

Private Public Partnership Project (PPP)

Large-scale Integrated Project (IP)

D.7.4.2: FI-WARE User and Programmers Guide

Project acronym: FI-WARE

Project full title: Future Internet Core Platform

Contract No.: 285248

Strategic Objective: FI.ICT-2011.1.7 Technology foundation: Future Internet Core

Platform

Project Document Number: ICT-2011-FI-285248-WP7-D.7.4.2

Project Document Date: 2013-04-30

Deliverable Type and Security: Public

Author: FI-WARE Consortium

Contributors: FI-WARE Consortium

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:FP7Portrait_logo.jpg
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:FI-WARE_logo.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 2

1.1 Executive Summary

This document describes the usage of each Generic Enabler provided by the "Interfaces to

Network and Devices" (I2ND) chapter. The document also details the required software elements

and the procedure to setup an environment for the development of applications that can exploit the

capabilities of the I2ND Generic Enablers.

This document consolidates new contents and also contents in previous issues of Release 1. The

reason for re-delivering parts that were already issued is twofold:

 FI-WARE has made an effort to create a unified and improved format. The parts generated

in the past are also provided in the new enhanced format for the sake of uniformity and

readability.

 A single reference document per chapter is clearer and easier to handle that two

incremental issues.

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 3

1.2 About This Document

This document comes along with the Software implementation of components, each release of the

document being referred to the corresponding Software release (as per D.x.2), to provide

documentation of the features offered by the components and interfaces to users/adopters.

Moreover, it explains the way they can be exploited in their developments.

1.3 Intended Audience

The document targets users as well as programmers of FI-WARE Generic Enablers.

1.4 Chapter Context

The I2ND chapter defines an enabler space for providing Generic Enablers (GEs) to run an open

and standardised network infrastructure. The infrastructure deals with highly sophisticated

terminals, as well as with highly sophisticated proxies, on one side, and with the network operator

infrastructure on the other side. This latter will be implemented by physical network nodes, which

typically will be under direct control of an operator, or the node functionality will be virtualised – in

this case the I2ND functionality can be accessed by further potential providers, like virtual

operators. The I2ND chapter defines four GEs, as represented in the figure:

 CDI (Connected Device Interface) towards the Connected Devices. These devices include,

but are not limited to, mobile terminals, tablets, set top boxes and media phones.

 CE (Cloud Edge) towards the Cloud Proxies. Cloud Proxies are gateways, which will

connect and control a set-up of nodes towards the Internet or/and an operator network.

 NetIC (Network Information and Control) towards Open Networks. Open Networks are

following the idea of flow based controlled networks, and can be used for virtualisation of

networks.

 S3C (Service Capability, Connectivity and Control) towards Underlying Networks. The

underlying networks are following standards such as Next Generation Networks (NGNs) or

Next Generation Mobile Networks (NGMNs). In the case of the S3C specified in I2ND the

baseline underlying network will be the Evolved Packet Core (EPC) by 3GPP.

Each of the GEs of I2ND have specific interfaces which can be accessed by Application

Developers, Cloud Services, FI-WARE and third party Enablers. Besides typical interfaces to

functionality offered by suche GEs, it is worth mentioning that:

 The GE S3C is the central point of the I2ND architecture. I2ND develops an enabling

environment which can be used by network operators. Together with NetIC, both GEs build

the environment of an operator, which might even be a virtual operator. S3C can be seen

as the GE to run and steer the network infrastructure.

 The interfacing between S3C and CDI provides status and control information exchange of

the device and remote control capabilities.

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 4

 Cloud proxies can be part of an operator infrastructure. Therefore it is necessary to have

access to these network nodes through a standardised interface.

1.5 Structure of this Document

The document is generated out of a set of documents provided in the public FI-WARE wiki. For the

current version of the documents, please visit the public wiki at http://wiki.fi-ware.eu/

The following resources were used to generate this document:

D.7.4.2 User and Programmers Guide front page

Connected Device Interfacing - User and Programmers Guide

Cloud Edge - User and Programmers Guide

Network Information and Control - User and Programmers Guide

NetIC GE - OFNIC Uniroma - User and Programmers Guide

Service Capability Connectivity and Control - User and Programmers Guide

http://wiki.fi-ware.eu/
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Connected_Device_Interfacing_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Cloud_Edge_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Network_Information_and_Control_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NetIC_GE_-_OFNIC_Uniroma_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Service_Capability_Connectivity_and_Control_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:I2ND-GEs-Architecture-v2.jpg

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 5

S3C GE - OpenEPC - User and Programmers Guide

S3C GE - SMS+MMSEnablers - User and Programmers Guide

S3C GE Support - S3C API Proxy - User and Programmers Guide

1.6 Typographical Conventions

Starting with October 2012 the FI-WARE project improved the quality and streamlined the

submission process for deliverables, generated out of the public and private FI-WARE wiki. The

project is currently working on the migration of as many deliverables as possible towards the new

system.

This document is rendered with semi-automatic scripts out of a MediaWiki system operated by the

FI-WARE consortium.

1.6.1 Links within this document

The links within this document point towards the wiki where the content was rendered from. You

can browse these links in order to find the "current" status of the particular content.

Due to technical reasons not all pages that are part of this document can be linked document-local

within the final document. For example, if an open specification references and "links" an API

specification within the page text, you will find this link firstly pointing to the wiki, although the same

content is usually integrated within the same submission as well.

1.6.2 Figures

Figures are mainly inserted within the wiki as the following one:

[[Image:....|size|alignment|Caption]]

Only if the wiki-page uses this format, the related caption is applied on the printed document. As

currently this format is not used consistently within the wiki, please understand that the rendered

pages have different caption layouts and different caption formats in general. Due to technical

reasons the caption can't be numbered automatically.

