smartCEM

Smart connected electro mobility D2.4 (Logging tools DB definition)

Version number Main author Dissemination level Lead contractor Due date Delivery date 2.0 Simon Edwards PU UNEW 30.04.2013

CIP - Information and Communications Technologies Policy Support Programme (ICT PSP) Information Society and Media Directorate-General Grant agreement no.: 297328 Pilot type B

Revision and history sheet

Version history				
Version	Date	Main author	Summary of changes	
0.1 - 0.2	03.05.2013	Guido Di Pasquale	Document creation, Structure update and guidelines	
0.3	08.07.2013	Simon Edwards	Integration of content from pilot sites, Executive Summary and Introduction	
0.4 - 0.5	31.07.2013	Simon Edwards	Overall proof read and conclusion with consolidated events table. Added Barcelona local database info	
0.6	16.08.2013	Pietro Mascolo	Added Reggio Emilia logger info	
1.0 - 1.1	30.08.2013	Simon Edwards, Yvonne Huebner, Graeme Hill	Integration of peer review recommendations. Conclusions	
1.2	04.10.2013	Txomin Rodriguez	WP4 review	
1.3	15.10.2013	Alvaro Arrue, Simon Edwards, Oier Iribar	Pilot sites' corrections after WP4 suggestions and requests.	
1.6	04.11.2013	Leandro Guidotti, Daniele Pinotti	Reggio Emilia corrections after WP4 suggestions and requests.	
2.0	05.11.2013	Guido Di Pasquale	Final version	
	Name		Date	
Prepared	Simon Edwards, Graeme Hill (UNEW)		09.08.2013	
Reviewed	Thomas Kemmere (XEROX)		15.08.2013	
Authorised Fernando Zubill		llaga	05.11.2013	
Circulation				
Recipient		Date of submission		
European Com	mission	06.11.2013		
Pilot consortium		06.11.2013		

Authors (full list)

Simon Edwards, Graeme Hill, Yvonne Huebner (UNEW) Oier Iribar (ENNERA) Guido Di Pasquale (PLUSERVICE) Leandro Guidotti, Pietro Mascolo (UNIMORE) Álvaro Arrúe (IDIADA) Josep Laborda (RACC) Txomin Rodríguez (TECNALIA)

Project Coordinator

Fernando Zubillaga MLC ITS Euskadi Clúster de Movilidad y Logística Centro de Negocios CTVi, Oficina 1, 3-A Lermandabide, 8. Polígono Industrial Júndiz 01015 Vitoria-Gasteiz Tel.: +34 945 10 80 88 Email: fzubillaga@mlcluster.com

Legal Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials subject to any liability which is mandatory due to applicable law.

© 2013 by smartCEM Consortium

Table of Contents

E	XE	CU	TIVI	E SUMMARY	9
1		ΙΝΤ	ROI		10
	1.	.1	Pur	POSE AND SCOPE OF D2.4	10
	1.	.2	Str	UCTURE OF THE DOCUMENT	11
2		BA	RCE	LONA	12
	2.	.1	Ιντι		12
	2.	.2	App	ROACH	13
	2.	.3	Sun	MARY	17
		2.3.	.1	Event Catching	17
		2.3.	.2	Pre Process	18
		2.3.	.3	Post Process	18
		2.3.	.4	Local Database Upload to Central Database	18
3		GIP	PUZł	٬OA ٬	19
	3.	.1	Ιντι		19
	3.	.2	App	ROACH	20
		3.2.	.1	Tables for EV cars	22
		3.2.	.2	Tables for the hybrid bus	27
	3.	.3	Sun	MARY	29
		3.3.	.1	Event Catching	29
		3.3.	.2	Post Process	30
		3.3.	.3	Local Database Upload to Central Database	30
4		NE	WCA	ASTLE	31
	4.	.1	Ιντι		31
	4.	.2	App	ROACH	32
	4.	.3	Sun	MARY	37
		4.3.	.1	Data Collection	37
		4.3.	.2	Data Summarising	37
		4.3.	.3	Event Catching	37
		4.3.	.4	Local Database Upload to Central Database	37
5		RE	GGI	D EMILIA	38
	5.	.1	Ιντι		38
	5.	.2	App	ROACH	39
	5.	.3	Sun	MARY	47

