplified demosaicking model, the resulting signal sR(x), composed by the acquired
component sA(x) and by the interpolated component, takes values:

sR(x) =

{
sA(x) = G(x) x even∑
u husA(x+ u) x odd

(3.66)

where hu represents the interpolation kernel. In the above model, we assume that each color channel
is independently interpolated using a linear filter and that original sensor samples are not modified by
the interpolation process. In practice, since only odd values of u contribute to the above summation,
we will restrict our attention to the case hu = 0 for u odd. The prediction error is then defined as
e(x) = sR(x)− sP (x), with:

sP (x) =
∑
u

kusR(x+ u) (3.67)

the predicted signal, and ku the prediction kernel. Hence:

e(x) =

{
G(x)−∑u kusR(x+ u) x even∑
u husA(x+ u)−∑u kusR(x+ u) x odd

(3.68)
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By assuming to use the same kernel for the interpolation and the prediction (i.e. hu = ku), the
prediction error in odd positions is identically zero, while in the even positions takes values different
from zero. Hence, in such an ideal case, var[e(x)] is expected to be zero in the positions corresponding
to the demosaicked signal, and different from zero in the positions corresponding to the acquired
signal.
In general, the exact interpolation coefficients may not be known, however we can assume that
ku = 0 for u odd. Moreover, we can also assume

∑
u ku =

∑
u hu = 1, which usually holds for

common interpolation kernels. In this case, equation (3.68) above can be rewritten as

e(x) =

{
G(x)−∑u ku

∑
v hvG(x+ u+ v) x even∑

u(hu − ku)G(x+ u) x odd
(3.69)

By assuming the acquired signal samples to be independent and identically distributed (i.i.d.) with
mean µG and variance σ2

G, the mean of the prediction error can be evaluated as

E[e(x)] =

{
µG − µG

∑
u ku

∑
v hv = 0 x even

µG (
∑
u hu −

∑
u ku) = 0 x odd

(3.70)

whereas the variance of the prediction error is

Var[e(x)] =Var
[
(1−

∑
u

kuh−u)G(x)

+
∑
t6=0

(∑
u

kuht−u
)
G(x+ t)

]
=σ2

G

[
(1−

∑
u

kuh−u)2 +
∑
t6=0

(
∑
u

kuht−u)2
] (3.71)

for x even and
Var[e(x)] = Var

[∑
u

(hu − ku)G(x+ u)
]

= σ2
G

∑
u

(hu − ku)2 (3.72)

for x odd. According to the above model, the prediction error has zero mean and variance pro-
portional to the variance of the acquired signal. However, when the prediction kernel is close to
the interpolation kernel, the variance of prediction error will be much higher at the positions of the
acquired pixels than at the positions of interpolated pixels.
In order to extend the previous analysis to the bidimensional case, without loss of generality we will
consider as specific CFA the most frequently used Bayer’s filter mosaic, a 2×2 array having red and
green filters for one row and green and blue filters for the other (see Fig. 3.20(a)). Furthermore,
we will consider only the green channel; since the green channel is upsampled by a factor 2, for a
generic square block we have the same number of samples (and the same estimation reliability) for
both classes of pixels (either acquired or interpolated).
By focusing on the green channel, the even/odd positions (i.e. acquired/interpolated samples) of
the one-dimensional case turn into the quincunx lattice A for the acquired green values and the
complementary quincunx lattice I for the interpolated green values (see Fig. 3.20(b)). Similar to
the one-dimensional case, we assume that in the presence of CFA interpolation the variance of the
prediction error on lattice A is higher than the variance of the prediction error on lattice I, and in
both cases it is content dependent. On the contrary, when no demosaicking has been applied, the
variance of the prediction error assumes similar values on the two lattices.
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(a) (b)

Figure 3.20: (a) the Bayer’s filter mosaic; (b) the quincunx lattice A for the acquired green channels
and the complementary quincunx lattice I for the interpolated green channels.