1.6.3 Sample software code

Sample API-calls may be inserted like the following one.

http://[SERVER_URL]?filter=name:Simth*&index=20&limit=10

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_OpenEPC_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_SMS%2BMMSEnablers_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_Support_-_S3C_API_Proxy_-_User_and_Programmers_Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 6

1.7 Acknowledgements

The following partners contributed to this deliverable: ALU, DT, FRAUNHOFER, FT, INTEL, NSN,

TRDF, TI, UNIROMA1

1.8 Keyword list

FI-WARE, PPP, Architecture Board, Steering Board, Roadmap, Reference Architecture, Generic

Enabler, Open Specifications, I2ND, Cloud, IoT, Data/Context Management, Applications/Services

Ecosystem, Delivery Framework , Security, Developers Community and Tools , ICT, es.Internet,

Latin American Platforms, Cloud Edge, Cloud Proxy.

1.9 Changes History

Release Major changes description Date Editor

v1 First draft of deliverable submission generated 2013-04-22 TID

v2 Initial version with GE pages added 2013-04-22 TI

v3 Updates to links, ready for finalisation 2013-05-20 TI

1.10 Table of Contents

1.1 Executive Summary .. 2

1.2 About This Document ... 3

1.3 Intended Audience .. 3

1.4 Chapter Context .. 3

1.5 Structure of this Document.. 4

1.6 Typographical Conventions... 5

1.6.1 Links within this document ... 5

1.6.2 Figures .. 5

1.6.3 Sample software code ... 5

1.7 Acknowledgements ... 6

1.8 Keyword list .. 6

1.9 Changes History ... 6

1.10 Table of Contents ... 6

2 Connected Device Interfacing - User and Programmers Guide .. 9

2.1 Introduction ... 9

2.2 Users Guide .. 9

2.2.1 CDI's implementation architecture ... 9

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/ALU
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/DT
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FRAUNHOFER
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FT
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/INTEL
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NSN
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/TRDF
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/TI
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/UNIROMA1

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 7

2.2.2 Software and Hardware environment ... 10

2.3 Programmers Guide.. 10

2.3.1 Including Libraries .. 10

2.3.2 Library Initialization .. 11

2.3.3 CDI API Discovery ... 11

2.3.4 CDI API example usage ... 12

3 Cloud Edge - User and Programmers Guide .. 19

3.1 Introduction ... 19

3.1.1 Goal of this document .. 19

3.2 Programmers Guide.. 19

3.2.1 Create a CloudEdge Virtual Machine image for STB (HTTP web server) 19

3.2.2 Run a CloudEdge Virtual Machine image on STB (HTTP web server) 21

3.2.3 Run others CloudEdge Virtual Machines on STB ... 21

4 Network Information and Control - User and Programmers Guide ... 22

5 NetIC GE - OFNIC Uniroma - User and Programmers Guide ... 23

5.1 Introduction ... 23

5.2 User Guide ... 23

5.3 Programmer Guide ... 23

5.3.1 Navigation with browser ... 23

5.3.2 OFNIC Uniroma GUI (draft version) ... 26

5.3.3 Apache HttpClient .. 27

5.3.4 How to extend OFNIC Uniroma GE ... 29

6 Service Capability Connectivity and Control - User and Programmers Guide 30

7 S3C GE - OpenEPC - User and Programmers Guide .. 31

7.1 Introduction ... 31

7.2 User Guide ... 32

7.3 Programmer Guide ... 33

8 S3C GE - SMS+MMSEnablers - User and Programmers Guide .. 34

8.1 Introduction ... 34

8.1.1 Restrictions .. 34

8.1.2 Countries, Short Codes and sender addresses .. 34

8.2 User guide .. 35

8.2.1 1/Pre-requisites.. 35

8.2.2 2/Sending your first SMS message .. 35

8.3 Programmer guide .. 36

9 S3C GE Support - S3C API Proxy - User and Programmers Guide 37

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 8

9.1 Introduction ... 37

9.2 User guide .. 37

9.3 Programmer guide .. 37

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 9

2 Connected Device Interfacing - User and
Programmers Guide

You can find the content of this chapter as well in the wiki of fi-ware.

2.1 Introduction

This document provides a useful guide for developers and users of web applications written on top

of the CDI API. Specific sections are dedicated to developer tools intended to help them during

development, test and deployment of CDI based Webapps. These include illustrations

demonstrating how to discover and use the CDI APIs.

CDI installation and administration information can be found at the Installation and Administration

Guide page.

2.2 Users Guide

CDI (Connected Device Interface) is a set of common JavaScript APIs which exist on a range of

platforms, allowing developers to create web applications. CDI's common API set provides

application portability. CDI is implemented as a JavaScript library with additional native software

components. CDI's JavaScript library cdi.js can be used either by its self inside a normal web

page, or inside a more complete CDI deployment which includes that native software components.

CDI provides a wide range of functionality via a big API. The API is broken into functional blocks. A

Functional block is a group of APIs which provide a given set of functionality, e.g. Geolocation

would be one functional block, and File System Access would be another. CDI can be deployed on

a wide range of devices. Each device offers different functionality, not all functional blocks may be

available on all devices, therefore CDI provides a method of detecting the presence of a functional

block. A complete list of all of the available functional blocks can be found in the FI-WARE

Architecture Description. When the cdi.js is used without the native software components it

provides less functional blocks than would otherwise be available.

2.2.1 CDI's implementation architecture

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Connected%20Device%20Interfacing%20-%20User%20and%20Programmers%20Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fi-ware-private/index.php/Connected_Device_Interfacing_-_Installation_and_Administration_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fi-ware-private/index.php/Connected_Device_Interfacing_-_Installation_and_Administration_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.I2ND.CDI#On_Device_API_functionalities
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.I2ND.CDI#On_Device_API_functionalities
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:Cdi-highlevel-structure-webinos.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 10

CDI is implemented on top of Webinos, a platform developed within another FP7 Project. The

native software components are implemented as Webinos extensions and provide functionality

which requires access to native, or host operating system interfaces. CDI provides a single

JavaScript object $cdi through which all functional blocks and their APIs are available.

2.2.2 Software and Hardware environment

For the FI-WARE 2nd major release CDI is supports Android devices, with both the cdi.js

JavaScript library and native software components. The JavaScript library works independently of

the native software components. It can be used as a JavaScript library within a web site / web

page and provides support on iOS, Android, and PC platforms.

