

FInest – Future Internet enabled optimisation
of transport and logistics networks

D6.3

Initial technical specification of event processing
component

Project Acronym FInest

Project Title Future Internet enabled optimisation of transport and logistics
networks

Project Number 285598

Workpackage #WP6 Proactive event driven monitoring

Lead Beneficiary IBM

Editor Fabiana Fournier IBM

Contributors Ella Rabinovich IBM

 Guy Sharon IBM

Reviewers Rod Franklin KN

 Clarissa Marquezan UDE

 Andreas Metzger UDE

Dissemination Level Public

Contractual Delivery Date 30/9/2012

Actual Delivery Date 30/9/2012

Version V1.0

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007‐2013] under grant agreement no. 285598

FP7‐2011‐ICT‐FI — FInest

Abstract

This report presents the third deliverable of work package 6 “Proactive Event Driven
Monitoring”. Work package 6 is accountable for the Event Processing Module (EPM), one of
the four core technical modules of the FInest platform. The role of this module within FInest is
to provide event-driven monitoring capabilities to facilitate the end-to-end visibility of logistics
processes and real-time information regarding actual execution.

This document describes the initial technical specification of the EPM module in FInest and its
interactions (in terms of interfaces) with other modules in the platform as well as with generic
enablers offered by FI-WARE. FInest EPM can act in both reactive and proactive modes. FInest
EPM proactive capabilities differentiate its run-time engine from currently available complex
event processing engines, and position it in the technological and research frontage of event
processing systems.

© D4.3 Initial technical specification of event processing component V1.0 Page 2 of 44

FP7‐2011‐ICT‐FI — FInest

Document History

Version Date Comments

V0.1 20/8/12 First draft

V0.2 30/8/12 Updates after project technical meetings

V0.3 1/9/12 Updates after IBM internal review

V0.4 7/9/12 Updates after project face-to-face meeting

V0.5 20/9/12 Updates after project review

V1.0 30/9/12 Submitted version

© D4.3 Initial technical specification of event processing component V1.0 Page 3 of 44

FP7‐2011‐ICT‐FI — FInest

Table of Contents

Abstract ... 2

Document History ... 3

Table of Contents .. 4

List of Tables.. 5

List of Figures .. 6

Acronyms... 7

1. Introduction .. 8

2. Background ... 8

2.1. Event producers and consumers ... 9

2.2. Event processing run‐time engine ... 10

2.2.1. Pattern detection .. 11

2.2.2. Conditions.. 12

2.2.3. Actions ... 13

2.2.4. Event processing agents .. 13

2.2.5. Context .. 14

2.3. Proactive event‐driven computing .. 15

2.3.1. The proactive principle.. 15

2.3.2. Forecasted events ... 16

2.3.3. Proactive event processing agents.. 16

3. Methodology... 17

4. FInest EPM architecture overview .. 18

4.1. Event types and attributes... 18

4.1.1. Proactive attributes ... 19

© D4.3 Initial technical specification of event processing component V1.0 Page 4 of 44

FP7‐2011‐ICT‐FI — FInest

4.2. Interfaces ... 20

4.2.1. Input and output adapters .. 20

4.3. Definition of FInest complex event processing application....................................... 22

4.4. FInest EPM instantiation.. 23

4.5. Interaction between EPM and other modules in FInest platform............................. 23

5. FInest EPM technical specification.. 26

5.1. EPM high level architecture... 26

5.2. EPM complex event processing run‐time technical specification 27

5.3. EPM interfaces with other components .. 28

5.4. FInest EPM with FI‐WARE GEs ... 30

5.5. Interfaces data types and definitions .. 31

6. Summary ... 33

7. References... 33

Appendix A – Event processing network for the FISH use case .. 35

List of Tables

Table 1: Methods definitions by interfaces .. 32

Table 2: (partial) List of events for the FISH use case ... 35

Table 3: (partial) Rule set for the FISH use case.. 39

Table 4: Event processing network for the FISH use case... 43

Table 5: Proactive event processing rules for the FISH use case .. 44

© D4.3 Initial technical specification of event processing component V1.0 Page 5 of 44

FP7‐2011‐ICT‐FI — FInest

List of Figures

Figure 1: Functional view of event processing [1] .. 9

Figure 2: Illustration of an event processing network .. 11

Figure 3: Event processing agent types... 12

Figure 4: Event processing agent architecture.. 13

Figure 5: Proactive event driven computing principle .. 15

Figure 6: WP6 D6.3 methodology ... 18

Figure 7: EPM interfaces ... 20

Figure 8: EPM interactions with other components ... 25

Figure 9: EPM high level architecture ... 26

Figure 10: EPM complex event processing run‐time architecture.. 27

Figure 11: Flow of events into, within, and out of the complex event processing engine 28

Figure 12: EPM interactions with other components ... 29

Figure 13: CEP engine set‐up... 29

Figure 14: FInest EPM with FI‐WARE GEs.. 30

Figure 15: Interfaces and data types... 31

Figure 16: EPM interfaces and methods ... 31

© D4.3 Initial technical specification of event processing component V1.0 Page 6 of 44

FP7‐2011‐ICT‐FI — FInest

Acronyms

Acronym Explanation

BCM Business Collaboration Module

CEP Complex Event Processing

ECA Event-Condition-Action

ECM E-Contracting Module

EPA Event Processing Agent

EPM Event Processing Module

EPN Event Processing Network

GE Generic Enabler

FInest Future Internet enabled optimisation of transport and logistics networks

JMS Java Message Service

JSON JavaScript Object Notation

IoT Internet of Things

PRA PRoactive event processing Agent

TCP Transport Chain Plan

TEP Transport Execution Plan

TPM Transport Planning Module

WP Work Package

© D4.3 Initial technical specification of event processing component V1.0 Page 7 of 44

FP7‐2011‐ICT‐FI — FInest

1. Introduction

Complex Event Processing (CEP) is the analysis of event data in real-time to generate
immediate insight and enable instant response to changing conditions. Some functional
requirements this technology addresses include event-based routing, observation, monitoring,
and event correlation. The technology and implementation of CEP provide means to
expressively and flexibly define and maintain the event processing logic of the application. At
runtime it is designed to meet all functional and non-functional requirements without taking a
toll on application performance, removing one issue from the application developer’s and
system manager’s concerns.

The Event Processing Module (EPM) is one of the four core technical modules in the FInest
(Future Internet enabled optimisation of transport and logistics networks) project. Its role is to
collect events from various sources and perform complex event processing on them in order to
detect situations of interest; that is, of relevant meaning to the consumer of the event enabling
them to react or make use of the event appropriately. In FInest, these detected situations (aka
derived events) are notified to the Business Collaboration Module (BCM), or to the frontend of
FInest, so appropriate actions can be taken, e.g. triggering re-planning of the transport plan.

This report refines the conceptual design of the EPM delivered in Month 12 of the project and
delivers the initial technical specification of the FInest EPM Module, including its interactions
with other core modules of FInest, and the potential use of FI-WARE Generic Enablers (GEs).
It should be noted that work on “preliminary conceptual prototypes” (initially planned to be
submitted in Month 18 as part of this deliverable) has already been successfully delivered as
part of deliverable 6.2 "Conceptual design of event processing component" at M12, and
therefore it is omitted from this report.

This document is organized as follows: Section 1 introduces the report scope and main goals.
Section 2 gives some background regarding event processing necessary to understand the
terminology used in the work. Section 3 describes the methodology that has been followed.
Section 4 gives an overview of the FInest EPM while Section 5 details the proposed architecture
and interfaces. The report concludes with a brief summary.

2. Background

The designer of event processing logic is responsible for creating event specifications and
definitions, including information concerning the sources of the events. The designer is also
responsible for discovery and understanding of existing event definitions.

Generally speaking, an event is an occurrence within a particular system or domain; it is
something that has happened, or is contemplated as having happened in that domain. The word
“event” is also used to mean a programming entity that represents such an occurrence in a
computing system. In the latter definition, an event is an object of an event type. Events are
actual instances of the event types and have specific values. For example, the event "today at 10
PM a customer named John Doe booked a new order" is an instance of the Order event type.

© D4.3 Initial technical specification of event processing component V1.0 Page 8 of 44

FP7‐2011‐ICT‐FI — FInest

The EPM includes the following two conceptual components:

 Tools to define event processing applications on data interpreted as events, either
manually or programmatically.