3.5.2 Proposed model

The exact modeling of the prediction error would be in general tricky, since it depends on many
parameters like the content of the image and the actual demosaicking filter. However, it is possible
to consider a local function of the prediction error that can be modeled in a very simple and effective
way. Let us suppose that s(x, y), with (x, y) ∈ Z2, is an observed image. The prediction error can
be obtained as:

e(x, y) = s(x, y)−
∑
u,v 6=0

ku,vs(x+ u, y + v) (3.73)

where ku,v is a bidimensional prediction filter. In the ideal case, ku,v = hu,v ∀(u, v) where hu,v is
the interpolation kernel of the demosaicking algorithm. In general, we can assume that ku,v 6= hu,v,
since the in-camera demosaicking algorithm is usually unknown.
Because of the local stationarity of the residue, we consider a local estimation of the variance of the
prediction error from a neighborhood of either interpolated (I) or acquired (A) pixels, according
to the pixel location. By assuming that the local stationarity of prediction error is valid in a
(2K + 1) × (2K + 1) window, it is possible to define the local weighted variance of the prediction
error as:

σ2
e(x, y) =

1

c

[( K∑
i,j=−K

αij e
2(x+ i, y + j)

)
− (µe)

2
]

(3.74)

where αij are suitable weights, µe =
∑K
i,j=−K αij e(x + i, y + j) is a local weighted mean of the

prediction error and c = 1 −∑K
i,j=−K α

2
ij is a scale factor that makes the estimator unbiased, i.e.,

E[σ2
e(x, y)] =var[e(x, y)], for each pixel class. The weights αij are obtained as αij = α

′

ij/
∑
i,j α

′

ij

where

α
′

ij =

{ W (i, j) if e(x+ i, x+ j) belongs to
the same class of e(x, y)

0 otherwise

and W (i, j) is a (2K + 1)× (2K + 1) Gaussian window with standard deviation K/2.
Given a N × N image, we analyze it by considering B × B non-overlapping blocks, where B is
related to the period of Bayer’s filter mosaic: the smallest period (and block dimension) is (2, 2),
but also multiples can be adopted. The generic block in position (k, l) is denoted as Bk,l with
k, l = 0, . . . , NB − 1. Each block is composed by disjoint sets of acquired and interpolated pixels,
indicated as BAk,l and BIk,l , respectively. We then define the feature L:

L(k, l) = log

[
GMA(k, l)

GMI(k, l)

]
(3.75)
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whereGMA(k, l) is the geometric mean of the variance of prediction errors at acquired pixel positions,
defined as:

GMA(k, l) =

[ ∏
i,j∈BAk,l

σ2
e(i, j)

] 1
|BAk,l

|

(3.76)

whereas GMI(k, l) is similarly defined for the interpolated pixels.
The proposed feature L allows us to evaluate the imbalance between the local variance of prediction
errors when an image is demosaicked: indeed, in this case the local variance of the prediction error
of acquired pixels is higher than that of interpolated pixels and thus the expected value of L(k, l)
is a nonzero positive amount. On the other hand, if an image is not demosaicked, this difference
between the variance of prediction errors of acquired an interpolated pixels disappears, since the
content can be assumed to present locally the same statistical properties, and the expected value of
L(k, l) is zero.
Let M1 and M2 be the hypotheses of presence and absence of CFA artifacts, respectively. In order
to have a simple and tractable model, we assume that L(k, l) is Gaussian distributed under both
hypotheses and for any possible size B of the blocks Bk,l. For a fixed B, we can characterize our
feature using the following conditional probability density functions:

Pr{L(k, l)|M1} = N (µ1, σ
2
1) (3.77)

with µ1 > 0, and
Pr{L(k, l)|M2} = N (0, σ2

2). (3.78)

The above densities hold ∀k, l = 0, . . . , NB − 1, i.e., we assume that the parameters of the two
conditional pdfs do not change over the considered image, such that they can be globally estimated.
If a demosaicked image contains some tampered regions in which CFA artifacts have been destroyed
(as it may occur in a common splicing operation), both hypotheses M1 and M2 are present, therefore
L(k, l) can be modeled as a mixture of Gaussian distributions. The first component, with µ1 > 0,
is due to regions in which CFA artifacts are present, whereas the second component, with µ2 =
0, is due to tampered regions in which CFA artifacts have been removed. In order to estimate
simultaneously the parameters of the proposed GMM, we employ the Expectation-Maximization
(EM) algorithm [74]. This is a standard iterative algorithm that estimates the mean and the variance
of the component distributions by maximizing the expected value of a complete log-likelihood function
with respect to the distribution parameters. In our case, the EM algorithm is used to estimate only
µ1, σ1, and σ2, since we assume µ2 = 0.

