

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 285598

FInest – Future Internet enabled optimisation

of transport and logistics networks

D6.2

Conceptual Design of Event Processing Component

Project Acronym FInest

Project Title Future Internet enabled optimisation of transport and logistics

networks

Project Number 285598

Workpackage #WP6 Proactive Event-Driven Monitoring

Lead Beneficiary IBM

Editor(s) Yagil Engel IBM

Contributors Guy Sharon IBM

 Fabiana Fournier IBM

 Åsmund Tjora MRTK

 Michael Zahlmann KN

 Tor Thunem Knutsen ARH

 Evert-Jan Van Harten AFKL

Reviewer Metin Turkay ARC

Reviewer Clarissa Marquezan UDE

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 285598

Dissemination Level PU

Contractual Delivery Date 31.03.2011

Actual Delivery Date

Version

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 3 of 23

Abstract

This report presents the second Deliverable of work package WP6 “Proactive Event Driven

Monitoring”. Work Package 6 is responsible for the Event Processing Module (EPM), one of

the four core technical components of FInest. The role of this module within FInest is to provide

event-driven monitoring across domain and transport modality, providing, for instance, FIn-

est’s Business Collaboration Module (BCM) with the runtime information required to achieve

three goals: end-to-end visibility of logistics processes, monitoring the achievement of contract

terms, and triggering replanning of the scenario when needed.

The document describes the second stage of results of the “requirements analysis and selection

of technology baseline for the event processing component” (T6.1). This includes a refinement

of the results presented in D6.1 in the area of identifying the relevant business requirements

provided by domain experts, mainly through the use of functionality demonstrators. The

document details the main demonstrator used for extracting EPM requirements: “Real-Time

Booking Update Cycle”.

The second part of this deliverable is a conceptual design for the Event Processing Module

(T6.2) done on the basis of the initial conceptual design described in D6.1, and on the basis of

the refined requirements.

The document does not describe additional work done in this deliverable: the refinement of ge-

neric enablers, which is part of T6.3, “Technological Alignment with FI PPP Core Platform”.

The actual results of this work are provided at D9.2 along with the rest of the project.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 4 of 23

Document History

Version Date Comments

V0.1 25/2/2012 Initial internal domain experts review

V0.2 05/03/2012 Second draft, review by internal ICT

V0.3 13/03/2012 All comments incorporated

V0.4 18/03/2012 After additional comments from domain partners

V0.5 25/03/2012 Additional comments from domain+ICT partners

V0.6 27/03/2012 Incorporated changes after official internal review

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 5 of 23

Table of Contents

Abstract ... 3

Table of Contents .. 5

List of Tables .. 6

List of Figures .. 6

Acronyms ... 7

1. Introduction .. 7

2. Finest Demonstrator: Real-time Booking Update Cycle .. 8

2.1. Motivation .. 8

2.2. General Information ... 9

2.3. Detailed Description ... 10

3. Refinement of Requirements ... 14

3.1. Event Processing Network Lifetime .. 14

3.2. Specific Events to Handle .. 14

4. Refinement of Design .. 15

4.1. Conceptual Design .. 16

4.1.1. Events and Event Sources .. 16

4.1.2. Rules and Rules Definition ... 17

4.1.3. Detected Situations ... 17

4.1.4. Runtime Engine .. 18

4.2. Novelty in Comparison to Standard Event-Processing Applications 21

4.3. Interface with Other FInest Modules.. 22

5. Conclusions and Next Steps ... 22

References ... 23

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 6 of 23

List of Tables

Table 1: Additional EPA requirements .. 14

Table 2: Additional event requirements ... 15

List of Figures

Figure 1: Event Processing Module Conceptual Architecture ... 16

Figure 2: Structure and flow of an example EPN. ... 18

Figure 3: Hierarchy of event processing agent types .. 18

Figure 4: Conceptual architecture of a pattern matching EPA. .. 20

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 7 of 23

Acronyms

Acronym Explanation

EPM Event Processing Module

BCM Business Collaboration Module

KPI Key Performance Indicator

AIS Automatic Identification System

TPM Transport Planning Module

TEP Transport Execution Plan

EPA Event Processing Agent

CEP Complex Event Processing

EPN Event Processing Network

1. Introduction

The Event Processing Module (EPM) is a core technical module of the FInest project. Its role in