 Execution services that process events as they occur and generate derived events
accordingly.

These functions align with the functional architecture view produced by the Reference
Architecture Work Group of the Event Processing Technical Society (EPTS) [1], depicted in
Figure 1. From an architect and developer perspective, the architecture includes three main
functions: development, run-time, and administration. The run-time involves two additional
functions: producers and consumers, and the event processing run-time engine.

Henceforth, we present main concepts and constructs related to event processing tools and
applications relevant to the work in FInest. The terminology used in this report is based on, and
follows, the event processing language presented in [2].

Figure 1: Functional view of event processing [1]

2.1. Event producers and consumers

Entities connected to the CEP engine can play two different roles: the role of event producers or
the role of event consumers. Note that nothing precludes a given entity from playing both roles.

An event producer is an entity at the edge of an event processing system that introduces events
into the system. Event producers are the source of events for event processing. They can provide
events in two modes:

 "Push" mode: The event producers push events into the complex event processing
module by means of invoking a standard operation the module exposes (see Section
 4.2).

© D4.3 Initial technical specification of event processing component V1.0 Page 9 of 44

FP7‐2011‐ICT‐FI — FInest

 "Pull" mode: The event producer exports a standard operation that the complex event
processing module can invoke to retrieve events.

An event consumer is an entity at the edge of an event processing system that receives events
from the system. Event consumers are the sink point of events. Following are some examples of
event consumers:

 Dashboard: a type of event consumer that displays alarms defined when certain
conditions hold on events related to some user community or produced by devices of
interest.

 Applications: a type of event consumer if it consumes events for its own processes.

 Publish/Subscribe: a type of event consumer that forwards the events it consumes to all
interested applications based on a subscription model.

In the FInest EPM, we identify three event producers,

1. BCM (Business Collaboration Module): events related to the actual execution of a
transport plan.

2. IoT (Internet of Things): events received from sensors like RFID tags or GPS systems.

3. Backend systems: events originated from systems external to FInest, such as booking
systems.

and two consumers of FInest EPM events,

1. BCM: events related to actual execution plans, such as pickup arrival, change in
shipment status, and schedule delay. The BCM, in turn, might transmit some of these
events as notifications to the user via FInest frontend.

2. FInest frontend: proactive notifications regarding future probable events not directly
related to the actual/real-time execution of the transport plan (see Section 2.3 for a
description of proactive event-driven computing).

2.2. Event processing run-time engine

The CEP run-time engine in FInest implements event processing functions based on the design
and execution of Event Processing Networks (EPNs). Processing nodes that make up these
networks are called Event Processing Agents (EPAs). The network describes the flow of events
originating at event producers and flowing through various event processing agents to
eventually reach event consumers. For example, in Figure 2, events from Producer 1 are
processed by Agent 1. Events derived by Agent 1 are of interest to Consumer 1 but are also
processed by Agent 3 together with events derived from Agent 2. Note that the intermediary
processing between producers and consumers in every installation is made up of several
functions and often the same function is applied to different events for different purposes at
different stages of the processing. The EPN approach allows dealing with this in an efficient
manner, because a given agent may receive events from different sources. Another benefit in
representing event processing applications as networks is that entire networks can be nested as

© D4.3 Initial technical specification of event processing component V1.0 Page 10 of 44

FP7‐2011‐ICT‐FI — FInest

agents in other networks allowing for reuse and composition of existing event processing
applications.

Event
Producer 1

Event
Producer 2

Event
Consumer 1

Event
Consumer 2

Agent 1

Agent 3Agent 2

Event
Producer 1

Event
Producer 2

Event
Consumer 1

Event
Consumer 2

Agent 1

Agent 3Agent 2

Figure 2: Illustration of an event processing network

The event processing network can be programmatically developed and deployed on the fly at
execution, or it can be developed by applying form based tools. In the latter case, the network
constructs can be manually deployed at execution, or on the fly.

The event processing agents (see detailed description in Section 2.2.4) and their assembly into a
network is where most of the functions of the EPM in FInest are implemented. The behavior of
an event processing agent is specified using a rule-oriented language that is inspired by the ECA
(Event-Condition-Action) [8] concept and can be described as Pattern-Condition-Action. Rules
in this language consist of three parts:

 A pattern detection that makes a rule of relevance

 A set of conditions (logical tests) formulated on events as well as external data

 A set of actions to be carried out when all the established conditions are satisfied

In the following sections, we describe the capabilities to be supported in each part of the rule
language. A description of how such rules can be assembled is given in the event processing
agent section (Section 2.2.4.).

2.2.1. Pattern detection

In the pattern detection part, the user may define patterns over selected events within an event
processing context (such as a time window or segmentation, see Section 2.2.5). Only if the
pattern is matched, the rule is of relevance, and according to its conditions, the action part is
executed. A pattern matching process takes the participant events as an input and creates a
pattern matching set, consisting of the event instances that satisfy the pattern.

Pattern detection is a type of EPA (see Section 2.2.4) that enables the analysis of collections of
events and the relationship between them. Pattern detection is one of the EPA types as depicted
in Figure 3. Informally, we say that a conditional combination of events matches a pattern if this
combination satisfies the particular pattern definition. Pattern matching EPA examples are: all,
sequence, absence, any, and trend (see brief explanations below).

Note that processing of a rule (established by the EPA type) can be stateless or stateful. The
stateless EPA induces that the processing applies to a single event and is only formulated over
properties of the event, while stateful processing applies to multiple events within a certain time
frame. Most pattern detection EPAs are stateful, involving both detection of multiple event
combinations and temporal semantics. Other EPA types (except Aggregation) usually represent

© D4.3 Initial technical specification of event processing component V1.0 Page 11 of 44

FP7‐2011‐ICT‐FI — FInest

stateless EPAs, and thus include simpler functions. Examples for stateless EPAs are Filter (aka
Threshold), Split, and Compose (for a full description of EPA types refer to [2]).

Figure 3: Event processing agent types

Examples for pattern matching EPAs (see Table 3 in Appendix A for examples of rules
applying pattern matching EPA in the FISH use case) are:

 Sequence, means that at least one instance of all participating event types must arrive in
a specified order for the pattern to be matched.

 All, means that at least one instance of all participating event types must arrive for the
pattern to be matched; the arrival order in this case is immaterial.

 Trend, events need to satisfy a specific change over time of some observed value; this
refers to the value of a specific attribute or attributes.

 Absence, a specified event(s) must not occur within a predefined time window. The
matching set in this case is empty.

 Any, the participant event set contains an instance of any of the event types in the
relevant event types list. A matching set for the any pattern contains just one member.

2.2.2. Conditions

Each EPA, in particular pattern detection EPA, may incorporate two types of conditions:

1. Simple conditions, which are established as predicates defined over single events of a
certain type. Such a condition is also known as an event threshold condition.

2. Complex conditions, which encapsulate several event types, or several event instances
of the same type, and are denoted by "cross-event" conditions.

A single EPA can encapsulate both simple and complex conditions, for example:

All(A,B) where A.price > 1000 and A.amount > B.amount

This agent is looking for the arrival of at least one instance of event type A and event type B
with simple condition (A.price > 1000) and complex condition (A.amount > B.amount).

© D4.3 Initial technical specification of event processing component V1.0 Page 12 of 44

FP7‐2011‐ICT‐FI — FInest

Conditions on events are expressed based on a number of predefined operators applicable over:

 Values of event data fields.

 Values of other properties inherent to an event (e.g., lifetime of the event).

 External functions the CEP engine can invoke and to which event data field values or
event property values can be passed.

2.2.3. Actions

Action is usually a user-defined operation that is triggered upon detection of a certain pattern.
Examples for actions are: sending an email or SMS, database update, or invocation of external
services that allows achieving some desired effect in the overall system.

Action execution is external to the CEP engine, however, an action can result in a return code
that is of interest for further processing – the return code, for instance, can later be referred to by
an event processing agent. Action definition in event processing applications may include
parameters needed for action execution.

2.2.4. Event processing agents

To simplify the specification of an event processing agent, a framework based on a number of
building blocks is provided. This allows the user to express their intent without the need to write
logical statements that can be sometimes long and difficult to understand. Users can define
EPAs by specifying three building blocks that make up an agent, as well as input and output
terminals that specify the type of events to be considered in a rule and the type of events that
may be derived by the rule respectively. This is depicted schematically in Figure 4.