3.5.3 Validation

The results presented in this section have been obtained on a dataset consisting of 400 original
color images, in TIFF uncompressed format, coming from 4 different cameras (100 images for each
camera): Canon EOS 450D, Nikon D50, Nikon D90, Nikon D7000. All cameras are equipped with
a Bayer CFA, thus respecting our requirement that authentic images come from a camera leaving
demosaicking traces, but the in-camera demosaicking algorithms of such devices are unknown. Each
image was cropped to 512 × 512 pixels, maintaining the original Bayer pattern, which has been
verified by inspecting the technical specifications of the raw image format. We will refer to such a
dataset as the original dataset.
The first step was to verify the assumption of Gaussian distribution on L(k, l), both in the presence
and in the absence of CFA artifacts. To this end, starting from 100 images selected from the original
dataset, we have created two datasets satisfying the M1 (presence of CFA) and M2 (absence of CFA)
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bilinear bicubic gradient-based median

No CFA 1.589 1.558 1.672 1.812
Ideal 2.168 2.134 2.049 2.016

Canon EOS 2.001 1.908 1.897 1.962
Nikon D50 1.736 1.797 1.834 1.814

Nikon D7000 2.206 2.066 1.729 1.899
Nikon D90 1.998 1.924 1.667 1.927

Table 3.5: Median value of the GGD shape parameters estimated from the distribution of the feature
L(k, l) for each image, considering different predictors on different datasets.

hypotheses. To create the dataset corresponding to M1, the original images have been sampled
according to the Bayer CFA pattern and then re-interpolated using four possible demosaicking
algorithms, namely bilinear, bicubic, gradient-based and median (see [75] for more details on such
interpolation algorithms). This allowed us to know the interpolation kernel on the whole image,
and then to exactly predict the interpolated values with the four different predictors (we refer to
these cases as ’ideal’). To create the dataset corresponding to M2, each color channel of the original
images has been upsampled by a factor two, blurred with a 7 × 7 median filter, and downsampled
by a factor two, thus removing all CFA artifacts. Features are then computed using again the four
predictors as before.
Moving towards realistic conditions, we also computed the value of L(k, l) under the M1 hypoth-
esis on the original dataset of 400 TIFF uncompressed images interpolated using their unknown
in-camera demosaicking algorithms, and applying bilinear, bicubic, gradient-based and median pre-
dictors.
We verified the approximate Gaussian distribution of the features for all the classes described so
far, i.e.: absence of CFA, presence of CFA with known interpolation kernel, and the four sets of
cameras with unknown CFA demosaicking algorithms; for each of these six classes, the features have
been computed with the four different interpolation algorithms (bilinear, bicubic, gradient-based,
median) setting B = 8. The approximately Gaussian behavior of the features has been verified by
fitting them with a generalized Gaussian distribution (GGD), given by

p(L) =
1

Z
e−(|L−µ|/η)ν (3.79)

where µ is a location parameter (mean), η is a scale parameter, ν is a shape parameter, and Z is a
normalization factor so that p(L) integrates to one. The Gaussian distribution is a particular case of
the GGD for ν = 2. Since our conjecture is that the Gaussian assumption holds for a single image,
but not necessarily over the whole dataset, the shape parameter has been independently estimated
for each image using the Mallat’s method [76]. In Table 3.5 we report the median value of the
estimated shape parameters for the six classes and the four interpolation algorithms. The values
indicate a reasonable fit of the proposed model. Interestingly, the model appears more fitting in the
presence of CFA artifacts, and when the predictor is matched to the actual interpolation algorithm.

Furthermore, we plot the mean value of the features in order to verify how features in M1 hypothesis
can be discriminated by features in M2 hypothesis, both in ideal and in realistic cases. In Fig. 3.21,
we show the results for the ideal case in absence of CFA (first row) and presence of known CFA
(second row). In Fig. 3.22, we show the 16 histograms of the mean values of L(k, l): along each row
we have histograms referring to the same camera, from top to bottom, Canon EOS 450D, Nikon D50,



CHAPTER 3. OPERATOR CHAIN MODELING 78

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

0 100 200 300
0

0.05

0.1

0.15

0.2

0 100 200 300
0

0.05

0.1

0.15

0.2

0 100 200 300
0

0.05

0.1

0.15

0.2

0 100 200 300
0

0.05

0.1

0.15

0.2

Figure 3.21: Distribution of the average value of L(k, l) on an image, feature evaluated on 8×8 blocks,
in the absence of CFA artifacts (top row) and when the predictor is the same as the demosaicking
algorithm (bottom row), using different predictors: from left to right, bilinear (red), bicubic (blue),
gradient-based (green), median (violet).