05/11/2013

Version 2.0

5.3.1	Data Quality Check	. 47
5.3.2	Post Process	. 47
5.3.3	Local Database Upload to Central Database	. 47
CONC	LUSION	48
FEREN	CES	51
T OF F	IGURES	52
T OF T	ABLES	53
APPENDIX A - MEASURES		
APPENDIX B -DATA LOGGER SPECIFICATIONS		
	5.3.2 5.3.3 CONCI FERENC T OF F T OF T PENDIX	 5.3.1 Data Quality Check

05/11/2013

Smart Connected Electromobility

Table 0.1 Abbreviations

Abbreviation	Definition	
3G	3rd generation of mobile telecommunications technology	
AD	Activity Diagram	
API	Application programming interface	
APP	Application (software)	
BEV	Battery Electric Vehicle	
CAN	Controller Area Network	
CIP	Competitiveness and Innovation Framework Programme	
CS	Charging Station	
CSV	Comma Separated Values	
СҮС	Charge Your Car ¹	
DB	Data base	
DOD	Degree of Discharge	
EV	Electric Vehicle	
FC	Functionality	
FTP	File transfer protocol	
FTS	Forensic Telecommunications Services	
GPRS	General packet radio service	
GPS	Global Positioning System	
GTFS	General transit feed specification	
GUI	Graphical user interface	
НМІ	Human Machine Interface	
НТТР	Hypertext Transfer Protocol	
ICE	Internal Combustion Engine	
ICT	Information and Communication Technology	
IEEE	Institute of Electrical and Electronics Engineers	
ITS	Intelligent Transport Systems	

¹ CYC in North East England forms the infrastructure for the operation of smartCEM's UK pilot site [1].

Abbreviation	Definition	
IVR	Interactive Voice Response	
КРІ	Key Performance Indicators	
LTE	Long term evolution	
МСВ	Miniature Circuit Breaker	
MSDU	MAC Service Data Unit	
NC	Network classes	
OBU	On-Board Unit	
ОСРР	Open charge point protocol	
O-D	Origin-Destination	
OSM	Open street map	
PAYG	Pay as you go	
PHEV	Plug-In Hybrid Electric Vehicles	
POI	Point Of Interest	
PT	Public transport	
RCB	Residual Current Breaker	
RCD	Residual Control Device	
REST	Representational state transfer	
RFID	Radio Frequency Identification	
RQ	Requirement	
SaaS	Software as a service	
SC	Speed classes	
SDK	Software development kit	
SH	Stakeholder	
SIM	Subscriber Identity Module	
SMMT	Society of Motor Manufacturers and Trader	
SOA	Service-Oriented Architecture	
SOAP	Simple Object Access Protocol	
SOC	State Of Charge	
TCP/IP	Transfer Control Protocol/Internet Protocol	

05/11/2013

7

Abbreviation	Definition
UC	Use Case
UCAP	Ultra capacitors
UMTS	Universal Mobile Telecommunications System
UN	User Need
UNEW	Newcastle University
VPN	Virtual Private Network
WDM	Workflow and Demand Manager
WiFi	Commercial name of the wireless communication standard IEEE 802.11b
WP	Work Package
WSDL	Web Services Description Language
XML	eXtensible Mark-up Language

Executive Summary

This document describes the local systems and processes in place at the smartCEM pilot sites for collecting, storing, and managing data that are used for the project's evaluation phase. The local databases are presented on a site-by-site basis.

An important role of this document is to highlight the crucial interrelationships between the local database architecture and the development of the central database (reported in D3.2), and the dependence of both on the identification of evaluation measures at pilots sites (in this document evaluation measures refer to the measurements acquired directly from, for example, sensors, or derived from other sources, that are used in the calculation of performance indicators. These are reported in detail in D4.3 and summarised in Annex A of this document).

Specification of data loggers at each site is presented in Annex B.

1 Introduction

1.1 Purpose and scope of D2.4

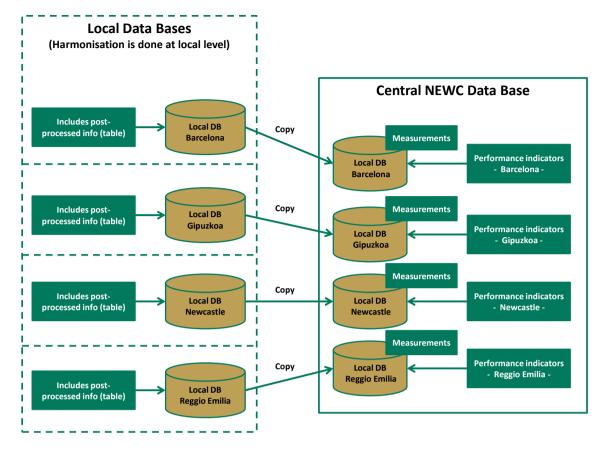
D2.4 describes the local systems and processes in place at the pilot sites (Barcelona, Gipuzkoa, Newcastle upon Tyne, and Reggio Emilia) for collecting, storing, managing and preparing data that is appropriate to provide a comparative evaluation between the smartCEM pilot sites. The local database architecture described will be in place in time for the baseline and full operational mode data acquisition processes.