Figure 4: Event processing agent architecture

Only events of the type that have been specified in the input terminals of the agent will be
considered for the rule. Then, the following building blocks are defined:

 The first building block is the filter block, an optional block, where filters can be
applied on individual input events in order to decide whether to consider them or not in
further execution of the rule. For example, in FInest, we can isolate those events that
may affect a specific shipment; for example, filter traffic reports from the specific
highway numbers that are relevant to the shipment. The filter is referred to as a simple
condition in Section 2.2.2.

© D4.3 Initial technical specification of event processing component V1.0 Page 13 of 44

FP7‐2011‐ICT‐FI — FInest

 The second building block is the matching block, an optional block, where the events
are matched against a specified pattern, and where matching sets are created. This is the
process where pattern detection (Section 2.2.1) is done.

 The final building block is the derivation block, the only mandatory block, where
matching sets, filtered events, or direct input events are used to compose one or more
derived events according to conditions and expressions. The derived events are specified
in the output terminals to be selected as inputs by other agents. Note that derived events
are emitted from one EPA to another in the EPN. When these events are emitted to a
consumer, they are called detected situations.

The different types of EPAs may implement subsets of the components depicted in Figure 4.
Pattern detection is the only EPA type that implements the three parts, i.e. filtering, matching,
and deriving. Others may have filtering and deriving, or even only deriving component (the only
obligatory one). For example, Filter (Threshold) EPAs implement filtering and deriving
components, Enrich and Aggregation EPAs implement (optionally) filtering and deriving (refer
to [2]). The entire rule may be executed in a processing context that is specified at the level of
the EPA (see Section 2.2.5 below). In order to specify EPAs programmatically, the syntax of the
building blocks is given and the artifacts are deployable through APIs to the processing engine.

2.2.5. Context

Event processing context is defined as a named specification of conditions that group event
instances so that they can be processed in a related way. It assigns each event instance to one or
more context partitions. A context may have one or more context dimensions and can give rise
to one or more context partitions. A context dimension states what aspect of the event is used to
do the grouping. Four context dimensions are identified: temporal, spatial, state-oriented, and
segmentation-oriented. A context can also be a composite context, i.e., one made up of other
context specifications.

A temporal context consists of one or more time intervals, possibly overlapping. Each time
interval, or window, corresponds to a context partition, which contains events that occur during
that interval. An example can be an EPA that raises an alert if someone attempts to make more
than three withdrawals from an ATM machine within a single day.

A spatial context groups event instances according to their geospatial characteristics. This type
of context assumes that the event contains an attribute that assigns a location to the event.

A state-oriented context is determined by the state of some entity that is external to the event
processing system. For example, an airport security system could have threat level statuses
taking values green, blue, yellow, orange, or red. Some events may need to be monitored only
when the threat level is orange or above whereas other events may be processed differently in
different threat levels.

A segmentation-oriented context is used to group event instances into context partitions based
on the value of an attribute or collection of attributes in the instances themselves. As a simple
example, consider an EPA that takes a single stream of input events, in which each event
contains a customer identifier attribute. The value of this attribute can be used to group events
so there is a separate context partition for each customer. Each context partition contains only
events related to that customer so the behavior of each customer can be tracked independently
of the other customers.

© D4.3 Initial technical specification of event processing component V1.0 Page 14 of 44

FP7‐2011‐ICT‐FI — FInest

© D4.3 Initial technical specification of event processing component V1.0 Page 15 of 44

timet - Δ

forecast

proactive
actionreal-time

decision

detect

t timet - Δ

proactive
action

forecast

real-time
decision

detect

t

2.3. Proactive event-driven computing

Event driven architectures, and conceptual models that support them, have evolved in the last
few years. These architectures depart from traditional computing architectures that employ
synchronous, request/response interactions between client and servers. This is a paradigm shift
in two senses: first, event driven architectures support applications that are reactive in nature, in
which processing is triggered in response to events, contrary to traditional responsive
applications, in which processing is done in response to an explicit request. Second, event
driven architecture adheres to the decoupling principle in which there are event producers, event
consumers and event processing agents that are mutually independent. Proactive event-driven
computing can be considered as the next phase of this evolution [3, 5]. In fact, the FInest
consortium has already been able to demonstrate the potential benefits and opportunities of
proactive event-driven computing in the setting of transport and logistics (see [9]).

2.3.1. The proactive principle

We refer to proactive event-driven computing as the ability to mitigate or eliminate undesired
states, or capitalize on predicted opportunities—in advance. This is accomplished through the
online forecasting of future events, the analysis of events coming from many sources, and the
application of online decision-making processes.

The proactive principle can be illustrated through the scenario depicted in Figure 5: For a
certain application we define the set of acceptable/desirable states (scoped by the closed curved
line in the figure). At time (t - Δ) we forecast that the system is moving towards the red state (an
undesirable situation) that it will reach at time (t). Therefore, we change the course of the states
(by making a real-time decision), and proactively change the outcome towards the green state.
We have a window in which to act ((t-Δ) to t) in order to change the course of states/events.

Figure 5: Proactive event driven computing principle

For example, let's assume that we have a passenger flying from A to C via B. At 9:00AM our
passenger has to leave airport A. At 8:20AM there are reports regarding severe weather
conditions at airport B, which can lead to an airport closure with probability 0.6. At 8:30 AM,
our passenger gets a text message regarding potential closure of airport B along with a
reschedule of the flight itinerary (via D) without affecting the arriving time at C.

Proactive Event-Driven Computing is a new paradigm where a decision is neither made due to
explicit users' requests nor as a response to past events, but is autonomously triggered by
forecasting future states, either desired or undesired. The decisions and actions are often real-
time in the sense that they are done under time constraints.

FP7‐2011‐ICT‐FI — FInest

The proactive principle extends the reactive pattern known as sense-and-respond or detect-and-
act pattern [7] to a novel pattern consisting of four stages:

1. Detect events and situations using enhanced event processing techniques.

2. Forecast/predict unexpected future events and states before they occur. Forecasting is
done by observing ongoing events, analyzing them, and using predictive analytics
techniques.

3. Decide, within time constraints, how to handle forecasted events and states using real-
time optimization techniques.

4. Act in the best way possible by adapting (e.g., re-planning/optimizing) the operational
system to either mitigate the problem or reach a desired opportunity.

Proactive capabilities require going beyond the state-of-the-art in several areas. First in event
processing engines, as there is a need to extend event processing to support the concept of future
events (forecast); secondly in real-time optimization approaches, as there is a need to make real-
time decisions based on events (decide and act).

The underlying motivation of proactive computing stems from social and economic factors, and
is based on the fact that prevention is often more effective than cure [6]. Proactive event-driven
applications can be applied to scenarios in a wide range of fields, including medicine, finance,
transportation, and security to predict and prepare for future events.

2.3.2. Forecasted events

As mentioned before, proactive capabilities require extending event processing engines to cope
with forecasting. That is, the CEP engine needs to analyze on-going events and, based on
causality models, to forecast events with a future, and therefore probabilistic, occurrence time.
In the FInest CEP engine, forecasted events are expressed by extending the event metadata
specification to include three additional attributes. For the list of attributes please refer to
Section 4.1. In order to process future events and make real-time decisions, a new building
block is introduced to the EPN: proactive event processing agents (PRA).

2.3.3. Proactive event processing agents

Proactive event processing agents (PRAs), similar to their (reactive) EPA counterparts, analyze
incoming events and, based on some defined rules, derive events. As mentioned before, these
are future events with some kind of probability. Therefore, proactive event processing agents
involve predictive as well as real-time optimization techniques. In our previous example, the
relevant proactive agent detects incoming events regarding potential severe weather conditions,
forecasts that there is a chance of 0.6 that the original itinerary cannot be completed, decides on
a rescheduling, and acts by sending notification to the passenger along with the new flight
itinerary.

© D4.3 Initial technical specification of event processing component V1.0 Page 16 of 44

FP7‐2011‐ICT‐FI — FInest

3. Methodology

The main purpose of this report is to provide an initial specification of the event processing
module in the FInest platform. While this primarily concerns the technical architecture of the
proposed module, we do believe that the architecture should be checked against business
scenarios and be acceptable by the domain partners as well as by the technical people.
Therefore, during the preparation of this report, we worked in close collaboration with the
technical team as well as with the domain partners of the project. Specifically we followed the
guidelines below, illustrated in Figure 6:

 Regular weekly technical conference calls organized and led by the technical
coordinator of the project, with action items and milestones to be achieved towards
Month 18 deliverables.

