

Deliverable 4.3.1

Project Title Next-Generation Hybrid Broadcast Broadband

Project Acronym HBB-NEXT

Call Identifier FP7-ICT-2011-7

Starting Date 01.10.2011

End Date 31.03.2014

Contract no. 287848

Deliverable no. 4.3.1

Deliverable Name EVALUATION: Intermediate Middleware Software
Components for Content Synchronization

Work package 4

Nature Report

Dissemination Public

Author Christian Köbel (Editor), Christopher Köhnen, Nils
Hellhund, Bastian Zeller (THM), Ray van Brandenburg,
Arjen Veenhuizen (TNO), Ranina Renz, Michael Probst
(IRT), Björn Stockleben (RBB)

Contributors

Due Date 31.05.13

Actual Delivery Date 07.06.13

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 2

Table of Contents

Executive Summary .. 4
1. Introduction .. 8
2. Related Work .. 10
3. HBB-NEXT System Architecture .. 13
3.1. Introduction ... 13
3.2. Common HBB-NEXT Architecture.. 13
3.3. WP4 and Inter-Device Synchronization ... 14
4. Inter-Device Synchronization ... 15
4.1. Introduction ... 15
4.2. Approach ... 15
4.2.1. Introduction ... 15
4.2.2. Clock Synchronization ... 18
4.2.3. Device/Service Discovery and Pairing ... 19
4.2.4. Synchronization Protocol .. 22
4.2.4.1. General .. 22
4.2.4.2. Message Format .. 22
4.2.4.3. Message Types .. 22
4.2.4.4. Message Parameters ... 23
4.2.4.5. Message Flow .. 24
4.3. Conclusions .. 27
5. Device Implementations .. 28
5.1. Introduction ... 28
5.2. Set-Top-Box ... 28
5.2.1. Placement of Application in System Architecture (App in OS/API) 28
5.2.2. Application Architecture ... 30
5.2.3. Functionality .. 31
5.2.4. Installation/Setup .. 32
5.3. Android Tablet ... 32
5.3.1. Placement of Application in System Architecture (App in OS/API) 32
5.3.2. Application Architecture ... 33
5.3.3. Functionality .. 35
5.3.5. Installation/Setup .. 36
5.4. iOS Tablet .. 36
5.4.1. Placement of Application in System Architecture (App in OS/API) 36
5.4.2. Application Architecture ... 37
5.4.3. Functionality .. 39
5.4.4. Installation/Setup .. 41
5.5. GStreamer Synchronization Framework ... 42
5.5.1. Placement of Application in System Architecture (LinuxOS/API) 42
5.5.2. Application Architecture ... 42
5.5.3. Functionality .. 43
5.5.3.1. SyncModule element .. 43
5.5.3.2. Timeline converter element .. 43
5.5.3.3. SyncComm element .. 44
5.5.3.4. High level abstraction in GStreamer: master blocks ... 45
5.5.4. Installation/Setup .. 49
5.6. Synchronization in the Cloud .. 50
5.7. Conclusions .. 50
6. Demonstrators .. 51

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 3

6.1. Introduction ... 51
6.2. Demo 1: Settings App .. 51
6.3. Demo 2: 3D Content .. 54
6.4. Demo 3: FascinatE ... 55
6.5. Conclusions .. 58
7. Summary and Outlook ... 59
8. References .. 60
9. Appendix ... 62
9.1. General Link to Requirements ... 62
9.2. Requirements of Demonstrator 1: Settings App ... 63
9.3. Requirements of Demonstrator 2: 3D Content ... 65
9.4. Requirements of Demonstrator 1: Settings App ... 65

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 4

Executive Summary
This deliverable contributes inter-device synchronization (multi-screen) components to the

overall HBB-NEXT system architecture and completes the previously introduced inter-media

(multi-stream) synchronization components, described in deliverable D4.2 [4]. In the course

of the document, advanced media synchronization services are presented. A joint

synchronization scheme has been developed by HBB-NEXT WP4 partners, and has been

ported to different hardware and software platforms. The selection of platforms reflects the

current state-of-the art in consumer devices. For later evaluation, WP4 partners have

developed a set of demonstrators.

Requirements and the Synchronization Approach

Before explaining the synchronization method in detail, requirements to enable these

methods are discussed. To limit the scope of scenarios, all media devices can be considered

to be grouped at the same location and in the same sub-network. This is commonly the case

in a living room or in a home in general. A home-wide WiFi access point provides mobility to

the end-devices. Device and media service discovery in a local network, and the resulting

session establishment and management are essential tasks in a multi-device environment.

In our approach, the used service discovery is able to detect devices and their respective

shared services. This is done in advance, before media synchronization.. It also covers the

case that several synchronization masters are present, to which devices can connect to.

Once all devices have been registered, their system clocks are synchronized in the network.

To enable a faultless, synchronized playout of digital media content on all involved devices,

timing information is constantly exchanged. This information can be described as a mapping

between the timeline of the media content and the wallclock timeline of the regarding

device. Using extrapolation, receivers of this information are then able to calculate the

target playout time for all subsequent video frames and audio samples. In the presented

approach, a “synchronization master” is defined, which provides timing information to

“slave” devices. Slave devices will use a seek method to control the play position of the

played out media stream, in order to keep in sync with other devices and the master

content timeline.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 5

In order to prevent incrementing clock drift and possible playback interruptions,

synchronization messages (containing timing information) are proactively signalled. The

applied inter-device synchronization solution is simple and does not cause much network

overhead, due to small and infrequent messages, also for the sake of portability to other

platforms and APIs.

The Hardware and Software Components

Tablets and Set-Top-Boxes (STB) have been considered as hardware platform categories. As

a STB platform, a Broadcom STB has been modified: Novel synchronization features have

been directly included in the Inaris1 DVB/HbbTV middleware for STBs. Inaris already

includes state-of-the-art DVB and HbbTV receiver features. The HBB-NEXT extensions to the

HbbTV Receiver module support both inter-media and inter-device synchronization. It now

additionally features the fully integrated extraction of the DVB broadcast timeline, which

was introduced in the previous deliverable D4.2. The module returns the current tick value

of the broadcast stream in milliseconds, which is later on used to construct a joint content

timeline for locally connected media devices. Also, Picture –in-Picture rendering of

video/broadcast and video/mp4 in parallel is now possible on the STB; a requirement

especially developed for the HBB-NEXT project. Since Android is one of the most popular

mobile platforms, an Android synchronization app has been developed. It is placed inside

Androids Java Layer. The app includes a user interface, methods to connect with the current

synchronization master device and access to the media player control components of

Android. It supports both master and slave functionality for coordination of multi-device

synchronization. To demonstrate the inter-media synchronization abilities of the app, a

Picture-in-Picture sign language interpreter, different languages (audio tracks), audio

description and subtitles can be played out in a synchronized fashion. An application for iOS

devices, such as the Apple iPad or iPhone, has been created with similar intentions. As a

requirement for this app, a complete video renderer has been developed, with direct

control over iOS’ video decoding and playback timing modules.

1 http://www.tara-systems.de/inaris-dvb-middleware.html

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 6

Using such a low-level renderer offers great advantages. It is possible to achieve very tight

synchronization and enables to control the playout of video frames with millisecond

accuracy. The possibility to allow synchronization not only between devices of the same

type, but also between different platforms was a pervasive design criterion in the

development process of the tablet and STB software modules. Additionally, the Gstreamer

synchronization framework [17] has been improved, which works as an alternative to the

synchronization framework on the STB. Gstreamer now includes service discovery and the

aforementioned inter device synchronization algorithm. In its role as a STB, it automatically

serves as a synchronization master in the network. This is due to the fact, that the

GStreamer framework is primarily used to render a broadcast DVB stream, which by

definition does not support seeking of live DVB-media. Firstly, Gstreamer now supports the

processing of the broadcast timeline, which is nested in a DVB MPEG2 Transport Stream

(see deliverable D4.2 [4]). Secondly, Gstreamer is able to distribute the timing information

from the broadcast timeline to subscribed clients, just as a regular STB would do.

The Demonstrators

The developed demos cover different aspects of inter-device synchronization. The first

demo treats the synchronized playout of different content formats on multiple end-devices,

using a tailored settings application. As one of the main efforts of WP4 partners in this

deliverable, the concept and design of this application have been developed, as well as

closely related user studies. The technical adaption of the settings application to an HbbTV

environment has been also handled. The application has a strong focus on accessibility. The

offered services are synchronized sign language interpretation video, extra audio

description / alternative language track and multi-language subtitling. All these services can

be combined with the regular DVB broadcast signal and other on-demand IP video sources

in various ways, all in a multi-device-ready media environment. A custom GUI helps to

configure device-dependent playout options. Another demo enables precise inter-media

synchronization for 3D content. In this demo, two video streams (one for the left eye, one

for the right eye) from hybrid sources are harmonized on a Broadcom set-top-box, to create

a single 3D video playout. The FascinatE demo [15] includes powerful inter-device features,

combining content of two heterogeneous media sources. It is based on a combination of

the Gstreamer framework and a set of iOS devices.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 7

It allows end-users to interactively view and navigate around an ultra-high resolution video

panorama of a live football game. The main screen hosts the regular broadcast DVB

streams, whereas companion devices (e.g. iPad or iPhone) can be used to zoom in and

navigate around the ultra-high resolution video panorama, completely in sync with the main

DVB stream shown on the TV. In this demo, both source combinations of IP-IP and DVB-IP

are considered for inter-media and inter-device synchronization.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 8

1. Introduction
Today, users in the digital media world have adopted often more than one digital end-

device to their daily lives. The heterogeneous device landscape spreads across countless

digital TV sets, set-top boxes, smartphones and tablets, along with major operating systems

like iOS or Android. Users already have high expectations on the quality of each single

device (in terms of manufacturing resolution, weight, speed, and compatibility). But now it’s

up to broadcasters, content providers and the gadget industry to seamlessly integrate all of

the user’s consumer devices, in order to create a unifying media experience across all

involved screens, speakers and input devices. Part of this integration is the synchronized

playout of content: Nowadays, consumers already tend to use one or more media devices in

front of a TV. Extending the TV experience to additional devices requires a robust and fast

synchronization method, which allows media content to be consumed on multiple devices

simultaneously.