2.3 Programmers Guide

CDI makes it possible for a programmer to create a web page with rich functionality and deploy it

as a hosted Webinos application with enhanced functionality. To do this all CDI based applications

must be structured in the same way. Firstly the programmer must include the Webinos and CDI

libraries, then wait for the CDI Library to Initialize, lastly the programmer must validate that the

functional block containing the functionality they wish to use is available. These three steps are

covered in detail below.

A CDI based application can be developed and deployed in 3 ways:

1. As an HTML document (with no native software): The application is a HTML5 web page

which does not use any of the enhanced native features of CDI.

2. As an HTML document (with native software): A web page which connects to and uses a

Webinos core located on the viewing device. Here the application exploits the Webinos

messaging system to convey JavaScript calls out of the browser, toward the Webinos PZP.

This is achieved by using the HTML5 WebSockets API, that implies the Browser must

support the W3C WebSockets specification. WebSockets is fully supported by Chrome and

Firefox, however you can refer this page to check WebSockets compliancy within your

browser.

3. As a Webinos widget: If the application is packaged as a Webinos widget, it will be

executed in the WebRT provided by Webinos. Webinos widgets are installed by opening

the Webinos-Application activity (that comes with the apks installation) and scanning the

SD-Card of your device looking for *.wgt files. A specific section is dedicated to the

packaging and installation of Webinos widgets.

2.3.1 Including Libraries

CDI based applications are web applications, and are therefore HTML documents. To use CDI with

the native software components it is necessary to import the webinos.js file and the cdi.js files.

It is important that they are imported in that order (webinos.js<code> THEN <code>cdi.js).

<html>

 <head>

 <!- ... ->

http://www.webinos.org/
http://caniuse.com/websockets

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 11

 <script type='text/javascript' src='webinos.js'></script>

 <script type='text/javascript' src='cdi.js'></script>

 <!- ... ->

 </head>

 <body>

 <!-- body here -->

 </body>

</html>

2.3.2 Library Initialization

The CDI framework performs a number of initialization steps when it loads and is not immediately

available for use. Any code which wishes to make use of the CDI API must wait until it is available.

This is possible by waiting for the onCDIReady event:

 window.addEventListener("onCDIReady", function(evt) {

 // ... make use of CDI APIs here

 }, false);

This event always happens after the document is ready and has been loaded. It therefore

supersedes these existing DOM events.

2.3.3 CDI API Discovery

CDI can work across a number of different types of devices and each different device can offer a

different set of functionality. To cope with this CDIs APIs are broken down into functional blocks. It

is possible to query to see if a device supports a specific functional block. The code example below

shows how to check for the presence of the QoE and Geolocation APIs:

 window.addEventListener("onCDIReady", function(evt) {

 if ($cdi.qoe.availability == true) {

 // .. use QoE API here

 }

 if ($cdi.sensors.availability.geolocation == true) {

 // ... use the Geolocation API here

 }

 }, false);

 }, false);

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 12

More detailed info about the API are available in the OpenSpecs document.

2.3.4 CDI API example usage

This section is aimed at providing a complete example of a Webapp based on CDI. There are two

examples, one focused on the QoE functionality, and the other demonstrating a simple

Geolocation use case.

Note the following examples use the jQuery library. Developers are then
supposed to import jQuery before of executing the code.

2.3.4.1 Basic Web Application : QoE

The tutorial will show how the QoE API can be used to control the user's experience for a video

stream application. This example shows how the QoE API works for a video streaming application

that wishes to offer QoE support in its UI. The following code can be run on top the local web

Browser available in your device, and relies on a running PZP instance equipped with the FI-

WARE QoE API Handler module.

Please be aware that QoE functionality is only available when creating a CDI application which

uses native software functionality. QoE only works when CDI runs with Webinos and the QoE core

is an Android Java package which is only accessible via a Webinos extension.

The following html file will be named as cdi-qoe-helloworld.html.

<html lang="en">

<head>

 <meta charset='utf-8'>

 <title>HTML5 Video and QoE API</title>

 <script type="text/javascript" charset="utf-8"

src="webinos.js"></script>

 <script type="text/javascript" charset="utf-8"

src="cdi.js"></script>

 <script type="text/javascript">

 var media_events = new Array();

 media_events["play"] = 0;

 media_events["pause"] = 0;

 media_events["ended"]=0;

 var flowid;

 var flowurl;

 var ended=false; //end of the user experience

/*Called when the document is loaded*/

function init() {

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 13

 document._video = document.getElementById("video");

 init_events();

}

function init_events() {

 for (key in media_events) { //Register listeners for

video events

 document._video.addEventListener(key, capture, false);

 }

}

document.addEventListener("onCDIReady", init, false);

/*Called to update the UI with fresh context info*/

function onCtxtChanged(msg){

 $cdi.qoe.getContext(flowid,

 function(msg){

document.getElementById("status").innerHTML="Monitoring status:

"+msg.ctxtdump.monitor;

document.getElementById("feedback").innerHTML="Click Rate:

"+msg.ctxtdump.CR;

 },

 function(errmsg){});

 //refresh the context each 1 second

 if(!ended) {setTimeout(onCtxtChanged,1000);}

}

/*Handle video events*/

function capture(event) {

 if(event.type=="play"){

 flowurl= document.getElementById('mp4').getAttribute('src');//get

the video URL

 $cdi.qoe.bindFlow(flowurl, //bind the video URL to the QoE

framework

 function(msg){

 flowid=msg.flowID;

document.getElementById("flowid").innerHTML="Assigned flow ID: "+flowid

$cdi.qoe.runQoeMonitor(flowid,onCtxtChanged,function(errmsg){});},

 function(errmsg){alert("An error occurred while

binding the flow: "+'\n'+errmsg.bcerr.code_desc);});

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 14

 }

 else

 if(event.type=="pause"){

 $cdi.qoe.pauseQoeMonitor(flowid,onCtxtChanged,function(errmsg){});

}

 else

 if(event.type=="ended"){

 ended=true;

 $cdi.qoe.unbindFlow(flowid,function(msg){alert("end of the

experience");},function(errmsg){});}

/*Attached to the QoE feedback button*/

 var feedback=function(){

 $cdi.qoe.giveFeedback(flowid,onCtxtChanged, function(errmsg){});

}

 </script>

</head>

<body>

 <h1>QoE API and HTML5 video example</h1>

 <p>This page is a demonstrations of the QoE API applied to a video

streaming application. When the video is played,

 its URL is bound to the QoE monitoring system, and a numeric

FlowID is generated.