 Conference calls with domain partners involved in the FISH use case, since this was
selected by us to be our first scenario for building an event processing application
(initial list for events, rules, and event processing network for the FISH use case can be
found in Appendix A). This scenario helped us build and validate the EPM and the way
the modules interact.

 Ad-hoc technical collateral meetings with other technical WPs (i.e. WP5 and 7) to close
any open issues regarding expected interfaces. Specifically, many discussions have been
carried out with WP5 since the BCM is the main interaction entity with the EPM. Also,
conversations with WP7 regarding the content of the TCP (Transport Chain Plan) and
TEP (Transport Execution Plan), and the ways to get the rules required by the CEP
engine. The results of these meetings can be summarized in Figure 8, which describes
the interactions among the EPM and other modules. One of the main questions
answered was which module is responsible for defining the set of relevant rules and
their parameters for a new transport plan, and how these will be passed to the event
processing module. Feedback from these collateral meetings served as input for
(ongoing) refinements of the technical specifications.

© D4.3 Initial technical specification of event processing component V1.0 Page 17 of 44

FP7‐2011‐ICT‐FI — FInest

Technical meetings
(WP5-8)

Collateral meetings

Technical meetings
with WP5, 7, and 8

Domain partners

First version of FInest platform architecture

feedback

feedback

feedback
M12

M18

feedback

FISH use cases rules
first draft of EPM architecture

refined version of EPM architecture

refined version of EPM architecture

interfaces with other modules

interfaces with other modules

interfaces with other modules

Technical meetings
(WP5-8)

Collateral meetings

Technical meetings
with WP5, 7, and 8

Domain partners

First version of FInest platform architecture

feedback

feedback

feedback
M12

M18

feedback

FISH use cases rules
first draft of EPM architecture

refined version of EPM architecture

refined version of EPM architecture

interfaces with other modules

interfaces with other modules

interfaces with other modules

Figure 6: WP6 D6.3 methodology

4. FInest EPM architecture overview

The event processing module in FInest comprises a run-time engine, producers, and consumers
with the characteristics and capabilities described in the background section (Section 2).
Specifically, the CEP engine of FInest includes an integrated run-time platform to develop,
deploy, and maintain reactive and proactive applications using a single programming model.

With regards to proactivity capabilities, the EPM employs a basic model [3], by incorporating
PRAs to the EPN (see Section 2.3.3) and sending proactive notifications to the FInest front-end
regarding possible future detected situation of interest to the user (see Table 5 as an example for
the FISH use case).

Section 4 gives an overview of FInest EPM architecture including event types and interfaces
definitions, EPM instantiation, and interactions with other modules in FInest platform.

4.1. Event types and attributes

Events enter the CEP engine during run-time. They carry information about things that happen
externally to the engine (raw events) or as a result of processing in the engine (derived events).
An event is an object of an event type and its attributes are defined based on the event type.
Events are actual instances of the event types and have specific values. For example, the event
"today at 10 PM a customer named John Doe booked a new order" is an instance of the Order
event type.

information about things that happen
externally to the engine (raw events) or as a result of processing in the engine (derived events).
An event is an object of an event type and its attributes are defined based on the event type.
Events are actual instances of the event types and have specific values. For example, the event
"today at 10 PM a customer named John Doe booked a new order" is an instance of the Order
event type.

© D4.3 Initial technical specification of event processing component V1.0 Page 18 of 44

FP7‐2011‐ICT‐FI — FInest

We distinguish between two types of event: raw events and derived events.

1. Raw event: A raw event is an event that is introduced into an event processing system
by an event producer. The definition of a raw event relates only to its source and not to
its structure; a raw event may or may not be composed of other events.

2. Derived event: A derived event is an event that is generated as a result of event
processing that takes place inside an event processing system. When a derived event is
emitted outside the event processing system and consumed by a consumer, it is called a
detected situation.

Every event instance has a set of built-in attributes (metadata). The EPM employs the following
attributes in the event type's metadata:

 OccurenceTime – a timestamp attribute, which we expect the event source to fill in as
the occurrence time of the event. If left empty, this equals the detectionTime attribute
value.

 DetectionTime – a timestamp attribute that records the time the CEP engine detected the
event. The time is measured in milliseconds, specifying the time difference between the
current machine time at the moment of event detection and midnight, January 1, 1970
UTC.

 Duration – a timestamp attribute that stores the time duration of the event in
milliseconds in case the event occurs within a time interval.

 EventId – a unique string identification of the event, which can be set by the event
source to match the asynchronous output for the event.

 EventSource – holds the source of the event (usually the name of event producer).

The above built-in attributes can be used in an expression in the same manner as user-defined
attributes. User defined attributes can be added to the event class by defining their types. If the
attribute is an array, its dimension should be specified.

When one of the event processing agents detects a situation, it can create one or more derived
event instances. These event instances have the same characteristics as an input event; they have
both user-defined (event payload) and built-in (event header) attributes. When derived events
are emitted to consumers they are called detected situations.

4.1.1. Proactive attributes

Future events in the FInest CEP engine are expressed by setting the event a future occurrence
time with an optional distribution. Its occurrence certainty can be expressed using the certainty
attribute. The following attributes are added to the event type built-in attributes:

 Certainty – a built-in double attribute that stores the certainty of this event. An event
has a default certainty value equal to 1, while it can have any value between 0-1.

 Cost – the cost of this future event occurrence. The cost is negative if this is an
opportunity. This attribute is used by the proactive algorithm to decide on mitigation
actions to prevent the occurrence of a predicted event.

© D4.3 Initial technical specification of event processing component V1.0 Page 19 of 44

FP7‐2011‐ICT‐FI — FInest

© D4.3 Initial technical specification of event processing component V1.0 Page 20 of 44

 ExpirationTime - the time until which the cost and certainty parameters are valid, and
until which an activation of proactive action is considered by the proactive algorithm
(beyond this time there is no point in changing any course of action).

4.2. Interfaces

The CEP runtime engine has three main interfaces with its environment as depicted in Figure 7.

1. Input adapters for getting incoming events

2. Output adapters for sending derived events

3. CEP application definition (build time)

The application definitions, i.e. the EPN, are written by the application developer during the
build-time. The definitions output, in JSON (JavaScript Object Notation) format, is sent to the
CEP run-time engine. At run-time, the CEP receives incoming events through the input
adapters, it processes these incoming events according to the definitions, and sends derived
events through the output adapters.

Figure 7: EPM interfaces

4.2.1. Input and output adapters

The definitions of the producers and consumers are specified during the application build-time
and are translated into input and output adapters during execution time. The physical entities
representing the logical entities of producers and consumers in CEP are adapter instances. For
each producer an input adapter is defined, which defines how to pull the data from the source
resource and how to format the data into CEP's object format before delivering it to the run-time
engine. The adapter is environment-agnostic, but uses the environment-specific connector
object, injected into the adapter during its creation, to connect to CEP runtime.

The consumers and their respective output adapters operate in a push mode – each time an event
is published by the runtime it is pushed through environment-specific server connectors to the
appropriate consumers, represented by their output adapters, which publish the event in the
appropriate format to the designated resource.

Custom

DB

REST

Files

JMS

Custom

DB

REST

Files

JMS

Input Adapters

Custom

DB

REST

Files

JMS

Custom

DB

REST

Files

JMS

Output Adapters

CEP Run time

CEP Build‐time

FP7‐2011‐ICT‐FI — FInest

In FInest, the sources of events can be backend systems (such as AIS or booking systems) or
external sensors (e.g., RFID tags) or events originated in FInest during execution and
propagated to the CEP module by the BCM. Consumers in FInest are the BCM module (e.g.
notification regarding change in shipment status) or the FInest frontend for proactive
notifications (see Section 2.3 on proactive event-driven computing). The set of rules applicable
to the specific TCP along with corresponding parameters are passed to the CEP engine during
execution by the BCM, which in turn gets its information from the TPM module (see Section
 4.5 for interactions among the different modules in FInest).

4.2.1.1. EPM RESTful API

As mentioned previously, the CEP has three main interfaces: one for getting input events using
input adapters, a second for sending output events using output adapters, and a third for getting
application specific definitions. In the case of a RESTful API for the first two interfaces, the
CEP engine can activate RESTful services of external applications for receiving input events
and for sending output events using its input and output adapters.

