smartCEM

Smart connected electro mobility

D4.2 Evaluation criteria and performance indicators

Version number: 3.0 Main authors: Nicola Fricke, Katharina Oeltze (DLR) Dissemination level: P Lead contractor Due date: 01.10.2012 Delivery date: 04.05.2013

CIP - Information and Communications Technologies Policy Support Programme (ICT PSP) Information Society and Media Directorate-General Grant agreement no.: 297328 Pilot type B

Version history					
Version	Date	Main author	Summary of changes		
Draft	09/07/2012	N. Fricke (DLR)	First draft		
0.2	23/10/2012	N. Fricke (DLR)	First revision		
1.0	12/12/2012	N. Fricke (DLR)	Second draft		
2.0	21/12/2012	N. Fricke (DLR)	Ready for peer review		
2.1	28/01/2013	P. Mascolo (ICOOR), L. Guidotti (UNIMORE)	Review of Progress Indicators		
2.2	29/01/2013	N. Fricke, K. Oeltze (DLR)	Revision		
3.0	03.05.2013	N. Fricke (DLR), Gabriel Simcic (FIA), Pierpaolo Tona (ERTICO), Leandro Guidotti (UNIMORE), Pietro Mascolo (ICOOR), Txomin Rodriguez (TECNALIA), Yvonne Hübner (UNEW), Josep Laborda (RACC)	Update of deployment and dissemination indicators and pilot-site indicators, addition of details concerning measures and equations, harmonisation of indicators for pilot-sites		
	Name		Date		
Prepared	Nicola Fricke		21.12.2012		
Reviewed	lan Fay		09.01.2013		
Authorised	Authorised Fernando Zubillaga		04.05.2013		
Circulation					
Recipient		Date of submission			
European Co	mmission	15.05.2013			
Pilot consort	ium	04.05.2013			

Authors (full list)

Nicola Fricke, Katharina Oeltze (DLR) M. Larburu, L. Isasi, T. Rodriguez (TECNALIA) Leandro Guidotti (UNIMORE) Pietro Mascolo (ICOOR) Yvonne Huebner (UNEW) Josep Laborda (RACC) Gabriel Simcic (FIA) Pierpaolo Tona (ERTICO)

Project Coordinator

Fernando Zubillaga MLC ITS Euskadi Clúster de Movilidad y Logística Centro de Negocios CTVi, Oficina 1, 3-A Lermandabide, 8. Polígono Industrial Júndiz 01015 Vitoria-Gasteiz Tel.: +34 945 10 80 88

Email: fzubillaga@mlcluster.com

Legal Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials subject to any liability which is mandatory due to applicable law.

© 2013 by smartCEM Consortium

Ta	ble o	f Content	
AB	BREVI	ATIONS	6
LIS	T OF	TABLES	
ΕX	ECUTI	VE SUMMARY	9
1.	INTR	ODUCTION	
2.	SMA	RTCEM PROJECT EVALUATION DEFINITIONS	
3.	SERV	ICES AND PILOT SITES	
4.	PRO	GRESS INDICATORS	
5.	PERF	ORMANCE INDICATORS	
5	.1.	COMMON PERFORMANCE INDICATORS	
	5.1.1.	Environment	
	5.1.2.	Transport and mobility	
	5.1.3.	User uptake	
	5.1.4.	Driver behaviour	
5	.2.	SITE-SPECIFIC PERFORMANCE INDICATORS	
	5.2.1.	Pilot-site specific indicators for Barcelona	
	5.2.2.	Pilot-site specific indicators for Gipuzkoa	
	5.2.3.	Pilot-site specific indicators for Newcastle	
6.	AWA	RENESS INDICATORS	
7.	DEPL	OYMENT INDICATORS	
8.	PRO.	JECT STATISTICS - PROJECT INDICATORS	
9.	REFE	RENCES	
AN	NEX A	A: PROGRESS INDICATORS	
A	1 BAF	RCELONA PROGRESS INDICATORS	
A	.2 GIP	UZKOA PROGRESS INDICATORS	
A	3 Nev	VCASTLE PROGRESS INDICATORS	
A	.4 REC	GGIO-EMILIA PROGRESS INDICATORS	
AN	NEX E	SUCCESS CRITERIA AND MEASURES	
В	1 Suco	CESS CRITERIA AND MEASURES FOR BARCELONA	
В	2 Suco	CESS CRITERIA AND MEASURES FOR GIPUZKOA	
В	3 Suco	CESS CRITERIA AND MEASURES FOR NEWCASTLE	
B	4 Suco	CESS CRITERIA AND MEASURES FOR REGGIO-EMILIA	

Abbreviations

Abbreviation	Definition
BAR	City of Barcelona - pilot-site in smartCEM
CIP	Competitiveness and Innovation Framework Programme of the European Commission
CO2	Carbon dioxide
СР	Charging post
DoW	Description of work
eCoMove	Cooperative mobility systems and services for energy efficiency - 7th framework EU-project
EV	Electric Vehicle
FESTA	Field operational test support action - handbook for FOTs
FITS	Finnish National R&D Programme on ITS Infrastructures and Services
FOT	Field Operational Test
GIP	Gipuzkoa/San Sebastian - pilot-site in smartCEM
НВ	Hybrid bus
Нур	Hypothesis
ІСТ	Information and communication technology
ICT4EVEU	ICT-PSP collaboration project "ICT Services for Electric Vehicle Enhancing the User Experience"
MOBI.Europe	ICT-PSP collaboration project "Integrated and Interoperable ICT Applications for Electro-mobility in Europe"
MOLECULES	ICT-PSP collaboration project "Mobility based on electric connected vehicles in urban and interurban smart. clean environments"
NEW	City of Newcastle - pilot-site in smartCEM
RQ	Research question
SOC	State of charge of the battery
TeleFOT	Field operational tests of aftermarket and nomadic devices in vehicles - 6th framework EU-project
REG	City of Reggio-Emilia - pilot-site in smartCEM
WP	Work Package

List of tables

Table 1: Common progress indicators.	16
Table 2: Specification of the performance indicators for the category environment.	19
Table 3: Specification of the performance indicators for the category transport and mobility.	20
Table 4: Specification of the performance indicators for the category user uptake.	20
Table 5: Specification of the performance indicators for the driver behaviour category.	21
Table 6: Site-specific performance indicators for Barcelona.	22
Table 7: Site-specific performance indicator for Gipuzkoa.	23
Table 8: Site-specific performance indicator for Newcastle.	23
Table 9: List of awareness indicators.	24
Table 10: List of deployment indicators.	25
Table 11: List of project indicators	26

Executive Summary

The main objective of task 4.2 Evaluation criteria and performance indicators is to prepare and harmonise the data assessment in the pilot-sites. This document provides a description of the evaluation criteria which will be used to evaluate the overall success of the smartCEM project. Five types of evaluation criteria have been specified for smartCEM which will help to determine the progress of the implementations in the pilot-sites, the work-packages, the baseline- and operational-phases of WP4 and, finally, the overall achievements of smartCEM at the end of the project. The indicators have been defined and adapted through harmonisation efforts at project level, where appropriate.

Furthermore, the performance indicators have been specified in more detail through applying and matching the work achieved in the CIP collaboration between the projects smartCEM, ICT4EVEU, MOBI.Europe, and MOLECULES. The adaptation included using three of the four CIP-evaluation categories for the smartCEM performance indicators, i.e. Environment, Transport & Mobility and User Uptake. The fourth category - Economic - was instead moved to the deployment indicator section as it is derived from performance indicators related to economic aspects. A specific smartCEM category, Driving Behaviour, was added for the evaluation of invehicle services implemented in smartCEM. Additionally, the four CIP-categories were defined in more detail by first identifying pilot-site specific aspects and then harmonisation of a sub-set of indicators. This approach ensures that special regional aspects are taken into account while ensuring the comparability of the evaluation results through a minimum set of indicators. This process is to be seen as an addition to the FESTA methodology, which has been developed for fieldoperational-tests (FOT) and needed to be adapted to meet the special needs of a pilot- and demonstration project such as smartCEM.