Nikon D90, Nikon D7000. For both the Figures along each column we have histograms referring to
the same predictor, from left to right, bilinear (red), bicubic (blue), gradient-based (green), median
(violet).
Globally, the above results confirm that the proposed features has zero mean under theM2 hypothesis
and mean greater than zero under the M1 hypothesis. The histograms also highlight that the four
predictors have different behaviors. The median predictor does not seem well suited to detect CFA
artifacts, since it produces values of L(k, l) closer to zero than the other predictors, irrespective of
the camera.
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Figure 3.22: Distribution of the average value of L(k, l) on an image, feature evaluated on 8 × 8
blocks, with unknown in-camera demosaicking algorithms and using different predictors: along each
row we have histograms referring to the same camera, from top to bottom, Canon EOS 450D,
Nikon D50, Nikon D7000, Nikon D90; along each column we have histograms referring to the same
predictor, from left to right, bilinear (red), bicubic (blue), gradient-based (green), median (violet).



Chapter 4

Synergies with WP3 and WP4

4.1 JPEG Quantization and full-frame filtering

As introduced in Sec.3.1, we studied the DCT coefficients of a full-frame linearly filtered JPEG image
and derived an accurate mathematical analysis establishing the theoretical relationship between the
DCT coefficients before and after filtering. Such theoretical framework allows to fully characterize
the probabilistic distributions of the DCT coefficients of the quantized and filtered image, given
different kernels. When testing the mathematical model we faced an inconsistency between the
theoretically derived models and the actual distributions of DCT coefficients of compressed filtered
images, affecting the goodness of the fit. By further investigating this incongruence, we showed that
the DCT coefficients corresponding to different frequencies cannot be considered independent, and
those of the same frequency cannot be assumed to be i.i.d. distributed. Although in the literature
this is a typical assumption (e.g., in [36][37][40], where it appears to be convenient and reasonable),
such approximation would compromise here the conducted analysis. By considering those inter- and
intra-block redundancies of the DCT coefficients in the provided analysis, we were able to redefine
the proposed theoretical model and provide an accurate mathematical framework of the considered
processing chain.
Following we briefly recall the derived mathematical model, as described in Section 3.1 and describe
in details the steps taken to redefine the theoretical models taking into account the inter- and
intra-block redundancy.

4.1.1 Theoretical model for the DCT coefficients of a JPEG filtered im-
age.

We derive a theoretical model to describe the statistical properties of an image that has been first
JPEG compressed and then linearly filtered. In order to do that, we mathematically express the
deterministic relation between the quantized DCT coefficient d̂q(x, y) and those of the JPEG and
filtered image df (x, y). Recalling Sec. 3.1.2, we can express such relationship as follows:

df (x, y) = γ · d̂q(x, y) +N, (4.1)

where γ,N ∈ R are a scaling factor and a noise term, respectively. These two terms can be calculated,
through some math, according to (4.2), where α = xmod8, β = ymod8, α′ = k1mod8, β′ = k2mod8,
DCTx,y is the (x, y)-th DCT coefficient obtained from an 8×8 pixel block, IDCTx,y is the 8×8 pixel
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(4.2)

block (located at {bx8 c, . . . , bx8 c + 7} × {by8 c, . . . , b
y
8 c + 7}) obtained by applying the IDCT to the

(x, y) DCT coefficient, ∗ denotes the bidimensional convolution, and [A]c,da,b denotes the submatrix
of an arbitrary matrix A with first index taking values in {a, . . . , b}, and second index in {c, . . . , d}.
N stands for the second term in the summation in (4.2).

Then, by exploiting the knowledge about the statistical properties of the distribution of d̂q(x, y), we
further analyze the histograms of df (x, y) and assess the dependency of the different frequencies.

