

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 285598

FInest – Future Internet enabled optimisation

of transport and logistics networks

D4.4

Experimentation environment specification and phase 2

implementation plan

Project Acronym FInest

Project Title Future Internet enabled optimisation of transport and logistics

networks

Project Number 285598

Workpackage #WP4 Experimentation Environment

Lead Beneficiary IBM

Editor Fabiana Fournier IBM

Contributors Moti Nisenson IBM

 Guy Sharon IBM

Reviewers Cyril Alias UDE

 Agathe Rialland MRTK

Dissemination Level Public

Contractual Delivery Date 30/3/2013

Actual Delivery Date 30/3/2013

Version V1.0

Ref. Ares(2015)2275904 - 01/06/2015

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 2 of 36

Abstract

The ultimate goal of the experimentation environment of FInest is to allow the running of the

specified use cases scenarios in phase 2 of the project and large trials in phase 3. Towards this

end, a specification of the required environment, an examination of possible experimentation

sites, and a detailed implementation plan have been elaborated. This report summarizes the

work done so far in FInest in work package 4 and paves the way to the work to be done in phase

2 to achieve the desired goal.

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 3 of 36

Document History

Version Date Comments

V0.1 20/11/12 First draft

V0.2 20/1/13 Updates after IBM internal discussions

V0.3 15/2/13 Updates after the technical meeting in Essen

V0.4 1/3/13 Updates after project plenary meeting in Hamburg

V0.5 15/3/13 Updates after review

V1.0 30/3/13 Submitted version

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 4 of 36

Table of Contents

Abstract ... 2

Document History ... 3

Table of Contents .. 4

List of Tables .. 4

List of Figures .. 5

Acronyms ... 6

1. Introduction .. 7

2. FInest experimentation environment technical specification refinement 7

2.1. Terms ... 8

2.2. Architecture refinement .. 9

2.2.1. Experimentation environment components ... 12

2.2.2. Data types definitions .. 13

2.2.3. Interfaces definitions ... 19

2.3. Execution association .. 29

2.4. Summary of important architecture refinements ... 30

3. Reusable technologies and experimentation sites final assessment 31

4. Experimentation environment phase 2 implementation plan.. 33

5. Summary ... 36

List of Tables

Table 1: Relation between D4.3 and D4.4 EPM specification sections ... 8

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 5 of 36

List of Figures

Figure 1: cSpace experimentation environment architecture .. 11

Figure 2: Example of setting new value for a new Shipment .. 30

Figure 3: WP 300 cSpace Hosting & Experimentation (source: cSpace proposal) 33

Figure 4: Experimentation process (cf. Figure 1 in D4.3) .. 34

Figure 5: EE phase 2 implementation plan Gantt chart .. 35

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 6 of 36

Acronyms

Acronym Explanation

CKPI Composite Key Performance Indicator

EE Experimentation Environment

FInest Future Internet Enabled Optimisation of transport and Logistics Business

Networks

GE Generic Enabler

IoT Internet of Things

KPI Key Performance Indicator

MVC Model-View-Controller

TCP Transport Chain Plan

UI User Interface

WP Work Package

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 7 of 36

1. Introduction

FInest (Future Internet Enabled Optimisation of transport and Logistics Business Networks)

Work Package 4 (WP4) deals with the identification and design of an Experimentation

Environment (EE) for testing, demonstrating, and evaluating the envisioned technologies

devised in FInest for the transport and logistics domain. The aim is to provide a suitable

environment for conducting the experiments for the use case scenarios specified in phase 2 and

for large trials in phase 3. FInest project will continue into phase 2 as the cSpace project (Future

Internet Business Collaboration Networks in Agri-Food, Transport and Logistics) and FInest EE

will become cSpace EE. More specifically, WP300 "cSpace Hosting and Experimentation" is

the direct continuation of FInest WP4 Experimentation Environment.

Deliverable 4.2 "Requirements and design of transport and logistics experimentation

environment" 1 (submitted at M12) provides a final list of requirements for FInest

experimentation environment along with a first assessment of reusable technologies and

experimentation sites. Deliverable 4.3 "Interim specification for transport and logistics

experimentation environment"1 (submitted at M18) provides a sound architecture of FInest

experimentation environment. This architecture has been validated by both technical and

domain partners during the phase 2 writing process of the cSpace proposal.

This report summarizes WP4 tasks so far and provides, in addition, a plan for the EE

implementation during phase 2 of the project. This document is composed of three

interconnected parts: Section 2 addressed the refinement of the architecture presented in D4.3;

section 3 provides a final assessment of the reusable technologies and experimentation sites; and

section 4 provides a detailed phase 2 implementation plan. We conclude the report with a

summary.

2. FInest experimentation environment technical
specification refinement

A very detailed specification of FInest EE including interfaces and data types has been

presented in D4.31. This specification has been re-checked during the cSpace writing proposal

of WP300 description and has been found most relevant and appropriate also for the

requirements of FInest successor project. In fact, the implementation plan introduced in Section

4 is fully aligned with the deployment of such an environment.

Still, cSpace platform should be more generic than FInest. First it should support the actual

deployment of eight use cases from both the domains of agri-food and transport and logistics,

and second, it should pave the way to large trials in phase 3. One of the targets of the EE is to

support inclusion of physical sites and real data, as well as simulated data for cases in which

real-time data can not be obtained. For the latter case, we foresee that as part of the

configuration of an application to be developed on-top of cSpace, there will be some parameters

that will have to be associated to a test before actual test execution takes place. These bindings

are necessary in order to uniquely "package" the run of a specific scenario to a specific test. To

this end we refined the specification proposed in D4.3 to be more generic in order to meet

1 Available at http://www.finest-ppp.eu/

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 8 of 36

cSpace requirements. More specifically, the previous binding to a TCP ID as the initialization of

a new execution will be replaced by a more sophisticated mechanism that extends the FInest EE

architecture to include also the requirements from an application to be tested in the EE. We

iterate that the specification presented in D4.3 fully meets FInest requirements, the updates

presented in this document are targeted to meet cSpace requirements. For the sake of

completeness we include in this report the full specification as submitted in D4.3 along with

additions that reflect the modifications aforementioned. These will be shown in blue to

differentiate new text from the one existing in D4.3 (or as redundant). As the refined

specification relates to cSpace (a more general platform than FInest), "cSpace" replaces "FInest"

in line the text.

Table 1 shows the relationships between D4.3 and D4.4 sections related to the EE specification

to assist the reader familiar with the wording and specification in D4.3. For overview on the

proposed EE refer to D4.3.