1. Introduction

The smartCEM project aims at demonstrating ICT-mobility services which have been adapted to support the uptake and deployment of electric vehicles. Four regions have come together to pilot these activities and support a common approach in reaching the smartCEM project goals. These goals are in more detail the following (see also DoW):

- 1. increasing user acceptance of electric vehicles by at least 15 % due to implementation of smartCEM services
- 2. evaluate the optimisation of transport efficiency
- 3. tool development for impact assessment of CO_2 emissions and user acceptance
- 4. deployment barrier identification
- 5. support pan-European interoperability
- 6. enhance adoption of electro mobility in all types of road transport
- 7. increase integration of new business models
- 8. provision of lessons-learned from smartCEM services

SmartCEM involves four pilot sites where the newly adapted services are demonstrated and piloted. Thus, it is not a research program with research- and demonstration vehicles (such as in the eCoMove project) nor is it an FOT (for which FESTA-methodology and handbook were developed) where specific functions are tested with participants in real-life situations. Instead, in smartCEM, already existing standalone services are adapted and implemented to meet the demands of electric vehicle usage. These adapted services are afterwards piloted with real users. Based on Bassi (2010), a pilot study is characterised through implementation of an ICT-technology on "a small controlled scale to allow for its full impact, benefits and weaknesses to be evaluated before implementation on a regional or nationwide basis". This includes testing the new implementations with a specifically selected group of users. The keyword is **implementation** in pilot-projects as opposed to research and development in FOT-projects. Based on these assumptions, the evaluation of the smartCEM project has to meet certain demands which are specific to such a pilot project:

- The evaluation criteria do not only focus on the performance of the implemented services, but also on the progress in implementing the services, the activities undertaken for increasing the awareness of potential users and the aspects related to the further deployment of the services and measures to increase the overall uptake of electric vehicles.
- 2. The **pilot sites** are not equal and implement different use-cases or services. This means that not all evaluation indicators, success criteria and measures can be the same. Harmonisation and comparable measures should still be reached wherever possible.
- 3. Due to the fact that the services are implemented and tested with **actual users**, the criteria have to be **feasible** and **measurable** during the operation of the services.

4. The expected outcome or the results of a pilot project remain partly open and evaluation criteria and indicators can only be pre-defined to some extent. Many aspects remain **exploratory** due to the nature of a pilot project. The results are meant to support large-scale deployment activities after the end of the project.

Due to these demands, FESTA-methodology was amended and adapted. First of all, five evaluation criteria categories and indicator types were specified for the evaluation of smartCEM. The performance indicators for the evaluation of the implemented services in smartCEM were moreover defined in more detail using a twofold process. On the one hand, identification of **commonalities** which allow comparisons between the sites was targeted. On the other hand, pilot-site specific indicators, which are necessary for successful regional operation, were defined. Therefore, we split performance indicators in two sets:

- a. Common indicator set: which is assessed at all pilot sites, and
- b. *Site-specific indicator set:* which is specific to the pilot site and only assessed there.

The indicators were created in an iterative manner through discussions with the pilot-sites. In a next step, success criteria and measures were defined. Task 4.3 and deliverable D4.3 will further specify the measures and equations and link them to the sensors for data assessment. Furthermore, the time and circumstances of applying the measures will be stated within the experimental design definition of task 4.3.

This document shows the outcome of the indicator and evaluation criteria definition process. For all evaluation criteria and indicator categories, the common aspects are listed in the subsequent sections. For more detailed lists per pilot sites concerning the progress- and performance indicators, the measures and equations please refer to the lists in the Annex (Annex A: Progress Indicators and Annex B: Success Criteria and Measures).

2. smartCEM project evaluation definitions

Due to the complexity of the smartCEM project, a few definitions are necessary for a common understanding of the activities which were performed. Within the smartCEM project, the following definitions are used (see also Figure 1):

Figure 1: Relationship of smartCEM evaluation definitions

Evaluation criteria: Are based on the smartCEM project goals and are used to determine the overall success of the smartCEM project. Five types of evaluation criteria have been defined for the evaluation of the smartCEM project (see also DOW):

- 1. **Progress:** the progress of the implemented services at each pilot-site is assessed on a monthly basis and is mainly related to the activities of WP2 implementation. Within this document, the commonalities of the originally proposed indicators are presented.
- 2. **Performance:** the services implemented in WP2 are piloted in the operational phase and their performance is evaluated in WP4 based on research questions and hypotheses (based on FESTA approach).
- 3. Awareness: in WP5 dissemination several activities are performed which are aimed at increasing the public awareness of ICT-services for electric vehicles. An updated and enhanced collection of indicators is presented in this document.

- 4. **Deployment:** the viability, sustainability and scalability of the implemented services after the end of the project are estimated and evaluated in WP6. For the definition of deployment indicators related to the economic viability, performance indicators are used and translated into economic values in WP4. Further deployment indicators will be developed and used in WP6 at a later stage in the project.
- 5. **Project:** These are statistics which are relevant for the overall project evaluation after the end of the duration of smartCEM. They are not linked to a specific goal achievement or research question but contribute to the overall evaluation of the success of smartCEM.

Evaluation categories: are used to group the indicators. The categories are based or rather adapted based on already existing work in other projects or programmes, e.g. TeleFOT, FESTA, FITS. They were also defined on the CIP-level but were further modified to meet the specifics of the smartCEM project. The changes were deleting the *Economic* category and moving it to the deployment indicator section. Furthermore, a category named *Driving Behaviour* was added for the evaluation of services which are online, in-vehicle applications. The following list includes all evaluation categories for the performance indicators for smartCEM:

Environment: this category focusses on the environmental impacts due to the transportation system and other traffic participants. Examples are carbon emissions due to charging events. The carbon emission calculations will additionally take into account the energy mix of the area.

Transport & Mobility: specifies road users' attitudes, opinions and choices concerning travel behaviour such as trip decisions, choice of mode of transport, choice of route or the travel time, travel delays, vehicle speeds and traffic density.

User Uptake: is defined as how drivers make use of the smartCEM services, invest in them, trust and accept them (see also TeleFOT D4.7.1). User uptake is hereby specifically related to aspects of usefulness and satisfaction with the services (see van der Laan et al., 1997). Additionally, aspects of usability/user experience (see Brook, 1996; Laugwitz et al., 2008) are relevant influences on user uptake as well as trust in the impact and functionality of the services and willingness-to-pay (see Kulmala et al., 2002). Subjective evaluations of safety could also be summarised in this category.

Driver Behaviour: this category is related to changes in individual driving behaviour, such as acceleration and braking behaviour. These indicators could be used to contribute to an objective safety assessment.

Indicator: Is a parameter to measure whether goals have been met. It is the operationalisation for the empirical measurement of the evaluation criteria. Please also refer to the definition from D4.1: "Something that provides an

indication about the status of system, project, etc., i.e. a "tool" used to measure or evaluate if smartCEM services and the project itself have been developed properly, and the objectives of the smartCEM project have been achieved".

Measure: Indicators use the input from one or more measures which are combined or aggregated. Several indicators can use the same measures, which itself can be derived from varying sensors (see FESTA-handbook). One indicator can also consist of several measures. This document reports on measures and equations in more detail in the Annex.

Performance indicator: can be defined as a percentage, index, rate or absolute value and is used to evaluate the performance or the impact of a system, function or service (see also FESTA-handbook and Tarry et al., 2008).

Success criteria: Are defined as a reference to determine whether the goals have been achieved. They are defined based on existing knowledge, experience or expert judgment. They can be specific, such as a certain absolute value or percentage or be more imprecise, such as the direction of an outcome or a hypothesis. They are included in the detailed tables in the Annex.

In order to understand the definition of the performance indicators and the relationship to the smartCEM services, it is necessary to shortly summarise the implementations of the services and the specifics of the pilot-sites.

3. Services and pilot sites

Five electromobility services will be implemented in the smartCEM project. The following definitions are meant to describe the specific adaptations for EV-usage that are foreseen. For more details please refer to the WP2 deliverables, e.g. D2.2 (Platform Architecture).

- 1. *EV-navigation*: Navigation is optimised based on the state of charge (SOC) of the battery, driving style, typography and available charging stations.
- 2. *EV-sharing:* This service includes vehicle booking and payment through collection and monitoring of vehicle data.
- 3. *EV-trip management*: A multimodal journey planning service including EV-sharing as an additional mode of transport.
- 4. *EV-efficient driving:* Based on driving style and vehicle usage the service provides recommendations for energy-efficiency optimisation to the driver. This service might be implemented online (in-vehicle service, dynamic) and offline (web-service or nomadic device, static).
- 5. *EV-charging station management*: This service will integrate functions related to station operation, station energy management, power supplier status, range estimator, charging point booking, payment and scheduling.

Each pilot-site might thereby modify some aspects of the described services to meet the specific demands of the site while implementing the core functionality of the services. There are four pilot-sites in the smartCEM project:

- 1. Barcelona: In this pilot-site 45 electric motorcycles will be used through the EV-sharing service. Within the city of Barcelona, 234 charging locations are existent.
- 2. Gipuzkoa/SanSebastian: This pilot-site covers one hybrid bus and 30 electric vehicles using EV-sharing. There are 33 available charging points in the region.
- 3. Newcastle: This pilot-site provides 10 drivers of electric cars for individual use. The city and surroundings have currently over 600 charging points which will increase to 1.300 by the end of smartCEM.
- 4. Reggio-Emilia: 10 electric vehicles will be run in this test-site through EV-sharing.

The next sections of this deliverable will present the indicators which have been specified for the evaluation criteria categories.