The presented deliverable D4.3.1: Intermediate Middleware Software Components for

Content Synchronization conquers this challenge by creating next-generation solutions for

one of the most important aspects on multi-device media interaction: flexible

synchronization of audio, video and metadata (e.g., subtitles). The deliverable documents

the development of novel media sync components and their synthesis, leading to the design

and realization of a set of demos. Each of the carefully selected demos covers different

aspects relevant for multi-device usage, such as multi-screen video playout or second

screen companionship. In these demos, an innovative mixture of different services is

included, based on both inter-device and inter-media synchronization. To mention only two,

an extra sign language interpreter video can be played out synchronously on a tablet, which

enriches the media experience and improves the accessibility of the media environment. A

highly accurate synchronized playout of 3D content represents the ultimate inter-media

synchronization scenario, as the playout of video streams for the left and right eye needs to

be constantly exact on video frame level.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 9

The basic structure of this document is similar to the previous WP4 deliverable D4.2 [4] in

the sense that it contains a two-step approach to documenting the work done in WP4. The

first part (equivalent to Section 4) describes the approach in general, including algorithms

and conceptual details (such as message formats). The second part (equivalent to Sections 5

and 6) describes the technical implementations, such as the used hardware, content, and

demo assembly. Thus, the current deliverable is structured as follows: Following the

introduction, Section 2 provides an overview on related work. Section 3 depicts the general

HBB-NEXT framework, and inter-relates the deliverable with the overall architecture.

Section 4 describes the joint multi-device synchronization approach, developed in

conjunction by the WP4 partners. Several related aspects, such as the clock sync on end-

devices are covered here. Section 5 describes the required components device-wise.

Installation instructions for the device-related software components are also included in

Section 5. Section 6 deals with the demos, which include and deploy the devices introduced

in Section 5. Section 7 concludes the document.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 10

2. Related Work
This Section briefly outlines selected approaches which have been published since the

release of the HBB-NEXT deliverable D4.1 [3]. The set of included papers contains relevant

technological aspects of recent media synchronization solutions. On the implementation

side, specifics of the Android platform are mentioned as well.

Chen et. al. [12] deal with the aspects of media processing and playout performance of the

mobile Android OS for digital media-ready end-devices (smartphones and tablets). Media

processing capability is an important aspect, closely related to Section 5.3, which describes

the characteristics of the custom Android application. Furthermore, the group treats the

issue that DVB decoding and playout causes performance problems on Android. This is

because the Android media framework does not natively support DVB as a protocol.

Nevertheless, this is an important feature in a media environment where all end-devices

shall work together effortlessly. Thus, the group has developed a solution to playout DVB-T

content, by also considering multi-core and other hardware capacities of the device. First of

all the group has identified how flows of DVB-T data are exactly passing the entire Android

system and especially the media framework, using a TV tuner dongle. Later on, they

modified the media framework to their needs. Additionally, a suitable driver for the DVB-T

tuner devices was included in the Linux kernel. To evaluate their implementation, the group

has tested the FPS rate and the related video buffer behaviour of different videos. As a

conclusion, DVB is in general not suitable for low processor frequencies as it has a negative

influence on real-time decoding speed. To solve this issue, modifications on the media

framework are necessary. Details on the required changes can be found in the paper.

Moriyasu et. al. [14] have designed a multi-device synchronization testbed, specialized on

synchronization of groups of user devices. Their target scenario is to connect groups

accessing the same Video on demand (VoD) source via the Internet. Evaluation has been

done on a PC based testbed. Additionally, they allow groups to use communication features

at the same time to enrich the media experience. Just as the later described system, the

group relies on the internal synchronization of the system wallclock of each involved

synchronization member / end-device.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 11

This is based on a host-client system, whereby clients adapt their wallclock to the one from

the host. Therefore, SNTP [6] is used, a simplified version of NTP [5]. The NTP protocol is

used in the presented approach as well, and explained in the course of this deliverable.

Although they target an inter-destination scheme, their approach can be generally adapted

to the local inter-device synchronization case. Once all wallclocks are synchronized,

synchronization members exchange small messages to control the playout position of the

current VoD stream on all devices. Different interactions between clients are defined, to

coordinate the three commands play, pause and seek. To enable this, messages are

exchanged in an ad-hoc / peer-to-peer fashion. The protocol introduced by Moriyasu et. al.

considers the current latencies of the different clients and as an additional step, the

hardware resources of the involved PCs.

The paper released by Köhnen et. al. [11] describes a WP4-internal work and is a

contribution to high precision hybrid inter-media synchronization. The technical solution is

tailored for HbbTV, enabling frame accurate synchronization on a single end-device for

media from hybrid sources, like DVB and IP. Besides the approach itself, the work describes

a testbed with hybrid sources and performed measurements. To enable hybrid inter-media

synchronization, an absolute time code is needed for each media, as well as a reference

between them. In the testbed, the broadcast signal is the main video source; therefore the

absolute timeline needed for synchronization on the client side is inserted by the DVB

broadcaster / DVB media encoder. On the IP-content side, an MPEG-DASH [21] ready source

has been included. On broadcaster side, stuffing packets (Null packets) are identified in the

MPEG-2 TS transport stream. Those Null packets in the transport stream closely placed to

an I-frame, are replaced by a so called Broadcast Timeline packet, which contains the

absolute timecode value of the related I-frame (based on the Presentation Time Stamp

(PTS) [7] of the I-frame). So the timeline is already included in the transport stream before it

is sent via the satellite transponder. On the client side, the timeline decoding is trivial and

simple for implementers. The client’s DVB stack receives the custom time line and can use

the absolute time codes. A second media streamed via IP (MPEG-DASH) is synchronized to

the timeline during playback. In the same way, subtitles are synchronized with the DVB

stream.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 12

It can be claimed for our solution, that in a TS stream, the earlier a subsequent stuffing

packet appears after a Packetized Elementary Stream (PES) header [7] containing an I-frame,

the more accurate the synchronization process will be afterwards. The second article on

inter-media synchronization by Beloqui et. al. [13] is also based on an HbbTV system. As a

consumer scenario, the group has chosen to combine a live IP-TV channel with a broadcast

radio channel. In accordance with the previously mentioned HBB-NEXT paper [11], different

media streams need to have access to the same wall-clock on the receiver side, where both

hybrid streams come together. In short, the group’s approach aims to create a reference

between the wallclock of the receiver device and the PTS timestamps of the DVB stream, by

including PTS values in the DVB EIT [7] as an extra field.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 13

3. HBB-NEXT System Architecture

3.1. Introduction
This section introduces the high-level system architecture that has been provided by WP6

and shows where WP4 contributes to it.

3.2. Common HBB-NEXT Architecture
One of the major objectives of HBB-NEXT is to define an open framework for the next

generation of hybrid broadcast internet (HBI or HBB) services. Building on top of deployed

standards like HbbTV, HBB-NEXT defines a set of extensions and open APIs to enable

services that are more advanced and business cases. Please refer to D2.4 for more details

on business models.

Figure 1: Inter Device Synchronization in the HBB-NEXT system architecture

SYNC-S CLOUD IDSM REP
MMI-S

APP(S)

TERMINAL(S)

SYNC-T MMI-T BROWSER
PLAYER

A1

REC

A3

PERS

A2 A4

P1

P2 MMI

IDM

P1

SM

T1

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 14

Figure 1 shows the system architecture of the HBB-NEXT platform as developed in WP6. The

diagram consists of enablers provided by WP3/4/5, which reside either on the internet

(CLOUD) or on the terminal, and public interfaces to the HBB-NEXT applications (APPS).

Interfaces in the diagram can be distinguished into APIs and protocols. APIs of internet-

based enablers are potentially exposed by one or multiple service provider, named A1, A2

etc. The API that is exposed to applications on the terminal is named T1. HBB-NEXT also

defines open protocols for the advanced synchronization features. These protocol

interfaces are named P1 and P2. APIs between enablers are labelled with the name of the

sub module that exposes it, MMI, IDM and SM.

3.3. WP4 and Inter-Device Synchronization
WP4 contributes to the system architecture the enablers for inter-media (multi-stream)

synchronization, inter-device (multi-screen) synchronization and cloud offloading. This

deliverable focuses on the inter-device synchronization. The enablers and their interfaces,

relevant for inter-device synchronization are highlighted in red.

The synchronization enabler is split into a terminal part SYNC-T and a service provider part

SYNC-S. Protocols and signaling are defined at the interface P1 (see Figure 1). These

protocols include mechanisms to synchronize the clocks at multiple devices, streaming

protocols and content timelines for a synchronized presentation.

At the terminal, the sync enabler exposes functionality to HbbTV applications at the

interface T1. This includes starting streams and joining sessions in which content

presentation is synchronized. The detailed description of these interfaces can be found in

chapter 4.2.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 15

4. Inter-Device Synchronization

4.1. Introduction
The project partners investigated in the research field of technical inter-device

synchronization in the background of a media environment. Unlike previous developments

within HBB-NEXT in the field of inter-media synchronization, in which two independent

approaches (see HBB-NEXT Deliverable D4.2 [4])have been investigated in, findings picked

up for inter-device synchronization have been merged into one single synchronization

scheme, which has been implemented on various heterogeneous platforms. The general

synchronization method however is consequently the same on all involved platforms:

Timing information is constantly exchanged between devices, so devices which attempt to

play out on-demand digital media content in a synchronized manner, will control the play

out position and play out rate of this media in order to keep all media streams in sync.

The approach covers initial device discovery in local networks and subsequent connection

establishment and management for further exchange of synchronization messages. A light-

weight set of synchronization messages has been designed to carry necessary information

for inter-device media synchronization.