Table 1: Relation between D4.3 and D4.4 EPM specification sections

Section in D4.3 Section in D4.4

2.3 Terms Section 2.1 - Copied

3. Technical specification of FInest EE Section 2.2 – copied with slight

modifications (shown in blue)

3.1 FInest EE components Section 2.2.1 – copied with slight

modifications (shown in blue)

3.2 Data types definitions Section 2.2.2 – copied with slight

modifications (shown in blue)

3.3 Interfaces definitions Section 2.2.3 – copied with slight

modifications (shown in blue)

3.4 Association of a TCP ID to a test Section 2.3 – modified

N/A Section 2.4 - Summary of important

architecture refinements

2.1. Terms

The proposed technical specification of the EE enables the entire process, from test/experiment

planning and configuration, through execution, to analysis of the test execution. We introduce

below terms to be used throughout this report.

Step – A single action/task defined in a test scenario.

Test scenario – The ordered set of steps that compose a single test.

Variables – In the context of a test, these are field names that stand for specific values during

execution. Variables enable flexibility in test execution, as they enable running the same test

with different field values.

Variables binding – Replacement of variables values with the test data. This is done by the

experimenter during test execution.

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 9 of 36

Experiment/test – The ordered set of steps to be carried out by an experimenter during

execution. Each experiment is identified by a unique ID and version. It is also associated to a

single Transport Chain Plan (TCP). An experiment may have variables to enable multiple

executions of the same experiment with different data.

Execution – The actual running of an Experiment. All variables should be bound to Data

Providers before execution of steps can begin.

Vusers – Virtual users that play human users in a specific experiment.

Vusers scripts – The ordered set of actions a Vuser performs during the execution of an

experiment. In other words, the set of instructions carried out during execution without user

intervention.

Atomic step – A smallest (inseparable) single instruction that is carried out during the execution

of a test. An atomic step may contain (a) an instruction to be manually performed by a tester; (b)

a reference to run a Vuser script; or (c) an instruction to inject data provided through a variable

into cSpace test.

Execution log - A file that lists actions as occurred during execution, including all process and

system notifications. The entries in an execution log can provide insight into what happened

during execution of the test and provide an audit trail of information related to the execution. In

fact, the execution log is the input to the Reporting module in the EE which analyzes the log and

provides performance assessment of the execution.

Expected results – the anticipated outcome of a step in a test.

Actual results – the real outcome of a step as result of execution.

Key Performance Indicator (KPI) – performance measurements related to T&L stored in the EE

for the sake of performance assessment and analysis. The evaluation framework specification is

in the scope of work package 2 but the KPI(s) related to the performance assessment are stored

in the EE, and can be used to assess the performance of the test executed.

Composite Key Performance Indicator (CKPI) – a KPI composed of one or more KPIs jointly

analyzed.

Report – A summary of what occurred over one or more test executions. A report may include

performance assessment of the execution based on given KPI(s).

Injected data – Data fed into the test by the backend simulator module in EE. Injected data is

used whenever real data in real time cannot be obtained during the execution of a test. In these

cases, the intention is to use (real-time) historical data to simulate the processes.

Notifications – These are messages given to a user via cSpace frontend during an execution of a

test. Notifications are recorded in the execution log of the test.

2.2. Architecture refinement

In general, the envisioned experimentation environment will operate by activating the cSpace

platform and will invoke it at each test execution, utilizing cSpace technologies and databases. It

consists of three interconnected major components (see Figure 1)

 cSpace test – a replica of cSpace platform for testing purposes in order to avoid

"playing" in production environment. It is anticipated that in order to enable test

executions with real-data as well as with simulated data, the UI will be extended to

support both modes.

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 10 of 36

 cSpace experimentation environment – includes all components required to run and

analyze tests executions, as well as databases for the storage of executions, execution

logs, reports, KPI(s), test data, resources, and roles and access rights.

 cSpace experimentation environment front-end – The UI for the users to be able to use

the experimentation environment to create, update, execute, and report on tests.

The EE architecture follows the Model-View-Controller (MVC) paradigm characterized by:

 Model: the knowledge of the system, including the entities, statuses, and states; and the

necessary logic for creating and conducting experiments.

 View: the presentation and representations of the model. In this case the displayed

information includes experiment steps and reports.

 Controller: the link between the user (the view) and the system (the model). The

controller receives the user’s input and updates the model state accordingly.

The EE (model) contains the components required to realize all functionality including the

storage of experiments, execution states, execution logs, reports, and data to be used during

execution.

Experimentation Front End: the UI for the users to be able to use the experimentation

environment to create, update, execute and report on tests. This includes the following high-

level views (see Figure 1):

 Access Handling: control access to the experimentation environment and EE artifacts

(experiments, execution logs, reports, etc.)

 Experiment Management: the management of experiments, including finding, creating

and updating experiments.

 Execution Management: creating and managing the execution of experiments

 Resource Management: provides basic information on available resources and allows

managing the resources in the system.

 Reports: finding, creating, editing, and viewing reports over executions.

The system (EE) interacts with the cSpace Test system through a Backend Simulator

component. This includes injecting data into cSpace test and recording events and other data

processed by cSpace test so as to enable the calculation of KPIs.

We foresee that a few components of the envisioned EE may be off-the-shelf components, that

is, can be bought as specific purpose components and be incorporated into the EE for specific

purposes. Specifically, we believe that the reporting component and the script engine

component (for executing Vusers scripts), can be off-the-shelf and do not require self-

development by the cSpace team. Furthermore, we expect reporting (together with KPIs)

capabilities to become a separate application from the experimentation environment and be part

of the services provided by cSpace.

Figure 1 presents cSpace EE architecture followed by a description of the different modules and

definition of the data types and interfaces. Note that the technical architecture depicted in Figure

1Error! Reference source not found. is defined at the model-level, using TAM (the Technical

Architecture Modeling language)2, a UML derivate, following the convention used in the other

technical work packages.

2 http://www.fmc-modeling.org/fmc-and-tam

FP7-2011-ICT-FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 11 of 36

CSpace Experimentation Environment

Backend

EE Storage

(Interacts with all

components)

Tester

CSpace EE front-end

Business

User

Views

Experiment

Management

Access Handling

Execution

Management

Reports

Resource

Management

E.g., Help

Other Views

Controller

R

httphttp

R

R

«CSpace EE»

User Manager

«CSpace EE»

Experiment Manager

«CSpace EE»

Experiment Search
«CSpace EE»

Experiment CRUD

«CSpace EE»

Execution Data Management

«CSpace EE»

Internal Data Provider System

«CSpace EE»

External Data Access

«CSpace EE»

Resource Manager

«CSpace EE»

Execution Manager

«CSpace EE»

Script Execution Engine

«CSpace EE»

Executor

«CSpace EE»

Execution Log Manager

«3rd Party»

Data Provider System

«3rd Party»

Data Provider System

CSpace Test

«Cspace Test»

RT. B2B Collab.