FInest architecture is to collect events from various sources, and perform what is known as

complex event processing (CEP) operations on them in order to detect situations on which to

notify the business collaboration module (BCM) or the frontend of FInest. The availability of

such automated response technology will provide FInest users with end-to-end visibility and

monitoring of the process, and with the ability to quickly respond to various changes and devia-

tions that often occur in the dynamic and complex logistic processes that FInest is expected to

handle. The EPM relies on existing CEP technology; however, as described later, the particular

setting of this domain and the specific demands of FInest requires extending the basic event

processing architecture towards novel directions.

FInest is developed in a collaborative process between its Domain experts and ICT partners; the

idea is to “pull” the requirements from the domain and allow this to lead the technology, rather

than to develop technology and “push” it into the domain. The main driver used for this process,

during the M12 milestone development, was the FInest demonstrators. These demonstrators

show specific pieces of functionality; they were developed mutually by domain and ICT part-

ners. The benefit is twofold: first, the demonstrators provide basis for functionality that can be

provided by FInest. Second, it facilitates knowledge transfer from domain partners to ICT part-

ners, leading to additional requirements and refinement of the conceptual design of the technical

modules.

This document describes the results of this process from the EPM perspective: first, we describe

the motivation and functionality of the demonstrator developed in WP6, along with screenshots

and detailed explanation (Section 2). Next, we provide the additional requirements that were

learned in the development process of the demonstrators (Section 3). Finally, we describe the

refined conceptual design of the EPM that evolved during the work on this milestone (Section

4).

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 8 of 23

2. FInest Demonstrator: Real-time Booking Update
Cycle

2.1. Motivation

Efficient consolidation and asset utilization are major performance measurements for forward-

ers and carriers. Efficient consolidation and increased asset utilization can improve overall effi-

ciency of the logistic chain, resulting in improved revenues both for forwarders and carriers, and

in reduced carbon footprint.

The business motivation behind this demonstrator can be summarized as follows: the goal is to

reduce the gap between booking and actual; the accomplishment of this goal would allow for-

warders and carriers to better know what freight needs to be transported, allow shippers to be

more certain of the space reserved to them by forwarders and carriers, and provide better visibil-

ity and predictability on the process they run; overall, much better quality of data. With the im-

proved quality of data, the process will have less disturbances, decreased throughput times, and

perhaps, most importantly, a better consolidation for the forwarder and increase of the asset uti-

lization by the carriers.

A root cause analysis for the gap between booking and actual was done in WP2. One of the

main causes for the gap is found to be the following: shippers, carriers, and forwarders may not

have the same data about a single booking. Some of the possible reasons for this can be:

1. Changes often occur in the delivery specification (volume, weight, number of pieces),

and often at the last moment (e.g., initial measurements are not accurate, or items are

repacked). Shippers sometimes do not inform on time about changes in the booking, for

various reasons; for example:

a. There is no structured process to do that (or, as identified in root cause analysis:

shippers are not asked to update changes in their shipping volume or weight

when pickup time approaches).

b. Busy operational schedule (hence shippers either forget to update, or do not see

this as high priority).

2. Human or technical errors in transferring data between different applications.

The demonstrator shows a solution to prevent the root causes mentioned above. It provides a

single cloud location for the order, with the same details available to all parties at the same time,

and supports structured information exchange that will allow smooth and collaborative changing

of a booking.

There could be many other reasons for the gap, such as risk management of shippers, wrong

measurements, and last minute changes. Another part of the demonstrator scenario addresses

these cases: we reached the pickup time of the shipment, and the truck driver discovers a dis-

crepancy between the booked and actual shipment. In that case the goal is to reduce the time

gap in propagation of capacity information: the earlier all stakeholders in the chain are aware of

the change, the better they can adapt. Examples of solutions are: change timing of the transport

plan (and potentially postpone pickup), find other carriers, or change priority of different cus-

tomers in the consolidation of a forwarder.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 9 of 23

2.2. General Information

General Information

Element Description

Title Real-time booking update cycle

As-is scenario  For various reasons, shippers, carriers, and forwarders see different in-

formation regarding the same booking.