The following sections provide the reader with a detailed look on the various aspects of the

synchronization process.

4.2. Approach

4.2.1. Introduction

The essence of inter-device synchronization is not that different from other forms of

synchronization; the basic process is making sure a certain content element (e.g. a video

frame or audio sample) is played out at a certain point in time. In other words, matching the

content timeline to the wallclock timeline (Figure 2).

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 16

Figure 2: Wallclock timeline

The main difference between inter-media synchronization and inter-device synchronization

is that with inter-device synchronization the to-be-synchronized content elements are

played out on two separate devices, each with its own media playout engine. The basics of

inter-device synchronization are therefore communicating how a certain device has

mapped the content timeline to the wallclock timeline and replicating this mapping on

other devices.

In an ideal world, where clock drift is not a problem and playback can continue

uninterrupted, all that is necessary for two devices to synchronize their playout is to

communicate one tuple containing the mapping between the content timeline and the

wallclock timeline at one moment in time (i.e. contentTime@wallclockTime, compare

Figure 3). Using extrapolation, devices are then able to calculate the target playout time for

all other video frames and audio samples that make up the content that is to be

synchronized. In actual applications, due to clock drift and possible playback interruptions

(e.g. due to network issues), it is necessary to exchange such synchronization messages

more frequently.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 17

Figure 3: Content time and wallclock time

Within the HBB-Next project, it has been decided to develop a relatively simple and low

overhead inter-device synchronization solution. A wide variety of different devices can be

expected to be used for inter-device synchronization with HbbTV (e.g. STBs, TVs,

smartphones, tablets, etc.). Furthermore, these devices do not share a common platform or

set of APIs. For these reasons, it is important that the developed inter-device

synchronization solution is relatively simple to implement and does not require platform-

specific or complex protocols that might not be available on all platforms. For this reason,

most of the elements of inter-device synchronization presented in this document are based

on well-established and widely implemented protocols.

The decision was made to go for a master-slave type of inter-device synchronization

mechanism, with one device in any given synchronization group playing the role of

synchronization master. This main purpose of the synchronization master is to send

synchronization updates to all devices making up the synchronization group. Despite the

fact that in the HbbTV context, the TV or STB plays a central role, the chosen inter-device

synchronization solution allows for any device in the synchronization group to play the role

of synchronization master. Section 4.2.4 discusses in more detail the various roles in the

developed inter-device synchronization solution, and also discusses the actual exchange of

synchronization messages and their format.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 18

In practical situations, especially with a heterogeneous and diverse set of devices making up

a synchronization group, it cannot be assumed that the wallclocks of these devices are

synchronized. Section 4.2.2 discusses this problem and provides a number of solutions.

Section 4.2.3 finally discusses various options for service and device discovery.

4.2.2. Clock Synchronization

One very important aspect of inter-device synchronization is clock synchronization. As

exchanged sync-information refers to a moment in time, say a snapshot from the system

time, the system clock on all synchronization peers needs to operate on the same time. A

couple of options are available to achieve clock synchronization over network. The most

popular kind is clock synchronization via the Network Time Protocol [5]. Alternatives are

e.g., the Precision Time Protocol or other proprietary/custom protocols.

The Precision Time Protocol (PTP [10]) is a high-accuracy protocol for synchronization of

clocks via network, which achieves accuracy in the sub-microsecond range. PTP operates on

a peer-to-peer mode without the need for further infrastructure. It offers a negotiation

process with the election of a grandmaster, say a reference clock host, as a result. After

election, peers will connect directly to it and synchronize their clocks based on a master-

slave model.

NTP is a widely known server centric networking protocol for clock synchronization with

easy accessible implementations existing on a huge number of platforms. The actual clock

synchronization algorithm operates on exchanging timestamps, computing time offsets

according to round-trip delay times between server and client and adjusting the system

time. However, in case of asymmetry in nominal delay on incoming and outgoing routes

between client and server, calculated time offsets have systematic bias of half the

difference between the forward and backward travel times [8]. Nevertheless, especially in

local networks, NTP achieves clock offsets within a few milliseconds range or also with very

good network conditions, offsets of several hundred microseconds [9]. NTP operates on a

client/server model. The need for an available NTP server infrastructure may be a

disadvantage for peer-to-peer synchronization models.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 19

One major reason for choosing NTP is its popularity and wide-spread availability on client-

devices. It is available on most Linux systems nowadays and can also be found on already

existing network infrastructure, like routers in home networks. Other protocols like PTP

might achieve higher accuracy on time synchronization over network, yet inter-device

media-synchronization requires only frame level synchronicity, with drifts of about 20

milliseconds. With NTPs ability to achieve synchronicity of very few milliseconds, it offers a

more than sufficient performance for inter-device synchronization.

4.2.3. Device/Service Discovery and Pairing

Synchronization is considered a media service, offered via network. Hence if

synchronization peers want to establish a synchronization session, a step called ‘Service

discovery’ needs to be executed in advance. Service discovery allows automatic detection

of devices and their respective shared services in networks. A number of different popular

approaches and protocols are available, SSDP [18], mDNS [19]or DHCP [20] to name a few.

All vary in complexity, network layers and scope of application. For the given prototypes,

two methods were elaborated and integrated. On one side, the peer-to-peer and mDNS

protocol is being used. It serves as easy implementable solution and operates on exchange

of multicast and broadcast UDP packets in local networks. On the other side, a proprietary

QR-code will be integrated in further versions of the prototype. Here we deal with a user-

friendly, infrastructure supported device discovery, with the ability to establish and

maintain sessions, as well as exchange of messages, via an intermediate server. Discovery

and device pairing is executed explicitly, by actively scanning a QR code on a mobile device,

and not happening in the background.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 20

mDNS/Bonjour

In most inter-device synchronization scenarios, all devices making up a synchronization

group will be at the same location, and part of the same network. An example of such a

scenario is a user synchronizing his tablet and/or his smartphone with his TV. In the case

where all devices are part of the same IP subnet (i.e. location on the same local WiFi

network), a very easy to use and simple method to perform device and service discovery is

the combination of mDNS and DNS-SD (together also known under the Bonjour2 name).

By using Bonjour devices can automatically broadcast their willingness and ability to

perform inter-device synchronization. As an example, once an STB is turned on, it can start

broadcasting a DNS record indicating that it is willing to synchronize with other devices. Any

other device on the same subnet that is actively searching for devices to synchronize with

will receive the advertisement. After resolving the DNS record back to an IP address, the

second device can connect to the STB and the synchronization mechanism can start. In its

most basic form, device discovery and pairing via Bonjour does not require any user input,

and can be a fully automated process. Of course, in the situation where multiple

synchronization groups are available on the same subnet (e.g. two STBs tuned to two

different channels), it would require input from a user to decide which group (and device)

to join.

The downside of using Bonjour is that it only works with devices on the same subnet. Since

this will probably be the case in many of the inter-device synchronization scenarios

envisioned by the HBB-Next project, it will not work in all circumstances. Apart from inter-

destination synchronization use cases, in which devices will obviously not be in the same

subnet, another limitation is that Bonjour does not work for devices that connect to the

internet over e.g. a 3G network (a smartphone which has WiFi turned off). In these

scenarios, another device discovery and pairing mechanism, such as the QR code-based

mechanism explained in the next section, is more suitable.

2 https://developer.apple.com/bonjour/

https://developer.apple.com/bonjour/

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 21

Implementation Considerations

The inter-device synchronization solution described in this document is advertised with the

‘_hbbInterDeviceSync._udp.’ service name. This means that any device that implements the

synchronization master mechanism, described in section 4.2.4, is broadcasting the

‘_hbbInterDeviceSync._udp.’ service. At the same time, any device that wants to join an

existing synchronization group will search for the same ‘_hbbInterDeviceSync._udp.’ service

name.

In some use cases more information is necessary to be able to decide whether to join a

given synchronization master (and thus group). For example, more than one

synchronization master might be advertising the inter-device synchronization service (e.g.

the user has two STBs in his home). For this purpose, the Bonjour device name property can

be used. By advertising the device name and showing this name prominently in the UI, it

should be immediately obvious to the user which device it is. An example device name

could for example be ‘Living Room STB’.

It should be noted that the particular content item that is being watched by the

synchronization master is explicitly not being broadcasted as part of the service discovery

and pairing process but part of the message exchange that follows (see Section 4.2.4.5). It is

assumed that based on the device name the user has enough information to be able to

decide which synchronization master to join.

The QR-Code based ‘2nd Screen framework’

IRT has developed a framework which enables independent integration of second screens in

HbbTV applications. In a HbbTV application running on a set-top-box, a QR code will popup

which can be scanned by any device supporting a bar-code-scanner (e.g., Android/iOS

tablets). The 2nd screen framework provides functional components on a server which can

be accessed via JavaScript API. An API call to that server will generate a session – this

session identifier is contained in the information within the QR-code. Via that session, all

connected devices, which receive a unique identifier each, can push messages to each

other. Substantial API queries for sending messages and polling the server for new incoming

messages are available.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 22

4.2.4. Synchronization Protocol

4.2.4.1. General

After successful discovery and pairing, synchronization peers know IP addresses and port

numbers of the involved sync services and will establish a connection. The proposed

synchronization model operates on the packed oriented protocol UDP (User Datagram

Protocol). Each synchronization client maintains an open UDP port, thus every client can act

as server as well. All subsequent synchronization messages will be transported via this port.

The approach implements a master-slave model (analog to Publish-Subscribe patterns).

Clients will send a subscribe message to the synchronization master and receive sync

information. On the server side, a subscription remains in a soft state, in this case, in form

of a timeout value, until client-subscriptions expire. The synchronization host will notify

clients with synchronization information in regular intervals, e.g. every 5 seconds. If a

specific timeout expired, clients will no longer be notified unless they re-subscribe to

refresh their timeout values.

4.2.4.2. Message Format

The proposed message format is lightweight and offers a clearly laid out functionality. A

message is a text-encoded list with an arbitrary number of lines. Each line contains one

tuple of information, delimited by a colon.