4. Progress indicators

As described in the DoW, Progress indicators are related to the implementation phase of the project, specifically the completion of the integration and adaptation of all components necessary for the relevant pilot sites, as well as operation (undertaking of trials and collection of measurements in the pilot sites). They address WP2 - Implementation and WP3 - Pilot operation.

Updated on a monthly basis, progress indicators are specific for each test site (see Annex A: Progress Indicators). Besides these specifics, the commonalities of the progress indicators are shown in Table 1:

Indicator	Prograss indicator	Prograss	Progress per site			
No.		Flogless	BAR	GIP	NEW	REG
		Year 1	45	19	44 ¹	-
PRO_COM_1	# EVs	Year 2	45	24	44	10
		Year 3	45	30	44	10
		Year 1	137	22	200	-
PRO_COM_2	# charging points	Year 2	137	27		13
		Year 3	137	33	1300	24
PRO_COM_3	EV-navigation service implementation status	Year 1	30%	30%	30%	-
		Year 2	70%	70%	70%	100%
		Year 3	-	-	-	-
		Year 1	30%	30%	30%	-
PRO_COM_4	EV-efficient driving service	Year 2	70%	70%	70%	100%
		Year 3	-	-	-	-
		Year 1	-	30%	-	-
PRO_COM_5	EV-trip management service implementation status	Year 2	-	70%	-	100%
		Year 3	-	-	-	-
PRO_COM_6	EV-sharing service implementation	Year 1	30%	30%	-	-

Table 1: Common progress indicators.

¹ In Newcastle there will be 44 electric vehicles which will be used by 10 vehicles drivers throughout the smartCEM project.

	status	Year 2	70%	70%	-	100%
		Year 3	-	-	-	-
		Year 1	-	-	-	-
PRO_COM_7	Data collection on energy consumption	Year 2	х	х	x	х
		Year 3	-	-	x	-
		Year 1	-	-	-	-
PRO_COM_8	Data collection on # of users	Year 2	x	x	10	x
		Year 3	-	-	10	-

5. Performance indicators

For the performance indicators, the generation approach was following the FESTA methodology, i.e. research questions related to the specified use-cases were identified, hypotheses defined which are linked to the research questions and performance indicators and measures derived. They are linked to the evaluation categories which have been agreed on in the CIP collaboration work: Environment, Transport and Mobility, User Uptake and additionally, Driver Behaviour. Economic aspects are targeted in the deployment section.

The matching process for the indicator sets to the research questions was twofold: on the one hand the indicators were selected and adapted top-down, based on previous research in other areas and research projects. On the other hand, a bottom-up approach, based on the use-cases and implemented services at each pilot site, was used. Through discussions with the pilot site leaders and the other members of the project, sets of indicators were identified. These sets reflect the current status of knowledge of the project partners which will be the basis for the evaluation analyses. Since there does not exist a vast amount of experience on ICTusage in the context of electric vehicles from other research or demonstration projects as well as in the single pilot-site locations, the final evaluation indicators might still be different from these initial lists.

For the performance indicators, the research questions, hypotheses and indicators for each of the four evaluation categories are shown which are common for all pilot-sites as well as the site-specific aspects. The process for this development was that each pilot-site specified their set of indicators based on their specific regional goals and implementations. During a next iteration, commonalities between the pilot-sites were identified and names and definitions for the indicators harmonised. This led to the common indicator tables as well as the sitespecific indicator tables.

5.1. Common Performance indicators

The following section presents the outcome of the harmonisation process between the pilot-sites concerning the performance indicators for each evaluation category. Firstly, the common research questions and hypotheses for each category are presented. Afterwards, the related indicators and services per pilot-site are marked.

For more detailed descriptions, the definition of the success criteria, measures and equations per pilot-site, please refer to Annex B: Success Criteria and Measures.

5.1.1. Environment

- 1. **Research Question:** Do smartCEM services change the amount of CO₂ emission? **Hypothesis:** SmartCEM services will reduce the amount of CO₂ emission.
- 2. **Research Question:** Do smartCEM services change energy consumption? **Hypothesis:** SmartCEM services will reduce energy consumption.
- 3. **Research Question:** Do smartCEM services change the SOC of the battery? **Hypothesis:** SmartCEM services will reduce the number of run-out of battery events.
- Research Question: Do smartCEM services change the temporal characteristic of the charging behaviour?
 Hypothesis: SmartCEM services will optimise temporal charging (increase in number of off-peak charging events).
- 5. **Research Question:** Do smartCEM services change the regional characteristic of the charging behaviour?

Hypothesis: SmartCEM service will optimise regional charging.

RQ/ Hyp	Performance indicator	Applicable per service / Site					
No.		BAR	New	REG	GIP		
1	Average energy consumption	EV-efficient driving	EV-efficient driving / EV navigation	EV-efficient Driving/EV- navigation	EV-efficient driving		
2	Average CO ₂ emissions	EV-sharing	EV-efficient driving	EV-sharing	EV-sharing		
3	Number of run-out of battery events	EV-sharing	EV-efficient driving/ EV navigation	EV-efficient driving/ EV navigation	EV- navigation		
4	Number of off-peak charging events		EV-efficient driving	EV-efficient driving	EV-charging station management		
5	Charging event distribution		EV- navigation	EV- navigation	EV- navigation		

Table 2: Specification of the performance indicators for the category environment.

5.1.2. Transport and mobility

1. **Research Question:** Do smartCEM services change the number of trips? **Hypothesis:** SmartCEM services will increase the number of trips per day.

Table 3: Specification of the performance indicators for the category transport andmobility.

RQ/ Hyp	Performance indicator	Applicable per service / Site				
No.		BAR	New	REG	GIP	
1	Average number of trips per day per vehicle	EV-sharing	EV-charging station management		EV-sharing	

5.1.3. User uptake

- 1. **Research Question:** What is the acceptance level of smartCEM services? **Hypothesis:** SmartCEM services will be highly accepted.
- 2. **Research Question:** What is the acceptance level of electric vehicles? **Hypothesis:** The user acceptance of electric vehicles will increase due to the implementation of smartCEM services.
- 3. Research Question: What is the willingness to pay level for smartCEM services? Hypothesis: SmartCEM services willingness to pay level will be high.
- 4. **Research Question:** What is the willingness to pay level for electric vehicles/ motorcycles/ services?

Hypothesis: The willingness to pay level for electric vehicles/ motorcycles/ services will be high/ increase due to smartCEM services.

5. Research Question: What is the impact of smartCEM services on range anxiety? Hypothesis: Range anxiety level will be low/ will decrease due to smartCEM services.

RQ/ Hyp	Indicator	Applicable per service / Site				
No.		BAR	New	REG	GIP	
1	Average user acceptance score	(open) EV- sharing	EV-efficient driving / EV- navigation	EV-efficient driving / EV- navigation /	EV-sharing/ EV- efficient driving / EV-navigation	

Table 4: Specification of the performance indicators for the category user uptake.

RQ/ Hyp	Indicator	Applicable per service / Site			
No.		BAR	New	REG	GIP
				EV-sharing	/ EV-trip management
2	General user acceptance score electric vehicles	Scooters	Electric cars	Electric cars	Electric cars
3	Average willingness-to- pay score	(open) EV- sharing	EV-navigation / EV-efficient driving	EV-efficient driving / EV- navigation	EV-sharing/EV- efficient driving /EV-navigation /EV-trip management
4	General willingness to pay score for electric vehicles	Scooters	Electric cars	Electric cars	Electric cars
5	Average range- anxiety score	EV-sharing	EV-navigation	EV-efficient driving / EV- navigation / EV-sharing	EV-sharing

5.1.4. Driver behaviour

1. **Research Question:** Do smartCEM services change the speed/ acceleration profile of the driver?

Hypothesis: The smartCEM services will make the speed/ acceleration profile smoother.

2. **Research Question:** Do smartCEM services change the amount of generated energy?

Hypothesis: SmartCEM services will increase the amount of generated energy.

Table 5: Specification of the	performance indicators	for the driver behaviour of	category.
-------------------------------	------------------------	-----------------------------	-----------

RQ/Hy	Indicator	Applicable per service / Site					
р №.	malcator	BAR	New	REG	GIP		
1	Speed/ acceleration profile	EV-efficient driving		EV-efficient driving	EV-efficient driving		
2	Average amount of generated energy		EV-efficient driving	EV-efficient driving	EV-efficient driving		

5.2. Site-specific performance indicators²

There are also some site-specific indicators which are presented in the following tables for each pilot site.

5.2.1. Pilot-site specific indicators for Barcelona

 Research Question: What is the impact of incentivising trips (as part of the open EV-sharing implementation) on the number of complied trips? Hypothesis: Users will comply with the modification of his/her initial route when incentivised.