 A button to provide bad QoE feedbacks is provided, together with

fields to track a subset of the flow's context</p>

 <div>

 <video id='video'

 controls preload='none'

 poster="http://media.w3.org/2010/05/sintel/poster.png">

 <source id='mp4'

 src="http://media.w3.org/2010/05/sintel/trailer.mp4"

 type='video/mp4'>

 <source id='webm'

 src="http://media.w3.org/2010/05/sintel/trailer.webm"

 type='video/webm'>

 <source id='ogv'

 src="http://media.w3.org/2010/05/sintel/trailer.ogv"

 type='video/ogg'>

 <p>Your user agent does not support the HTML5 Video element.</p>

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 15

 </video>

 <div>

 <input class="left" type='button' onclick='feedback()'

value='give feedback!'/>

 <div class="right" id="feedback">Click Rate: 0.0</div>

 <div class="right" id="flowid">Flow ID: undefined</div>

 <div class="right" id="status">Monitoring status: UNKNOWN

(not started yet)</div>

 </div>

 </div>

</body>

</html>

2.3.4.2 Basic Web Application : GeoLocation

This example shows how the Geoloation API works. It uses CDI to obtain the geographic location

of the device, then plots this on a Google Map. It provides full diagnostic information, displaying all

the information returned to it by CDI. The following code can be run on top the local web Browser

available in your device, and relies on a running PZP instance equipped with the FI-WARE QoE

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:Cdi-geolocation-example.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 16

API Handler module. The following html file will be named as cdi-geolocation-

helloworld.html.

Including the Libraries
Firstly we must include the correct libraries. In this example application we're also using the jQuery

library, but JQuery is not compulsory. It is possible to write this application without jQuery, the

author has used it out of convenience. This example uses the Google Map tool to plot the devices

current location and therefore also include the Google Map's API.

<html>

 <meta name="viewport" content="initial-scale = 1.0,maximum-scale =

1.0" />

 <head>

 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

 <script type="text/javascript" src="jquery-1.9.1.js"></script>

 <script type="text/javascript" src="webinos.js"></script>

 <script type="text/javascript" src="cdi.js"></script>

 <script

src="https://maps.googleapis.com/maps/api/js?v=3.exp&sensor=true"></scrip

t>

 <!-- ... -->

 </head>

Library Initialization
Before using the CDI API it is necessary to wait for it to Initialize. This is achieved by waiting for the

"onCDIReady" event.

 window.addEventListener("onCDIReady", function(evt) {

 /* ... */

 }, false);

CDI API Discovery
Once initialized it is necessary to confirm that the platform the application is running on supports

geolocation. This is done by checking the $cdi.sensors.availability.geolocation boolean

value. True indicates that the geolocation functional block is present.

 window.addEventListener("onCDIReady", function(evt) {

 if ($cdi.sensors.availability.geolocation) {

 $("#geo-support").html("is supported");

 startGeoLocationWatching();

 } else {

 /** geolocation is not available **/

 }

 }, false);

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 17

Once the functional block is present the code invokes the startGeoLocationWatching()

function.

Using the CDI API (Geolocation)
The startGeoLocationWatching() contains all the code which uses the geolocation API. This

functional initially sets up the Google Map object before calling the CDI Geolocation functionality.

 function startGeoLocationWatching() {

 // init the Google map object here.

 var mapOptions = {

 zoom: 12,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

 map = new

google.maps.Map(document.getElementById('googlemap'), mapOptions);

 //request the current position

$cdi.sensors.geolocation.getCurrentPosition(function(position){

 geolocationPositionCallBack(position);

 geolocationWatchId =

$cdi.sensors.geolocation.watchPosition(geolocationPositionCallBack,

geolocationPositionCallBackError,

 {

 enableHighAccuracy: true,

 timeout: 60000,

 maximumAge: 60000

 });

 }, geolocationPositionCallBackError,

 {

 enableHighAccuracy: true,

 timeout: 60000,

 maximumAge: 60000

 });

 };

The geolocation functional block is available on the $cdi.sensors.geolocation object. The code

above requests the current position, if this request completes successfully the lambda function is

invoked and map is updated by calling the application function geolocationPositionCallBack

and passing the position object supplied by the CDI API. After this the code calls watchPosition

to register for any changes to the devices location. From this point on every time the devices

position changes geolocationPositionCallBack will be invoked.

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 18

Handling Geolocation Data

The geolocationPositionCallBack function deals with the geolocation data when it is supplied

by CDI. It received the position object as supplied by the CDI API. The position object contains

more than just the latitude and longitude information. It can also include information on speed, if

the device is traveling, accuracy information and altitude. The function uses some jQuery calls to

update fields on the page page with all the information returned.

 function geolocationPositionCallBack(position) {

 $("#lat").html(position.coords.latitude);

 $("#long").html(position.coords.longitude);

 $("#alt").html(position.coords.altitude);

 $("#ll-accuracy").html(position.coords.accuracy);

 $("#alt-accuracy").html(position.coords.altitudeAccuracy);

 $("#heading").html(position.coords.heading);

 $("#speed").html(position.coords.speed);

 var d = new Date(position.timestamp);

 var dateString = d.toLocaleString();

 $("#timestamp").html(dateString);

 var pos = new google.maps.LatLng(position.coords.latitude,

position.coords.longitude);

 var marker = new google.maps.Marker({

 position: pos,

 map: map,

 title: 'Hello World!'

 });

 map.setCenter(pos);

 };

After updating the fields the function then updates the Google map item, by supplying it with the

devices current latitude and longitude and updated the marker position.

For more information on the GeoLocation API please see the CDI Sensor Open Specifications.