See the sample of a line:

<PARAMATER_KEY>: <VALUE>\r\n

Each line is terminated with the ASCII codes for carriage-return and line-feed (‘\r\n’).

Basically the message format resembles the structure of an HTTP-header. It provides high-

readability for debugging processes and is easy to en- or decode.

4.2.4.3. Message Types

A number of fixed message parameters have been designed. In the Listing 1 below the

number of designed default parameters are listed. Although all parameters are string based,

the string will still be subject of a specific format:

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 23

typedef enum MESSAGE_TYPE {

MESSAGE_TYPE_SYNC = 0,

MESSAGE_TYPE_PAUSE = 1,

MESSAGE_TYPE_JOIN = 2,

MESSAGE_TYPE_QUIT = 3,

MESSAGE_TYPE_DROP = 4,

MESSAGE_TYPE_FAIL = 5,

} MESSAGE_TYPE

Listing 1: Message-Types

For basic synchronization, only two types of messages need to be exchanged, which are

marked yellow in the listing above. As previously mentioned, base of the synchronization

scheme is a client subscribing a media-session by sending the particular joining message to

the host. This message is represented by the MESSAGE_TYPE_JOIN. The message does not

require any further parameters, except for an optional Device name or similar information.

QUIT serves as the correspondent message-type to actively leave a synchronization session

and keep the host from sending further sync-packets to the client. A synchronization client

will send a FAIL message, in case he is not able to synchronize (e.g. through bad network

conditions), and finally a host can issue DROP towards a client to terminate this connection.

The messages SYNC AND PAUSE will manage media-playback. SYNC contains timestamp

information for synchronization. Typically, a host will issue a SYNC message when a client

joins a session, and also regularly to keep all clients synchronized. PAUSE is designed to

manage media-playback in a distributed control manner.

4.2.4.4. Message Parameters

A couple of fixed message parameters have been designed. But in general, a line and text-

based protocol like this can support an arbitrary number of custom parameters, which can

be attached to the message for custom reasons. In Table 1, a number of designed default

parameters are listed. Although all parameters are string based, the string will still be

subject of a specific format:

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 24

Parameter

Name

Format Description

DEVICE_ID String Device Name / ID

PLAYPOSITION Unsigned Integer Number of milliseconds that passed since

playback of the media event started

TIMESTAMP YYYY/MM/DD;HH:MM:SS:sss Absolute Wallclock date-time

MEDIA URL Address of media-file/stream to be played

MIME-TYPE String Internet-Media-Type

MESSAGE-TYPE Enum See 4.2.4.3

SESSION_ID String Media-Sessions can be identified via this

parameter

TIMEOUT Integer Amount of seconds that indicates the

period after which a client gets dropped

from the sync session

NTP-SERVER String Address of NTP-server

Table 1: Message Parameters

4.2.4.5. Message Flow

The message flow has been kept as simple as possible. Basically, the synchronization host

will provide all connected synchronization clients with synchronization information in a

given interval. In case of a client joining the session, another single event-based

synchronization message will be distributed, so the client does not have to wait for the next

interval period to pass. Clients remain in a soft-state and will automatically drop from the

session after a specific interval unless they re-send their JOIN message to refresh the

timeout. Below, find a sample of a short media session with one host and two clients. To

keep the image simple, only the message type and a message number in brackets are given.

Find the messages in Table 2 for a more detailed look.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 25

Figure 4 : Message Sequence Chart of a synchronization session

Message
No

Message Description

1 MESSAGE_TYPE: JOIN
DEVICE_ID: ClientA

ClientA subscribes the
current media Session

2 MESSAGE_TYPE: PLAY
DEVICE_ID: HOST
TIMEOUT: 300
PLAYPOSITION: 3000
TIMESTAMP: 01/01/1970;17:32:59:148
MEDIA: http://server.com/video.mp4

Host replies instantly with a
synchronization message,
containing all necessary
information for sync and a
timeout value

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 26

Message
No

Message Description

3 MESSAGE_TYPE: PLAY
DEVICE_ID: HOST
TIMEOUT: 295
PLAYPOSITION: 8000
TIMESTAMP: 01/01/1970;17:33:04:148
MEDIA: http://server.com/video.mp4

After 5 seconds, the next
sync info gets distributed to
keep clients in sync,
timestamps and timeouts
changed

4 MESSAGE_TYPE: JOIN
DEVICE_ID: ClientB

ClientB subscribes the
current media session...

5 MESSAGE_TYPE: PLAY
DEVICE_ID: HOST
TIMEOUT: 300
PLAYPOSITION: 9132
TIMESTAMP: 01/01/1970;17:33:05:280
MEDIA: http://server.com/video.mp4

...and when a client joins,
the server replies with
current media information

6 MESSAGE_TYPE: PLAY
DEVICE_ID: HOST
TIMEOUT: <client timeout>
PLAYPOSITION: 13000
TIMESTAMP: 01/01/1970;17:33:09:148
MEDIA: http://server.com/video.mp4

The next regular interval
hits, and both connected
peers receive a sync
message, but with different
timeouts.

7 MESSAGE_TYPE: QUIT
DEVICE_ID: ClientA

ClientA decides to drop from
the session...

8 MESSAGE_TYPE: JOIN
DEVICE_ID: ClientB

..while ClientB decides to
refresh the session timeout
and remain in the session

9 MESSAGE_TYPE: PLAY
DEVICE_ID: HOST
TIMEOUT: 300
PLAYPOSITION: 18000
TIMESTAMP: 01/01/1970;17:33:14:148
MEDIA: http://server.com/video.mp4

And as the next interval hits,
only ClientB will receive sync
messages, yet with the
timeout restored to 300
seconds

Table 2: Tabular listing of messages within the synchronization session

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 27

4.3. Conclusions
To make inter-device synchronization possible for a wide spectrum of devices, information

about play position and wallclock time must be exchanged between devices.

To make this possible the project partners decided to use existing, well established

protocols, which are available on usual second-screen devices like mobile phones or tables.

Thus different devices have different time settings, their wallclock must be synchronized. To

compute the devices local offset to a master clock, NTP is used. A master clock device is

available on almost every home network in form of the local router.

Mobile device clocks are inclined to drift very fast, so synchronization information must be

exchanged periodically.

To have devices indicate their ability for synchronization on local networks, mDNS is used. It

is easily accessible from all used devices and enables automatic service discovery and

joining. For more complex scenarios with multiple synchronization groups in local networks

or inter-destination synchronization, the QR-Code framework can be used.

Finally the actual exchange of synchronization information is achieved by a light-weight UDP

based protocol containing fundamental messages for media playback.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 28

5. Device Implementations

5.1. Introduction
After treating the general concept and theoretical functionalities of inter-device

synchronization in Section 4, this Section elaborates on the developed implementations on

each end-device. Representative Subsections are included for the different device

categories, each treated separately: Set-Top-Box (STB), Android tablet / smartphone, Apple

iOS tablet / smartphone. In the case of inter-media synchronization in HBB-NEXT, concrete

software modules for the used end-devices are explained in each Subsection. Additional

Subsections treat the powerful Gstreamer Synchronization Framework and the related

implementations in HBB-NEXT, as well as components developed to enable synchronization

in the cloud.

Later on, Section 6 will describe the composition and interplay of the devices in multiple,

concrete demo setups.

5.2. Set-Top-Box
HBB-NEXT partners are using a Broadcom STB in combination with sources of the Inaris

DVB/HbbTV middleware. This allows implementing HbbTV extensions and synchronization

features on a real hybrid STB device.

5.2.1. Placement of Application in System Architecture (App in OS/API)

Based on the Linux OS, "Inaris" is a modular middleware solution for DVB reception and

recording, including popular features like HbbTV reception, EPG, Teletext and Subtitling.

Based on long-term expertise in European DVB and sophisticated design and test processes,

Inaris DVB Middleware has been developed to provide a flexible, sustainable and robust

software solution to manufacturers of DVB receiver products. Additionally, the HbbTV

Receiver, the Teletext Decoder and the DVB Subtitle Decoder are available as additional

modules to the Inaris DVB Middleware. The Hardware platform is based on Broadcom's SoC

BCM7342, being the core chip of the set-top-box.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 29

Figure 5: Inaris DVB Middleware Architectural Overview

As depicted in Figure 5, the Platform & OS environment is a custom Linux distribution,

delivered by Broadcom. It contains the kernel, hardware modules, libraries and user space

tools to control and access the hardware features of the STB.

The Inaris HAL component is a software module to provide a hardware abstraction for the

required multimedia and OS functionality to the Middleware Layer.

The Inaris Middleware Layer implements the DVB functionality to access, process and

display the DVB content. As additional middleware components, the HbbTV Receiver

provides all functionality to run HbbTV applications. As browser module the Opera

Embedded Browser is used.

The Customer Application layer is the user front end. Here, a version created with the

Embedded Wizard is used.

The HBB-NEXT applications run in the browser, same as HbbTV applications do.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 30

Figure 6: Inaris HbbTV Receiver Architecture

The HBB-NEXT API extensions were implemented into the video/broadcast and the

video/mp4 plugin objects.

5.2.2. Application Architecture

The HBB-NEXT extensions to the HbbTV Receiver module are mainly implemented within

the video/broadcast module. As depicted in Figure 7, the API OIPF API has been extended to

provide a new defined eventPlayPosition property. Once called, it returns the current

timeline tick value in milliseconds.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 31

Figure 7: Inaris HbbTV plugin Architecture

The timeline tick is retrieved and interpolated by the Inaris HbbTV middleware from the

Timeline Extractor module. The interpolation and video synchronization of timeline ticks is

performed using the decoder’s PTS values. The last timeline packet’s PTS is compared to the

current decoder’s PTS value. The difference value is used to calculate the corresponding

correct timeline tick value.