RQ/Hy p No.	Performance indicator	Service
1	Percentage of complied trips (due to incentives) = Percentage of trips in which the user accepted a modification in his initial trip preferences for a cheaper fare	EV-sharing

5.2.2. Pilot-site specific indicators for Gipuzkoa

1. **Research Question:** Do smartCEM services reduce the fuel consumption of the hybrid bus (HB)?

Hypothesis: SmartCEM services will reduce the fuel consumption of the HB.

- Research Question: Do smartCEM services reduce the CO₂ emissions produced by fuel consumption of the HB? Hypothesis: SmartCEM services will reduce the CO₂ emissions produced by fuel consumption of the HB.
- Research Question: What is the willingness-to-pay level for a transport card for multimodal transport service? Hypothesis: The willingness-to-pay level will be high for a ticket from the multimodal transport service.
- 4. **Research Question:** Does EV-efficient driving lead to eco-friendly driving behaviour?

Hypothesis: EV-efficient driving will increase the rate-of use.

² At the moment, Reggio-Emilia pilot-site does not have pilot-site specific indicators.

Table 7: Site-specific	performance	indicator for	Gipuzkoa.
------------------------	-------------	---------------	-----------

RQ/ Hyp No.	Indicator	Service
1	Amount of fuel consumed for hybrid bus	EV-efficient driving
2	CO ₂ emissions for hybrid bus	EV-efficient driving
3	Average willingness-to-pay score for a transport card combining carsharing with public transport	EV-trip management (multimodal)
4	Rate of use = number of instructions followed for car- and hybrid bus driver	EV-efficient driving

5.2.3. Pilot-site specific indicators for Newcastle

1. **Research Question:** Do smartCEM services change drivers' confidence to take longer trips?

Hypothesis: SmartCEM services will increase drivers' confidence to take longer trips.

Table	8:	Site-specific	performance	indicator	for	Newcastle.
-------	----	---------------	-------------	-----------	-----	------------

RQ/H yp No.	Indicator	Service
1	Average confidence score for longer trips	EV-navigation

6. Awareness indicators

Awareness indicators are used to evaluate the public awareness of the project and are therefore linked to the dissemination activities in WP5 (for more details see also deliverable D5.1).

The following table shows the common awareness indicators and the overall success criteria which smartCEM would like to achieve.

Nr.	Awareness indicator	Success Criteria	Measure
1	Scientific impact	5 articles in scientific journals / specialised press	Total number of publications until the end of the smartCEM project
2	Published results on websites	At least 50 different website publishing smartCEM results (all websites)	Total number of publications at the end of the project
3	Newsletter	SmartCEM newsletter twice a year	Total number of newsletters at the end of the project
4	Leaflets	4 leaflets: 250 of each distributed	Total number of leaflets
5	Mobility event organisation	At least one event per pilot site over the duration of the project	Number of mobility event organisation per year and per test-site
6	Media awareness	50 local media articles / 10 National media articles per country	Total number at the end of the project
7	Number of project contacts	300 registrations on www.smartcem- project.eu	Total number of subscribers at the end of the project
8	Website visits	At least 250 unique visitors per quarter (www.smartcem- project.eu)	Total number of website visits every quarter
9	Number of people attending events	At least 100 registrations for each of the events	Total number of people attending event at the end of the project

Table 9: List of awareness in	ndicators.
-------------------------------	------------

7. Deployment indicators

Deployment indicators are defined to evaluate the viability, sustainability and scalability of the smartCEM services after the end of the project. They are on the one hand translations of performance indicators into monetary benefits. On the other hand they are aspects related to further deployment of the smartCEM services and therefore related to interoperability, commonality and sustainability. These aspects will be assessed and further defined in a later stage of the project within WP6 for the identification of deployment enablers and barriers.

The following list shows the economic translation of some of the performance indicators (see section 5) and project statistics (see section 8) which are necessary for the cost-benefit-analysis to be performed in WP6:

Nr.	Deployment indicator	Measure
1	Average expected profit - CO ₂ emissions	Total accumulated profit calculated in \in over a specified time period (e.g. 0.5 years) based on the performance indicator of CO ₂ emission reduction.
2	Average expected profit - fuel consumption	Total accumulated profit calculated in € over a specified time period (e.g. 0.5 years) based on the performance indicator of fuel saving.
3	Average expected profit - time savings	Total accumulated profit calculated in € over a specified time period (e.g. 0.5 years) based on the performance indicator of time savings.
4	Average expected profit - charging events	Total accumulated profit calculated in € over a specified time period (e.g. 1 month) generated by the number of EV chargings at the charging spots.
5	Average expected profit - rentals	Total accumulated profit calculated in € over a specified time period (e.g. 1 month) generated by the number of EV rentals.
6	Average expected profit - single users	Total accumulated profit calculated in € over a specified time period (e.g. 1 month) generated by single users (not registered as frequent users) of EV rentals.
7	Average expected profit - subscribed users	Total accumulated profit calculated in € over a specified time period (e.g. 1 month) generated by registered frequent users users of EV rentals.

Table 10: List of deployment indicators.

8. Project statistics - project indicators

The smartCEM project indicators are statistics relevant for the final assessment of the project's impacts:

Nr.	Project indicator	Measure
1	Number of electric vehicles	Number of electric vehicles in each pilot site - number of EVs in the respective city and per city population
2	Number of charging points	Total number of active charging points available - number of charging posts per km driven in each city.
3	Overall usage	Total number of hours that electric vehicles have been used (km driven).
4	Number of users	Total number of subscribed and single-users - total number of subscribed and single- EV users per city population in 1 year.
5	Number of charging processes	Total number of charging events (number of events and hours of charging).
6	kwh charged	Total amount of charged energy - provided by back- office logging.
7	Alternative energy charged	Relative amount of alternative energy charged (based on energy-mix and time-of-charging)
8	km travelled	Total distance of km travelled with EV s in km.
9	Penetration of EV- navigation application	Total number of purchased EV-navigation applications
10	Total number of users	Total number of users that have been exposed to the smartCEM services.
11	Questionnaire return rate	Total number of filled out questionnaires/focus group sessions.
12	Focus groups attendance	Total number of participants attending the focus groups and number of focus group sessions.
13	CP breakdowns	Total number of times that a charging post is out of order.
14	Number of help requests	Total number of complaints arriving at help desk assessed via data-logger from help desk -split into business/after business hours.

Table 11: List of project indicators

9. References

Bassi, R. (2010). Practical guide to Pilot Projects and Large Scale Deployment of ICTs in the Education Sector. Available at:

http://www.gesci.org/assets/files/Knowledge%20Centre/pilot-ICT-projects.pdf [10.12.12]

Brooke, J. (1996) SUS: A "quick and dirty" usability scale. In Jordan, P. W., Thomas, B., Weerdmeester, B. A., McClelland (eds.) Usability Evaluation in Industry (pp. 189-194). London, UK: Taylor & Francis, Available at: http://www.itu.dk/courses/U/E2005/litteratur/sus.pdf

eCoMove project: <u>http://www.ecomove-project.eu/</u>

FESTA Handbook - Version 4:

http://www.its.leeds.ac.uk/festa/downloads/FESTA_Handbook_V4.pdf [23.10.2012]

ICT4EVEU project: http://www.ict4eveu.eu/

Kulmala, R., Luoma, J., Lähesmaa, J., Pajunen-Muhonen, H., Pesonen, H., Ristola, T., Rämä, P. (2002). Guidelines for the evaluation of ITS projects. Helsinki, FITS Publications, Available at: <u>http://www.lpcb.org/lpcb/index.php?option=com_docman&task=doc_details&gid=1104</u> <u>3<emid=32</u> [11.04.12]

- Tarry, S.; Kulmala, R.; Schuster, G; Nemec, M.; Taale, H.; Struder, L.; Riley, P. (2008). Handbook on Evaluation Best Practice. Version 3, EU, Evaluation Expert Group. Brussels. Available at: <u>http://partnet.vtt.fi/evaserve/evaserve_tool/aineisto/EEG_Handbook_Best_Practice_dr</u> aft_v2.1.pdf [11.04.12]
- Laugwitz, B., Held, T., Schrepp, M. (2008). Construction and Evaluation of a User Experience Questionnaire. In USAB '08 Proceedings of the 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society on HCI and Usability for Education and Work, Available at: <u>http://www.springerlink.com/content/w18416p3m5u12176/</u> [11.04.12]

MOBI.Europe project: <u>http://www.mobieurope.eu/</u>

MOLECULES project: http://www.molecules-project.eu/

TeleFOT Publications: http://www.telefot.eu/pages/index/?id=6 [11.04.12]

Van der Laan, J.D., Heino, A., & De Waard, D. (1997). A simple procedure for the assessment of acceptance of advanced transport telematics. Transportation Research -Part C: Emerging Technologies, 5, 1-10, Available at: <u>http://www.hfes-</u> <u>europe.org/accept/accept.htm</u> [11.04.12]