 Changes in booking are either done by shipper without notice (shippers

simply present the pickup driver with different sizes / weights / no. of

pieces than those booked), or propagated to one stakeholder in the

chain (only a forwarder is notified but the carrier is not updated imme-

diately)

 No online collaborative process exists to fix booking discrepancy.

Addressed main chal-

lenge

Discrepancies between booked shipment and actual shipment are a major

source of shipment delays and under or over utilization of resources.

To-be scenario  “The single supply-chain truth”: a single order record, which can be ac-

cessed by all the partners, according to their roles, as long as agreed by

the data owner.

 Complete booking modification cycle: shipper can submit modification

to the “single truth”, this alerts all relevant parties that try to accom-

modate the request and produce new price quote; finally, shipper can

agree, or not, to the new price.

 Online collaborative handling of booking discrepancy: when discrepan-

cy discovered at pickup time, another cycle of alert – replan – new

price quote – confirmation of shipper is performed.

Demonstrator ap-

proach

The demonstrator shows the views of shipper, forwarder, carriers, and truck

drivers. First, they all have access to the same reservation that is stored in the

FInest cloud. Then, we show a full booking modification cycle: the shipper

submits modification (in any of the booking parameters), which alerts the other

players. The carriers and the forwarder use replanning module (not part of this

demonstrator) to see if the modification can be accommodated; the combined

result is sent back to the shipper who needs to accept the new price quote.

Finally, a similar modification cycle can also occur during execution, when it is

triggered by a truck driver who discovers a booking discrepancy at pick-up

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 10 of 23

2.3. Detailed Description

Detailed Information

Element Description

Demonstrator

title
Real-time booking update cycle

Screen name Shipper: booking modification

time.

Involved modules EPM, BCM, (TPM – implicitly)

Lead IBM

Involved partners KN, AFKL, NCL

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 11 of 23

Screenshot

Screen pur-

pose

The shipper views the current order, the same “truth” as viewed by the other parties, and can

submit booking modification.

Detailed de-

scription

The screen allows the shipper to request a modification of any of the parameters. After enter-

ing new values, the shipper clicks “submit changes”. At this point the modification is shown to

be “in process”. At the end of the cycle, when the carrier and forwarder returned with a new

price quote, the shipper sees the new quote and has “confirm” and “reject” buttons.

Note that the “System Alerts” box is not shown in actual application. In the demonstrator it

shows that when the shipper submits the request, both the relevant carriers forwarder are

alerted that such a request has been submitted.

Detailed Information

Element Description

Demonstrator

title
Real-time booking update cycle

Screen name Truck Driver: report booking discrepancy

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 12 of 23

Screenshot

Screen pur-

pose

The truck driver views the current order, reports it, and informs in what way the actual ship-

ment is different than the specification.

Detailed de-

scription

The screen allows the driver to report new values in the shipping details (weight, size, number

of pieces) and submit the changes. At this point the modification is shown to be “in process”.

At the end of the cycle, when the carrier and forwarder returned with a new price quote, and

the shipper confirmed the new price, the driver sees that he can proceed with the pickup.

Once the truck driver submits the notification, both the carrier and the forwarder are immedi-

ately alerted and can access the system to view the discrepancy.

Detailed Information

Element Description

Demonstrator

title
Real-time booking update cycle

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 13 of 23

Screen name Carrier / forwarder: process booking modification

Screenshot

Screen pur-

pose

The carrier or forwarder views the current order, and processes a booking modification re-

quest submitted by the shipper.

Detailed de-

scription

The carrier or forwarder views the current order, the same “truth” as viewed by the other par-

ties.

The following flow is triggered when either a booking modification request is submitted or

booking discrepancy is reported:

The modifications are show in red next to the confirmed (previous) values.

The carrier / forwarder can click the button “replan” that opens the replanning module (be-

yond the scope of this demonstrator).

The result from the replanning module is either “success” with new recommended price, or

“fail” (in the demonstrator, always success).

The carrier / forwarder can modify the price, and click “send”.

The status is shown to be “waiting for customer confirmation”. After the shipper confirms, this

message is removed and the new values are shown as part of the current reservation.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 14 of 23

3. Refinement of Requirements

Based on the interaction with domain partners, through the development and usage of the de-

monstrators, we define sets of more subtle requirements, in addition to those stated in D6.1.