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Device_Sensors_%28DRAFT%29

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 19

3 Cloud Edge - User and Programmers Guide
You can find the content of this chapter as well in the wiki of fi-ware.

3.1 Introduction

3.1.1 Goal of this document

3.1.1.1 What will be explained

The goal of this document is to give enough information for programmers to develop and test

Virtual Machines on Cloud Proxies HW boxes.

3.1.1.2 What will NOT be explained

This document expects programmers to fully understand Linux development as well as application

visualization techniques (LxC).

It is also expected that a full cross development environment is installed by the programmers on a

dedicated PC.

No User's Guide is provided, as the use of the Cloud Proxy by end users is expected to be

described by the developers of applications and services running on it.

3.1.1.3 Examples

Several examples of working VMs will be used in this document. These VMs are also provided as

working live examples for the programmers.

It is recommended that users are first trying to have these examples running on their Cloud Proxy

before trying to develop new ones. It is also recommended to start from the one of the provided

example VMs as a basis for developing more complex applications.

3.2 Programmers Guide

3.2.1 Create a CloudEdge Virtual Machine image for STB (HTTP web server)

A CloudEdge Virtual Machine image is composed of :

 a manifest file

 a rootfs

For instance, a CloudEdge VM image that provides a HTTP web server can be created :

a) extract the common rootfs template (rootfs-container) used by VMs :

$ mkdir rootfs-container

$ tar xzf rootfs-container.tar.gz -C rootfs-container

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/%20Cloud%20Edge%20-%20User%20and%20Programmers%20Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 20

b) build the lighttpd open source webserver using the toolchain (cross-compilation) :

$ tar xjf lighttpd-1.4.28.tar.bz2

$ cd lighttpd-1.4.28

$./configure --build=i686-pc-linux-gnu --host=i686-cm-linux --without-

pcre --without-zlib --without-bzip2 --prefix=/usr --

libdir=/usr/lib/lighttpd

$ make

c) integrate lighttpd in rootfs-container :

$ install -d ../rootfs-container/{usr/sbin,usr/lib/lighttpd,var/www}

$ install

src/.libs/{mod_dirlisting.so,mod_indexfile.so,mod_staticfile.so}

../rootfs-container/usr/lib/lighttpd

$ install src/lighttpd ../rootfs-container/usr/sbin/lighttpd

d) create lighttpd.conf configuration file in rootfs-container/etc :

server.document-root = "/var/www"

index-file.names = ("index.html")

mimetype.assign = (".html" => "text/html")

and add execute permission on it :

$ chmod +x rootfs-container/etc/lighttpd.conf

e) create S10lighttpd init script in rootfs-container/etc/init.d (in order to automatically run the

webserver when the VM starts)

#!/bin/sh lighttpd -f /etc/lighttpd.conf

f) create an index.html HTML test page in rootfs-container/var/www :

<HTML>

 <HEAD><TITLE>index.html</TITLE></HEAD>

 <BODY>

 <H 1> Lighttpd Sample Home Page </H1>

 </BODY>

</HTML>

g) package the Virtual Machine rootfs in FTP server directory located on PC :

$ cd rootfs-container

$ tar czf <FTP server directory location>/rootfs-lighttpd.tar.gz *

h) create an UUID (uuidgen command) and the manifest.xml file associated to the VM :

<?xml version="1.0" encoding="utf-8"?>

 <manifest

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 21

 uuid="UUID generated by uuidgen"

 label="lighttpd"

 description="web server"

 rootfs="rootfs-lighttpd.tar.gz">

 </manifest>

i) package manifest file in the FTP server directory located on PC :

$ tar cf <FTP server directory location>/cloudedge-lighttpd-vm.tar

manifest.xml

3.2.2 Run a CloudEdge Virtual Machine image on STB (HTTP web server)

a) Download the CloudEdge web server VM image on STB :

$ curl --user smithj:secret http://<STB IP address>:8080/cloudedge/images

-d '{"image" : {"imageRef" : "ftp://<PC IP address>/cloudedge-lighttpd-

vm.tar"}}'

b) Create a VM instance of this CloudEdge web server VM image

$ curl --user smithj:secret http://<STB IP

address>:8080/cloudedge/instances -d '{"instance" : {"imageRef" : 1}}'

c) Start the VM instance :

$ curl --user smithj:secret http://<STB IP

address>:8080/cloudedge/instances/1 -d '{"start" : null}'

On PC, test this STB web server by connecting to http://<STB IP address> url in a web browser

3.2.3 Run others CloudEdge Virtual Machines on STB

tbd ...

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 22

4 Network Information and Control - User and
Programmers Guide

You can find the content of this chapter as well in the wiki of fi-ware.

 NetIC GE - OFNIC Uniroma - User and Programmers Guide

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Network%20Information%20and%20Control%20-%20User%20and%20Programmers%20Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NetIC_GE_-_OFNIC_Uniroma_-_User_and_Programmers_Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 23

5 NetIC GE - OFNIC Uniroma - User and Programmers
Guide

You can find the content of this chapter as well in the wiki of fi-ware.

5.1 Introduction

OFNIC Uniroma provides a programmable interface to retrieve information and control Openflow

Networks. The interface is based on the RESTful paradigm and is powered by a Web Server

developed in Python programming language. OFNIC Uniroma relies in the Openflow protocol in

order to abstract and virtualize forwarding capabilities of the Openflow Network, but also SNMP

protocol to retrieve more accurate statistics. This GE is an extension to the NOX Openflow

controller. OFNIC Uniroma is composed of many modules which communicate whith each other

with events. It is designed with an event-driven paradigm also to manage information that comes

from the network. The OFNIC Uniroma RESTful interface is an instance of the NetIC API (NetIC

Open Specifications can be found here TBC). Goal of this document is to provide a useful guide for

developers which might build new applications based on the NetIC API, or a guide for users that

might utilize the provided GUI application. Specific sections are dedicated to developer tools

intended to help them during development, test and deployment.

5.2 User Guide

The NetIC RESTful API reference offers a [1] page, which describes how to use this API in details.