Although part of WP2 Implementation, the architectures reported in this document are a key link between the evaluation phase (WP4) and the operational phase (WP3). D4.3 *smartCEM Experimental Design* has defined a set of measures based on each site's characteristics and proposed operational scenarios. It has also proposed a methodology for deriving performance indicators from these measures. D2.4 builds on D4.3 by describing the mechanics by which the local data defining the local measures is collected and made available for future analysis.

The characteristics of the central database, and the means by which local data is centrally stored and processed into a usable format for evaluation, is described in detail in D3.2 *Common Data Exchange Protocol for smartCEM*. It will include a description of the common database structure and data exchange mechanisms used in the smartCEM platform to ensure consistent data is available in a form that all can understand and use as required.

As far as possible the central database structure should be similar to the local databases. This facilitates effective and efficient data transfer and a definition of a normalized architecture between the different sites. Every week a copy of the local databases should be uploaded and stored in the central database. A possible approach could be the one defined in

Figure 1-1 below.


Once the data is transferred between databases (local to central), UNEW will analyse it in order to obtain performance indicators reflecting the table of measures specified in WP4.

10

1.2 Structure of the document

D2.4 presents the local databases per pilot site. An explanation is given on how data is collected, stored, managed and prepared for evaluation at each site. Appendix A - Measures presents a summary of the measures at each site (described in detail in D4.3). Appendix B -Data Logger Specifications presents the specification of on board unit data loggers at each site.

11

D2.4 Logging tools DB definition

2 Barcelona

2.1 Introduction

The Barcelona Pilot Site has defined a local architecture for smartCEM data acquisition processes through the baseline and operative phases of the project.

The registered data will be collected from the data inputs of the MOTIT service in Barcelona, formed by (initially) 50 electric scooters that can be booked through mobile apps.

The data stored in this local database will be sent weekly to a central database allocated in an external server at Newcastle. Data is stored in the LDB with an ID number for each user and another ID for each different booking. Associated user names are stored in Going Green² DB and are not available for IDIADA, hence assuring anonymity for the smartCEM project

There will be three different sources for data acquisition:

- 1. Data loggers: The first source of data will be the data loggers installed in the scooters provided by Going Green and connected to the CAN BUS of the vehicle. Apart from being an on board reservation management device, this hardware also works as a data logger. It registers figures such as GPS location, speed, completed Kms, state of charge, etc. The OBU sends this data to the Back Office of Going Green, for internal use, and to IDIADA servers in L'Albornar. The information sent is acquired in a second-persecond basis for high frequency data, and 60 seconds for low frequency data. This data is packed, compressed and sent to IDIADA DB and GoingGreen after each booking is finished and the bike is idle and waiting for a new booking
- 2. **Booking system:** Apart from the information coming from the vehicles, the Back Office system is also provided by car reservation information registered from the operator's booking systems. This will be the second source of information for the local database.
- 3. User uptake: The last source of data will be the drivers of the vehicles, who will contribute with personal impressions about the service provided by the operators. This qualitative data will be collected by distributing surveys among the users/drivers of the service. The methodological approach to the qualitative data collection including surveys is defined in D4.4 *smartCEM Assessment Tools*.