For enabling the Picture in Picture (PiP) feature for inter-media video synchronization, the

video/mp4 plugin was modified to accept a sink=”pip” attribute in the HTML object

definition. This triggers the video object to not disable the video/broadcast and to render

windowless in parallel.

5.2.3. Functionality

The extensions to the Inaris HbbTV Receiver provide the functionality of inter-media and

inter-device synchronization. These requires the features of DVB Timeline decoding, Picture

–in-Picture rendering of video/broadcast and video/mp4 in parallel.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 32

5.2.4. Installation/Setup

The extensions are all fully integrated into the HBB-NEXT-branch of the Inaris Middleware

sources. Once the binaries and libraries are installed, the STB is enabled to provide all

functionality to any HbbTV/HBB-NEXT application, running in the browser. No further setup

is needed. The implementation provides advanced HbbTV API to HbbTV browser

applications.

5.3. Android Tablet

5.3.1. Placement of Application in System Architecture (App in OS/API)

The App is placed inside Androids Java Layer, as shown in Figure 8. From there it makes use

of the Android SDK Modules MediaPlayer and AudioManager.

Figure 8: Placement of App in Android System Architecture

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 33

These modules are wrappers for the corresponding modules from Androids NDK. These

Modules are provided in native machine-code and have direct control over lower layer

frameworks like the libmedia framework. This framework called stagefright is Androids new

playback engine since Android 2.0. It provides codecs, parsers, muxes and encoders for all

common media formats, which are capsulated inside AwesomePlayer for video data or

AudioPlayer for audio data.

libvpu and libsound provide access to specific hardware drivers needed for media decoding

and playout.

The KernelSpace Layer provides drivers to communicate with different hardware modules

like VideoProcessingUnit and AudioCodes which are located inside Hardware Layer.

Each layer uses only functionality provided by lower layers.

5.3.2. Application Architecture

The Application is separated into 4 Main modules, UserInterface, MediaPlayerContainer

MediaControlAPI and SynchronizationControl. This is depicted in Figure 9.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 34

Figure 9: Interplay of Application Components

The MediaPlayerContainer module provides functionality for playing out common media

formats from any location.

In case of multiple media files being played (video together with sign language interpreter,

video with different audio language), multiple instances of MediaPlayer are linked together

to play synchronous.

As the MediaCodec from a lower Layer is only available once, Callbacks into the Application

(OnSeekComplete, OnPrepared, etc.) come from one asynchronous thread and any action in

these callbacks should take as less amount of time as possible and must so be performed

from inside a different thread. This makes it possible to have multiple instances playing out

frame accurate without tweaking lower layers of the android framework.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 35

The MediaControlAPI module gives direct high level control to media files. Common

controls like PLAY, PAUSE, STOP or SEEK are provided to control all MediaPlayer instances

hosted inside MediaPlayerContainer. These controls are located inside the MediaControl

Module. It also provides information about all MediaPlayer instances at once, to read for

example the synchronized PlayPosition of linked media files.

The MediaControlAPI is meant to be used by upper layer modules like SyncronizationServer

or UserInterface.

The UserInterface provides control-elements for handling Synchronization and selection of

media content. All HBB-NEXT settings are performed inside the module to give functionality

of HBB-NEXT-Settings-APP in tablet-conform design rules. It makes direct use of the

MediaControlAPI to control playout.

The Synchronization Control module handles device discovery and acts as Server and Client

for media synchronization.

When acting as Synchronization-Master-Device (eg. Server), it provides functionality for

adding devices to a synchronization session and periodically informing all clients about the

actual PlayPosition, provided by the MediaInformation module.

When acting as Synchronization-Slave-Device (eg. Client), it controls the playout of local

media when receiving Synchronization-Information from MediaControlAPI.

5.3.3. Functionality

The Android Application provides functionality for playing media-files, as well as hosting or

joining Synchronization-Sessions inside the HBB-NEXT Framework.

The main functionality is mirrored from HBB-NEXT-Settings Application. The application can

act as a master or slave device in an inter-device synchronization session, as well as

providing inter-media synchronization for Sign language Interpreter (PIP), different

languages (audio tracks), audio description or subtitles.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 36

5.3.5. Installation/Setup

The Application is provided as .apk file, an Android specific Application Format. It must be

made sure, that the regarding Android device allows installing applications from unknown

sources. Figure 10 depicts how to enable this setting in the Android OS.

Figure 10: Required Setting for Installation (Example Device)

The media content for the application must be located in /sdcard/hbbtv/media

5.4. iOS Tablet
As part of the development process, the full inter-device synchronization solution has also

been implemented on iOS, to allow iPhones and iPads to be synchronized either with each

other or with one of the other platforms discussed in this chapter.

5.4.1. Placement of Application in System Architecture (App in OS/API)

In general, when developing a synchronization solution for an embedded platform, be it a

tablet, smartphone or STB, the most difficult aspect is getting access to the lower level APIs

and hardware that are necessary in order to have the required level of control of the video

playback. iOS is no different in that regard.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 37

Getting a video to playback on iOS is easy to achieve using the high level APIs, and seeking

within that video relatively accurately is quite simple to achieve as well. However, such high

level APIs do not provide enough control and accuracy to allow for frame accurate

synchronization that some of the HBB-Next use cases call for. In order to really have frame-

accurate control over video playback, one has to use the low level Core Media APIs (see

below for an overview of the iOS media stack).

Figure 11: iOS Media API Layers

Using the Core Media APIs (specifically, the associated Core Video API), one can basically

create a complete video renderer, with direct control over the video decoding and playback

timing. Using such a renderer, it is possible to achieve very tight synchronization resulting

and the possibility of controlling the playout of video frames with millisecond accuracy.

5.4.2. Application Architecture

The diagram below shows an architecture overview of the current iOS application.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 38

Figure 12: Architecture diagram of iOS inter-device synchronization app

The SyncedVideoPlayer object in the diagram refers to the newly developer video renderer

object, which is able to synchronize a video with frame-level accuracy. The

SyncedVideoPlayer object communicates with a number of other objects:

 NTPSync: The module responsible for synchronizing the wallclock. Since on iOS it

is not possible to set the system clock from within an App, this module keeps

track of the offset between the iOS system clock and NTP time. This offset is then

communicated back to the SyncedVideoPlayer, which performs playout based on

the system clock but corrects for the offset with NTP.

 BonjourServer: The module responsible for the synchronization master

mechanism. This includes advertising its availability via Bonjour and accepting

incoming UDP packets from connected clients. It also makes sure that each

connected client is periodically receiving synchronization updates (via the

ClientConnection instances).

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 39

 BonjourServerBrowser: The module responsible for searching for available

synchronization masters and connecting with a single master. This includes the

client-side Bonjour procedures. Once connected to a synchronization master, this

module receives synchronization updates and communicates them back to the

SyncedVideoPlayer.

 Brain: The main model of the App. It is responsible for orchestrating

communication between the various modules and is the interface to the app’s

ViewController (and thus it’s view). Once the SyncedVideoPlayer has a new video

frame available, the Brain forwards it to the ViewController which in turn allows

the View to show it on the display.

5.4.3. Functionality

The Figure 13 shows an impression of the current proof-of-concept iOS synchronization

demo. The top third of the interface can be used to select another device to perform inter-

device synchronization with (in this particular case, another iPad and the GStreamer

Synchronization testbed). It also shows a list of devices currently connected to the current

iPad. On the top-right of the screen it shows the current NTP time, which is used in the

synchronization process. The video being shown on the screen is generated test content

that is particularly suitable for testing synchronization accuracy with.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 40

Figure 13: Proof-of-concept version of iOS inter-device synchronization app

In Figure 14, shown below, an earlier version of the iPad application is synchronized with

the GStreamer Synchronization testbed. As one can see, the inter-device synchronized iPad

in this case allows a user to experience a football match from two different angles

simultaneously. The main screen shows a zoomed-out top-down view on the football pitch

while the iPad shows a zoom-in angled version.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 41

Figure 14: Synchronization between GStreamer Synchronization Testbed and iOS inter-device
synchronization app

5.4.4. Installation/Setup

Due to the way provisioning of iOS devices works, the application bundle included in the

software package can unfortunately not be installed directly on an iPad, since the iPad first

needs to be provisioned with the correct Apple Developer’s certificate. For a test version of

the developed iOS inter-device synchronization application, please contact the authors of

this document.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 42

5.5. GStreamer Synchronization Framework
The GStreamer synchronization framework [17], as already discussed in detail in D4.2 [4],

has been improved and extended to allow for inter device synchronization.

5.5.1. Placement of Application in System Architecture (LinuxOS/API)

The Linux based GStreamer synchronization framework is placed as a general purpose

alternative to the set top box, without the constraints imposed by a set top box, like limited

processing capabilities, future-proof, driver limitations, etc. The platform allows to

experiment with state of the art multimedia technologies (like MPEG-DASH, Web Sockets,

mDNS, etc.) while providing full flexibility at the same time. Furthermore, the open source

GStreamer framework is supported by the Broadcom set top box platform.

A shortcoming of the framework is that it is not compatible with any HBB(-NEXT) user

interaction APIs. It does not support HTML5 or the like. Therefore, the framework is focused

on beyond state-of-the-art hybrid multi-device media synchronization.

The GStreamer Synchronization framework is compatible with a number of APIs and HBB-

Next frame-accurate synchronization related enablers.

 mDNS based device discovery

 Partial implementation of the TS 102 823 - V1.1.1 specification for TS Timeline

support

 UDP and TCP based inter device clock synchronization algorithm

 Inter media synchronization (e.g. used for showing 3D content or picture-in-

picture rendering, see section 2.3)

5.5.2. Application Architecture

The GStreamer synchronization framework is a modular system which allows for frame

accurate synchronization of heterogeneous media on a single device, and frame accurate

synchronization in a multi device environment. From an architectural point of view, the

system platform runs on a common off-the-shelf laptop, but could also run on a set top box

(with modifications).

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 43

5.5.3. Functionality

The framework utilizes many of the build-in GStreamer elements (refer to Appendix A in

D4.2 [4]). Besides these common elements, a number of custom elements have been

developed to achieve frame accurate synchronization, and inter-device communication.