It includes a set of commands, which can be used to manipulate and instantiate network resources

physical or virtual. Since NetIC RESTful API is based on the HTTP protocol there are a rich variety

of tools, which can be used to access the OFNIC Uniroma GE interface. The following sections will

go into more detail on how to use and develop against NetIC RESTful API.

5.3 Programmer Guide

In this section it is supposed that the GE is up and running. See Installation and Administration

guide for this.

5.3.1 Navigation with browser

The root path of the Web Server is:

https://127.0.0.1/netic.v1/doc

This page shows all commands that can be sent to the REST API of OFNIC Uniroma. Note that not

all the methods and commands might not be supported directly from the browser, that is because

some browser does not support natively the DELETE Http command.

Regarding POST command the parameters of the request might be:

 encoded in the url

field1=value1&field2=value2&field3=value3...

 formatted as JSON objects in the body of the Http Request.

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NetIC%20GE%20-%20OFNIC%20Uniroma%20-%20User%20and%20Programmers%20Guide
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NetIC_Restful_API_Specification_(PRELIMINARY)
https://127.0.0.1/netic.v1/doc

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 24

{field1 : value1, field2 : value2, field3 : value3}

5.3.1.1 Examples

In this example the OFNIC Uniroma GE is connected to an Openflow network composed of three

Openflow nodes. The nodes run Openvswitch for implement the Openflow protocol and SNMPd

and SNMP Sub-Agent to collect statistics. The OFNIC Uniroma GE is located at the same machine

from which the browser is used. Using the browser, type in the location bar the following URL

string and then press Enter.

https://127.0.0.1/netic.v1/OFNIC/synchronize/network

The result displayed, should be the list of nodes present in the network:

{

 "resultCode": 0,

 "displayError": "No error",

 "result": {

 "Paths": [],

 "Nodes": [

 1,

 2,

 3

]

 }

}

In order to retrieve information about the configuration of node with ID equal to 2, the following

string should be typed in the URL container:

https://127.0.0.1/netic.v1/OFNIC/synchronize/network/node/2

The following JSON response should appear in the Web browser:

{

 "resultCode": 0,

 "displayError": "No error",

 "result": {

 "Port_Names": [

 "eth3",

 "eth2",

 "br0",

 "eth1"

],

 "Port_Index": [

https://127.0.0.1/netic.v1/OFNIC/synchronize/network
https://127.0.0.1/netic.v1/OFNIC/synchronize/network/node/2

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 25

 3,

 2,

 65534,

 1

],

 "Num_Buffers": 256,

 "Actions": 4095,

 "Num_Tables": 255

 }

}

The same operation can be repeated to get information about port 1 of node 2, with the following

URL:

https://localhost:2222/netic.v1/OFNIC/synchronize/network/node/2/port/1

,the following result is expected:

{

 "resultCode": 0,

 "displayError": "No error",

 "result": {

 "Active": true,

 "Config": 0,

 "State": 0,

 "Speed": 0,

 "links": [

 0

]

 }

}

To retrieve statistics about a port of a certain node (for example port 1 of node 2) the following URL

might should be used:

https://localhost:2222/netic.v1/OFNIC/statistics/node/2/port/1

and the results that appears in the browser shows the transmitted and received bytes of the port:

{

 "resultCode": 0,

 "displayError": "No error",

 "result": {

 "Tx_bytes": 34,

https://localhost:2222/netic.v1/OFNIC/synchronize/network/node/2/port/1
https://localhost:2222/netic.v1/OFNIC/statistics/node/2/port/1

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 26

 "Rx_bytes": 20

 }

}

As one can note from the examples all responses body are in JSON format and three fields are

always present:

 resultCode: 0 for no errors, any other number for the occuring error.

 displayError: a string that displays the type of error

 result: the result of the request.

5.3.2 OFNIC Uniroma GUI (draft version)

The OFNIC Uniroma GE is released with a GUI feature (to be released definitively in June 2013).

The NetIC API users might utilize the GUI to navigate the exposed RESTful webservices. The GUI

has been developed in Javascript language, and uses the FI-WARE site template. The web GUI

comes embedded in the OFNIC source code, to access it from a browser navigate to:

http://localhost/static/0/nox/webapps/webserver/dummy/index.html

The GUI page that appears is shown in the figure below.

In the figure above one can note that the GUI is composed of three navigation tabs:

Synchronization,Statistics, and Routing. The Synchronization tab shows the network topology with

an interactive diagram. Network nodes are clickable and additional information is shown if a node

http://localhost/static/0/nox/webapps/webserver/dummy/index.html
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:OFNIC_GUI_a.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 27

is selected. For example the number of Actions or Ports. Moreover the Displayed ports are

clickable and show to which other network entity is the selected node connected to.

The Statistics navigation tab, concerns about the presentation of network statistics collected by the

OFNIC Uniroma GE. The dynamic network topology is present so one can select nodes he might

with to monitor from the graph. The Statistics tab is shown in the figure below.

5.3.3 Apache HttpClient

Programmers that might be interested in developing applications that rely in the NetIC RESTful API

might consider in using well-known and already established REST clients and REST client

libraries. Apache Software Foundation provides a powerful package HttpClient. HttpClient is an

efficient, up-to-date, and feature-rich package implementing the client side of the most recent

HTTP standards and recommendations. It is simple to use, so even not very experienced

programmers can build simple application in a few minutes. Some code snippets are reported

below.

HttpClient client = new HttpClient();

HttpMethod request = new GetMethod("https://localhost/netic.v1/doc");

try {

 HttpResponse response = client.execute(request);

 HttpEntity entity = response.getEntity();

https://localhost/netic.v1/doc
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:OFNIC_GUI_b.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 28

 if (entity != null) {

 BufferedReader rd = new BufferedReader

 (new InputStreamReader(response.getEntity().getContent()));

 String line = "";

 while ((line = rd.readLine()) != null) {

 textView.append(line);

 }

 }

} catch (ClientProtocolException e) {

 e.printStackTrace();

} catch (IOException e) {

 e.printStackTrace();

}

OFNIC Uniroma GE is released, accompanied by a Java application based on Apache HttpClient

that was designed in the development and testing phase.