Annex A: Progress Indicators

- A.1 Barcelona progress indicators
- A2 Gipuzkoa Progress indicators
- A.3 Newcastle Progress indicators
- A.4 Reggio-Emilia progress indicators

A.1 Barcelona progress indicators

Indicator No.	Relating to which project	Method of measurement	Project execution indicator	Ex pi	pecte ogres	ed is
	objective / expected result			Yr1	Yr2	Yr3
PRO_BCN_1	Implementatio n in the BARCELONA	ACASA-will monitor the delivery status from Motorcycle makers and	# EV Scooter	45	45	45
	pilot site: delivery	report on the progress (added up per year)	# charging station	137	137	137
PRO_ BCN_2	Specifications BARCELONA	CREAFUTUR will define	EV-efficient driving	-		
	pilot site	requirements (technical, functional)	EV-sharing (Scooters)	-		
		ACASA will define specifications and requirements (technical, functional)	EV-navigation	-		
PRO_ BCN_3	Implementatio n in the	CREAFUTUR will be adapting the services and report on	EV-efficient driving	30%	70%	-
	BARCELONA pilot site: adaptation	the progress	EV-sharing (Scooters)	30%	70%	-
PRO_ BCN_4	Implementatio n in the BARCELONA pilot site: adaptation	ACASA will be adapting the services and report on the progress	EV-navigation	30%	70%	
PRO_ BCN_5	Operation tests in the BARCELONA	IDIADA will monitor the operation works and report on the progress	- Energy consumption	-	9m	-
	pilot site: baseline and functional operation		- CO ₂ equivalent emissions	-	9m	-
PRO_ BCN_6	Operation tests	CREAFUTUR will monitor the	- # users (expected 200)	-	9m	-
	in the BARCELONA	operation works and report on the progress	- # trips per day per vehicle (expected 4)	-	9m	-
	baseline and functional operation		- %#of incentivized trips per (expected 20%)	-	9m	-

A.2 Gipuzkoa Progress indicators

Indicator	Relating to which	Method of measurement	Project execution	Expected prog		ogress
No.	project objective / expected result		indicator	Yr1	Yr2	Yr3
PRO_GIP_1	Implementation in	TECNALIA will monitor the	# EV carsharing	19	24	30
	the GIPUZKOA	delivery status and report on	vehicles			
	pilot site: delivery	the progress, of EV	# charging positions	22	27	33
		carsharing at DSS and GPI; as well as the hybrid bus from CTSS (added up per year).	# hybrid bus	1	1	1
PRO_GIP_2	Specifications	TECNALIA will define	EV-navigation	100%	-	-
	GIPUZKOA pilot	specifications and	EV-efficient driving	100%	-	-
	site	requirements (technical,	EV-trip management	100%	-	-
		functional)	EV-sharing	100%	-	-
PRO_GIP_3	Implementation in	ENNERA will be adapting the	EV-navigation	30%	70%	-
	the GIPUZKOA	services and report on the	EV-efficient driving	30%	70%	-
	pilot site:	progress %	EV-trip management	30%	70%	-
	adaptation		EV-sharing	30%	70%	-
PRO_GIP_4	Implementation in the GIPUZKOA pilot site: integration and verification	ENNERA will be integrating and verifying adapted services (backoffice/OBU) and report on the progress %	Integration and verification: EV carsharing at backoffice and OBU	-	100%	-
PRO_GIP_5	Implementation in the GIPUZKOA pilot site: integration and verification	CTSS will be integrating and verifying adapted services (backoffice/OBU) and report on the progress	Integration and verification: hybrid bus at backoffice and OBU	-	100%	-
PRO_GIP_6	Operation tests in the GIPUZKOA pilot site: baseline and functional	ENNERA will monitor the operation works during baseline and report on the progress	Baseline and functional operation data collection EV carsharing:			
	operation		- Energy consumption	-	9m	-
			- CO2 emission	-	9m	-
			- Range travelled	-	9m	-
			- # users	-	9m	-
PRO_GIP_7	Operation tests in the GIPUZKOA pilot site: baseline and functional	CTSS will monitor the operation works during baseline and report on the progress	Baseline and functional operation data collection hybrid public transport:		0	
	operation		- Energy consumption	-	9m	-
			- Fuel consumption	-	9m	-
			- CO2 emission	-	9m	-
PRO_GIP_8	operation tests in the GIPUZKOA pilot site: baseline and functional operation	Derived and report on the progress	baseline and functional operation data collection EV carsharing:	_	9m	
			- User experience	-	9m	-
1			- user experience	-	7111	1-

A.3 Newcastle Progress indicators

Indicator	Relating to	Method of measurement	Project execution	Expected progress			
No.	which project objective / expected result		indicator	Y1	Y2	Y3	
PRO_NEW_1	Implementation in NEWCASTLE pilot site: delivery	GCOL will monitor the delivery status and report on the progress (added up per year)	# charging positions	200	700	1300	
PRO_NEW_2	Implementation in NEWCASTLE pilot site: delivery	UNEW will monitor the delivery status and report on the progress (added up per year)	# of EV drivers	10	10	10	
PRO_NEW_3	Implementation in NEWCASTLE pilot site: delivery	GCOL will monitor the working status and report on the maintenance	# functioning charging points	95%	95%	95%	
PRO_NEW_4	Specification	UNEW will define	EV-navigation	100%	-	-	
	site	requirements (technical,	EV-charging station management	100%	-	-	
			EV-trip management	100%	-	-	
			EV-eco driving HMI	100%	-	-	
PRO_NEW_5	Implementation	UNEW will be adapting the	EV-navigation	30%	70%	-	
	NEWCASTLE pilot	progress	EV-charging station management	30%	70%	-	
			EV-trip management	30%	70%	-	
			EV-eco driving HMI	30%	70%	-	
PRO_NEW_6	Implementation in NEWCASTLE pilot site: integration and verification	UNEW will be integrating and verifying adapted services (backoffice/OBU) and report on PROGRESS	Integration and verification EV Carsharing at backoffice and OBU	-	1	-	
PRO_NEW_7	Operation in the	UNEW will monitor the	Energy consumption	-	Х	X	
	site: baseline baseline and functional		CO ₂ emissions	-	Х	Х	
	and functional operation	operation and report on the progress	Range travelled (4000 km/yr)	-	Х	Х	
			# Users	-	Х	Х	

A.4 Reggio-Emilia progress indicators

Indicator No	Related to	Measurement	Project execution	Expect	ed prog	ress
	which project objective/ expected result	method	indicator	Yr 1	Yr 2	Yr 3
PRO_REG_1	Implementation	UNIMORE will	# EVs	-	10	10
	in the Reggio Emilia test site:	monitor the status and report	# mini vans	-	1	1
	ecarsharing	on the progress	# charging stations	-	14	23
PRO_ REG_2	Implementation	CRF and	EV-trip management	-	-	-
	in the Reggio Emilia pilot	analyze and develop services adaptation for OEM OBU (vans) and nomadic and report on the progress	EV-car sharing	-	100%	-
	site: adaptation		EV-navigation	-	100%	-
			EV-efficient driving	-	100%	-
			EV-charging station management	-	-	-
PRO_ REG_3	Implementation in the Reggio Emilia pilot site: integration	UNIMORE will monitor development of adapted services (backoffice) and report on the progress	Integration: EV-sharing at backoffice	-	100%	-
PRO_ REG_4	Implementation in the Reggio	UNIMORE will monitor the	Baseline data collection on EV-sharing			
	Emilia pilot site: baseline	operation works	- Energy consumption	-	9m	-
	and functional	and functional	- Fuel consumption	-	9m	-
	operation	operation and	- Range travelled	-	9m	-
		progress	# of users	-	20	-
			- User acceptance	-	9m	-
			- User experience	-	9m	-

Annex B: Success Criteria and Measures

- B1 Success Criteria and Measures for Barcelona
- B2: Success Criteria and Measures for Gipuzkoa
- B3: Success Criteria and Measures for Newcastle
- B4: Success Criteria and Measures for Reggio-Emilia