² Scooter-sharing Operator in Barcelona

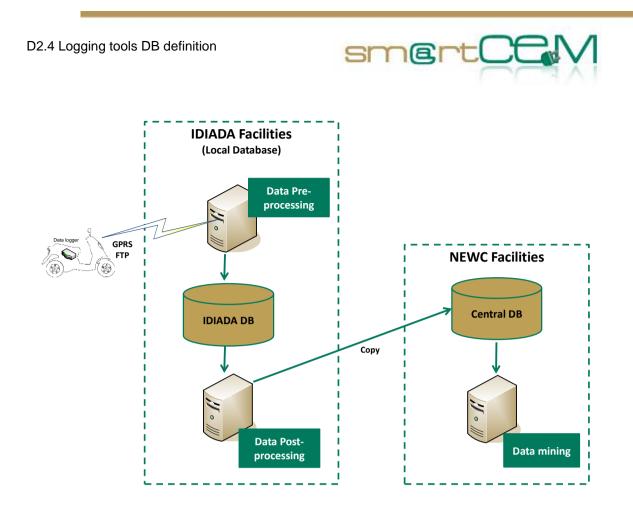


Figure 2-1 Schematic description of data collection in Barcelona

2.2 Approach

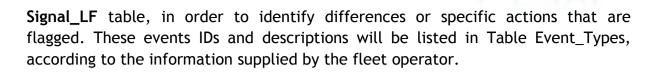
The Barcelona local database will be composed of six different tables.

Table 1: Bikes

The Bikes table will store the IDs of the bikes used in the scooter service, in order to monitor the origin of the data.

Table 2: Book_Log

This table will log all related data of the bike booking, including user ID, battery ID and different software IDs and versions.


Table 3: Event

This table will register any event given during the reservation and trip. Watchdogs will be enabled to detect different type of events held on-trip. The watchdogs will attend to the real-time data that is being collected in the fleet **Signal_HF and**

smert

Table 4: Event Types

This table will register the different Event IDs and its description according to the same structure that the fleet operator uses in their back office. These events will include speeds over a certain threshold and battery depleted events based in the state of charge (SoC) among other critical bike status reports.

Table 5: Signal_HF

This table will register the bike's data logged with a high frequency sampling rate (1 second).

Table 6: Signal_LF

This table will register the bike's data logged with a low frequency sampling rate (1 minute). These will be the columns for each of the defined tables:

DESCRIPTION

Bike model

NAME	ТҮРЕ	
		1

INT

Table 2.1: Bikes

BK_MODEL

BK_VIN	INT	Unique vehicle identifier
BK_ID	INT	Bike ID used in relations

Table 2.2: Book Log

NAME	ТҮРЕ	DESCRIPTION		
BL_TIMESTAMP	DATETIME	Date-time of the start of trip		
BL_BAT1_SERIAL	DECIMAL(4,0)	Battery 1 serial number (not available until September-October)		
BL_BAT2_SERIAL	DECIMAL(4,0)	Battery 2 serial number (not available until September-October)		
BL_BAT3_SERIAL	DECIMAL(4,0)	Battery 3 serial number (not available until September-October)		

BL_BAT4_SERIAL	DECIMAL(4,0)	Battery 4 serial number (not available until September-October)
BL_SW_MOTOR	DECIMAL(3,0)	Version of motor software
BL_SW_BMS	DECIMAL(3,0)	Version of BMS software
BL_SW_ICM	DECIMAL(3,0)	Version of ICM software
BL_ID_BIKE	INT	Bike Identifier
BL_ID_USER	INT	User Identifier

Table 2.3: Event

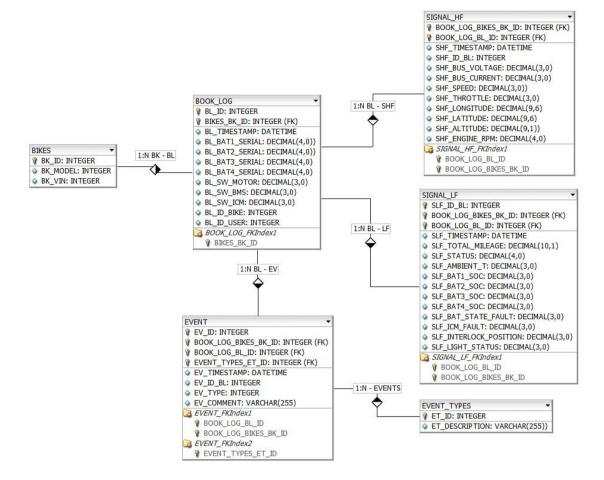
NAME	ТҮРЕ	DESCRIPTION
EV_ID_BL	INT	Unique book identifier
EV_TYPE	INT	Unique event type identifier
EV_COMMENT	VARCHAR(255)	Event description