The source code of the application named "NetIC_API_Tester can be downloaded from the FI-

WARE svn repository:

svn co https://forge.fi-ware.eu/scmrepos/svn/fiware/trunk/FI-

WARE/I2ND/NetIC/OFNIC/NetIC_API_Tester netic_api_tester

The application can be executed on Linux environment by running the script test.sh located

inside the src folder. A list of test appears that can be executed by putting in the corresponding

number.

The NetIc_API_Tester can be imported also in Eclipse[ECL] as a normal project. To do this, after

the source code has been checked out locally, in Eclipse IDE go to File->Import... In the dialog box

that appears under General choose Existing Project into Workspace... Following the wizard one

should have imported the project in the IDE and can manage it easily.

https://forge.fi-ware.eu/scmrepos/svn/fiware/trunk/FI-WARE/I2ND/NetIC/OFNIC/NetIC_API_Tester
https://forge.fi-ware.eu/scmrepos/svn/fiware/trunk/FI-WARE/I2ND/NetIC/OFNIC/NetIC_API_Tester
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/File:NetIC_API_Tester_prompt.png

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 29

5.3.4 How to extend OFNIC Uniroma GE

OFNIC Uniroma GE is an extension to the NOX Openflow Controller, so the guide to extend NOX

can be utilized to extend also OFNIC. The guide is located in this page:

https://github.com/noxrepo/nox-classic/wiki/Developing-in-NOX

https://github.com/noxrepo/nox-classic/wiki/Developing-in-NOX

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 30

6 Service Capability Connectivity and Control - User
and Programmers Guide

You can find the content of this chapter as well in the wiki of fi-ware.

 S3C GE - OpenEPC - User and Programmers Guide

 S3C GE - SMS+MMSEnablers - User and Programmers Guide

Appendix:

 S3C GE Support - S3C API Proxy - User and Programmers Guide

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Service%20Capability%20Connectivity%20and%20Control%20-%20User%20and%20Programmers%20Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_OpenEPC_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_SMS%2BMMSEnablers_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_Support_-_S3C_API_Proxy_-_User_and_Programmers_Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 31

7 S3C GE - OpenEPC - User and Programmers Guide
You can find the content of this chapter as well in the wiki of fi-ware.

7.1 Introduction

The EPC-OTT API enables the application developers to use a RESTful interface within their

application to provide their indications towards the operator core network. The following section

describes how the application developers can influence the communication through the operator

network.

The following features are available from the core network perspective:

 Reservation of resources for the specific communication sessions and for each of the

sesssion's data flows

 Modification of the previously reserved resources

 Termination of the previously reserved resources

 Event notifications in case the status of the connectivity of the mobile devices changes

These features are provided through the Rx Diameter interface. The EPC-OTT API is providing a

translation between the Diameter interface towards the operator core network and the RESTful

interface towards the applications.

Additionally to these features, the EPC-OTT API provides through the RESTful API the

applications with information on the access networks on the vicinity of the mobile devices and a

means to transmit an indication on which access network the communication of the application

should continue on. As multiple applications run in parallel and as the final decision on which

access network is most suitable to support the device communication is pertaining to the operator,

the indication from the application may be ignored.

7.1.1.1 Restrictions

The EPC-OTT API component is delivered in a testbed demonstration version and is bound to a

limited functionality.

Additionally, the operator core network functionality was not designed to be exposed even to

applications for which a business relationship with the operator exists. Therefore, the EPC-OTT

exposure of the operator core network is restricted also by the exposure features offered by the

underlying operator infrastructure.

The following limitations are considered:

 The QoS resource reservations, modifications, and termination are bound to the

International Mobile Subscriber Identifier (IMSI) and not to other possible identities

 The access network selection allows only for access network type selection and not for the

selection of the specific access networks in the vicinity of the device. A finer granularity

requires a higher exposure of the internals of the operator network, which may pose a

security threat.

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C%20GE%20-%20OpenEPC%20-%20User%20and%20Programmers%20Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 32

7.2 User Guide

The EPC-OTT API component, handling the translation between HTTP/REST messages and

typical operator core network messages such as Diameter was developed in parallel with a test

client application.

The test client application is written in Java and able to transmit the possible requests and to

receive the appropriate responses from the EPC-OTT API>

The test client provides an initial implementation example, which can be downloaded together with

the EPC-OTT API Component providing the developers a first hands-on example on how the API

can be used.

The Test Client application is developed in Java. Thus, the following code snippets are written in

this programming language.

A main class containing the QoS related information for a specific data flow is

QoSFeatureProperties

public class QoSFeatureProperties implements Serializable

{

 private static final long serialVersionUID = 12343L;

 protected TimeMetric duration;

 protected String upStreamSpeedRate;

 protected String downStreamSpeedRate;

 protected List<NameValuePair> otherProperties;

/* Functions to set and get the different QoS features */

}

For each session initiation or modification an object of the QoSFeaturesProperties is filled with the

specific information related to the QoS parameters of each data flow.

The array of otherProperties may include the description of the specific data flow including source

and destination IP addresses and ports, protocol and direction of communication.

When such information is missing, it is assumed that a wild-card is used. For example if the

destination port is missing, then the QoS rule will be applied for all the data packets which match

the rest of the filtering criteria.

A WebResource object (com.sun.jersey.api.client.WebResource) enables the encapsulation of the

String represented by the information within the QoSFeaturesProperties class within an HTTP

request which is forwarded to the URI of the EPC-OTT API component, enabling an easy and

elegant means to realize an HTTP interface within Java based software.

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 33

7.3 Programmer Guide

The EPC-OTT API could be extended with additional functionality by using the same basic Jetty

server functionality.

Additionally, in order to be able to translate the specific RESTful interface to the specific operator

core network functionality, the specific operator core network stacks have to be used such as

Diameter and other proprietary communication protocol.

The only specific properties of the network which can be manipulated by the different applications

are the ones that could be exposed by the underlying network infrastructure.

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 34

8 S3C GE - SMS+MMSEnablers - User and
Programmers Guide

You can find the content of this chapter as well in the wiki of fi-ware.