4.1.1.1 Probability distribution

From probability theory [39], given two discrete independent random variables, the probability
density function (pdf) of their sum is the convolution of their corresponding pdfs. Recalling Sec.
3.1.2.1, it is known that the probability mass function of each frequency coefficient of a JPEG
image can be expressed as an impulse train, with each impulse located at multiples of the applied
quantization step ∆(i, j). Therefore, according to the derived mathematical model in (4.2), and
based on the common DCT coefficients models, which typically assume the different frequency
components to be independent and the coefficients in a given frequency to be i.i.d. [40], we would
expect the probability distribution of the DCT coefficients df (x, y) to be the result of a convolution
between a train of impulses located at γ · k∆(i, j), with γ ∈ R, and a noise component due to the
contributions of all the neighboring coefficients (4.2). Moreover, according to the Central Limit
theorem, we can model the noise component as a GGD distributed variable, with GGD parameters
depending on each centroid γ · k∆(·, ·) about which such noise is centered. However, we experienced
a divergence between the classical theoretical models and the empirical data, showing that indeed
the typical assumptions on the DCT coefficients distribution of natural images do not hold.
This suggests the need for a different model for the noise component in (4.2), which cannot any
longer be considered as the addition of independent variables (coefficients of different frequencies)
and i.i.d. components (coefficients in the same frequency).

4.1.1.2 Redefinition of the theoretical model

In Fig. 4.1 it is shown an example of DCT histogram where we can observe a scaling between the
peaks in the histogram of the DCT coefficients of the compressed and filtered image and the impulse
train identifying the location of the translated quantization step γ · k∆(·, ·) (red bars). In order to
justify this inconsistency between theoretical and empirical data we analyze the mean of the noise
component and verify that for real images it monotonically increases with the quantized samples
value. As an example, in Fig. 4.2 the red curve represents the mean of the noise component when a
Moving Average filter of size 3×3 is applied, plotted with respect to each translated quantized value
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Figure 4.1: Probability distribution, at frequency (1, 2), quantized with a step q(1, 2) = 10 and filtered with
a 3 × 3 averaging filter. The red impulses represent the location of γ · k∆(1, 2) while the yellow ones are
translated by the mean of the Noise component. The latter perfectly match with location of the peaks in
the histogram, thus allowing an accrue redefinition of the theoretical model fitting perfectly the empirical
data.

γ · k∆(i, j); similar behaviors have been verified for different filter kernels. Moreover, we investigate
the verified divergence between the behavior in natural images and the theoretically modeled one, by
determining the main causes of the noise mean component. For each coefficient df (x, y), we isolate
the contribution of each 24× 24 coefficient and analyze their influence. In Fig. 4.2 (a)-(b) we show
the specific pattern of coefficients mainly contributing to the noise, for all the AC coefficients (1, 2)
and (2, 1). The red curve represents the mean of the total noise component over γ ·k∆(·, ·), the blue
curve represents the contribution of a specific set of coefficients and the black curve corresponds
to the contribution of all the remaining coefficients not specified in the previous set. This set was
determined by isolating those coefficients that provided a significant noise contribution, in absolute
value, over all γ · k∆(·, ·) (i.e., above an empirically determined threshold.) Note that the 24 × 24
grid in the upper left part of each plot corresponds to the 9 DCT blocks taken into account in (4.1),
when employing a kernel filter of size smaller than or equal to 17. The black dot identifies the
considered frequency and the blue dots correspond to set of coefficients which mainly influence the
total noise, as verified by the curve matching. We report only the behavior for the coefficients (1, 2)
and (2, 1), but similar results are given for different frequencies.
Therefore, an accurate model for the distribution of the DCT coefficients of a filtered JPEG image
can be redefined, taking into account the scaling inferred by the noise component. In particular, the
distribution of DCT coefficients, quantized and filtered with a given kernel, will be the sum of many
GGDs, each of them centered in γ ·k∆(·, ·) translated by the mean of the noise component and with
amplitude depending on the distribution of the quantized and not filtered coefficients.
In Fig. 4.1 it is shown how the translated impulses, now centered in γ · k∆(·, ·) plus the mean of the
noise component, match with the peaks of the histogram.
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Figure 4.2: Inter- and intra-block spatial redundancy affecting to df (x, y), over the entire image database.
In each panel, corresponding to the frequencies (1, 2) and (2, 1), respectively (black cross in the grid in the
upper left of each subplots), the total mean of the noise component (red curve) is plotted with respect to
the values of the quantized filtered coefficients γ · k∆q(i, j). The blue curve represents the contribution of
a set of coefficients (depicted in blue in the grid) and the black curve corresponds to the contribution of all
the remaining coefficients not specified in the previous set.