B1 Success Criteria and Measures for Barcelona

Performance Indicators Evaluation Category	Research Question	Hypothesis	Success Criteria	Indicator ID	Indicator Name	Requi	red measures	Equation
1) Environment 2) Transport & mobility 3) User uptake 4) Driver behaviour				Performance Indicator (PI) Newcastle: NEW Gipuzkoa: GIP Barcelona: BCN Reggio- Emilia: REG		REQ ME_ID	REQ ME Name	
	Does the EV- efficient driving service	The EV officient				REQ_ME- 301	State of charge of the battery initial	
Environment	(post trip) contribute to reduce energy consumption	The EV-efficient o driving service gy will contribute	Energy consumption	PI_BCN_1	Average energy consumption	REQ_ME- 302	State of charge of the battery final	"=(SOC final - SOC initial)/Dista
Livironment	(battery discharge) and thus CO ₂ - equivalent emissions?	consumption of e-scooters	reduction > 5%		(scooter)	REQ_ME- 107	Travelled distance	nce travelled)"
Environment	Does the open EV-sharing service contribute to	Using an EV + the combination of features of	The CO ₂ emissions of with the open EV-sharing	PI_BCN_2	Average CO ₂ emissions (scootershar ing)	REQ_ME- 403 REQ_ME-	Energy consumption per day Date	"=CO ₂ - emission tool calculation "

	reducing CO ₂ - emissions?	the open EV- sharing scheme will contribute to reduce the amount of CO ₂ emission.	service will be < than without.			102 REQ_ME- 101 REQ_ME- 405	Time of the day Energy mix	
	Does the open	The implemented demand	Average daily number of run-			REQ_ME- 303	Number of run- out of battery events	"number of run-out battery
Environment	EV-sharing scheme influence the SOC of the battery?	management service will contribute to reduce the number of run- out of battery events.	out of battery events will be 0 < x < 0.3 for the whole fleet (45 electric scooters)	PI_BCN_3	Number of run-out of battery events	REQ_ME- 112	Number of complied trips per day	events/sum of total number of complied trips per day) *100"
	Does the open EV-sharing	The possibility to pick-up and drop-off the e-			Average	REQ_ME- 118	Number of trips	"=(Total sum
Transport & mobility	scheme increase the electric scooter usage	scooters anywhere will increase the daily usage rate	Average number of trips (per day / vehicle) > 4	PI_BCN_4	number of trips per day per vehicle	REQ_ME- 106	Number of days	of number of trips/ Number of days)"
	rate?	of the e- scooters.				REQ_ME_ 252	Vehicle ID	
	What is the		User acceptance			REQ_ME- 611	User acceptance scores	"=(sum of
W ad User uptake le oj sh sh	acceptance	sharing scheme	scores for the open EV-		Average user	REQ_ME- 601	Number of scores	scores/numb
	level of the open EV- sharing scheme?	of the will be highly si EV- accepted. w Ig ne? ti			scores	REQ_ME- 001	Number of participants	scores)/num ber of participants"

			scale.]
	What is the acceptance	The user acceptance of electric motorcycles will increase due to	User acceptance score of		General user acceptance	REQ_ME- 603 REQ_ME- 601	General user acceptance score Number of scores	"=(sum of acceptance scores/numb er of scores)/num
User uptake	level of electric motorcycles?	the implementation of EV-open sharing scheme.	electric motorcycles will increase by > 15%.	PI_BCN_6	score (electric motorcycles)	REQ_ME- 001	Number of participants	participants* 100 and comparison with baseline"
User uptake	What is the willingness to pay level for	The open EV- sharing scheme	Willingness to pay scores for the open EV-	PI_BCN_7	Average willingness	REQ ME_ID 612 REO_ME-	Willingness-to- pay scores	"=(sum of willingness to pay scores/numb
	the open EV-	will be highly	sharing scheme		to pay score	601	scores	er of
	sharing scheme?	accepted.	will be > than without.		sharing)	REQ_ME- 001	Number of participants	scores)/num ber of participants"
	What is the	The willingness	Willingness to pay for electric			REQ_ME- 604	General willingness-to- pay scores	"=(sum of willingness to pay
User uptake	pay level for	to pay level for electric scooters	scooters with open EV-	PI_BCN_8	willingness-	REQ_ME- 601	Number of scores	scores/numb er of
	scooters?	will be high.	sharing will be > than without.		το-ραγ	REQ_ME- 001	Number of participants	scores)/num ber of participants"
User uptake E s r	What is the impact of the	Range anxiety	Reduction of 70% (at least)		Average	REQ_ME- 602	Range anxiety scores	"=(sum of range
	EV-sharing service on range anxiety	due to the EV- sharing service.	in the range anxiety score after using	PI_BCN_9	range- anxiety score	REQ_ME- 601	Number of scores	anxiety scores/numb er of

			smartCEM services			REQ_ME- 001	Number of participants	scores)/num ber of participants"
	What is the impact of incentivising trips (as part of the open EV-	Users will comply to the modification of	Percentage of complied trips		Percentage of complied	REQ_ME- 111	Number of incentivised trips per day (user changed his initial preferences)	"=(Daily number of incentivised trips/total
User uptake	sharing implementatio n) on the number of complied trips?	his/her initial route when incentivised	incentivise) at least 20%	PI_DCN_IU	trips (due to incentives)	REQ_ME- 112	Number of complied trips per day (incentivized or not)	number of complied trips per day)*100"
	Does the EV- efficient	The EV-efficient driving service	Acceleration profiles will be		Speed/accel	REQ_ME- 712	Instant acceleration	Graph interpretatio n on acceleration
Driver behaviour	driving servicewill make thechange thespeed/speed/accelerationaccelerationprofileprofile?smoother.		smoother with EV-efficient driving than without.	PI_BCN_11	eration profile per user	REQ_ME- 713	Reference acceleration limits	defined range; position coordinates collected on a 1 sec basis

B2 Success Criteria and Measures for Gipuzkoa

Performance Indicators Evaluation Category	Research Question	Hypothesis	Success Criteria	Indicator ID	Indicator Name	Required measures		Equation
1) Environment 2) Transport & mobility 3) User uptake 4) Driver behaviour				Performance Indicator (PI) Newcastle: NEW Gipuzkoa: GIP Barcelona: BCN Reggio- Emilia: REG		REQ ME_ID	REQ ME Name	
	Does the EV- efficient	The EV- efficient				REQ_ME- 403	Energy consumption per day	
Environment	driving service contribute to reduce energy consumption consumptio n?	consumption reduction is estimated to be > 5%	PI_GIP_1	Average energy consumption (carsharing)	REQ_ME- 107	Travelled distance	"=(kWh consumed*100/km driven)"	
Environment	Does the EV-sharing service contribute	The EV- sharing service will contribute	The CO ₂ emission (due to energy generation)	PI_GIP_2	Average CO ₂ emissions (carsharing)	REQ_ME- 403	Energy consumption per day	"= CO ₂ -emission tool calculation"

		to reduce the CO ₂ emissions produced by energy generation ?	to reduce the CO ₂ emissions, emitted during the energy generation	reduction is estimated to be > 10%			REQ_ME- 102 REQ_ME- 101 REQ_ME- 405	Date Time of the day Energy mix	
		Does the EV- efficient	The EV- efficient driving	The amount			REQ_ME- 204	Fuel consumption per route	
Environment	driving service contribute to reduce the fuel consumptio n of the hybrid bus?	service will contribute to reduce the fuel consumption of the hybrid bus	consumption reduction due to EV- efficient driving is > than without.	PI_GIP_3	Amount of fuel consumed for hybrid bus	REQ_ME- 107	Travelled distance	"=liters consumed *100/Travelled distance (per route)"	
		Does the EV- efficient driving service contribute	The EV- efficient driving service will contribute	The amount of CO ₂ emission reduction			PI_GIP_3	Fuel consumption per route	
Environment	to reduce to reduce to reduce to reduce the CO ₂ the CO ₂ emissions produced derived from by fuel consumption fuel consumption n? (due to fuel consumption (due to fuel consumption) (due to fuel cons		(due to fuel consumption) using EV- efficient driving is > than without.	PI_GIP_4	CO ₂ emissions for hybrid bus	REQ_ME- 107	Travelled distance	"= vehicle specifications"	