«Cspace Test»

Store & Revenue Mgt.

«CSpace Test»

Operating Env.

«CSpace Test – App.»

Application Modules

«CSpace Test»

Backend Simulator

«CSpace»

User/Identity Mgt. & Access-Control

«Cspace EE»

KPI Manager

«CSpace EE»

KPI Composer

<<CSpace EE>>

Reporting

«CSpace Test – App.»

CSpace UI – Test

«CSpace Test – App.»

Data Provider System

Figure 1: cSpace experimentation environment architecture

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 12 of 36

2.2.1. Experimentation environment components

Only two modifications (shown with the blue square around the relevant components in Figure

1) have been introduced to the architecture proposed in D4.3.

1. Data Provider System (app) – This is a new component which addresses the binding of

the application to the execution data. See below for details.

2. Relevant cSpace components replace the four FInest modules (Business Collaboration

Module, Event Processing Module, Transport Planning Module, and E-Contracting

Module), to reflect the extended platform proposed in (see cSpace proposal for further

details on cSpace components).

Follows a description of the cSpace EE components:

User Manager: Handles user accounts, passwords, and access. This includes features such as

user groups and access control to data, as well as users being able to assign other users

permissions.

Experiment Manager: Handles experiment lifecycle and experiment querying. This includes

creation, versioning, archiving, and search capabilities.

1) Experiment CRUD (Create, Read, Update, and Delete): provides services for

experiment lifecycle. Archiving is used instead of deletion so that traceability is never

lost.

2) Experiment Search: provides services for finding experiments according to various

search criteria.

Execution Manager: Handles the concrete executions of an experiment. This includes the

creation of new executions (including the configuration of variables), executing (or tracking the

execution of) the steps in the experiment, and logging the results.

1) Executor: Tracks the execution of the individual steps in an evaluation. This includes

the automated execution of certain steps, such as injecting data/events into the Test

instance and running VUser scripts through the Script Execution Engine. This

component also creates and updates entries in the execution log, including notifications

received from the actual process execution and error messages.

2) Script Execution Engine: executes VUser scripts to automate user actions.

Resource Manager: Provides an inventory of available resources. Services include the ability to

locate resources according to various search criteria.

Reporting: Generates reports based on execution logs and KPIs. Note that in Phase 2 of the

project, reporting (together with KPIs) are expected to become off-the-shelf modules and will

not require self-development by the cSpace team.

1) KPI Manager: Manages the calculation and composition of KPIs

a. KPI Composer: Used to create and manage composite KPIs

Execution Log Manager: provides logging services for an execution. This includes the logging

of the results for each step of an execution, including any received notifications during the

execution of each step. Also provides access to these logs.

Execution Data Manager: this is used to manage the access to data that is used during

execution.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 13 of 36

1) Internal Data Provider System: Used for storing and retrieving manually configured

data providers.

2) External Data Access: Used to retrieve data from 3rd party external systems. For

example, this could be used to “replay” events from a real-world shipment. The access

to these systems is configured by the tester. Configuration could be UI or file driven.

Backend Simulator: used to simulate input data from backend systems to cSpace; provides

APIs to inject data to the cSpace Test system’s modules. Also reports back on events and other

processed data.

EE Storage: provides internal storage services for the experimentation environment.

2.2.2. Data types definitions

The data types are given below. Note that additional methods are included for convenience.

While not mentioned for brevity, getters have associated setter methods as well.

1. Experiment (DataType)

Note that once an experiment-version has associated executions it cannot be modified, although

new versions can still be created for the experiment.

Method Notes Parameters

DefineVariable()

void Public

Used to define a new variable which

must be bound for use during

execution. The variable’s name must

be unique within the experiment.

VariableSpecification

AddStep() void

Public

Insert a new step to the experiment Step

int – where to insert

RemoveStep() void

Public

Removes a step from the experiment int – where to remove

ReplaceStep() void

Public

Replaces a step in the experiment Step

int – where is the step to be

replaced

GetSteps()

Step[0..*] Public

Gets the steps for this experiment

GetVariables()

VariableSpecificati

on [0..*]

Public

Gets the variables defined for the

experiment.

GetVersion() int

Public

Gets the version number for the

experiment.

GetExperimentId() Gets the experiment id; this is common

to all the different versions of an

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 14 of 36

GUID Public experiment.

GetId() GUID

Public

Gets the global unique ID for this

experiment and version.

GenerateCopy()

Experiment Public

Creates a copy of this experiment. This

is a deep copy – changes to this

experiment should not affect the copy

and vice-versa. The copy is not in

persistent storage.

2. VariableSpecification (DataType)

A VariableSpecification instance gives a type of data that needs to be provided when creating an

Execution instance for an Experiment.

Method Notes Parameters

GetType()

DataType Public

Returns the data type. May be int,

String, long, HTML, TCP, Event,

ContractStatus, Link, etc.

GetCardinality()

DataCardinality

Public

Returns the necessary cardinality.

Cardinalities are characterized by a

minimum value (which is at least 0),

and a maximum value (which is at

least 1), which may be unbounded.

Examples are: 1..1, 0..1, 2..*, 0..5, 1..*

GetDefaultDataPro

vider

DataProvider[0..1]

Public

Returns the default data provider for

binding.

GetDescription()

String Public

Gets the human-readable description of

the variable and what it is used for in

the experiment.

GetName() String

public

Gets the human-readable name of the

variable.

3. Step (DataType)

Member Notes Type

 Actor Sets the actor to perform the action.

This can be a user, a role or a system.

String

VUserScript A VUser Script to be used when

executing

String – the script to be

executed

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 15 of 36

DataInjectionVariable Stores a variable name, whose

DataType should be injectable into

FINest (such as Transport Execution

Data, Event, Booking). When

executing, the bound data provider will

provide the data to be injected. Data is

injected at the beginning of execution

String

Link Sets a link to be resolved during

execution, which the user should click

to access the CSpace UI or application

specific UI. Such links will often

contain variables to pass through to the

application which can be used by the

application to update data providers. If

necessary, the application should

provide an appropriate Test UI

component for handling this pass

through data (or the standard UI could

be configured for “test mode”).

Link

Registrations Registrations for events and

notifications to be made after the

execution of this step. The strings

should conform to CSpace formats.

Variables can be embedded using

$varName notation ($$ is used to

represent a single $). At runtime, the

variables’ values will be substituted

(similar to how link URIs are

resolved).