4.2 Transform coder identification based on quantization foot-
prints and lattice theory

Transform coding has emerged over the years as the dominating compression strategy. Transform
coding is adopted in virtually all multimedia compression standards including image compression
standards such as JPEG [77] and JPEG 2000 [78, 79] and video compression standards such as,
for example, H.264/AVC [80] and HEVC [81]. This is due to the fact that transform coders are
very effective and yet computationally inexpensive since the encoding operation is divided into three
relatively simple steps: the computation of a linear transformation of the data, scalar quantization
of each coefficient, and entropy coding.
Due to its centrality to any type of multimedia data, transform coding theory is now extensively
used in a new range of applications that rely on the possibility of reverse-engineering complex chains
of operators starting from the available output signals. This has stimulated a rich set of activities in
WP3, which were focused on exploiting the footprints left by single, double and multiple compression,
for the case of image, video and audio signals. All these works required prior knowledge of the type
of standard being considered. This implies that the specific transform in use is assumed to be known,
whereas the quantization step sizes need to be estimated. Although earlier standards (e.g., JPEG,
MPEG-2 and MPEG-4) adopted the Discrete Cosine Transform (DCT) on 8×8 blocks, more recent
coding architectures addressed by the application scenarios identified in WP5 are more diversified
in terms of both the type of transform being used and the block size. For example, JPEG2000
is based on a wavelet transform that can be applied to tiles whose size can extend to the whole
image [82]. H.264/AVC adopts an approximation of the DCT transform on 4× 4 blocks, which can
be implemented using integer arithmetic [83]. In addition, in the high-profile, H.264/AVC enables
the adaptive choice between 4×4 and 8×8 transform block sizes. The recent HEVC standard under
development goes even further, supporting four different transform block sizes in the range from
4× 4 to 32× 32 [81]. The core transforms used for 4× 4 and 8× 8 are the same as in H.264/AVC,
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while for the two larger block sizes, integer transforms based on Chen’s fast algorithm for the DCT
are used [84]. In addition, the adoption of hybrid transforms, which can be obtained by means of a
separable combination of DCT and DST (Discrete Sine Transform) is being investigated in [85]. All
this indicates that the identification of the actual transform being used might give important clues
about the processing history of a digital signal.
Most of the methods investigated in WP3 focused only on a specific type of multimedia signal
(e.g., only images or only videos) and are to some extent ad-hoc. It is therefore natural to try
and develop a universal theory of transform coder identification that is independent of the specific
application at hand. To this end, in WP2 we considered a general model of transform coding that
can be tailored to describe a large variety of practical implementations that are found in lossy coding
systems, including those adopted in multimedia communication. This has led to a transform coder
identification algorithm which leverages quantization footprints and lattice theory. The proposed
method is able to successfully determine the parameters of the transform coder when a very small
number of vectors are observed as output of a transform coder.
However, a comparison of the model adopted in WP2 with the application scenarios in WP5 (e.g.,
UC-04, UC-10, etc.), reveals that, in many circumstances, signals are compressed multiple times.
This provided a feedback to WP2, thus suggesting a more general model, which consists of cascading
two transform coders, with the goal of identifying the parameters of both of them. With respect to
the scenario addressed in Section 3.3 of this deliverable, this requires to handle noisy observation,
where noise might be introduced by the quantizer of the second transform coder. Although not
described in this deliverable, we have obtained very promising results also along this direction,
which stimulated further investigations to be continued during the third year of the project, despite
of the fact that WP2 will be officially ended.