The EPM module will build upon FI-WARE CEP GE [4]. The run-time engine supports a
RESTful, resource-oriented API accessed via HTTP that uses either XML-based, JSON-based,
or tag-delimited format representations for getting input events and for sending derived events.
The CEP engine uses a RESTful client input adapter that is capable of accessing a RESTful web
service and pulling input events using its GET method and a RESTful client output adapter,
which is capable of accessing a RESTful web service and pushing output events using its PUT
method.

The CEP GE uses a REST input adapter that activates a REST service as a client, allowing the
CEP GE REST input adapter to access the REST web service declared by the event producer
and pull events using the GET method. The CEP GE uses a REST output adapter that activates a
REST service as a client, allowing the CEP GE REST output adapter to access the REST web
service declared by the event consumer and push events using the PUT method.

In terms of representation format, the CEP REST adapter supports XML-based, JSON-based or
tag-delimited formats for the received input event. The format is specified in the CEP producer
definition (for pulling input events from it) and in the CEP consumer definition (for pushing
output events to it) and is passed as part of the requests using the Content-Type header.

Operations

Getting Events API

The CEP activates a REST API for getting incoming events in a pull mode. The CEP plays as a
REST client in this API:

Verb URI example Description

GET /application‐name/producer Retrieve all available incoming events

/application-name/producer

Retrieve all available incoming events from a producer.

In tag-delimited format:

GET /application-name/producer
Accept: text/plain

© D4.3 Initial technical specification of event processing component V1.0 Page 21 of 44

FP7‐2011‐ICT‐FI — FInest

Sample result:

Name=ShipPosition;ShipID=RTX33;Long=46;Lat=55;Speed=4.0;Time=1333033200;
Name=ShipPosition;ShipID=JF166;Long=47;Lat=55;Speed=2.0;Time=1333033260;

Sending Events API

The CEP activates a REST API for sending output events (in a push mode). The CEP plays as a
REST client in this API:

Verb URI example Description

PUT /application‐name/consumer Send an output event to a consumer

/application-name/consumer

Send an output event to a consumer

In tag-delimited format:

PUT /application-name/consumer
Content-type:text/plain

Name=ShipStopped;ShipID=RTX33;Long=46;Lat=55;Speed=4.0;Time=1333033200;

4.3. Definition of FInest complex event processing application

The CEP definitions file can be created in three ways:

1. Build-time user interface – By this, the application developer creates the building
blocks of the application definitions. This is done by filling up forms without the need
to write any code. The file that is generated is exported in a JSON format to the CEP
run-time engine.

2. Programming – The JSON definitions file can alternatively be generated
programmatically by an external application and fed into the CEP run-time engine.

3. Manually – The JSON file is created manually and fed into the CEP run-time engine.

Currently in FInest, option number 3 is used, i.e., the definitions file is created manually. For
Phase II of the project a user interface (option 1) is proposed that will enable creating the rules
definitions without programming.

The building blocks of a CEP application are:

 Event type – the events that are expected to be received as input or to be sent as output.
An event type definition includes the event name and a list of its attributes.

 Producers – the event sources and the way CEP gets events from those sources.

 Consumers – the event consumers and the way they get derived events from the CEP.

 Temporal contexts – time window contexts in which event processing agents are active.

© D4.3 Initial technical specification of event processing component V1.0 Page 22 of 44

FP7‐2011‐ICT‐FI — FInest

 Segmentation contexts – semantic contexts that are used to group several events to be
used by the EPAs.

 Composite contexts – grouping together several different contexts.

 Event processing agents – patterns of incoming events in specific context that detect
situations and generate derived events.

The JSON file that is created at build-time contains all EPN definitions, including definitions
for event types, EPAs, PRAs, contexts, producers, and consumers. At execution, the run-time
accesses the metadata file, loads and parses all the definitions, creates a thread per each input
and output adapter, and starts listening for events incoming from the input adapters (producers)
and forwards events to output adapters (consumers).

4.4. FInest EPM instantiation

In FInest a set of rules is defined and provided to the run-time engine during the build-time. At
execution time, the instantiation of the relevant EPAs is done by specifying for each Transport
Execution Plan (TEP) in a single TCP (Transport Chain Plan) the set of rules from the rules
definition that apply to the specific TEPs along with the corresponding parameter values. This
set of rules is transferred to the EPM by the BCM, which in turn gets its information from the
TPM (see Figure 8). The rules activator component in the EPM is responsible for selection and
activation of rules relevant for each TEP based on the information received from BCM (see
Section 5.3). An initial list of events and rules for the FISH use case in FInest is provided in we
denote by "To be filled in real time by BCM" attributes that are not part of the initial TEP, but
their values are obtained as a result of the execution of a TEP at run-time.

Table 2 and Table 3 in Appendix A.

Upon the completion of each TEP within a TCP, the temporal window (temporal context)
associated with this TEP is terminated, which causes termination of all EPA instances
associated with this context, i.e. all EPA instances related to this TEP.

4.5. Interaction between EPM and other modules in FInest
platform

As previously defined in the Month 12 deliverables, the EPM will receive events from the BCM
and directly from IoT and backend systems. However, there were some issues to be resolved for
M18, such as:

 How the EPM gets the relevant set of rules with appropriate parameter values for the
specific TCP/TEP?

 What is the right granularity for execution? A TCP or a TEP?

 What is the information existing in the TCP XML file and what additional (if at all)
information is required in order to monitor for detected situations?

 When should the BCM update its information model regarding changes in attributes as
the result of events during run-time?

 When should the ECM gets notified of statuses regarding execution of a transport plan?

© D4.3 Initial technical specification of event processing component V1.0 Page 23 of 44

FP7‐2011‐ICT‐FI — FInest

All these issues were discussed and solved during the collateral meetings (see Figure 6) between
WP6 and work packages 5 and 7, especially with WP5, since most of the interaction of the EPM
is with the BCM. As a result, refinements of the architecture diagrams (see Section 5) have been
made.

Agreements (in no specific order):

 We kept the principle that all information regarding execution will be maintained and
taken care by the BCM and the EPM. Therefore, statuses regarding completion (whether
successful or not) will be transmitted by the BCM to the other modules at the end of
execution.

 At this stage of the project work, a transport replanning will be initiated by the user
upon an event notification and will be treated as a new request for planning to the TPM.
We will consider more sophisticated mechanisms in the future, in which replanning can
be automatically issued by the EPM as a result of certain detected situations (e.g., delays
in schedule, change in cargo amounts).

 The TCP/TEP XML should encompass all information required by the EPM. In the
FISH use case, attributes required for the events and rules have been mapped to
attributes in the XML file. Although most of the information exists, discrepancies have
been identified, and it has been decided that some additional information will be
included in the XML file.

 Initialization of the rule set for execution by the EPM:

o The concept is that the TPM has a predefined set of transportation
configurations (truck, air, ship...) that have a (more or less) constant set of rules
related to them, i.e., "for an overseas shipment you need an import license X
time before loading". In that case, once a TCP is constructed with its
corresponding TEPs, they induce a list of rules for this transport plan.
Parameter values for some of the rules should also be set by domain experts, so
that the entire rules configuration is generated by the TPM and is sent to the
BCM which, in turn, sends it to the EPM.

o Based on input from the BCM at the initialization of each TCP, the EPM
activates/deactivates rules accordingly.

o The rules and parameters from the BCM are sent in a predefined structure so
that it will be possible to automatically convert them to the required CEP
engine format rules (i.e., JSON).

o The EPM activates relevant rules for the entire TCP and each TEP upon TEP
initiation events, and deactivates them upon TEP termination events.

 The BCM will keep up-to-date both its data and process models with regards to events
and detected situations (e.g., change in an attribute value, achievement of a milestone,
triggering a guard). Furthermore, all event attributes will be stored in the BCM data
schema.

Interactions between the EPM and other modules in the FInest platform are depicted in Figure 8.

© D4.3 Initial technical specification of event processing component V1.0 Page 24 of 44

FP7‐2011‐ICT‐FI — FInest

Figure 8: EPM interactions with other components

© D4.3 Initial technical specification of event processing component V1.0 Page 25 of 44

FP7‐2011‐ICT‐FI — FInest

5. FInest EPM technical specification

In this section of the report we present the proposed technical architecture of the FInest event
processing module that comprises the capabilities discussed so far. We start with a high level
overview of the EPM module, followed by a more detailed architecture. Conceptually, the
FInest CEP engine can be implemented based on the FI-WARE CEP GE, except for the
proactive capabilities that differentiate the FInest CEP from currently available complex events
engines (see Section 2.3 and Section 5.4). An example of events, rules, and the EPN definition
for the FInest FISH use case can be found in Appendix A.