8.1 Introduction

The SMS/MMS enabler allows you to easily integrate with SMS GSMA One API and perform end-

2-end unitary tests. The following sections provides detailed information on how to integrate SMS

sending capabilities into your application. The following features are available:

 Send SMS

 Query SMS delivery status

 Start subscription for SMS delivery status

 Stop subscription for SMS delivery status

 Receive SMS

 Start subscription for SMS receipt

 Stop subscription for SMS receipt

8.1.1 Restrictions

The SMS/MMS enabler is delivered in a Demo version which is bounded by some simple rules:

 Limitation of the network: one can send SMSs to the Orange network only to Orange

France, Orange UK, Mobistar and Orange Romania.

 Limitation of the number of SMS sent

8.1.2 Countries, Short Codes and sender addresses

The following short codes can be used as senderAddress depending on the country code the

recipient (i.e. MSISDN) is belonging too (e.g. 336xxxxxxx -> Orange France).

You can also provide a MSISDN of those countries as senderAddress, but in such a case this

account will be charged with the cost of the sent SMS MT message.

Country Perimeter
Short code
to use as
sender

France OFR only 21238

United

Kingdom
OUK only 91255

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C%20GE%20-%20SMS+MMSEnablers%20-%20User%20and%20Programmers%20Guide

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 35

Belgium
Mobistar

only
10403

Romania OROOnly 587

NOTE 1: Like you are using real production platform, it overide received 'senderAddress' value

received from your application to be in line with requirements. Keep in mind that if your application

goes on production (ie out of the fiware testbed), you'll have to properly fill the 'senderAddress'

value with you own short code(s).

NOTE 2: What ever the receipient country is, if you don't want to "really" send a SMS (i.e do not

send SMS to cell phone network and have a SMS delivery on a mobile phone) but you just want to

have an answer "like an answer from the enabler should be" use 99999 as shortCode.

Returned value will look like a valid answer from the enabler, but SMS-ID will a fixed value: -1

8.2 User guide

8.2.1 1/Pre-requisites

This API allows you to send text/plain SMS MT message using an HTTP GET request with a few

number of parameters.

Please consult the SMS/MMS API description (interface level) section for further information about

the '/messaging/sms/outbox' resource URI, supported HTTP verb (GET), mandatory/optional input

parameters, supported representation formats, etc.

8.2.2 2/Sending your first SMS message

The SMS MT GSMA One API specification is a restful implementation, thus working with simple

URLs, dialoging with JSON data and using http verbs GET, POST...

The request

http://ServerName/oneapi-sms/outbound/sender/requests

allows you to send an SMS from sender short code or identifier. The other information is

embedded in the body of the request in a JSON formatted text. The following content:

{

 "outboundSMSMessageRequest":

 {"address":["33600000000"],

 "senderAddress":"336111111111",

 "outboundSMSTextMessage":{"message":"Hello World"},

 "senderName":"336111111111",

 "receiptRequest":{"notifyURL":"http://myexample/notification"}

 }

}

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/SMS%2BMMSEnablers_API_Specification
http://myexample/notification

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 36

The consequence is that the mobile "33600000000" with receive an SMS "Hello world", from the

336111111111. The notification url should be a reachable adress and will get the following anwser:

{

 "outboundSMSMessageRequest": {

 "address": ["336000000"],

 "senderAddress": "33611111111",

 "outboundSMSTextMessage": {

 "message": "Hello World"

 },

 "senderName": "33611111111",

 "receiptRequest": {

 "notifyURL": "http://myexample/notification"

 },

 "resourceURL": "http://ServerName/oneapi-

sms/outbound/sender/requests/1366381061048",

 "deliveryInfoList": {

 "resourceURL": "http://ServerName/oneapi-

sms/outbound/sender/requests/1366381061048/deliveryInfos",

 "deliveryInfo": [{

 "address": "33611111111",

 "deliveryStatus": "MessageWaiting"

 }]

 }

 }

}

Note that the delivery status "MessageWaiting" informs you that your message has not been

delivered yet. The notification, after delivery will be sent to http://myexample/notification

8.3 Programmer guide

The SMS/MMS enabler follows the API especifications of the GSMA OneAPI. You will find the

complete developer guide at this address: http://www.gsma.com/oneapi/faq/implementation-guides

http://myexample/notification
http://myexample/notification
http://www.gsma.com/oneapi/faq/implementation-guides

Future Internet Core Platform

D.7.4.2 FI-WARE User and Programmers Guide Page 37

9 S3C GE Support - S3C API Proxy - User and
Programmers Guide

You can find the content of this chapter as well in the wiki of fi-ware.

9.1 Introduction

The S3C API Proxy is just a supporting function to enable a single point of contact to utilze the

HTTP/REST based Features of S3C.

9.2 User guide

To use the functionality of the S3C API Proxy, there is only a need for reviewing the following User

and Programmers Guides:

 S3C GE - OpenEPC - User and Programmers Guide

 S3C GE - SMS+MMSEnablers - User and Programmers Guide

9.3 Programmer guide

For editing the mapping functionality of the API Proxy, only one specific configuration file needs to

be changed:

/etc/apache2/mods-available/proxy.conf

In this file the ProxyRequests key has to be set to "on".

To add a special feature resource, two additional lines between <IfModule>...</IfModule> need to

be set:

ProxyPass /<proxyresourcename>/

http://<featureip>:<featureport>/<additionalresource>/

ProxyPassReverse /<proxyresourcename>/

http://<featureip>:<featureport>/<additionalresource>/

An example looks like:

ProxyPass /openepc/ http://192.168.254.40:80/

ProxyPassReverse /openepc/ http://192.168.254.40:80/

This means, that the feature OpenEPC is available at the following address of the proxy:

http://<proxyaddress>:<port>/openepc/

All functionalities of the remote targeted feature are useable over the proxy.

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C%20GE%20Support%20-%20S3C%20API%20Proxy%20-%20User%20and%20Programmers%20Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_OpenEPC_-_User_and_Programmers_Guide
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/S3C_GE_-_SMS%2BMMSEnablers_-_User_and_Programmers_Guide
http://192.168.254.40/
http://192.168.254.40/