3.1. Event Processing Network Lifetime

The new requirements below were not mentioned explicitly in D6.1; these are requirements that

are not usually obtained by current event processing systems and are unique to the domain of

monitor logistic executions.

The lifetime of a shipment execution is strongly related to the notion of Transport Execution

Plan (TEP), which is adapted from FP7 project efreight [8]. The TEP encapsulates the infor-

mation regarding the execution of a single shipment, including the event processing rules that

should be instantiated to monitor that shipment. The notion of TEP is described in detail in

D7.2.

The two requirements R*101 and R*102 ensure the ability of the system to dynamically support

TEPs that are created while the system is up and running. R*102 and R*103 allow the system to

be changed dynamically when more sources of data are available and more domain require-

ments surface; they allow the configuration of the system without the traditional distinction be-

tween “design time” and “run time”.

Table 1: Additional EPA and rule engine requirements

R*101 Plan Instanti-

ation

Ability to instantiate event processing unit (EPA) as a result of

Transport Execution Plan (TEP) requirement, and in the context of

plan id, and parameterize it according to the TEP.

R*102 EPA Termi-

nation

Ability to terminate an EPA when plan execution completes.

R*103 Addition of

Events

System operators can (easily) add events (not known in design time)

that the system should monitor.

R*104 Addition of

Rules

System operators can add additional rule templates (see requirement

R201 from D6.1), not known in design time.

3.2. Specific Events to Handle

A preliminary list of events was described in D6.1. The following are types of events that were

gathered through the use of the demonstrators, and were either not mentioned in D6.1, or men-

tioned at a higher level. The table indicates the source of the event, and the target for notifica-

tion, if exists.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 15 of 23

Table 2: Additional event requirements

Id Event Description Source Notification

R*201 Port Call Re-

quest

Port call request

event, instantiate

port call context.

Ship BCM

R*202 Port Service

Request and

Confirmation

Port service request

(for specific port

resource: pilot, quay,

tugboat, mooring

crew, ground

equipment, cargo

workers, electric and

water supply, stor-

age space)

Ship BCM

Comment: Handle

confirmation event

submitted to system

and notify BCM as

well

R*203 Booking Can-

cellation

 Shipper, through

FInest system

Carriers, Forwarder

R*204 Booking Modi-

fication

 Shipper, through

FInest system

Carriers, Forwarder

R*205 Booking Modi-

fication Ap-

proval

Approval of booking

modification, possi-

bly with new price

quote

Carrier or Forward-

er, through FInest

system

Shipper

R*206 Price Change

Approval

Approval of new

price quote, resulting

from a booking

modification.

Shipper, through

FInest system

Carriers, Forwarder

4. Refinement of Design

This section provides a conceptual design of the EPM. A high-level conceptual design was al-

ready presented in D6.1; we repeat the essence of the design here for completeness purposes,

and further elaborate on it. We then elaborate on the interaction with other FInest modules.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 16 of 23

Figure 1: Event Processing Module Conceptual Architecture

4.1. Conceptual Design

The Event Processing Module (EPM) includes the following components, which are identified

in Figure 1:

 Events and Events Sources

 Rules and Rules Definition

 Runtime Engine

 Detected Situations

4.1.1. Events and Event Sources

FInest EPM will monitor various events that are relevant to the execution of a transport plan,

from the time a booking is established. Most event sources and the means of communication

with them will be defined in the application, preferably through a FI-Ware generic enabler.

Some of the events are internal; for example, as shown in the demonstrator in this deliverable, a

truck driver may issue a pickup event, or alternatively, submit a booking discrepancy event pri-

or to loading the shipment. Other events are external; they are received from various electronic

systems such as AIS, Airport, and existing tracking systems employed by freight forwarders. In

both cases, we call the entity that produces the event an event producer. The set of events han-

dled by the system will be accessible directly by a user interface, to support Requirement

R*103.