5.1. EPM high level architecture

The EPM high level architecture is depicted in Figure 9. The CEP runtime engine is the heart of
the module – it receives events from producers, monitors and checks them for predefined
patterns, and produces derived events. When the latter are emitted outside the module to
consumers, they are called detected situations. The entire set of rules to monitor is part of the
engine set up and they are defined in advance.

Producers: According to the CEP architecture, producers can produce multiple event types and
a single event type can be produced by multiple sources. In FInest, we have identified three
sources for events: IoT, backend systems, and the BCM.

Consumers: Detected situations are consumed by the BCM, which in turn sends notifications to
users via the FInest frontend. Proactive notifications are directly sent to the FInest frontend
(consumer) by the EPM since these events don't actually alter the execution of the BCM, but
serve as meaningful notifications for a user so they can make better decisions (e.g., trigger
replanning).

Events: Raw events are introduced into the module by the producers, while derived events are
generated as a result of event processing that takes place inside the EPM. Derived events can
either be emitted to consumers (detected situations) or can be input for further processing inside
the CEP module by other event processing agents. Detected situations can be sent as
notifications to users regarding meaningful situations they have subscribed to.

Figure 9: EPM high level architecture

© D4.3 Initial technical specification of event processing component V1.0 Page 26 of 44

FP7‐2011‐ICT‐FI — FInest

5.2. EPM complex event processing run-time technical
specification

Figure 10 shows the internal architecture of the CEP runtime engine.

Figure 10: EPM complex event processing run‐time architecture

The adapters component incorporates both input and output adapter sub-components (see
Section 4.2).

 Input adapters are responsible for accepting raw events from producers, e.g., from file,
JMS (Java Message Service) or REST, converting them into the format that is required
by the engine and sending them for preprocessing.

 Output adapters receive derived events and proactive notifications and send them to
consumers, e.g., to file, JMS, REST.

The Preprocessing component is responsible for decisions related to further routing of the
accepted event. An event can be routed to a specific agent queue (in case it is an input event) or
it can be routed to output adapter (in case it is a derived event) or both. This component
preprocesses derived events and proactive notifications and decides whether they will be further
processed by the engine (feedback loop) or will be forwarded to output adapters.

The AgentQueue component maintains event queues for the different agent types and contexts
that these agents are associated with. For each event in a queue, a list of relevant context
partitions is retrieved from the ContextService (which manages all active context partitions),
then the event is sent to event processing/proactive agent instances that are associated with these
partitions.

These steps are described in the sequence diagram of Figure 11.

© D4.3 Initial technical specification of event processing component V1.0 Page 27 of 44

FP7‐2011‐ICT‐FI — FInest

Figure 11: Flow of events into, within, and out of the complex event processing engine

5.3. EPM interfaces with other components

Figure 8 describes how interactions among the modules are carried out by the FInest platform.
Figure 12 presents how the FInest architecture, focused on how the EPM realizes these
interactions.

The BCM is responsible for sending the entire set of rules to the EPM. This is performed for
each TCP upon shipment initiation. Both rules and events are sent by the BCM to the EPM via a
REST API. The EPM activates relevant rules for the entire TCP and each TEP upon TEP
initiation event, and deactivates them upon a TEP termination event.

The Rules activator is responsible for selection and activation of rules relevant for each TEP
based on information received from the BCM.

The CEP engine produces detected situations and proactive notifications to the BCM and the
FInest frontend correspondingly.

© D4.3 Initial technical specification of event processing component V1.0 Page 28 of 44

FP7‐2011‐ICT‐FI — FInest

EPM

<<Finest>>

CEP Runtime Engine

<<Finest>>

Backend
(IOT, Legacy Systems…)

<<Finest>>

Frontend

<<Finest>>

BCM

<<FInest>>

Rules Activator

Rules Store
<<FInest>>

Selector

activateRules(rules)

processEvent(derivedEvent)
activateRules(JSON rules)

putProactiveNotification(notificaion)

putDetectedSituation(situation)processEvent(rawEvent)

processEvent(rawEvent)

Figure 12: EPM interactions with other components

The steps carried out by the CEP engine upon an arrival of a new set of rules (i.e. initialization
of new EPN constructs) is illustrated in Figure 13.

Figure 13: CEP engine set‐up

© D4.3 Initial technical specification of event processing component V1.0 Page 29 of 44

FP7‐2011‐ICT‐FI — FInest

5.4. FInest EPM with FI-WARE GEs

Conceptually, the FInest CEP engine can be implemented based on the FI-WARE CEP GE,
except for the proactive capabilities that differentiate the FInest CEP from currently available
complex events engines (see Section 2.3).

Figure 14 depicts the FInest EPM with the implementation of FI-WARE GEs. We note that at
this stage we envisage the implementation of two FI-WARE GEs: the CEP engine and the
PUB/SUB engine (see definitions of these GEs in [4]). The Pub/Sub GE will provide the
mechanism to get events from external and IoT systems.

As discussed previously, the CEP GE engine will provide the necessary event processing
capabilities except for proactivity. This latter capability will be realized by a specific component
that will encompass the specific proactive agents (see Proactive Agent component in the
diagram).

The (FI-WARE) CEP GE is currently a standalone application (not a web application) that can
invoke other components via a REST API for putting produced events; however, other
applications can not push events into it in a RESTful manner. The events repository component
bridges this gap – the BCM pushes events to this repository and they are later pulled by the CEP
GE in order to process them.

The Rules Activator is also a FInest specific component that is responsible for translating a set
of rules from the BCM to a format required by the CEP GE (see also diagram in

Figure 12).

The Proactive Agent is a piece of software accountable for processing future events and
forecasting detected situations (refer to Section 2.3.3)

Figure 14: FInest EPM with FI‐WARE GEs

© D4.3 Initial technical specification of event processing component V1.0 Page 30 of 44

FP7‐2011‐ICT‐FI — FInest

5.5. Interfaces data types and definitions

Interactions between various components carry data types as detailed in Figure 15.

Figure 15: Interfaces and data types

Note that while the EventInstance and DetectedSituation data types have the same structure, the
ProactiveNotification also includes the Certainty attribute. ProactiveNotification encloses
information regarding an uncertain future event, as described in Section 2.3. The Certainty
attribute is a value in the [0,1] range representing the probability of this event happening (see
Section 4.1.1). The ProactiveNotification is an output of the PRA and the Certainty attribute is
calculated by predictive models used by this PRA.

In general, the EPM offers three main services or interfaces (the interfaces with its
corresponding methods are shown in Figure 16):

 The EventSourcing interface, that allows connecting event sources to the EPM;

 The RulesActivation interface, that allows activating pre-defined event types and rules
for a specific transport instance; and

 The EventNotification interface, that allows being notified about identified detected
situations.

Figure 16: EPM interfaces and methods

The methods/operations grouped by interface are detailed in Table 1 and are shown in the
architecture diagrams in Figures 9, 10, 12, and 14. Note that the source and target columns in
the table denote current connections as they appear in the architecture figures. Additional
connections (e.g. for phase 2) are possible. For example, proactive notifications could also be
connected to other modules in the platform in addition to the frontend.

© D4.3 Initial technical specification of event processing component V1.0 Page 31 of 44

FP7‐2011‐ICT‐FI — FInest

Table 1: Methods definitions by interfaces

Method name Source Target Description Data

Interface: EventSourcing

processEvent1 BCM EPM Process raw event (event
arriving from BCM), e.g.,
cancellation of booking,
deviation in cargo or
schedule, delivery pickup
delay etc.

EventInstance

- header:
EventType,
OccurrenceTime,
Annotation…

- payload:
event instance specific
attributes

processEvent2 Backend EPM Process raw event (event
arriving from Backend –
IoT and legacy systems),
e.g., sensors
measurements for
container with cargo etc.

EventInstance

- header:
EventType,
OccurrenceTime,
Annotation…

- payload:
event instance specific
attributes

Interface: RulesActivation

activateRules BCM EPM Activate set of rules
associated with a specific
TCP (and its TEPs). This
method is invoked once
upon TCP initiation, and
it incorporates the entire
set of rules to activate +
parameters for templates.