4.3 Modeling reacquisition chains

As part of the theoretical analysis carried out in WP2 and detailed in Section 3.4 in this deliverable,
we constructed a model characterising image reacquisition, as shown in Figure 4.3.
Our chain model has been characterised under specific conditions. Given the assumptions of an input
belonging to the class Finite Rate of Innovation (FRI) signals, and exponential-reproducing sampling
kernels, we have shown how to recover several important parameters relative to the first unknown
acquisition stage. In particular, we have shown how under these assumptions it is possible to
recover the sampling period and order of the interpolator for chain structure identification, recapture
detection and the parameter retrieval, all within a completely deterministic framework.
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Figure 4.3: Image recapture model.
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The model developed was then applied to the practical problem of camera identification and re-
capture detection of natural images. The work carried out as part of WP2 created the theoretical
foundations upon which the practical footprint detector was then developed.
However, rather than a direct implementation of the model developed, the footprint detector pre-
sented in D3.2 relaxed several of the assumptions made in order to be able to operate with natural
images. In this case, the input from natural images does not always belong to the class of FRI signals
and the sampling kernels can be of arbitrary shape. We have therefore extended the framework de-
scribed in this deliverable by relaxing the assumption on sampling kernels which are now extracted
from a dictionary of acquisition devices. The method proposed in D3.2 finds the dictionary elements
which can best represent edge signals in a query image. While the kernel shape assumption was
relaxed during the transition from theoretical model to practical footprint detector, the FRI signal
theory was still central to the detector developed, and the kernel dictionary was built from edges
observed in natural images that well approximate the properties of FRI signals.
Finally, the information flow is not unidirectional, as the theoretical model was adjusted and ex-
panded following implementation of the footprint detector. In Figure 4.4, the connections between
the various components of the theoretical framework and footprint detector are highlighted. The
backconnections from WP3 to WP2 represent the analysis of sufficient conditions for acquisition
chain retrieval whenever the input signal is an image edge, as well as the identification of the first
sampling kernel using the dictionary method outlined in D3.2.

 
 
In WP2, we setup a model for signal acquisition and develop the theoretical framework in 
order to describe a process carried in a chain of signal acquisition and reconstruction as 
presented in \figref{fig:ProblemStatement}. The chain is built with specific conditions under 
noise free scenario. We assume the type of input signals is a class of signals with Finite Rate 
of Innovation (FRI). In addition, sampling kernels used are in a specific group of kernels 
which can reproduce polynomials and exponentials. This allows us to describe signal using 
parametric expressions and to solve problems in chain structure identification, recapture 
detection and the parameter retrieval in deterministic way. \\ 
 
In WP3, we applied the theoretical framework to image forensics. We use the model in 
\figref{fig:ProblemStatement} to describe single capture and double capture of natural 
images. In this case, the input from natural images are not always in an FRI class and the 
sampling kernels can be arbitrary. We therefore, extend the framework proposed in WP2 by 
relaxing the assumption on sampling kernels which are now extracted from empirical 
acquisition devices. The method proposed in WP3 finds the dictionary elements which can 
best represent edge signals in a query image. Each dictionary element was built following the 
chain process we formulated in WP2 based on the kernels obtained from all possible known 
acquisition devices. 
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Figure 4.4: Flow of information between WP2 and WP3 contributions.

4.4 Demosaicking localization

The results obtained with the tool for the localization of color filter array (CFA) artifacts based on
the above described mathematical model indicate that the proposed method is less effective in the
presence of either almost flat areas or sharp edges. This suggests some possible directions for the
extension of the above mentioned model. In the case of flat areas, we can observe that the prediction
error is almost zero irrespective of the presence of CFA artifacts. This fact appears as an intrinsic
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limitation of the proposed model. A more accurate model could assume that the distribution of the
proposed feature is in general a mixture of two (or more) Gaussian components even in the absence
of an explicit manipulation of the CFA structure. Such components should be associated with areas
of the image exhibiting similar statistical patterns. For example, different regions of the image
could be segmented according to the variance of the content and a specific Gaussian component
could be used to model each class. Since flat areas will be likely associated to components with
a mean very close to zero, the localization of forgeries should look for local inconsistencies in the
modeling of the proposed features that do not correspond to analogous inconsistencies in the local
variance of the content. In the current implementation of the tool, such an analysis is based on
human interpretation of the forgery maps: an ambitious goal is that of devising a model permitting
an automatic evaluation of such clues. Further research will be devoted to extending the current
models according to the above insights.
On the other hand, the low performances observed in the presence of sharp edges can be ascribed to
the signal adaptive and possibly non-linear behavior of realistic in-camera demosaicking algorithms.
At least in theory, such effects could be eliminated by using some prior knowledge regarding in-
camera CFA interpolation, which should yield results very close to the ideal behavior foreseen by
the theoretical model. An alternative approach could be that of reverse engineering the CFA inter-
polation algorithm, for example using methods such as those described in [86] to take into account
a signal adaptive behavior. However, in the presence of heavily manipulated images this approach
is likely to produce a biased estimate and must be handled with care.
A final observation regards the fact that detection performance is strongly affected by JPEG com-
pression, limiting the applicability of the present model to scenarios in which the image under test
is either uncompressed or compressed with high quality factors. Unfortunately, in this case the
results of WP3 do not offer sufficient clues about possible improvements of the current model. Fur-
ther research should be devoted to assessing whether there is a fundamental limit regarding the
detectability of CFA artifacts in the presence of JPEG compression.