String [0..*]

NewTCPRequired * Not required *

DataDescription Sets the description of the data to be

used during the step

String

Description Sets the description of the action to be

taken during the step

String

ExpectedResult Sets the expected result of the

execution (a human-readable string)

String

4. Execution (DataType)

Method Notes Parameters

GetExperiment()

Experiment Public

Returns the experiment instance this

execution is associated with.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 16 of 36

AssociateTCP() * Not required *

GetAssociatedTCPI

ds() void Public

* Not required *

BindVariable()

void Public

Binds a variable name with a data

provider

String – variable name

DataProviderId

GetVariableBindings

Map<String,DataProv

iderId> Public

Returns a mapping from variable

names to their bound data providers

GetCursor() int

Public

Returns the index of the next step not

completely executed (from 0 to total

number of steps)

IncrementCursor()

void Public

Increases the cursor by 1

GetId() GUID

Public

Gets the global unique ID for the

execution

GetCreator()

UserId

Public

Returns the user id of the creator of

this execution

GetStatus()

ExecutionStatus

Public

Returns the status of the execution, one

of: Initializing, In Progress, Complete,

Aborted, Cancelled

5. Resource (DataType)

Member Notes Type

Id Gets the resource’s id GUID

Description Gets a human-readable description for

the resource

String

Name Gets the human-readable name for the

resource

String

6. Link (DataType)

Member Notes Type

URI Gets the URI. The URI embeds String

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 17 of 36

variable access by using $varName

(during execution $varName will be

replaced with the variable’s current

value (for variables with cardinality >

1 this is a list). $$ is used to encode a

single $. If additional data is not null,

then the uri also embeds an

additionalData parameter containing a

URI (which included the execution id)

for retrieving the additional data

AdditionalData Application specific additional data to

be retrieved. Embeds variable access

by using $varName (which is

substituted upon retrieval with the

variable’s current value). $$ is used to

encode a single $. To pass the URI of

an exposed data provider use

$[varName] (instead of passing its

value). The use of the additional data

field is intended to prevent the URI

member from exceeding possible size

limitations. For example, this field is

used to pass the URIs for accessing

exposed data providers

String

Description Gets a human-readable description for

the link

String

Name Gets the human-readable name for the

link

String

7. ExecutionLogEntry (DataType)

Member Notes Type

Actor

Returns the actor (user/ source /

system) which performed the action

String

Execution Returns the execution which was

logged

Execution

StepNumber Returns the step number which was

executed for this entry

int

Timestamp Returns a time-stamp (time and date)

of when this entry was created

Timestamp

ActualResult Gets the actual result, for skipped steps

the text will read Skipped

String

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 18 of 36

Notifications Returns notifications which were

received while executing this step.

Notifications conform to formats

Notification[0..*]

DateTypes Returns the data types of data received

from the back-end simulator during

execution. The indexes here must

match up with those of DataReceived

DataType[0..*]

DataReceived Returns the data received from the

back-end simulator during execution

which matched registrations. Indexes

must match those for DataTypes. The

data is in the appropriate standard

format (e.g. XML).

String[0..*]

8. Report (DataType)

Method Notes Parameters

GetName() String

Public

Returns the name of the report

GetExperiments()

Experiment[1..*]

Public

Returns the experiments this report

covers. This should be gathered from

the Execution instances, there should

be no matching setter.

GetExecutions()

Execution[1..*]

Public

Returns the executions over which this

report was created

AddKPICalculator()

void Public

Adds another KPI KPICalculator

RemoveKPICalculato

r() void Public

Removes the KPI with the given name String

CalculateKPIValues()

void Public

Calculates KPI value by iterating over

the covered executions and passing

them to the KPICalculators

GetKPIValues()

Map<String,

Double> Public

Returns a mapping from KPI names to

values calculated over the executions.

There should be no matching setter.

GetDescription()

String

Public

Returns the description of the report

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 19 of 36

2.2.3. Interfaces definitions

2.2.3.1. Non-component interfaces

1. DataProvider

Instances are retrieved by the Executor from the Execution Data Management subsystem and

are used for variable binding purposes. They can be used to retrieve constants, dynamic values,

and data for injection into Test. There should be implementations for each DataType for

retrieving constant data. This allows execution setup to use constant values. Implementations

should also be available for common storage repositories, such as Relational Data Base

Management Systems (RDBMS) systems.

Method Notes Parameters

GetDataType() DataType

Public

Returns the type of data provided.

GetCardinality()

DataCardinality Public

Gets the cardinality of the data that

can be provided. For static data the

minimum and maximum should be

equal to the exact number of data

entities available.

GetId() GUID

Public

Gets the identifier of the provider.

The identifier should be unique

within the providing system.

GetSystemId() GUID

Public

Returns the unique identifier for the

providing system.

GetDataIterator() Iterator

Public

Returns an Iterator which gives

access to the data. The iterator is

only required to support moving

forward through the data. It may

optionally provide ability to jump to

an index, move backwards, or return

the amount of data.

GetName() String Public Returns the human-readable name of

a data provider. May return null (a

data provider is not required to have

a name).

IsExposedToApplications

boolean Public

Returns whether or not the data is

accessible for retrieval from CSpace

applications. If true, then the

ExposedDataProvider interface must

be implemented.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 20 of 36

2. ExposedDataProvider

Methods for accessing (and potentially storing) data from CSpace applications, this interface

extends DataProvider interface. These data providers are then accessible through a restful

interface, which uses their DataProviderIds (pairs of GUIDs to identify the data access system

and provider).

Method Notes Parameters

HasMore() boolean

Public

Returns whether there is more data

(i.e., calling getValue(Index) is valid).

int - index

GetValue() Object

Public

Gets the value at Index. The value will

be serialized to a string representation

according to this instance’s data type

when the result is returned to the

calling application. This operation

must enable random access (although

optimizations may be possible for

forward only access).

int - index

SetValue() void

Public

Sets the value at Index to the given

parameter. The value received will

have been deserialized from a string

representation into an object according

to this instance’s data type. This is an

optional operation, and should only be

used if the application doesn’t manage

its own state for a variable.

int – index

object – value to be set

GetSize() int Public Returns the amount of data available in

the provider, if known. If unknown,

returns -1.

3. DynamicallyBoundDataProvider

Provides a binding point for variables to factory created data providers during execution. This

interface extends DataProvider interface, although all DataProvider methods will fail until the

binding takes place. The creation of the underlying data provider takes place the first time that a

variable which is bound to the instance is accessed (i.e., lazy-loading on read or write). These

providers will usually be managed in the internal data provider system (although the factories

they access will most often be in External Data Access as they may need to access the

application). These data providers will often be exposed as well. Note that if this data provider

is exposed and supports setting values, then the underlying data provider must also support

setting values.

Method Notes Parameters

SetFactory() void

Public

Sets the factory which will be used to

create the data provider instance to

which calls will be delegated.

DataProviderFactoryId

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 21 of 36

SetFactoryArgs()

void Public

Sets the arguments to be passed to the

factory create method. If an Object is a

VariableReference, then the iterator for

that variable as given by its bound data

provider will be the argument.