RulesDefs&Parameters

A list of rules for a specific
TCP, including all its TEPs.
For templates - parameters
values are also provided.

This list should be well
structured, so that it will be
possible to automatically
translate rules to (JSON)
definition which is an input
to CEP engine.

Interface: EventNotification

putDetectedSituation EPM BCM Put a notification about
detected situation to
BCM, e.g., a significant
deviation in cargo or
schedule occurred, a
delivery was not picked
up as scheduled, import

DetectedSituation

- header:
EventType,
OccurrenceTime,
Annotation…

- payload:

© D4.3 Initial technical specification of event processing component V1.0 Page 32 of 44

FP7‐2011‐ICT‐FI — FInest

license did not arrive for
a shipment etc.

Detected situation specific
attributes

putProactiveNotific
ation

EPM Frontend Put a proactive
notification about
(uncertain) future event
to Frontend, e.g.,
possible future
significant schedule
deviation due to high
probability to miss a
flight.

ProactiveNotification

- header:
EventType,
FututreOccurrenceTime,
Certainty, Annotation

- payload:
Proactive notification
specific attributes

6. Summary

The event processing module of FInest enables the real-time monitoring and analysis of event
data regarding monitored processes to generate immediate insight and enable instant response to
changing conditions.

Deliverable 6.3 details the event processing engine’s characteristics, describes the first version
of the FInest EPM architecture, its interactions with other core modules of the offered platform,
and the potential use of FI-WARE Generic Enablers (GEs). In essence, the FInest CEP engine
can be implemented based on the FI-WARE CEP GE, except for proactive capabilities that
differentiate the FInest CEP from currently available complex events engines, and position it in
the technological and research frontage of event processing systems.

For the next six months, we intend to refine the proposed architecture and the partial EPN for
the FISH use case, and to demonstrate EPM capabilities in the module proof-of-concept to be
submitted at Month 24.

7. References

A. Paschke and P.Vincent, Event processing reference architecture, DEBS 2011
tutorial, available at: http://www.slideshare.net/isvana/epts-debs2011-event-processing-
reference-architecture-and-patterns-tutorial-v1-2

[1]

O.Etzion and P. Niblet, Event processing in action, Manning, 2010. [2]

[3] Y. Engel, O. Etzion, and Z. Feldman, A Basic Model for Proactive Event-Driven
Computing, Proceedings of the sixth ACM conference on Distributed Event Based
Systems (DEBS’12). July 2012

[4] http://forge.fi-
ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.D
ata.CEP and

http://forge.fi-
ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.D

© D4.3 Initial technical specification of event processing component V1.0 Page 33 of 44

http://www.slideshare.net/isvana/epts-debs2011-event-processing-reference-architecture-and-patterns-tutorial-v1-2
http://www.slideshare.net/isvana/epts-debs2011-event-processing-reference-architecture-and-patterns-tutorial-v1-2
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub

FP7‐2011‐ICT‐FI — FInest

© D4.3 Initial technical specification of event processing component V1.0 Page 34 of 44

ata.PubSub

[5] Y. Engel and O. Etzion, Towards proactive event-driven computing, Proceedings of the
fifth ACM conference on Distributed Event Based systems (DEBS’11), DEBS
2011:125-136

[6] M. Fleming, "Business Navigation Systems Combine CEP with BPM", IDC report,
August 2009.

[7] W. R. Schulte, "How to choose design patterns for event-processing applications",
Gartner report #G00214719, August 2011.

[8] D. Luckham, "The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems", Addison-Wesley, Boston, 2002.

[9] A. Metzger, R. Franklin, and Y. Engel, “Predictive monitoring of heterogeneous
service-oriented business networks: The transport and logistics case (Best Paper
Award: Service Engineering Innovation & Quality),” in SRII 2012 Global Conference,
ser. Conference Publishing Service (CPS), R. Badinelli, F. Bodendorf, S. Towers, S.
Singhal, and M. Gupta, Eds. IEEE Computer Society, 2012.

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub

FP7‐2011‐ICT‐FI — FInest

Appendix A – Event processing network for the FISH
use case

As previously described, building a CEP application requires the definition of the EPN
constructs, namely the event processing network (EPN). As part of the methodology guidelines
we followed (see Section 3), we worked on the technical architecture of the EPM module in
parallel to validate it through one of the FInest use cases (the FISH use case). As mentioned
throughout this report, events producers can be: the BCM, IoT (e.g., TemperatureRead(s) in
Table 2), and the FInest backend. All detected situations are sent to the BCM, except proactive
rules since these are not part of the actual execution plan. In the case of proactive rules,
notifications regarding possible future events are sent to the FInest frontend.

Table 2 shows a partial list of events defined for the FISH use case. Table 3 shows a partial list
of rules that have been identified, while Table 4 describes the corresponding event processing
network.

Events related to the FISH use case

Note that we denote by "To be filled in real time by BCM" attributes that are not part of the
initial TEP, but their values are obtained as a result of the execution of a TEP at run-time.

Table 2: (Partial) List of events for the FISH use case

Event name Attribute name Attribute in TEP

TEPId TransportExecutionPlan. ID 1. PickupCargo

DeliveryNumber Consignment.Shipment. ID

PickupScheduledTime Consignment.

PlannedPickupTransportEvent.

Period

PickupLocation (address) Consignment.

PlannedPickupTransportEvent.

Location

…

TEPId TransportExecutionPlan. ID 2. LoadingCargo

DeliveryNumber Consignment.Shipment. ID

LoadingScheduledTime Consignment.

MainCarriageShipmentStage.

LoadingTransportEvent. Period

© D4.3 Initial technical specification of event processing component V1.0 Page 35 of 44

FP7‐2011‐ICT‐FI — FInest

LoadingLocation (address) Consignment.

MainCarriageShipmentStage.

LoadingTransportEvent. Location

…

TEPId TransportExecutionPlan. ID 3. UnloadingCargo

DeliveryNumber Consignment.Shipment. ID

UnloadingScheduledTime Consignment.

MainCarriageShipmentStage.

DischargeTransportEvent. Period

UnloadingLocation

(address)

Consignment.

MainCarriageShipmentStage.

DischargeTransportEvent. Location

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

4. CargoArrival

ArrivalScheduledTime Consignment.

PlannedDeliveryTransportEvent.

Period

ArrivalLocation (address) Consignment.

PlannedDeliveryTransportEvent.

Location

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

5. ScheduleDeviation

(unplanned)

ScheduledTime Consignment.

MainCarriageShipmentStage.

PlannedDeparture/Arrival/Waypoint

© D4.3 Initial technical specification of event processing component V1.0 Page 36 of 44

FP7‐2011‐ICT‐FI — FInest

TransportEvent. Period

ActualTime To be filled in real time by BCM

Deviation (automatic)

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

6. CargoDeviation

(unplanned)

PlannedCargo Consignment.

TotalTransportHandlingUnitQuantity

ActualCargo To be filled in real time by BCM

Deviation (automatic)

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

7. ImportLicenseArriv

al (to the Alesund

terminal)

 …

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

OriginalTime (e.g., for

pickup)

8. BookingSchedule

Modification

NewTime (e.g., for pickup)

…

TEPId TransportExecutionPlan.ID 9. BookingCargo

Modification
DeliveryNumber Consignment.Shipment.ID

© D4.3 Initial technical specification of event processing component V1.0 Page 37 of 44

FP7‐2011‐ICT‐FI — FInest

OriginalAmount

NewAmount

…

DeliveryNumber Consignment.Shipment. ID 10. BookingCancellati

on

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

Timestamp To be filled in real time by IoT

11. TemperatureRead

(RFID event)

Value To be filled in real time by IoT

Location To be filled in real time by IoT

…

TEPId TransportExecutionPlan. ID 12. TEPInitiation

DeliveryNumber Consignment.Shipment. ID

…

TEPId TransportExecutionPlan. ID

DeliveryNumber Consignment.Shipment. ID

13. TEPTermination

…

Rule set defined for the FISH use case

In Table 3 we describe rules in a formal and informal way, the type of event processing agent
that will be associated with a rule and what are the derived events of each rule. As mentioned in
Section 5, the subset of relevant rules will be set up upon the arrival of a new TCP for each
TEP. For template rules, parameters should be given actual values. For the types of operators,
please refer to Section 2.