	Do EV na	The EV-Does thenavigationEV-service winavigationcontribute		The run-out			REQ_ME- 303	Number of run- out of battery events	"= (number of run-
	Environment	navigation service change the SOC of the battery?	contribute to reduce the number of run-out of battery events.	battery events is estimated to be > 30%	PI_GIP_5	Number of run- out of battery events	REQ_ME- 112	Number of complied trips per day	events/sum of total number of complied trips per day) *100"
		Does the EV-	The EV- charging station	The number			REQ_ME- 505	Charging post ID	
	Environment	station manageme nt service change the temporal characteris tic of the charging behaviour? managemen service will optimise temporal charagene charging (increase in number of off-peak charging events).	management service will optimise	of off-peak charging events will be	PI_ GIP_6	Number of off-	REQ_ME- 102	Date	"=number of start/end charging events per time of
			temporal charging (increase in	charging station		peak charging events	REQ_ME- 502	Starting time charging event	day per charging post per peak- and off-peak
			number of management off-peak than without. charging events).				REQ_ME- 507	Peak-time	time
		Does the EV-	The EV- navigation service will	The ratio of charging post			REQ_ME- 505	Charging post ID	" number of
	Environment r c t c t c t c b	service change the regional	regional charging (number of	per charging posts when using EV-	PI_GIP_7	Charging event distribution	REQ_ME- 506	charging transaction ID	charging events per day/ number of charging posts
		characteris charging navigation tic of the events per will be< than charging charging without EV- behaviour? post will decrease,		navigation will be< than without EV- navigation.			REQ_ME- 102	Date	per date"

		while the overall number of charging events will stay the same).							
	Does the EV-sharing	The EV-	The number			REQ_ME- 118 REQ_ME-	Number of trips	"=(Total sum of	
Transport &	service	service will	of trips with		Average number	106	Number of days	number of trips	
mobility	number of trips/ users?	increase the number of trips.	will be > than without.	FI_GIF_0	per vehicle	REQ_ME_ 252	Vehicle ID	per day/ Number of days)"	
	What is the acceptance level of		60% of the participants,			REQ_ME- 611	User acceptance scores		
	EV-sharing, EV-trip	SmartCEM	will give a positive	PI_GIP_9	Average user acceptance scores	REQ_ME- 601	Number of scores	"=(sum of acceptance	
User uptake	nt, EV- efficient driving and EV- navigation services?	anagemeservices willanswer, EV-be highly(acceptanceficientaccepted.score > thaniving andthe middle of'-the ratingvigationscale)	(acceptance score > than the middle of the rating scale)			REQ_ME- 001	Number of participants	scores/number of scores)/number of participants"	
User uptake	What is the acceptance level of electric	The user acceptance of electric vehicles will	User acceptance score of electric cars	PI_GIP_10	General user acceptance score (for electric cars)	REQ_ME- 603	General user acceptance score for electric cars	"=(sum of acceptance scores/number of scores)/number of	

	vehicles?	increase due to the implementat ion of smartCEM services.	will increase by > 15%.			REQ_ME- 601 REQ_ME- 001	Number of scores Number of participants	participants*100 and comparison with baseline"
User uptake	What is the willingness to pay level for EV- navigation, EV- efficient driving and	The willingness to pay level for EV- navigation, EV-efficient and EV- sharing services will	The average willingness- to-pay score will be > with EV- navigation, EV-efficient driving and EV-sharing	PI_GIP_11	Average willingness-to- pay score	REQ ME_ID_61 2 REQ_ME- 601 REQ_ME-	Willingness-to- pay scores Number of scores Number of	"=(sum of willingness to pay scores/number of scores)/number of participants"
User uptake	EV-sharing services? What is the willingness -to-pay level for the trip manageme nt service?	The willingness- to-pay level will be high.	than without. The willingness to pay for the transport card will be > with EV-trip management than without.	PI_GIP_12	Average willingness-to- pay score (for a transport card combining carsharing with public transport)	001 REQ ME_ID 18 REQ_ME- 601 REQ_ME- 001	Willingness-to- pay scores Number of scores Number of participants	"=(sum of willingness to pay scores/number of scores)/number of participants"
User uptake	What is the willingness to pay level for electric vehicles?	The willingness to pay level for electric vehicles will be high due to the implementat	Willingness - to -pay for electric vehicles will be > with EV- sharing than without.	PI_GIP_13	General willingness to pay	ME_604 REQ_ME- 601 REQ_ME- 001	General willingness to pay scores Number of scores Number of participants	"=(sum of willingness to pay scores/number of scores)/number of participants*100 and comparison with baseline"

		ion of smartCEM services.						
	What is the impact of the EV-	Range anxiety level will	A reduction of 10% of range			REQ_ME_ ME_602	Range anxiety scores	"=(sum of range
User uptake	sharing service on	decrease due to the	anxiety after using EV-	nxiety after sing EV- PI_GIP_14		REQ_ME- 601	Number of scores	scores/number of scores)/number of
	range anxiety?	EV-sharing service.	snaring service.			REQ_ME- 001	Number of participants	participants"
	Does the EV- efficient driving	The EV- Efficient driving	Acceleration profiles will			REQ_ME- 714	Instant speed	Graph: Speed
Driver behaviour	service change the speed/ acceleratio n profile?	rvice make the with ange the speed/ effi eed/ acceleration driv celeratio profile with profile? smoother.	with EV- efficient driving than without.	PI_GIP_15	ion profile per EV user	REQ_ME- 107	Travelled distance	(km/h) vs. Travelled distance (km)
	Does the EV- efficient		The rate of			REQ_ME- 702	Number of instructions given	
Driver behaviour	driving service lead to eco- friendly driving behaviour?	The EV- efficient driving service will increase the rate-of use.	(compliance) will be higher at the end of operational phase than at the beginning.	PI_GIP_16	Rate of use = number of instructions followed for car- and hybrid bus driver	REQ_ME- 701	Number of instructions followed by EV and hybrid bus driver	"=(instructions followed/intructio ns given)*100"

Driver behaviourdriving service change the amount of generated energy?driving service will increase the amount of generated energy.or generated energy using EV-efficient driving will be > than without.PI_GIP_17Average amount of generated energyREQ_ME- 107Travelled distance"=(sum of regenerated energy in kW driven)"	Driver behaviour	Does the EV-The EV- efficientefficient driving 	The amount of generated energy using EV-efficient driving will be > than without.	PI_GIP_17	Average amount of generated energy	REQ_ME- 402 REQ_ME- 107	Regenerated energy Travelled distance	"=(sum of regenerated energy in kWh/kn driven)"
---	---------------------	---	---	-----------	--	----------------------------------	--	--

Performance Indicator Evaluation Category	Research Question	Hypothesis	Success Criteria	Indicator ID	Indicator Name	Require	ed measures	Equation
1) Environment 2) Transport & mobility 3) User uptake 4) Driver behaviour				Performance Indicator (PI) Newcastle: NEW Gipuzkoa: GIP Barcelona: BCN Reggio- Emilia: REG		REQ ME_ID	REQ ME Name	
	Do EV- efficient driving and EV-	EV-efficient driving	The average		Average	REQ_ME -403	Energy consumption per day	"=(kWh
Environment	navigation services change energy consumption ?	and EV-navigation service will reduce energy consumption on EV	energy consumption will be < 19.8 kWh.	PI_NEW_1	energy consumption	REQ_ME -107	Travelled distance	driven) per user"

B3 Success Criteria and Measures for Newcastle

Environment	Does the EV- efficient driving service contribute to reduce the amount of	The EV-efficient driving service will contribute to reduce the CO ₂ emissions.	The CO ₂ emission (due to energy generation) reduction is estimated to be >	PI_NEW_2	Average CO ₂ emissions	REQ_ME -107 REQ_ME -102 REQ_ME -101	Energy consumption Date Time of day	" CO ₂ - emission tool calculation "
	CO ₂ emissions?		10%			REQ_ME -405	Energy mix	
	Do EV- efficient driving and EV-	The EV-efficient driving and EV- navigation service	Number of run-out-		Number of	REQ_ME -303	Number of run-out of battery events	"= (number of run-out battery events/sum
Environment	navigation service change the SOC of the battery?	will contribute to reduce the number of run-out of battery events.	will be <2 per month	PI_NEW_3	battery events	REQ_ME -112	Number of complied trips per day	of total number of complied trips per day) *100"
	Does the EV- efficient					REQ_ME -505	Charging post ID	
	driving service (e.g.					REQ_ME -102	Date	"=number of
Environment	advice on the usage of other in-	The EV-efficient driving service will optimise the temporal charging	Increase in Off- peak charging	PI_NEW_4	Number of off-peak	REQ_ME -502	Starting time of charging event	charging events per time of day
Environment	components) change the	(increase in number of off-peak charging events).	users will be >20%		events	REQ_ME -501	End time of charging event	post per post per peak- and off-peak time"
	characteristi cs of the					REQ_ME -101	Time of day	
	charging behaviour?					REQ_ME _507	Peak-time	