Run - time Engine

Rules

Event Processing Module (EPM)

…
Running Process
Status

Event
(Source 1)

Event
(Source n)

Detected Situation

Rules
Definition

Monitoring Requirements

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 17 of 23

4.1.2. Rules and Rules Definition

The behaviour of the EPM is defined by event processing rules. The two parts of an event-

processing rule are:

1. Event Pattern (the rule body): may include a single event, or an operator such as filter,

join, aggregation, or trend, defined over a set of event types, along with mathematical

conditions. For example:

a. A single event, which is a temperature read from RFID, with conditions com-

paring its value with the allowed range.

b. A trend operator over a series of temperature reads, identifying steady increase.

c. Aggregation operator: sum the gap between actual cargo and expected cargo of

flights departing towards a specific airport; a mathematical operation can then

forecast the resulting cargo backlog at that airport.

2. Derived Event (the rule head): if the pattern in the rule body is matched, the rule trig-

gers, and the result is that an event (which is a “complex event”, or “high-level event”,

representing the occurrence of the pattern) is created and emitted. The resulting derived

event can be sent to a consumer (for example, notify a user) or serve as an input event

to another rule in a chain.

The transport and logistic application is a system that monitors a large number of short-term

executions (shipments), both concurrent and sequential. The solution in FInest is a configurable

rules system, with a structure of three layers:

1. Generic event-processing platform, as described above.

2. A set of parameterized rules (that can be edited and maintained by designer); these are

called rule templates. For example: if neither event “pickup” nor event “booking modi-

fication” are received within X min of scheduled pickup time, change status to “delayed

pickup”. Here, X is a parameter of the rule (in general, multiple parameters are possi-

ble). The set of rules will be accessed directly from user interface, to support Require-

ment R*104.

3. Specific logistic scenarios: For each particular logistics scenario the following two con-

figurations are being done: (i) which rules are activated for this scenario, and (ii) the

value of the parameters to each rule. In the example above, for a specific TEP we might

ask this rule to be instantiated, and provide the parameter “30 minutes”.

This architecture is a significant departure from our chosen technology baseline AMiT (see [2]

and D6.1). The parameterized set of rules will be created through interaction with domain ex-

perts, mainly through the use of demonstrators. An initial step in this process was the extraction

of the set of events presented in the previous section.

4.1.3. Detected Situations

A triggerin g rule represents the detection of situation; this is communicated to the rest of

the system, as mentioned above, through an event or a derived event. A situation detected by the

event processing engine is reported to event consumers, which in the case of FInest refer to the

external modules that receive events from the EPM; this is discussed in Section 4.2.

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 18 of 23

4.1.4. Runtime Engine

The runtime engine is the piece of software that is responsible to detect during runtime which

rules are matched. The engine of FInest will be designed according to the generic event pro-

cessing network (EPN) architecture summarized by [1] and [5]. The EPN (as illustrated in Fig-

ure 2), is the conceptual view of the flow of events to, within, and from the runtime engine. The

EPN consists of event producers and consumers (described above), and the runtime engine with

event processing agents and channels (discussed below).

Figure 2: Structure and flow of an example EPN.

4.1.4.1. Event Processing Agents

Event processing agents (EPA) are local processing units with a well defined logical role. In

FInest, an EPA corresponds to a rule in the rule base. Each EPA is responsible for the detection

of the event pattern in the rule body, and emits derived events as a result according to the rule

head. Because rules are selected and instantiated per execution, the EPAs will be created in

runtime, according to the set of rules selected.

An EPA has several types, depending on the operation it is expected to perform:

 Filter determines whether an input event continues its way on the flow

 Transform creates derived events based on function on the content of the input

events, as seen in the figure there are several sub-types:

o Translate (1:1) – emits a single derived event as a function of a single input

event, this may include enrichment from external data source, or projection

o Aggregate (N:1) –emits a single derived event as some aggregate over mul-

tiple input events

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 19 of 23

o Split (1:N) – emits multiple events using multiple derivation functions over a

single input events

o Compose (M:N) – similar to SQL join with a variety of options.

 Detect pattern – emits zero or more derived events as a result of pattern matches

among possibly different types of events (example: the pattern sequence (E1, E2,

E3) is matched when there are three events of types E1, E2, E3 that occur within the

specified order).