Object[0…*]

4. DataProviderFactory

Instances are used to dynamically create data providers. They should be used when dealing with

dynamic variables that arise as part of application controlled lifecycles. These factories will

most often create data providers which access or store application state.

Method Notes Parameters

GetDataType()

DataType Public

Returns the type of data provided.

GetCardinality()

DataCardinality

Public

Gets the cardinality of the data that can

be provided. For static data the

minimum and maximum should be

equal to the exact number of data

entities available.

GetId() GUID

Public

Gets the identifier of the factory. The

identifier should be unique within the

providing system.

GetSystemId()

GUID

Public

Returns the unique identifier for the

providing system.

CreateDataProvider

() DataProvider

Public

Creates a new data provider instance,

based on the received parameters. The

method should be capable of resolving

both Iterators and value objects.

Object[0..*] – parameters for

creating the data provider

GetName() String

Public

Returns the human-readable name of a

data provider factory. May return null

(a factory is not required to have a

name).

5. KPICalculator

KPICalculator is used to calculate a KPI. Instances are created in the KPI Manager component

and are used by the Reporting component.

Method Notes Parameters

Initialize() void Initialize the calculation

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 22 of 36

Public

Update() void

Public

Updates the internal state with

information related to the given

execution. This would involve

calculating over notifications in the

relevant logs.

Execution

CompleteCalculatio

ns() void Public

Performs any final calculations

necessary

GetValue() double

Public

Returns the calculated KPI value

GetName() String

Public

Returns the name of the KPI

Additional KPIs can be composed from provided KPI functions and the base set of KPIs.

Functions provided would include Sum, Average, Difference, Standard Deviation, Minimum,

and Maximum. Each function would receive additional KPIs as inputs.

KPICalculator instances are created through a KPICalculatorFactory.

6. KPICalculatorFactory

A named factory of KPICalculator instances. Base KPIs will have preinstalled

KPICalculatorFactory implementations. The KPI Composer creates new instances by

composing KPIs. Used by KPIManager to create new KPICalculator instances for the

ReportManager.

Method Notes Parameters

GetName() String

Public

The name of the calculation performed

Create()

KPICalculator

Public

Creates a new KPICalculator instance

ToStringRepresenta

tion() String Public

Returns the string representation; this

representation can be used as input to

the KPIComposer

2.2.3.2. Component interfaces

1. Executor

Method Notes Parameters

ExecuteStep() void Executes the current step, and logs Execution

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 23 of 36

Public output. Note for manual steps this

doesn’t do anything.

For steps with data injectors it will

access the DataProvider instance

(through the bound injection variable),

retrieve each data object one at a time,

injecting each through the Backend

Simulator into the Test system before

proceeding to the next.

If the given execution is not properly

initialized (e.g. it has unbound

variables) an

ExecutionNotReadyException will be

thrown. If errors occur during

automated steps, the execution is

aborted.

LogResult() void

Public

Writes a new entry to the log for the

current step.

Execution

String – the text to be logged

CompleteStep()

void Public

Completes the current step and

progresses to the next

Execution

SkipStep() void

Public

Skips the current step. Logs a skip

entry to the log

Execution

CancelExecution()

void Public

Stops and cancels the given execution.

If there is a script running for this

Execution, then it will kill it.

Execution

2. ScriptExecutionEngine

Method Notes Parameters

ExecuteScript()

ScriptExecutionId

Public

Executes the given script. The

scripting language will be dependent

on the engine selected in the

implementation phase. The engine

should support data-binding to

variables. Returns an identifier for the

script execution

String – the VUser script

Map<Name, DataProvider> -

the variable bindings

WaitForCompletio

n() boolean Public

Waits for the script execution to

complete up to a given timeout.

Returns true if the execution has

completed, else false

ScriptExecutionId

int – timeout in seconds

KillScript() void

Public

Will attempt the orderly stopping of

the script. If not completed by the

ScriptExecutionId

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 24 of 36

given timeout will forcibly stop the

script’s execution

int – timeout in seconds

3. DataProviderSystem

Method Notes Parameters

GetProviders()

DataProvider[0..*] Public

Returns the data providers that are

available in this system

GetProviders()

DataProvider[0..*]

Public

Gets the providers matching the

desired DataType and

DataCardinality.

DataType

DataCardinality

GetProvider()

DataProvider Public

Gets a data provider by id GUID

GetFactories()

DataProviderFactory[0..*]

Public

Returns the data provider factories

that are available in this system

GetFactories()

DataProviderFactory[0..*]

Public

Gets the data provider factories

matching the desired DataType and

DataCardinality.

DataType

DataCardinality

GetFactory()

DataProviderFactory

Public

Gets a data provider factory by id GUID

4. ExternalDataAccess

As part of system setup, a configuration stage is necessary where-in DataProviderSystem

instances would be configured. An implementation could for example be configured to connect

to an RDBMS and retrieve data from specific tables.

Method Notes Parameters

AddSystem() void

Public

Adds a data provider system DataProviderSystem

GetSystem()

DataProviderSyste

m Public

Gets a data provider system by id GUID

GetSystems() [0..*]

Public

Returns the data provider systems

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 25 of 36

GetArchivedSyste

ms() [0..*] Public

Returns the archived data provider

systems

ArchiveSystem()

void Public

Archives the data provider system GUID

UnarchiveSystem()

void Public

Unarchives the data provider system GUID

GetProvider()

DataProvider

Public

Equivalent to

GetSystem(sytemId).GetProvider(prov

iderId)

DataProviderId – this is a

pair of GUIDs, one for

systemId and one for

providerId

GetFactory()

DataProviderFactory

Public

Equivalent to

GetSystem(sytemId).GetFactory(factor

yId)

DataProviderFactoryId – this

is a pair of GUIDs, one for

systemId and one for

factoryId

5. InternalDataProviderSystem

This is also a DataProviderSystem but has functionality for static data configuration.

Method Notes Parameters

CreateProvider()

DataProvider

Public

Creates a new data provider which

provides the given data.

DataType – the type of data

provided by the new

DataProvider

Object [0..n] – the data

entities to be returned by the

new DataProvider

ArchiveProvider()

void Public

Archives the data provider GUID

UnarchiveProvider()

void Public

Unarchives the data provider GUID

GetArchivedProvid

ers()

DataProvider[0..n]

Public

Gets the archived data providers.