4.5 Double JPEG Compression Models

The experimental evaluation of the tools for the localization of image forgeries based on double
JPEG compression statistics has offered some interesting insights on the accuracy of the related
mathematical models. Usually, the likelihood maps produced according to the above mentioned
models show some false alarms in image regions with either low intensity variance, like a very
uniform blue sky, or saturated values, which can occur in the presence of overexposition. As in the
case of CFA artifacts, the above behaviour suggests that the model should also take into account
the local statistics of the image. However, in this case the extension of the current models does not
appear as straightforward as in the CFA case.
A very simple observation is that in the presence of flat areas we will have most of the AC DCT
coefficients quantized to zero, irrespective of the occurence of either single or double compression.
This suggests to include in the model a reliability factor depending on the number of DCT coefficients
having value equal to zero. A similar correction has been already applied in the case of the simplified
model described in Section 2.2.3 of the Deliverable 2.1 and the results confirms that this is indeed
beneficial. Nevertheless, further research is needed to devise suitable strategies for incorporating
local image statistics in the current models.
The results obtained with the developed tools also show that it is usually very difficult to separate
the distributions of singly compressed and doubly compressed DCT coefficients when the quality of
the second compression is lower than the quality of the first one. A possible solution to overcome
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this problem could be that of jointly modeling the DCT coefficients of several DCT frequencies,
however at the cost of a much more complex model. Moreover, as in the case of CFA artifacts, an
interesting question is whether there is some fundamental limit regarding the detectability of double
JPEG compression. The development of such a theory will be a future research topic.



Appendix A

Proof of Lemma 1

We start by remembering that for a memoryless source we have [13]:

nD(Pxn ||PX) = − log(PX(xn))− nH(Pxn). (A1)

By applying the above property to the right-hand side of equation (2.11), we obtain:

nD(Pxn ||PX) +ND(PtN ||PX) = (A2)

− nH(Pxn)−NH(PtN )− logPX(rn+N ),

where we have used the memoryless nature of PX due to which PX(rn+N ) = PX(tN ) · PX(xn). For
any PX ∈ C we also have1:

PX(rn+N ) ≤
∏
a∈X

Prn+N (a)Nrn+N (a), (A3)

where Nrn+N (a) indicates the number of times that symbol a appears in rn+N , and where equality
holds if PX(a) = Prn+N (a) for all a. By applying the log function we have:

logPX(rn+N ) ≤ log
∏
a∈X

Prn+N (a)Nrn+N (a) (A4)

= log
∏
a∈X

Prn+N (a)(Nxn (a)+NtN (a))

=
∑
a∈X

Nxn(a) logPrn+N (a)+∑
a∈X

NtN (a) logPrn+N (a).

By inserting the above inequality in (A2), and by using the definition of empirical KL divergence
we obtain:

nD(Pxn ||PX) +ND(PtN ||PX) (A5)

≥
∑
a∈X

Nxn(a) log
Pxn(a)

Prn+N (a)
+
∑
a∈X

NtN (a) log
PtN (a)

Prn+N (a)

= nD(Pxn ||Prn+N ) +ND(PtN ||Prn+N ),

where the equality holds if PX = Prn+N , thus completing the proof.

1Relationship (A3) can be easily proved by resorting to Jensen’s inequality.
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[46] N. Dalgaard, C. Mosquera, and F. Pérez-González, “On the role of differentiation for resampling
detection,” in 2010 17th IEEE Int. Conference on Image Processing (ICIP), sept. 2010, pp.
1753–1756.



BIBLIOGRAPHY 92
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