These elements are shortly discussed in the subsequent sections.

5.5.3.1. SyncModule element

The SyncModule element enables PCR/PTS based inter media synchronization on a single

device. For a complete discussion of the SyncModule, its implementation, capabilities and

limitations, refer to section 3.3.2.4.1 in D4.2 [4].

5.5.3.2. Timeline converter element

This element handles timeline and PCR/PTS based media synchronization, and as such, is an

improved SyncModule element as described in the previous section. The functionality of the

timeline converter is twofold, depending on whether it is running in master or slave mode.

In master mode (the left part of the figure below), it is distributing the clock information as

specified by the timeline data. In this case, the “Content” input consists out of the video

elementary stream embedded in for example the DVB-S transport stream. The “Sync data”

input contains the elementary stream which holds the timeline information. In slave mode

(the right part of the figure below), the timeline converter element receives this timeline

information and adjusts the internal clocks of the passing content to match to the

synchronization data it receives. This sync data is communicated within the pipeline in case

of inter-media synchronization. In case of inter-device synchronization, the information is

shared using different means (see the SyncComm element as discussed in the next Section.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 44

Figure 15. The timeline convert element provides both PCR/PTS and Timeline based inter-
media synchronization.

5.5.3.3. SyncComm element

The SyncComm element facilitates inter-device synchronization. Currently, the GStreamer

framework is considered to be rendering the master stream to which all other streams

adhere too. This can be assumed, since the role of the GStreamer framework would

primarily be to render a broadcast DVB stream which by definition does not support seeking

(unless buffers or time shift functionality is in place). Other devices would synchronize their

on demand IP streams to that master stream.

The SyncComm module announces the presence of the GStreamer framework and the

source it is rendering to the local network. Furthermore, it allows other devices to subscribe

to the synchronization service it is sharing. By emitting frame accurate clock and content

time information (see Section 4.2.2 for an in depth explanation), other devices are able to

synchronize on this media stream.

Announcements are broadcasted using mDNS/Bonjour. Synchronization information is

shared using a more traditional low latency UDP or TCP port. This is specified in more detail

in Section 4.2.3).

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 45

Figure 16: The SyncComm element facilitates communication to other devices.

The SyncComm module is operating in pass-through mode, e.g. timestamped media is

passed and only timing information is extracted and communicated. Since it is

multithreaded, this results in minimal overhead and processing delays.

5.5.3.4. High level abstraction in GStreamer: master blocks

GStreamer utilizes the concept of pipelines for rendering media. A pipeline consists of one

or multiple elements which have a certain function (e.g. demultiplex, decode, crop or resize

a video). Refer to Deliverable 4.2 [4] for a more in depth description of pipelines. Although

elegant, managing a pipeline with many functions and/or multiple media files becomes

increasingly more complex (due to the large amount of elements required). Creating and

managing such a complex pipeline is cumbersome and prone to errors. Furthermore, many

of the elements are repetitive, e.g. for video the same string of elements is required to

demultiplex, decode and scale the video data. Therefore, a high level easy-to-use

framework has been developed in Python providing simple interfaces to common sets of

GStreamer elements. A set of common GStreamer elements is defined as a master block.

This concept was already discussed in D4.2 [4], but since then this concept has been greatly

simplified, further enhancing the power of this versatile approach to pipeline construction.

Previously, a number of master blocks were defined. These blocks are discussed in D4.2 [4],

but are listed again for the convenience of the reader.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 46

Master block Description

1 HLSSource Load and demultiplex an HLS transport stream

2 DASHSource Load and demultiplex a MPEG DASH transport stream

3 LocalTSSource Load and demultiplex a local transport stream

4 LocalTSSource Load and demultiplex a local transport stream

5 LocalMP4Source Load and demultiplex a local MP4 file

6 SyncedVideo Decode and synchronize video data

7 SyncedAudio Decode and synchronize audio data

8 MP3Encoder Encodes and packages an audio stream into MP3 format

9 X264Encoder Encodes and packages a video stream into x264 format

10 AACEncoder Encodes an audio stream into AAC format and packages

into an MP4 container

11 TheoraEnc Encodes and packages a video stream into Theora format

12 VorbisEnc Encodes and packages an audio stream into Vorbis format

13 MKVMux Uses the Matroska multiplexer to multiplex audio and

video

14 OGGMux Uses the OGG multiplexer to multiplex audio and video

and sent the resulting video stream to a TCP socket.

15 RTPBin Packages one or multiple media streams into an RTP

stream.

16 VideoMixer Overlays multiple videos into one output video stream

17 UDPSink Stream encoded audio or video data to an IP address and

port.

18 VideoSink Renders the video signal on the local display

19 AudioSink Renders the audio signal on the local sound card

Table 3: Previously implemented master blocks.

As one can notice, a number of even higher level functionality can be distinguished. Sources

(1 … 5), synchronization modules (6, 7), encoders (8 … 12), multiplexers (13 … 15), and sinks

(16 … 19).

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 47

In the current version of the framework, master blocks have been defined on the level of

the aforementioned key functions, namely:

 Source

 Processing

 Synchronization

 Encoding

 Sink (also known as output)

For example, a source master block has been created which can be fed virtually any type of

media stream ranging from local transport stream to DVB-S source or MPEG DASH [21]

playlist. Its auto-sensing feature automatically selects the proper underlying GStreamer

element(s) which are required. The same holds for the other master blocks. This way, as

simple as plug and play with minimal configuration overhead, one can create powerful

pipelines while having full control if required. The primary features of the current master

blocks are detailed in the Table 4.

Master block Description

1 Source Any local media file, HTTP Live Streaming playlist, MPEG-
DASH playlist, DVB-S stream. The source could contain
audio, video or both.

2 Processing Buffer, demultiplex, decode (and position and scale if
applicable) media stream

3 Synchronization Perform synchronization, communicate with additional
devices, announces sync service, handles both PCR/PTS
based and timeline based synchronization.

4 Encoding Optional encoding and multiplexing of resulting stream,
useful when one wants to stream to a remote host or save
to disk.

5 Sink Renders to local display, file, TCP port, RTP stream or other
output format. Can be audio, video or both.

Table 4: The master blocks given in Table 1 have been refactored to a small number of
master blocks.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 48

An example pipeline, using these master blocks, is given in Figure 17 below. In this example,

a media source (e.g. a live broadcast via DVB-S) is processed by the GStreamer

synchronization framework and displayed on a regular television. Next, a mobile device (e.g.

a tablet) enters the room and announces itself on the local network. Since the GStreamer

framework is also announcing itself, both devices are able to pair to each other and

communicate content specific information. The tablet is instructed to play an on demand IP

stream showing the same content as the broadcast but from an alternative camera angle.

By exchanging clock and content time information, the tablet can play the alternative

camera feed frame accurately synchronized to the DVB-S stream on the TV.

Figure 17: Simplified overview of inter device synchronization, synchronizing the GStreamer
framework to a tablet device.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 49

5.5.4. Installation/Setup

The GStreamer synchronization framework has a number of dependencies. These

dependencies are listed in the following table:

Component Version Notes
Ubuntu 12.04 The 64 bit version is recommended, but the platform is known to

be compatible with the 32 bit version as well. Furthermore, 12.10
can be used as well.

Python 2.7.3 Needs the following libraries: numpy-27, gst-python, pybonjour,
autobahn, twisted

GStreamer 0.10.35 Needs the following libraries: gst-plugins-base-0.10.35, gst-
plugins-good-0.10.30, gst-plugins-bad-0.10.18, gst-plugins-ugly-
0.10.22. Everything compiled from git as of January 21, 2013.

FFmpeg Current The most up to date version of FFmpeg is recommended.
x264lib Current The most up to date version of x264 encoder is recommended.

Table 5: Software Dependencies of Gstreamer

Furthermore, it needs a fully functioning DVB-S receiver in case one wants to synchronize

DVB-S content. By default the framework supports any DVB-S receiver as long as it is

supported by the host operating system. GStreamer supports Apple’s HTTP Live Streaming

(HLS) and MPEG DASH [21], although support is still in an alpha stage. Adding DASH support

is optional and requires significant effort. Since the specification, capabilities and

installation of this element is continuously updated and changed, the exact installation

details for this element are out of scope of this report. For a good start on adding MPEG

DASH support to GStreamer, refer to the regarding Google Code repository3. HLS is

supported by default.

3 https://code.google.com/p/mpeg-dash-gstreamer/wiki/DASH

https://code.google.com/p/mpeg-dash-gstreamer/wiki/DASH

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 50

5.6. Synchronization in the Cloud
The synchronization component has not yet been integrated in the cloud due to a number

of issues in the cloud offloading architecture. Furthermore, the current implementation of

the synchronization module does not fit into the cloud architecture very well since it

requires over the top inter-element communication which does not fit with the distributed

architecture of the cloud. It is proposed that in a future release of the synchronization

element, this communication is performed in band using for example Event signals4.

5.7. Conclusions
The Synchronization features have been implemented on various platforms and types of

devices. Beside an HbbTV set-top-box, also two tablet platforms are supported and a cloud

tool. The modern, open-source Gstreamer framework has been tested as an alternative to

the STB. This shows the feasibility and practicability of the developed HBB-NEXT

synchronization algorithms and protocols. The inter-device features have been tested for

interoperability on all devices and their use within the demonstrators, presented in Chapter

6, proofs the underlying synchronizations algorithms and protocols, described in Chapter 4.

4 http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-events-
definitions.html

http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-events-definitions.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-events-definitions.html

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 51

6. Demonstrators

6.1. Introduction
In the previous Section, the purpose of each device and software framework was explained,

as well as the novel software modules. The scope of functionalities and capabilities of each

developed component within HBB-NEXT should be clear now. This Section will deal with

various demo installations. Each demo depicts a unique usage and composition of devices,

with novel features in the field of inter-device media synchronization.