6. BackEndSimulatorService

Method Notes Parameters

InjectData() void Injects data to the appropriate module. DataType – the type of data.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 26 of 36

Public The modules which need this

data should be uniquely

determinable from this

String[1..*] – a serialized

representation of each data

entity in an appropriate format

for consumption by the

modules (e.g XML)

7. ExecutionManagerService

Method Notes Parameters

GetActiveExecutio

ns()

Execution[0..*]

Public

Returns the active (incomplete)

executions for the given user id

UserId

GetExecutions()

Execution[0..*]

Public

Returns the executions for a given

experiment

Experiment

StartNewExecution

()

Execution Public

Creates a new execution for a given

experiment. The new execution has no

variables bound.

Experiment

CopyExecution()

Execution Public

Creates a new execution from a given

execution. The new execution will not

have any records in the ExecutionLog.

Variables are bound.

Execution

AssociateTCP()

void Public

not required

Since the system logs all notifications dealing with TransportChainPlans (TCPs) and associates

them to a specific execution, the creation of TCPs is a special action in the experimentation

environment. When creating a TCP, the user must be directed through a UI which enables the

experimentation environment to capture the TCP id and associate it with the execution.

8. ExperimentCRUDService

Method Notes Parameters

CreateExperiment()

void Public

Creates a new experiment in persistent

storage

Experiment

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 27 of 36

UpdateExperiment()

void Public

Updates an experiment in persistent

storage

Experiment

ReadExperiment()

Experiment Public

Gets an experiment by id GUID – the id corresponding

to an instance (experiment id

together with version id)

ArchiveExperiment

() void Public

Archives the experiment Experiment

UnarchiveExperim

ent() void Public

Unarchives the experiment Experiment

9. ExperimentSearchService

Method Notes Parameters

FindExperiments()

Experiment[0..*]

Public

Finds experiments according to a

query. The following information

should be searchable in the query

language:

 Description

 Creator

 Full text (including steps

and variables)

 Variable Descriptions

 Archived Status

Only Experiments the user has access

to will be returned.

String

10. ResourceManager

Method Notes Parameters

CreateResource()

void Public

Creates a new resource in persistent

storage

Resource

GetResources()

Resource[0..*]

Public

Returns the resources available

UpdateResource()

void Public

Updates a resource in persistent

storage

Resource

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 28 of 36

ArchiveResource()

void Public

Archives the resource Resource

UnarchiveResource

() void Public

Unarchives the resource resource

FindResources()

Resource[0..*]

Public

Returns resources whose name and/or

description match the query string

given. Results are returned such that

better matching results appear first.

String

11. ExecutionLogManager

Method Notes Parameters

LogEntry() void

Public

Creates a new entry in the log. ExecutionLogEntry

GetEntries()

ExecutionLogEntry

[0..*] Public

Returns the entries for an execution Execution

12. KPIComposer

Method Notes Parameters

CreateCompositeK

PI()

KPICalculatorFacto

ry Public

Creates a KPICalculatorFactory based

on functions and base KPIs, given a

string representation.

String – KPI name

String – KPI composition

string

13. KPIManager

Method Notes Parameters

GetBaseKPINames()

String[0..*] Public

Returns the base KPI names available

in the system

GetKPINames()

String[0..*] Public

Returns the names of all KPIs

RegisterNewKPI()

void Public

Uses the KPIComposer to create a new

KPICalculatorFactory and register it

with the given (unique) KPI name

String – KPI name

String – KPI composition

string

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 29 of 36

ArchiveKPI() void

Public

Archives a composite KPI String – name

UnarchiveKPI()

void Public

Unarchives a composite KPI String – name

NewKPICalculator()

KPICalculator Public

Creates a new KPICalculator instance

for the given name

String

14. ReportManager

Method Notes Parameters

CreateReport() void

Public

Stores a new report Report

GetReports()

Report[0..*] Public

Retrieves reports covering the given

experiment

Experiment

GetReports()

Report[0..*] Public

Retrieves reports covering the given

execution

Execution

FindReports()

Report[0..*] public

Searches by name, description and

note to find reports. Results should be

returned with better match results first.

String – query

15. UserManager

The user manager will expose the standard user and authorization management methods for

controlling access to Experiments, DataProviderSystems, Executions and Reports. By default,

access to the individual experiment is used to control who can access the resulting executions

and related reports. Optionally, these may be overridden to provide more fine-grained control.

2.3. Execution association

As previously noted, we extend the EE specification to support generic scenarios beyond

transport and logistic. The first step of an execution includes the set-up required. One possible

example is illustrated in Figure 2 using the Application transport module. In the experiment, an

ExposedDataProvider is defined for storing the shipment id. Another data provider is used to

provide the link for creating a new shipment, which passes through the URI for accessing the

ShipmentIdDataProvider.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 30 of 36

Tester
Execution

Management

App UI (Test

Mode)

App Transport

Module
Data Provider

Click Start Experiment

Tester fails out

shipment details
Click Submit New

Shipment CreateShipmentDetails

(URI for the execution’s

ShipmentId DataProvider)

Open New Window,

giving Link for creating

Shipment

SetValue(0,ShipmentId)

Click Next Step

As part of end of last step, register for Events and Notifications related to ShipmentId

Operating

Environment

Next step processing

continues

Figure 2: Example of setting new value for a new Shipment

2.4. Summary of important architecture refinements

In general, cSpace EE needs to extend FInest EE to cope with a higher level of abstraction – the

application level. We summarize below the additions and modifications we proposed so far to

achieve this target.

Extensions for supporting applications

 Dynamic data binding:

o Data Provider Factories: allow for the dynamic creation of data providers. These

data providers may need to communicate with the application; if so, the factories

should be provided by the application.

o Dynamically Bound Data Providers: lazy creation of a data provider through a

factory. These data providers should be defined using variable names which are

referenced during execution. These providers should most likely be defined by the

experiment author and configured to be saved in the internal data provider system.

 Exposed Data Providers: applications can access and potentially update data for data

providers which are declared as being exposed to applications. If needed for updating data,

then these should be DynamicallyBoundDataProviders as well (i.e., they should be created

by a factory so that different executions have different instances).

 Links: links are first-class citizens. These links are created to give access to the application

and pass through information needed by the application, such as access details for exposed

data providers for accessing and storing data.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 31 of 36

 Explicit registrations for notifications and events – since the notifications and events are

application specific; the registration must be explicit as well.

 Application specific components are labelled with “CSpace Test – App” in the architecture

diagram to differentiate them from the CSpace environment, which are labelled “CSpace

Test”.