The hierarchy of event processing agent types is illustrated in Figure 3. The three high-level

functionalities described above can be distributed between different agent types with specific

purpose. However, it is possible and sometimes more convenient to generalize the concept of

EPA to perform all: filtering, then pattern matching, and then transformation. This is illustrated

in Figure 4.

Event Processing Agent

Filter Transform Detect Pattern

Translate Aggregate Split Compose

Enrich Project

Figure 3: Hierarchy of event processing agent types

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 20 of 23

Figure 4: Conceptual architecture of a pattern matching EPA.

For FInest, Filtering can be applied to isolate those events that may affect a specific shipment;

for example, filter traffic reports from the specific highway numbers that are relevant to the

shipment. Transform can, for example, aggregate the changes of bookings for a forwarder in

order to optimize their consolidation.

Pattern detections are required for most operations. An event pattern consists of three parts:

1. Set of event types

2. Constraints over attributes of events, which effectively filter the set of tuples of events

that are used in the pattern matching.

3. Operator over the event types: indicates the kind of join operations we look for. Below

we provide a list of the most common high level patterns used in CEP and that will be

used in FInest.

The patterns operators that will be implemented for FInest are as follows:

1. All: triggers if all of the event types appear within a specific time window.

2. Any: triggers if any of the types appear within a specific window.

3. Absence: triggers if none of the event types appear within a specific window.

4. Sequence: triggers if all of the event types appear within a specific time window in a

specific order.

5. Trends: a pattern that indicates a specific change over time of some observed value;

this refers to the value of a specific attribute or attributes.

4.1.4.2. Channels

In order to allow flexible routing of events from event producers to EPAs, between EPAs, and

from EPAs to consumers, we employ event channels; an entity whose role is to collect and dis-

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 21 of 23

tribute events between objects in the system. A channel can be implemented as a multicast pro-

tocol, or other message oriented middleware. The main idea is to avoid having each source

(producer or EPA) connect to each event destination (EPA or consumer), but have all of them

connect to a channel, which contains the routing logic.

A routing scheme denotes the type of information used by a channel to make a routing decision.

Here is a short description of each of these routing schemes:

 Fixed—The channel routes every event that it receives on any input terminal to every output

terminal. In cases where there are multiple output terminals this means that separate copies of

each input event are transmitted on each output terminal.

 Type-based—The channel makes routing decisions based on the event type of the event that

is being routed.

 Content-based—The routing decision is based on the event's content. This can be phrased as

decision trees or decision tables, and is based on the input event content, and possibly also on

context information.

4.1.4.3. Context

A context is a specification of conditions that group event instances so that they can be pro-

cessed in a related way. Any EPA is associated with specific context or contexts; each context

defines the sets of events that will be processed by that EPA as a group. There are several types

of context, as identified by [1] and [3]:

1. Temporal: the most common type of context; it defines a time window, so that all

events that fall in the same time window are processed together. A temporal context

window is often sliding; meaning that the current context window of size X minutes in-

cludes the events in the last X minutes.

2. Spatial: grouping of events according to their geospatial characteristic; this can be done

either with explicit coordinate system, or using named locations such as cities or air-

ports.

3. Segmentation: grouping of events according to some attribute of events; for example, a

segmentation context can be defined to group events that have the same shipment id.

Note that through the concept of context, events have the ability to initiate an EPA instance. If

an EPA is defined for some context, then each time an event that requires a new context parti-

tion is detected, a new EPA is created. For example, with segmentation context, when an event

with a new value for the segmented attribute is received, an EPA is created, and all subsequent

events with the same value are channeled to that EPA.

4.2. Novelty in Comparison to Standard Event-Processing Ap-
plications

The FInest project presents interesting challenges to the paradigm of event-processing. Most

event driven applications are created on top of the engine and run “forever” (of course with var-

ious adaptations once in a while); for example: fraud detection in financial institutions, machin-

ery condition monitoring for heavy industries, and operational management of call centres. The

transport and logistic application, in contrast, is a system that monitors a large number of short-

term executions (shipments), both concurrent and sequential. This creates two main challenges:

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 22 of 23

1. There is no one specific rule set that is always valid. Each shipment may use a different

subset of the rules. Moreover, the values within rules (for example, specific temperature

that the shipment should be kept in, the specific time delay that becomes crucial) are

specific to shipments. The solution to this challenge in FInest is the 3-layered configu-

rable rules system, detailed in Section 4.1.2.