© D4.3 Initial technical specification of event processing component V1.0 Page 38 of 44

FP7‐2011‐ICT‐FI — FInest

The entire rule set is relevant within the time period between TEPInitiation and
TEPTermination events. Also, the BookingCancellation event causes termination of execution
of all rules related to the relevant shipment.

Table 3: (Partial) Rule set for the FISH use case

Rule name MissingImportLicense

Rule (informal definition) Import license was not received at the Alesund terminal X time

units before planned loading

Rule definition Absence(ImportLicenseArrival) X time units before

CargoLoadingTime

Assumption: CargoLoadingTime stays up‐to‐date (e.g., is updated

according to ScheduleDeviations)

Operator Absence

Participating events ImportLicenseArrival

Derived events

(notifications)

MissingImportLisence notification

Notification consumer BCM

Template rule Yes

Template parameters X time units before planned loading

Comment: the same rule can be created for LoadingListArrival event.

Rule name DelayedPickup

Rule (informal definition) Cargo pickup did not happen as scheduled

Rule definition Absence(PickupCargo) X time units after CargoPickupTime

Assumption: CargoPickupTime stays up‐to‐date (e.g., is updated

according to ScheduleDeviations)

Operator Absence

Participating events PickupCargo

Derived events

(notifications)

DelayedPickup notification

Notification consumer BCM

© D4.3 Initial technical specification of event processing component V1.0 Page 39 of 44

FP7‐2011‐ICT‐FI — FInest

Template rule Yes

Template parameters X time units after scheduled pickup

Comment: the same rule can be created for loading, unloading, arrival etc. phases.

Rule name ScheduleDeviationObserved

Rule (informal definition) Schedule deviation occurred

Rule definition Existence(ScheduleDeviation) if (ScheduleDeviation.Deviation > X%

OR ScheduleDeviation.Deviation < X%)

Operator Threshold

Participating events ScheduleDeviation

ScheduleDeviation notification Derived events

(notifications)

Notification consumer BCM

Template rule Yes

Template parameters Deviation of X% or time units from schedule that should be

reported

Rule name CargoAmountDeviationObserved

Rule (informal definition) Cargo amount deviation occurred

Rule definition Filter(CargoDeviation) if (CargoDeviation.Deviation > X% OR

CargoDeviation.Deviation < X%)

Operator Threshold

Participating events CargoDeviation

Derived events

(notifications)

CargoDeviation notification

Notification consumer BCM

Template rule Yes

© D4.3 Initial technical specification of event processing component V1.0 Page 40 of 44

FP7‐2011‐ICT‐FI — FInest

Template parameters Deviation of X% from cargo amount that should be reported

Rule name BookingCancellationObserved

Rule (informal definition) Booking cancellation occurred

Rule definition Existence(BookingCancellation)

Operator All

Participating events BookingCancellation

Derived events

(notifications)

BookingCancellation notification

Notification consumer BCM

Template rule No

Template parameters ‐

Rule name TemperatureAnomaly

Rule (informal definition) A temperature read in the cargo storage area exceeds/goes under

the allowed range

Rule definition Filter(TemperatureRead.Value) if (NOT WITHIN [X,Y])

Operator Threshold

Participating events TemperatureRead

Derived events

(notifications)

TemperatureAnomaly notification

Notification consumer BCM

Template rule Yes

Template parameters Allowed temperature range (from X to Y)

Rule name TemperatureIncrease

© D4.3 Initial technical specification of event processing component V1.0 Page 41 of 44

FP7‐2011‐ICT‐FI — FInest

© D4.3 Initial technical specification of event processing component V1.0 Page 42 of 44

Rule (informal definition) Steady temperature increase is observed in cargo storage area

Rule definition Trend(TemperatureRead.Value) is increasing

Operator Trend

Participating events TemperatureRead

Derived events

(notifications)

TemperatureIncrease notification

Notification consumer BCM

Template rule No

Template parameters

Proactive rule set defined for the FISH use case

Two examples of candidate proactive rules that relate to the entire TCP are given below.
Assuming there are various transport modalities for different TEPs in a TCP, we can define the
following rules:

For TCP including track, ship and air transportation

In case a ScheduleDeviation occurred in the TEP involving track transportation, produce a
notification with probability for significant delay (due to the possibility to miss the flight). This
notification may trigger a shipment replanning action.

For TCP including ship, air and track transportation

In case a CargoDeviation occurred at the beginning of the delivery, produce a notification with
probability for significant cargo deviation for the TEP involving track transportation (due to the
need for additional trucks). This notification may also trigger replanning action.

FP7‐2011‐ICT‐FI — FInest

Event processing network

Table 4 describes the event processing network specified for the FISH use case, which encompasses the rule set given in Table 3. Input and output
events are described in we denote by "To be filled in real time by BCM" attributes that are not part of the initial TEP, but their values are obtained as a
result of the execution of a TEP at run-time.

Table 2. For an explanation on context and EPA types please refer to Section 2.

Table 4: Event processing network for the FISH use case

Event processing agent name EPA Type Input event types Output event types Context

MissingImportLicense Absence ImportLicenseArrival MissingImportLicenseNotification EventInterval (TEPInitiation 
X time units before loading)

DelayedPickup Absence PickupCargo DelayedPickupNotifications EventInterval (TEPInitiation 
X time units after planned pickup)

ScheduleDeviationObserved Threshold
(filter)

ScheduleDeviation ScheduleDeviationNotification EventInterval (TCPInitiation 
TCPTermination)

CargoAmountDeviation Threshold
(filter)

CargoDeviation CargoDeviationNotification EventInterval (TCPInitiation 
TCPTermination)

BookingCancellationObserved All (existence) BookingCancellation BookingCancellationNotification EventInterval (TCPInitiation 
TCPTermination)

TemperatureAnomaly Threshold
(filter)

TemperatureRead TemperatureAnomalyNotification EventInterval (TEPInitiation 
TEPTermination)

TemperatureIncrease Trend TemperatureRead TemperatureIncreaseNotification EventInterval (TEPInitiation 
TEPTermination)

© D4.3 Initial technical specification of event processing component V1.0 Page 43 of 44

FP7‐2011‐ICT‐FI — FInest

© D4.3 Initial technical specification of event processing component V1.0 Page 44 of 44

Table 5 describes the proactive event processing rules specified for the FISH use case examples given above. Input and output events are described in
Table 2. For an explanation on proactive agents please refer to Section 2.3.3

Table 5: Proactive event processing rules for the FISH use case

Proactive Agent Name Description Input Event Types

Output
Notifications

Context

SignificantScheduleDeviation In case ScheduleDeviation
occurred in a TEP
involving track
transportation, produce a
notification with probability
for significant delay (due to
the possibility to miss a
flight).

ScheduleDeviation SignificantSchedule
DeviationNotificatio
n (probability)

This notification
may trigger a
shipment
replanning action.

EventInterval (TEPInitiation 
TEPTermination)

SignificantCargoDeviation In case CargoDeviation
occurred at the beginning of
the delivery, produce a
notification with probability
for significant cargo
deviation for a TEP
involving track
transportation (due to the
need in additional tracks).

CargoDeviation SignificantCargoDev
iationNotification

(probability)

This notification
may also trigger
replanning action.

EventInterval (TEPInitiation 
TEPTermination)

	Abstract
	Document History
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	1. Introduction
	2. Background
	2.1. Event producers and consumers
	2.2. Event processing run-time engine
	2.2.1. Pattern detection
	2.2.2. Conditions
	2.2.3. Actions
	2.2.4. Event processing agents
	2.2.5. Context

	2.3. Proactive event-driven computing
	2.3.1. The proactive principle
	2.3.2. Forecasted events
	2.3.3. Proactive event processing agents

	3. Methodology
	4. FInest EPM architecture overview
	4.1. Event types and attributes
	4.1.1. Proactive attributes

	4.2. Interfaces
	4.2.1. Input and output adapters
	4.2.1.1. EPM RESTful API

	4.3. Definition of FInest complex event processing application
	4.4. FInest EPM instantiation
	4.5. Interaction between EPM and other modules in FInest platform

	5. FInest EPM technical specification
	5.1. EPM high level architecture
	5.2. EPM complex event processing run-time technical specification
	5.3. EPM interfaces with other components
	5.4. FInest EPM with FI-WARE GEs
	5.5. Interfaces data types and definitions

	6. Summary
	7. References
	Appendix A – Event processing network for the FISH use case