Application Requirements

CSpace applications are required to supply certain capabilities so that they can be supported in

the CSpace Experimentation Environment. These capabilities primarily center around the

lifecycle of application state. For example, consider a transport scenario where there is a

shipment which consists of several legs. The shipment itself would need to be created. Each leg

would need to be created. There may be events which need to be injected (i.e., simulated) for

one of the legs. It is likely that the shipment id and leg id would need to be included in the

event. Thus, the execution of the experiment would need to be able to access this data, and

indeed the application should provide that data as part of shipment and leg creation. In order to

support such scenarios, the application UI needs to provide additional capabilities within the test

or experimentation context. Specifically, the UI should be able to receive the access details for

exposed data providers, and the application logic receive or set data as needed. The links to the

application UI are provided through data providers. Additionally, for any application data which

is managed by the application (for example, data which changes dynamically within CSpace as

a result of events) and which is necessary during experiment execution, the application will

need to provide a data access system for connecting to the application.

3. Reusable technologies and experimentation sites
final assessment

The main objective of the INFINITY (http://www.fi-infinity.eu) project is to capture and

communicate information about available experimental infrastructures in Europe and beyond, in

order to facilitate large scale experimentation and testing for Future Internet projects and

applications and service developments. To this end, the INFINITY project has launched the

portal for Future Internet infrastructures named XiPi (www.xipi.eu) that currently stores about

130 infrastructures details. The follow up project, XiFi will further develop these infrastructures

to be exploited by the FI-PPP projects. The current infrastructures are basically clouds that can

be used by the FI-PPP use cases projects. The XiFi project will leverage these infrastructures

with the deployment of some of the generic enablers (GEs) provided by the FI-WARE

(http://www.fi-ware.eu/) project.

Our goal is to run the phase 2 scenarios in environments provided by XiFi. Our emphasis is on

physical sites equipped with IoT (Internet of Things) sensors and real-time data that can be

obtained from those sensors, especially, in the domains of transport and logistics and agri-food.

Ideally, we would like to have environments that support point-to-point scenarios (e.g. flight

route or ship itinerary). These requests have been presented to the INFINITY project and we do

hope that we will be able to use some of the environments provided by XiFi during the phase 2

project. However, after reviewing all the infrastructures provided so far, we cannot rely on the

proposed infrastructures as reusable technologies for cSpace at the moment. Therefore, in the

intermediate time, as part of the WP300 work in cSpace, we will build upon an internal cloud

infrastructure in which the cSpace components as well as the use cases will be deployed, and the

EE will operate. As part of WP400 "Use Case Trails" in cSpace, eight use cases will be

http://www.fi-infinity.eu/
http://www.xipi.eu/
http://www.fi-ware.eu/

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 32 of 36

specified in such a way that they can either be physically tested or simulated in the

experimentation environment of the project. In the latter case, historical real data will be used

for simulation thus enabling an environment as close as possible to the real environment.

In total, 8 use case trials have been specified for cSpace, organized along 3 themes:

(A) Farming in the Cloud addresses food production issues at the farm level and covers two

use case trials:

1. Crop Protection Information Sharing – use of field sensor and satellite data to

intelligently man-age the application of pesticides for maximum crop protection

2. Greenhouse Management & Control – use of sensors to monitor key growth factors

(UV radiation, moisture and humidity, soil conditions, etc.) and to feedback data to

control systems to modify the growth environment for maximum yield and optimal

quality

(B) Intelligent Perishable Goods Logistics addresses monitoring and environmental

management issues of perishable goods as they flow through their supply chains so that waste is

minimized and shelf life maximized covering three use case trials:

3. Fish Distribution and (Re-)Planning – focuses on the planning of logistics and transport

activities, including transport order creation, transport demand (re)planning and

distribution (re)scheduling

4. Fresh Fruit and Vegetables Quality Assurance – looks at the management of deviations

(transports, products) that affect the distribution process for fresh fruit and vegetables

(transport plan, food quality issues), either deviation from the plan or other external

events requiring re-planning.

5. Flowers and Plants Supply Chain Monitoring – the monitoring and communication of

transport and logistics activities focusing on tracking and tracing of shipments, assets

and cargo, including quality conditions and simulated shelf life. Focus is with Cargo

and Asset Quality Tracking (“intelligent cargo”), Shipment Tracking (“intelligent

shipment”) and lifecycle information tracking of cargo characteristics/Cargo Integration

along the chain.

(C) Smart Distribution and Consumption is about helping consumers to obtain better

information on the goods they purchase, and producers to better control the flow of their goods

to the consumer, covering three use case trials:

6. Meat Information Provenance – ensuring that consumers, regulators and meat supply

chain participants all have accurate information concerning where a meat product

originated (production farm) and how it was affected by its distribution (quality

assurance).

7. Import and Export of Consumer Goods – the intelligent management of inbound

materials to a production site and the smart distribution of finished goods to consumers.

8. Tailored Information for Consumers – the provisioning of accurate information to

individual consumer’s needs and feedback of this information to the producers

First step towards a full definition of the scenario to be tested in the EE will be carried out

during a try-out meeting to be held during April 4-5. The aim is to build a procedure or method

to define the specification of an end-to-end scenario, so the other use cases can follow. The

experimental sites presented in D4.2 will serve as the basis for the use cases originating from

FInest and as examples for the new use cases in cSpace.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 33 of 36

4. Experimentation environment phase 2
implementation plan

As previously noted, a dedicated work package in cSpace (WP300) will be accountable for the

"cSpace Hosting and Experimentation" of the project. WP300 in cSpace is a straightforward

continuation of the work accomplished in FInest WP4 "Experimentation Environment". In

addition, cSpace WP300 also includes the deployment of the platform components and FI-

WARE3 Generic Enablers (GEs) in a cloud infrastructure. cSpace WP300 uptakes FInest WP4

results and takes FInest EE specification as the starting point to build upon. Figure 3 depicts the

different Tasks to be accomplished by WP300 in cSpace.

Task 320: Cloud Hosting

Task 330: Core Platform GE Integration &
Deployment

Task 310: cSpace Hosting & Experimentation Coordination

Task 340: Experimentation Set-up & Execution

Task 350: Experimentation Facilities

Task 320: Cloud Hosting

Task 330: Core Platform GE Integration &
Deployment

Task 310: cSpace Hosting & Experimentation Coordination

Task 340: Experimentation Set-up & Execution

Task 350: Experimentation Facilities

Figure 3: WP 300 cSpace Hosting & Experimentation (source: cSpace proposal)

More specifically, the following cSpace WP300 tasks (Task 340 and Task 350, respectively)

will deal with the experimentation environment follow up of FInest EE:

Experimentation set-up and execution - This task objective is to support for the actual execution

of the use cases scenarios in the experimentation environment.

Experimentation facilities –The objectives of this task are twofold: to provide an EE to test the

provided new services using real data and physical sites, as well as simulation environment for

the testing execution; and to provide means to facilitate the analysis and assessment of cSpace

new collaborations performance as reflected in the use cases scenarios.

Experimentation set-up and execution task

This task is concerned with the actual execution set-up and support of the use case trials (test

scenarios) specified in the cSpace project. In essence, this task supports the experimentation

process as shown in Figure 4 (cf. Figure 1 in D4.3).