For the upcoming IBC conference in September 2013, several TV channels have been

designed, whereby each channel represents a single demo and contains the regarding

(HbbTV) application (e.g., a 3D channel, see Section 6.3). The purpose of each channel is

highlighted in a single context. Note that some demos for IBC will cover features which are

not directly related to inter-device media synchronization. Therefore, the set of features has

been limited in order to fit the scope of this deliverable.

6.2. Demo 1: Settings App
The settings application as designed by WP2 offers accessibility services via a unified

interface (see Figure 18). Currently these services are synchronized sign language

interpretation video and multi-language subtitling. The rendering for both services is

customizable by the user according to individual preferences and needs. As live subtitles,

content from the flagship news magazine rbb aktuell is used. Sign language video samples

are taken from the ARD Tagesschau news magazine.

The service can be supported by a second device. The device connection is initiated via the

HBB-NEXT QR-Code based 2nd screen Framework. The user opens a personalized link on the

second device (usually a tablet PC) that is provided via a QR code displayed on the TV device

screen. The service provides the following cases for media synchronization:

 IP subtitles synchronized to broadcast video on TV

 IP sign language video synchronized to broadcast video on TV

 IP audio description on connected device synchronized to broadcast video on TV

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 52

 Inter-Device Synchronization of DVB-Video on TV to On-Demand Video on

connected device

 Inter-Device Synchronization of DVB-Video on TV to alternate audio-streams on

connected device (e.g. audio description)

The application UI especially comprises the following features:

 Individual positioning and scaling of sign language video (see Figure 19)

 Configuration of visual rendering options for subtitles (see Figure 20)

 Configuration of visual options for subtitles

 Native tablet-themed Android GUI on the connected device, corresponding to the

GUI on the TV

Figure 18: Main menu of settings application

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 53

Figure 19: Synchronized sign-language service via IP

Figure 20: Configuration of synchronized subtitles via IP

Please refer to the appendix in Section 9 of this document to see all related WP4

requirements from HBB-NEXT Deliverable D2.2 [2].

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 54

6.3. Demo 2: 3D Content
The 3D demo is a new demonstrator, which was not planned from the beginning. The

innovation and development process in WP4 revealed that the mechanisms and

functionality for inter-media synchronization perfectly fit for also been used to enable

hybrid 3D presentation. Also, the presented 3D demo for hybrid sources depicts the perfect

application to demonstrate highly accurate inter-media synchronization, and was therefore

included in the selection of IBC demos.

Figure 21: 3D Demo Screenshot

As shown in Figure 21 the demo application displays the 3D video in Half-Side-By-Side (Half-

SBS) configuration, which can be rendered in 3D from 3D-enabled TVs. For this demo two

different versions are available. One presents IP-IP inter-media synchronization, the other

DVB-IP synchronization. The first loads the videos from the left and right from different files

and therefor from different locations. The latter displays the left eye video from DVB-S

tuner and the other from an IP source. As IP sources in this demo HTPP progressive

download videos in H.264/AVC encoding are used. The DVB-S broadcast uses DVB video in

MPEG-2 encoding. This requires the device to have the hardware decoders running with

synchronised clocks, to avoid drifting of play speed.

The content shown in this demo was taken and re-encoded from the “Elephants Dream”5

open source movie project, released under the Creative Commons license.

5 http://orange.blender.org/blog/elephants-dream-in-stereoscopic-3d/

http://orange.blender.org/blog/elephants-dream-in-stereoscopic-3d/

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 55

The user interface of this HBB-NEXT demo application is limited to display the movie in 3D.

The control is limited to the colour buttons:

 RED: seekTo(0)

 GREEN: start left video

 YELLOW: start right (pip) video

 BLUE: sync left/right video

Additionally, the device should be able to render Half-Side-By-Side content to 3D output.

Installation and setup of this application only require an HbbTV conformant Web Server and

3D content, prepared and encoded for hybrid playout. To enable this demonstrator the set-

top-box device’s enhanced inter-device synchronization implementation is used, as

described in Section 5.2.

Please refer to the appendix in Section 9 of this document to see all related WP4

requirements from HBB-NEXT Deliverable D2.2 [2].

6.4. Demo 3: FascinatE
The FascinatE demonstrator shows inter device synchronization of two heterogeneous

media sources. Within the EU FP7 project FascinatE [15] a capture, production and delivery

system capable of supporting interaction, such as pan/tilt/zoom (PTZ) navigation, with

immersive media has been developed by a consortium of 11 European partners from the

broadcast, film, telecoms and academic sectors. This system allows end-users to

interactively view and navigate around an ultra-high resolution video panorama showing a

live event. The output is adapted to the end-user’s device, ranging from a mobile handset to

an immersive panoramic display.

Ultra high resolution (7k x 2k) content has been captured, in combination with a regular HD

broadcast feed. The ultra-high resolution content is delivered to the end user using the IP-

based streaming technology called “tiled streaming” [16]. Tiled streaming has been

developed within the FascinatE project and allows for the delivery of that part of the

content that the user is interested in, adapted to his display device (e.g. a tablet or HD-TV).

Additionally, the user can interact with this panorama by panning, tilting and zooming.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 56

Figure 22: An example of an ultra-high (7k x 2k) resolution video capture.

Besides the ultra-high resolution panorama, the regular broadcast feed is broadcasted via

for example DVB-S. In this demonstrator, both video feeds are synchronized using HBB-

NEXT synchronization technology as discussed in detail in D4.2 [4]. Using the inter-device

synchronization algorithms as detailed in Section 4.2.4, frame accurate synchronization is

achieved between the FascinatE platform (rendering the interactive panorama on a tablet)

and GStreamer synchronization framework [17] (rendering the broadcast camera on a

regular HD-TV). Media displayed on both devices are frame-accurately synchronized. This is

required, since when no frame accurate synchronization is achieved, differences in the two

video feeds can be distinguished, which would be annoying for the end user and ruin the

immersive experience. Refer to Figure 24 for an overview of this setup. The simplified

architecture is given in Figure 23.

Figure 23: Simplified overview of the Fascinate demonstrator.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 57

Figure 24: System overview of the HBB-Next FascinatE demonstrator showing inter-device
synchronization between a tablet and a TV

In this specific demonstrator, on-demand pre-recorded content is used since the use of live

Ultra-HD content would be difficult and very expensive to obtain. The concepts of this

demonstrator, however, are applicable to live events as well.

This demonstrator clearly shows the synergy between the two EU FP7 programs, in which

two separate technologies complement each other very well and enable new, immersive

use cases. It combines interactive high resolution video interaction with frame accurate

synchronization of heterogeneous media sources amongst different devices within a local

network.

Future work will focus on merging this demonstrator with the set top box and Android

based tablets. Furthermore, content management needs to be implemented linking the

different content stream to each other within, for example, one session.

The demonstrator requires the following hardware components:

 Laptop

 GStreamer synchronization platform

 USB DVB-S receiver

 iPad 2 or newer with HBB Next synchronization application and iOs 6 or newer

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 58

 WiFi access point

 HD-TV connected via HDMI

 DVB-S modulator

 Web server hosting the segmented panorama content

The laptop and iPad must be connected to each other via the local area network and must

reside in the same subnet. Furthermore, the DVB modulator must broadcast the FascinatE

broadcast camera feed. The webserver could run on the same laptop, but could also be

hosted on a more remote server (e.g. a CDN).

Please refer to the appendix in Section 9 of this document to see all related WP4

requirements from HBB-NEXT Deliverable D2.2 [2].

6.5. Conclusions
Three different demos have been presented. The settings app demo is focused on

accessibility features in a multi-device HbbTV environment. It enables a glimpse to a future,

where several present end-devices allow hearing or vision impaired media consumers to

experience digital media with fewer barriers, tailored to their needs. The second demo,

showing 3D content from hybrid sources highlights the effectiveness of the developed inter-

media synchronization methods in HBB-NEXT. As 3D features are getting more important on

the market, broadcasters may gain a powerful platform with this demo: Picture a scenario

where regular customers receive a 2D HD broadcast stream via DVB. Now premium

customers could receive the second video stream, which would enable a 3D playout on a

compatible HD-TV, via a third-party, IP-based source. This premium feature might be an

attractive way to increase revenues of a broadcaster, without consuming extra bandwidth

of the DVB transponder. The third presented demo describes the successful fusion between

HBB-NEXT WP4 developments and technology from the EU FP7 project FascinatE. Just as

the 3D demo, the FascinatE demo also target to enrich the DVB consumer sector.

By allowing users to access selected parts of a main event which runs on the main screen,

and visualize custom elements on their end-devices in a synchronous fashion, the demo

takes huge steps towards a media world, where every consumer experiences digital media

as an individual.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 59

7. Summary and Outlook
Multi-device synchronization capability is a highly relevant aspect for next-generation

media environments. For the presented deliverable, novel approaches to build the technical

base for multi-device synchronization in an HbbTV environment have been developed.

Research and development on both popular mobile OS platforms iOS and Android, as well

as on a commercial STB and on the open-source Gstreamer framework has been conducted.

As a practical result, demos based on these platforms have been forged, which shall be

presented at the IBC conference in 2013. This deliverable documents the conceptual phase,

as well as the assembly process of these demos. Furthermore, it is a result of the merging

process of contributions from all WP4 partners, to create a single, light-weight

synchronization scheme, which is applied in a heterogeneous end-device landscape.