2. In standard event processing applications, the event processing network is static, and

specific agents can be initiated when monitored objects are created (such as new cus-

tomer). In FInest, in contrast, a new TEP requires a whole network of EPA to be initiat-

ed, supporting a unique set of rules. As formalized by Requirements R*101 and R*102,

the system should be able to initiate the set of EPAs for a specific TEP when execution

starts, and terminate them when the execution ends. In the design of FInest EPM the

concept of context is exploited to support this functionality: we use segmentation con-

text, in which segmentation is according to plan Id. We call this TEP lifespan: initiate a

context (and a set of EPAs) when TEP event with a new plan Id is received, and termi-

nate the context (and thus all associated EPAs) when a TEP conclusion event is re-

ceived. This constitutes the dynamic creation and termination of the EPA structure per

TEP, as required by R*101 and R*102.

4.3. Interface with Other FInest Modules

The EPM communicates with the Business Collaboration Module (BCM), in two directions, as

detailed below. In addition, EPM may send notifications to FInest frontend.

Input:

Set of rules to instantiate from the Transport Execution Plan (TEP)

The TEP provides the configuration discussed under “rules definition” above, by (i) specifying

which of the rules and the rules templates should be instantiated to monitor the execution of this

plan, and (ii) provides parameters to the relevant rule templates.

Output:

1. BCM: events related to shipment current status

Notifications sent to BCM according to the final set of rules employed by the EPM for a specif-

ic TEP. These notifications let the BCM update status of all shipment monitoring parameters,

and provide each role the alerts and data required by that role.

2. Frontend: notification on future events

Some notifications are not required by the BCM – these are notifications that do not affect the

status of any shipment parameter, but rather provide early warning on an event that is likely to

affect a shipment in the future [4,7].

5. Conclusions and Next Steps

In this document we perform the second step in the design of an event processing module for

FInest. We first present the demonstration exercise done to facilitate knowledge transfer from

domain partners to ICT partners: a demonstrator was defined in a collaborative process, answer-

ing specific business needs identified in the root cause analysis. Next, we generate new re-

FP7-2011-ICT-FI — Finest

© D6.1 Requirements Analysis and Selection of Technology Base-line V0.7 Page 23 of 23

quirements, in addition to those covered in D6.1, as a result of the work with this demonstrator

and other demonstrators. This process leads to a refinement of the conceptual design (initially

presented in D6.1), where we describe the main components of the EPM and the relationships

among them, we stress the novelty of our design in comparison to standard event-processing

applications, and describe the relationship with other FInest modules.

The next step in this work package is an initial technical design of the EPM. This involves more

specific data structures for input and output, more comprehensive lists of events to handle, ex-

plicit rule templates, and possibly specific event processing agents and event processing net-

work.

References

[1] Opher Etzion and Peter Niblett, Event Processing in Action, Manning, 2010.

[2] Asaf Adi and Opher Etzion, AMiT - the situation manager. VLDB J. 13(2): 177-203 (2004)

[3] Opher Etzion, Yonit Magid, Ella Rabinovich, Inna Skarbovsky, and Nir Zolotorevsky, Context

aware computing and its utilization in event-based systems. Distributed Event-Based Systems

(DEBS), 2010.

[4] Segev Wasserkrug, Avigdor Gal, and Opher Etzion, A Model for Reasoning with Uncertain

Rules in Event Composition Systems. Uncertainty in Artificial Intelligence (UAI), 2005.

[5] Cathrine Moxey et al., A Conceptual model for Event Processing Systems, An IBM Redguide

publication, http://www.redbooks.ibm.com/redpapers/pdfs/redp4642.pdf, 2010.

[6] http://www.iata.org/whatwedo/cargo/cargo2000/Pages/master-operating-plan.aspx

[7] Yagil Engel and Opher Etzion, Towards Proactive Event Driven Computing, in Distributed

Event-Based Systems (DEBS), 2011

[8] http://www.efreightproject.eu/

http://www.redbooks.ibm.com/redpapers/pdfs/redp4642.pdf
http://www.efreightproject.eu/