This task is further divided into two subtasks:

1) Experiment design and configuration (M1- M15) – This subtask will focus on

making the use case trials defined throughout phase 2 executable, meaning that they can

be run either manually or automatically (using scripts) in the experimentation

environment. This subtask corresponds to the experimentation design and configuration

phase in the figure (and denoted as a solid line).

3 http://www.fi-ware.eu/

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 34 of 36

2) Experiment execution and analysis (M9-M24) - This subtask will deal with the actual

execution of the different steps of the use cases trials and the analysis of the outcomes.

This subtask corresponds to the experiment execution and analysis phase in the figure

(and denoted as a dotted line).

test

scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business user

Experimentation

design and

configuration Experiment execution and analysis

test

scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business user

test

scenario

business userbusiness user testertester

experiment/testexperiment/test

execution logexecution log

testertester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business userbusiness user

Experimentation

design and

configuration Experiment execution and analysis

Figure 4: Experimentation process (cf. Figure 1 in D4.3)

Experimentation facilities task

This task is concerned with the scaffolding and interfaces that are required in order to have an

environment that is as-close-as-possible to the actual real life environment. The starting point

of this task is the experimentation environment specification detailed in Section 2

This task is further divided into three subtasks:

1) EE test (M1-M9) – This subtask is concerned with putting in place a testbed for cSpace

in which the use case trials will be carried out, including simulation capabilities.

Namely, the Test components in Figure 1.

2) EE core (M6-M21) – This subtask is concerned with the development and support of

all components required to run and analyze experiments executions. Namely, the EE

components in Figure 1.

3) EE front-end (M6-M21) – This subtask is concerned with the development of the user

interface to enable the use of the EE to create, update, execute, and report of tests.

Namely, the EE front-end in Figure 1.

The aim is to have three releases of the EE resulting in three incremental versions of the EE.

Furthermore, these releases will be in full synchronization with the milestone releases of the

project (see MS3, MS5, and MS7 descriptions below) and with the work package deliverables

(see deliverables descriptions below). The above tasks are shown in the implementation plan

Gantt chart in Figure 5 along with the project milestones and work package deliverables.

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 35 of 36

ID Task Name Start Finish

Q2 13 Q3 13 Q4 13 Q1 14 Q2 14 Q3 14 Q4 14 Q1 15

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

4 30/06/201401/04/2013Experiment design and configuration

5 31/03/201501/12/2013Experiment execution and analysis

7 31/12/201301/04/2013EE test

8 31/12/201401/09/2013EE core

9 31/12/201401/09/2013EE front-end

3

6

31/03/201501/04/2013Experimentation set-up and execution

31/12/201401/04/2013Experimentation facilities

1 01/04/201501/04/2013Project Milestones

2 01/04/201501/04/2013EE WP deliverables

ID Task Name Start Finish

Q2 13 Q3 13 Q4 13 Q1 14 Q2 14 Q3 14 Q4 14 Q1 15

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

4 30/06/201401/04/2013Experiment design and configuration

5 31/03/201501/12/2013Experiment execution and analysis

7 31/12/201301/04/2013EE test

8 31/12/201401/09/2013EE core

9 31/12/201401/09/2013EE front-end

3

6

31/03/201501/04/2013Experimentation set-up and execution

31/12/201401/04/2013Experimentation facilities

1 01/04/201501/04/2013Project Milestones

2 01/04/201501/04/2013EE WP deliverables

Figure 5: EE phase 2 implementation plan Gantt chart

List of relevant project milestones

For a full description of the milestones refer to D3.4 "Technical specification of domain specific

FI platform for transport and logistics and phase 2 implementation plan" (to be submitted at

M24) and cSpace proposal.

MS3: Release V1 (M9) Initial release of experimentation environment; experimental support

and guidelines in place

MS5: Release V2 (M15) Advanced release of experimentation environment

MS7: Release V3 (M21) Final release of experimentation environment

MS8: Trial-Round 3 (M24)

Planned deliverables

EE architecture and development plan + scenarios execution plan (M6, Type: R)

Regarding the EE architecture and development plan, this deliverable will provided a detailed

plan for the development of the required scaffolding (modules and interfaces) required for the

experimentation environment. This work also includes the examination of build-versus-buy

components, such as reporting and script engine. This deliverable relates to the EE test, EE core,

and EE front-end subtasks.

Regarding the scenarios execution plan, the deliverable will review the detailed experimentation

and initial work plans of WP400 (use cases), gather test cases from WP400 use cases and their

test scenarios designed together with business users, analyze required functionalities and desired

outcomes from WP400 use cases, and report proposals to refine use cases or requirements. This

relates to the Experiment design and configuration and Experiment execution and analysis

subtasks.

Initial release of the EE + first scenario executions (M9, Type: R + P)

First release and integration of the development efforts into cSpace EE. This relates to the EE

test, EE core, and EE front-end subtasks. The first release will include alpha test runs to validate

test scenarios execution and report results and further requirements if needed to respective

WP400 use cases. This deliverable relates to the Experiment design and configuration and

Experiment execution and analysis subtasks.

Advanced release of the EE + more scenario executions (M15, Type: R + P)

Second release and integration of the development efforts into cSpace EE, including refinement

of first release based on the test executions (EE test, EE core, and EE front-end subtasks). More

scenarios executions will include connecting first business partners to the platform and running

beta and performance tests to examine further hardware requirements (Experiment design and

configuration and Experiment execution and analysis subtasks).

FP7-2011-ICT-FI — FInest

© D4.4 Experimentation environment specification and phase 2 implementation plan V1.0 Page 36 of 36

Experimentation environment development final release (M21, Type: P)

Final release and integration of the development efforts into cSpace EE. This will include

refinement of the previous release based on the scenarios execution. This deliverable relates to

EE test, EE core, and EE front-end subtasks.

Final scenario executions (M24, Type: R)

Report on the execution of the use cases as defined in WP400 in collaboration with business

partners. Therefore, it relates to Experiment execution and analysis subtask.

5. Summary

Deliverable 4.4 "Experimentation environment specification and phase 2 implementation plan"

in fact refines and summarizes the work accomplished in WP4 of FInest project and provides a

plan to implement this work in the scope of cSpace, FInest phase 2 FI-PPP project. The results

of the work done in FInest WP4 have been validated by both domain and technical partners not

only in FInest consortium but also in cSpace consortium as part of the preparations of the

WP300 "cSpace Hosting and Experimentation" during the proposal writing. We are confident

that the work accomplished in the scope of WP4 in FInest provides a significant spring board to

the tasks to be completed in cSpace WP300, FInest WP4 straightforward continuation.