The elaborated technology allows for vast enhancements of the set of already included

features. Evaluations are not included in this deliverable. The different demos now need to

be tested under different conditions, to match real-life digital media environments in

common households. Therefore, the impact of varying network conditions (changing

throughput, packet delay and jitter values) on the synchronization accuracy of each demo,

respectively end-device, needs to be tested. To realize this, different uniform measurement

methods need to be identified. Another aspect is compatibility. So far, the presented apps

run on designated tablet models. It has to be evaluated, if they also run flawlessly on

different models using the same operation system. Although not crucial in the current

phase (design and first evaluation), customer acceptance can be already an important sign

post for the next improvements of the inter-device synchronization software. The IBC

conference in 2013 is a perfect playground for interested customers to test the new

technology, and their feedback will be valuable for the course of the WP4 developments.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 60

8. References
[1] HBB-NEXT Deliverable D2.1 - Usage Scenarios and Use Cases, http://www.hbb-

next.eu/index.php/documents

[2] HBB-NEXT Deliverable D2.2 - System-, Service-, and User

Requirements, http://www.hbb-next.eu/index.php/documents

[3] HBB-NEXT Deliverable D4.1 - ANALYSIS: Cloud-Based Services and Service/Content

Synchronisation, http://www.hbb-next.eu/index.php/documents

[4] HBB-NEXT Deliverable D4.2 - DESIGN AND PROTOCOL: Middleware Components

Content Synchronisation/Cloud Service Offloading, , http://www.hbb-

next.eu/index.php/documents

[5] Network Time Protocol Version 4: Protocol and Algorithms Specification

[6] Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

[7] Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB

systems, ETSI EN 300 468 V1.11.1 (2010-04)

[8] Gotoh, T; Imamura, K; Kaneko, A (2002). "Improvement of NTP time offset under

the asymmetric network with double packets method"

[9] Executive Summary: Computer Network Time

Synchronization, http://www.eecis.udel.edu/~mills/exec.html

[10] Precision Time Protocol

[11] C. Köhnen, C. Köbel, and N. Hellhund, “A DVB/IP streaming testbed for hybrid

digital media content synchronization,” in 2012 IEEE International Conference on

Consumer Electronics - Berlin (ICCE-Berlin), 2012, pp. 136–140.

[12] T.-M. Chen, L.-J. Lin, H.-L. Chen, K.-C. Liu, C.-L. Su, and C.-Y. Cho, “A DVB-T

Implementation for Android Stagefright on a Heterogeneous Multi-core Platform,”

in 2012 IEEE 14th International Conference on High Performance Computing and

Communication 2012 IEEE 9th International Conference on Embedded Software

and Systems (HPCC-ICESS), 2012, pp. 112–118.

http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.eecis.udel.edu/~mills/exec.html

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 61

[13] L. Beloqui Yuste, S. M. Saleh Al-Majeed, H. Melvin, and M. Fleury, “Effective

synchronization of Hybrid Broadcast and Broadband TV,” in 2012 IEEE

International Conference on Consumer Electronics (ICCE), 2012, pp. 160–161.

[14] S. Moriyasu, K. Tajima, K. Ohshima, and M. Terada, “Group synchronization

method with fast response time for VoD services,” in 2012 International

Conference on Information Networking (ICOIN), 2012, pp. 182–187.

[15] EU FP7 project FascinatE, http://www.fascinate-project.eu

[16] Omar Niamut, Jean-Francois Macq, Martin Prins, Ray Van Brandenburg, Nico

Verzijp, “Towards Scalable And Interactive Delivery of Immersive Media”, NEM

Summit 2012 Proceedings, October 2012.

[17] GStreamer Open Source Multimedia

Framework, http://GStreamer.freedesktop.org/

[18] Simple Service Discovery Protocol/1.0 - Operating without an Arbiter, IETF Internet

Draft, October 1999

[19] Multicast DNS – IETF RFC 6762, February 2013

[20] Dynamic Host Configuration Protocol – Network Working Group RFC, March 1997

[21] ISO/IEC JTC 1/SC 29, Information technology MPEG systems technologies Part 6:

Dynamic adaptive streaming over HTTP (DASH), 2011-01

http://www.fascinate-project.eu/
http://gstreamer.freedesktop.org/

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 62

9. Appendix
Each demonstrator presented in Section 6 fulfills several WP4 requirements described in

the HBB-NEXT Deliverable D2.2 [2]. The following Subsections list these requirements.

9.1. General Link to Requirements
The demos cover all requirements related to the A/V synchronization enabler but system

requirements YR 2.01 – Transfer media sessions and YR 2.02 – Time-Shifting. These

requirements have been reassessed in their importance due to different reasons: An explicit

transfer of media sessions in the sense that the complete session state is transferred to a

connected device is a very generic use case. The synchronization scenario realized in demo

1 (“settings app”) allows mirroring the TV content along with synchronized content and

comes close to fulfilling this requirement. Yet technical limitations as well as usability

considerations on the connected device prevent a direct copy of the session when more

than two sources shall be synchronized and rendered. As for the Time-Shifting, a decision

had to be taken regarding allocation of development resources. Though a useful feature as

described in Scenario 1 in HBB-NEXT deliverable D2.1 [1], providing synchronized services

for live-broadcasts in real-time as demonstrated in demo 3 was considered the primary

research challenge.

Contribution to Generic Requirements

The Generic Requirements as formulated in D2.2 [2] broadly categorize the requirements by

the aspect in which they provide value to the user. It can be noted that the demonstrations

described in this deliverable especially contribute to Ensure Accessibility & Usability by

providing all synchronization solutions related to this Generic Requirement. Further the

synchronization part of Enable Hybrid Content is supported by the developed technologies.

A matching of the synchronization requirements of Enable Seamless Device Integration is as

well positive with the exception of the already mentioned YR 2.01 and YR 2.02. It can be

argued that YR 2.01 is in fact validated by demo 1, yet it remains a chance that certain

enhancements to the original scenarios from D2.1 [1] would require a more versatile

implementation.

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 63

9.2. Requirements of Demonstrator 1: Settings App
Demonstrator 1 especially focuses on the Generic Requirements Ensure Accessibility &

Usability and Enable Seamless Device Integration. The detailed requirements are as follows:

Service Requirements independent from enablers

SR 00.02b EPG supported content,

SR 00.03a IP content,

SR 00.03b IP content,

SR 00.04b Content Listing adaptation,

SR 00.05d Playing A/V content,

SR 00.06 IR controller,

SR 00.07 (Dis-) Connection via user interface,

SR 00.18 Share content

Service Requirements related to the A/V Content Synchronization enabler

SR 02.01 PiP Service Option,

SR 02.02 Sync Service User Interface,

SR 02.03 IP Server functionality,

SR 02.04 Service based Timeline information generation,

SR 02.05 Timeline multiplexing

User Requirements independent from enablers

UR 00.01 Second Screen Locations

System Requirements independent from enablers

YR 00.05c Broadcast-Related apps,

YR 00.05d Playing A/V content,

YR 00.06 IR receiver, YR 00.07 Connection via WAN / LAN,

YR 00.08a Detection through,

YR 00.08b Non-local device detection,

YR 00.08c UPNP,

YR 00.08d Periodical scanning,

YR 00.10 Platforms,

YR 00.12 Autostart app on TV,

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 64

YR 00.13 Profile device independence,

YR 00.14 Profile device linkage.

System Requirements of A/V Content Synchronization Enabler

YR 02.03 Distributed Playback-Control,

YR 02.04 Decouple synchronicity between clients,

YR 02.05 Continuous check of synchronicity,

YR 02.06 Synchronous command execution,

YR 02.08 Multiple Parallel Decoding,

YR 02.09 Protocols,

YR 02.10 Render Picture in Picture,

YR 02.11 Synchronize two contents,

YR 02.12 Timeline extraction,

YR 02.13 Network request of subtitle information,

YR 02.14 Subtitle Rendering, YR 02.15 Timeline Based Subtitle Synchronization,

YR 02.16 Synchronization Functionality,

YR 02.17 Synchronize Clocks,

YR 02.18 Communication with Synchronization Servers,

YR 02.19 Set-Top-Box Remote Control Functionality,

YR 02.20 Synchronization mechanics,

YR 02.21 Transcoding Control Unit,

YR 02.22 Synchronization of subtitles,

YR 02.23 Inter-Destination Synchronization,

YR 02.24 Distributed-Playback Control,

YR 02.25 Multi-Domain Synchronization,

YR 02.26 Clock-Synchronization,

YR 02.27 Inter-Destination Synchronization of DVB and IPTV streams,

YR 02.28 IDMS Playback Management

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 65

9.3. Requirements of Demonstrator 2: 3D Content
The demonstrator implements the following requirements:

Service and system requirements for A/V Content Synchronization enabler

SR 02.01 PiP service option,

YR 02.12 Timeline extraction,

YR 02.10 Render picture in picture,

YR 02.11 Synchronize two contents,

YR 02.15 Subtitle synchronization

Service and system requirements independent from enablers

SR 00.05d Playing A/V content,

YR 00.05a Additional content on first screen

9.4. Requirements of Demonstrator 1: Settings App
This demonstrator concentrates on the Generic Requirements Enable Hybrid Content and

Enable Seamless Device Integration. In detail it implements the following requirements:

System requirements for A/V Content Synchronization enabler

YR 02.03 Distributed playback control,

YR 02.05 Continuous check of synchronicity,

YR 02.06 Synchronous command execution,

YR 02.09 Protocols, YR 02.10 Render picture in picture,

YR 02.11 Synchronize two contents,

YR 02.12 Timeline extraction,

YR 02.16 Synchronization functionality,

YR 02.17 Synchronize clocks,

YR 02.18 Communication with synchronization servers,

YR 02.20 Synchronization mechanics,

YR 02.22 Synchronization of subtitles,

YR 02.24 Playback control,

YR 02.26 Clock synchronization

HBB-NEXT I D4.3.1 EVALUATION: Intermediate Middleware
Software Components for Content Synchronization

 HBB-NEXT Consortium 2013 Page 66

Service requirements independent from enablers

SR 00.05d Playing A/V content

System requirements independent from enablers

YR 00.04c Content adaption,

YR 00.05b Additional content on second screen,

YR 00.05d Playing A/V content,

YR 00.08a Detection through LAN,

YR 00.08d Periodical scanning,

YR 00.10 Platforms

System requirements for Cloud Service Offloading enabler

YR 04.09 Stream into elementary streams.

	Deliverable 4.3.1
	4T Table of Contents