Environment	Does the EV- navigation service change the regional characteristi cs of the charging behaviour?	The EV-navigation service will optimise regional charging (number of charging events per charging post will decrease, while the overall number of charging events will stay the same).	The ratio of charging post usage/events per charging posts when using EV- navigation will be< than without EV- navigation.	PI_NEW_5	Charging event distribution	REQ_ME -505 REQ_ME -506 REQ_ME -102	Charging post ID Charging transaction ID Date	"=number of charging events per day"/ number of charging posts per date"
	Does the EV charging					REQ_ME -118	Number of trips	"=(Total
Transport & mobility	station management service (i.e. range estimator)	The EV charging station management service will increase the number of trips.	The average number of trips will be > 4.41	PI_NEW_6	Average number of trips per day per vehicle	REQ- ME_ID- 106	Number of days	sum of number of trips per day/ Number of
	change the number of trips?					REQ_ME _252	Vehicle ID	days)"
	Does the EV- navigation	The EV-navigation	The average			REQ_ME -607	Confidence scores for longer trips	"=(sum of confidence
User uptake	change drivers' confidence	service will increase drivers' confidence to take longer trips.	confidence score will be > than the middle of rating scale	PI_NEW_7	confidence score for longer trips.	REQ_ME -601	Number of scores	ber of scores)/num ber of
	longer trips?					REQ_ME -001	Number of scores	"
User uptake	What is the	Range anxiety will be low due to the	The average range- anxiety score will be < than the	PI_NEW_8	Average range-anxiety score	REQ_ME -602	Range anxiety scores	"=(sum of range anxiety

	impact of the EV- navigation service (Eco- advices) on range anxiety ?	EV-navigation service (Eco- advices).	middle of the rating scale.			REQ_ME -601 REQ_ME -001	Number of scores Number of participants	scores/num ber of scores)/num ber of participants "
User uptake	What is the acceptance level of the EV- navigation and EV- efficient driving	The EV-navigation/ EV-efficient driving services will be highly accepted.	The average user acceptance score will be >than the middle of the rating scale	PI_NEW_9	Average user acceptance scores	REQ_ME -611 REQ_ME -601 REQ_ME	User acceptance scores Number of scores	"=(sum of user acceptance scores/num ber of scores)/num ber of participants
User uptake	services? What is the acceptance level of electric vehicles?	The user acceptance of electric vehicles will increase due to the implementation of smartCEM services.	User acceptance score of electric cars will increase by > 15%.	PI_NEW_10	General user acceptance score (for electric cars)	-001 REQ_ME -603 REQ_ME -601 REQ_ME -001	participants General user acceptance score for electric cars Number of scores Number of participants	" =(sum of acceptance scores/num ber of scores)/num ber of participants *100 and comparison with baseline"
User uptake	What is the willingness to pay level for EV- navigation and EV- efficient	The willingness to pay level for EV- navigation and EV- efficient driving services will be high.	The average Willingness-to-pay score will be > than the middle of rating scale	PI_NEW_11	Average willingness- to-pay score	REQ_ME -612 REQ_ME -601	Willingness to pay scores Number of scores	"=(sum of average willingness- to-pay items/numb er of scores) / number of

	driving services?					REQ_ME -001	Number of participants	participants "
User uptake	What is the willingness to pay level for electric vehicles?	Willingness-to-pay will be high.	The average Willingness-to-pay score will be > than the middle of rating scale	PI_NEW_12	General willingness to pay	ME_604 REQ_ME -601 REQ_ME -001	General willingness to pay scores Number of scores Number of participants	"=(sum of willingness to pay scores/num ber of scores)/num ber of participants *100 and comparison with baseline"
Driver behaviour	Does the EV- efficient driving service change the amount of generated energy?	The EV-efficient driving service will increase the amount of generated energy.	The amount of generated energy using EV-efficient driving will be > than without.	PI_NEW_13	Average amount of generated energy	REQ_ME -402 REQ_ME -107	Regenerated energy Travelled distance	"=(sum of regenerated energy in kWh/km driven)"

B4 Success Criteria and Measures for Reggio-Emilia

Evaluation Category	Research Question	Hypothesis	Success Criteria	Indicator ID	Indicator Name	Require	d measures	Equation
1) Environment 2) Transport & mobility 3) User uptake 4) Driver behaviour				Performance Indicator (PI) Newcastle: NEW Gipuzkoa: GIP Barcelona: BCN Reggio- Emilia: REG		REQ ME_ID	REQ ME Name	
	Do EV- efficient driving and	The FV-efficient				REQ_ME- 403	Energy consumption per day	
Environment	EV- navigation services contribute to reduce the energy consumption ?	driving and EV- navigation services will contribute to reduce energy consumption.	The energy consumption reduction is estimated to be > 5%	PI_REG_1	Average energy consumption	REQ_ME- 107	Travelled distance	"=(kWh consumed*1 00/km driven)"
Environment	Does the EV- sharing service contribute to reduce	The EV-sharing service will contribute to reduce the CO ₂ emissions, emitted	The CO ₂ emission (due to energy generation) reduction is estimated to be >	PI_REG_2	Average CO ₂ emissions (carsharing)	REQ_ME- 403 REQ_ME- 102	Energy consumption per day Date	"= CO ₂ - emission tool calculation" calculation"

	the CO ₂ emissions produced by energy generation?	during the energy generation	10%			REQ_ME- 101 REQ_ME- 405	Time of the day Energy mix	
	Does the EV- sharing	The EV-sharing service will	Average daily		Number of	REQ_ME- 112	Number of complied trips per day	"=(Number
Environment	service change the SOC of the battery?	contribute to reduce the number of run-out of battery events.	of battery events will be 0 for the whole fleet.	PI_REG_3	run-out of battery events	REQ_ME- 303	Number of run-out of battery events per day	trips/numbe r of run-out of battery)"
						REQ_ME- 505	Charging post ID	"
	driving service	The EV-efficient driving service will optimise temporal	The number of off-peak charging		Number of	REQ_ME- 502	Starting time charging event	start/end charging events per
Environment	temporal characteristi	charging (increase in number of off- peak charging	efficient driving will be > than	PI_REG_4	charging events	REQ_ME- 501	End time charging event	per charging post per
	charging behavior?	events).				REQ_ME- 101	Time of day	off-peak
	benavior.					REQ_ME- 507	Peak-time	cime
Environment	Does the EV- navigation service change the regional characteristi	The EV-navigation service will optimise regional charging (number of charging events per charging post	The ratio of charging post usage/events per charging posts using EV- navigation will be	PI_REG_5	Charging distribution	REQ_ME- 505	Charging post ID	"=number of charging events per day"/ number of charging

	c of the charging behaviour?	will decrease, while the overall number of charging events will stay the same).	> than without EV- navigation.			REQ_ME- 506	Charging transaction ID	posts
						REQ_ME- 102	Date	
	What is the impact of EV-efficient					REQ_ME- 602	Range anxiety scores	"=(sum of range
User uptake	driving, EV- navigation, and EV-	Range anxiety level will decrease due	A reduction of 10% of range anxiety	PI_REG_6	Average range	REQ_ME- 601	Number of scores	anxiety scores/num ber of
	sharing services on range anxiety?	services.	smartCEM services			REQ_ME- 001	Number of participants	scores)/num ber of participants"
	What is the acceptance level of EV- efficient	SmartCEM services	The average user acceptance score		Average user	REQ_ME- 603	User acceptance scores for smartCEM services	"=(sum of acceptance scores/num
User uptake	and EV-	accepted.	middle of the rating scale	PI_KEG_7	scores	REQ_ME- 601	Number of scores	scores)/num
	sharing services?					REQ_ME- 001	Number of participants	participants
User uptake	What is the acceptance level of	The user acceptance of electric vehicles will increase due to	User acceptance score of electric	PI_REG_8	General user acceptance	REQ_ME- 603	General user acceptance score for electric cars	"=(sum of acceptance scores/num ber of
	vehicles?	the implementation of smartCEM services.	by > 15%.		electric cars)	REQ_ME- 601 REQ_ME-	Number of scores Number of	scores)/num ber of participants*

						001	participants	100 and comparison with baseline"
	What is the willingness to pay level for FV-	The willingness to pay level for EV-	The average Willingness-to-pay			REQ_ME- 604	Willingness- to-pay scores	"=(sum of willingness to pay
User uptake	efficient	efficient driving and EV-navigation	score will be >	PI_REG_9	willingness to	601	scores	scores/num ber of
	EV- navigation services?	services will be high.	of rating scale		pay score	REQ_ME- 001	Number of participants	scores)/num ber of participants"
User uptake	What is the willingness to pay level for electric vehicles?	Willingness-to-pay will be high.	The average Willingness-to-pay score will be > than the middle of rating scale	PI_REG_10	General willingness to pay	ME_604 REQ_ME- 601 REQ_ME- 001	General willingness to pay scores Number of scores Number of participants	"=(sum of willingness to pay scores/num ber of scores)/num ber of participants* 100 and comparison with baseline"
Driver behaviour	Does the EV- efficient driving service change the amount of generated energy?	The EV-efficient driving service will increase the amount of generated energy.	The amount of generated energy using EV-efficient driving will be > than without.	PI_REG_11	Average amount of generated energy	REQ_ME- 402 REQ_ME- 103	Regenerated energy per trip Starting time of trip	"=average regenerated energy per trip/ trip duration"

	Does the EV- efficient driving service	The EV-efficient driving service will	Acceleration profiles will be		Speed/Accele	REQ_ME- 714	Instant speed	Graph: Speed (km/h) vs.
Driver behaviour	change the speed/ acceleration profile?	make the speed/ acceleration profile smoother.	smoother with EV- efficient driving than without.	PI_REG_12	ration profile per EV user	REQ_ME- 107	Travelled distance	Travelled distance (km)