Table 2.4: Signal_HF

NAME	ТҮРЕ	DESCRIPTION
SHF_TIMESTAMP	DATETIME	Date-time at the sampling instant
SHF_ID_BL	INT	Unique book identifier
SHF_BUS_VOLTAGE	DECIMAL(3,0)	Bus voltage at the sampling time
SHF_BUS_CURRENT	DECIMAL(3,0)	Bus current at the sampling time
SHF_SPEED	DECIMAL(3,0)	Speed of the vehicle at the sampling time
SHF_THROTTLE	DECIMAL(3,0)	Throttle of the vehicle at the sampling time
SHF_LONGITUDE	DECIMAL(9,6)	GPS longitude for the location of the vehicle at the sampling time
SHF_LATITUDE	DECIMAL(9,6)	GPS latitude for the location of the vehicle at the sampling time
SHF_ALTITUDE	DECIMAL(6,0)	GPS altitude for the location of the vehicle at the sampling time
SHF_RPM	DECIMAL(4,0)	Engine RPM at the sampling time

Table	2.5:	Signal	LF
I Gott	_	Jignat	

NAME	ТҮРЕ	DESCRIPTION
SLF_TIMESTAMP	DATETIME	Date-time at the sampling instant
SLF_TOTAL_MILEAGE	DECIMAL(10,1)	Total Accumulated mileage per scooter life
SLF_STATUS	DECIMAL(4,0)	Bike status at the sampling time
SLF_AMBIENT_T	DECIMAL(3,0)	Ambient temperature at the sampling time
SLF_BAT_1_SOC	DECIMAL(4,0)	Battery 1 state of charge at the sampling time
SLF_BAT_2_SOC	DECIMAL(4,0)	Battery 2 state of charge at the sampling time
SLF_BAT_3_SOC	DECIMAL(4,0)	Battery 3 state of charge at the sampling time
SLF_BAT_4_SOC	DECIMAL(4,0)	Battery 4 state of charge at the sampling time
SLF_BAT_STATE_FAULT	DECIMAL(3,0)	Battery fault code
SLF_BIKE_FAULT	DECIMAL(3,0)	Bike fault code
SLF_INTERLOCK_POSITION	DECIMAL(3,0)	Bike interlock position
SLF_LIGHT_STATUS	DECIMAL(3,0)	The status of lights


05/11/2013

16

smert

Figure 2-2 Proposed database structure

2.3 Summary

There will be different processes that will help in the data completion of the tables.

2.3.1 Event Catching

When a reservation is made and the driver picks up the vehicle, the system will start to monitor on-trip data, collecting the information in the different tables. Different algorithms will be developed, which will work as watchdogs during the monitoring process.

- 1. Hard Braking Watchdog: will detect an event, in cases when the vehicle suffers a deceleration higher than 40km/h in a time span of 5 seconds.
- 2. **Depleted Battery Watchdog:** will detect an event when the battery SoC is below a certain threshold.
- 3. Other Watchdogs: will be developed according to the fleet operator inputs.

Each time one of these watchdogs detects an event a new register will be generated in the **Event** table.

2.3.2 Pre Process

Data logged in the scooters will be written in a CSV file and stored in a compressed file using a lossless compressor, with certain metadata and a normalized filename which will include a MD5 checksum. This file will be sent to IDIADA database after a booking has been finished and the bike is waiting for a new user.

These zipped files will be prepared by the data logger with different strategies in order to minimize file size in order to optimize data transmission time and weight.

Files will be sent through an FTP connection to the IDIADA server. Once there they will be unzipped and pre-processed prior to being stored in order to minimize storage room and prepare the data to be post-processed and extract the WP4 measure list for the Barcelona site.

2.3.3 Post Process

Each week, when the data needs to be uploaded to the central database, a post processing task will automatically be done.

Both **Reservation** and **Events** tables will be analysed in order to obtain proper data for the **Post Process** table. The completed tasks will be calculations over the data already stored in those two tables (calculations such as average values, count of registers per day, etc.). The data obtained from the calculations will be stored in the **Post Process** table.

Every week the local database with **Reservation**, **Events**, **User Uptake** and **Post Process** tables will be sent to the central database.

2.3.4 Local Database Upload to Central Database

Every week a copy of the local database will be uploaded and stored in the central database.

05/11/2013

18

3 Gipuzkoa

3.1 Introduction

Registered data at the Gipuzkoa site will be collected from the data inputs of the car-sharing operators. The local DB for Gipuzkoa will be similar to the database already allocated in the Back Office system of Mobera technology.

There will be three different sources for data acquisition:

- 1. Data loggers: in the carsharing, Mobera technology's architecture an OBU (on-board unit) is installed in the cars, connected to the CAN BUS of the vehicle. Apart from being an on board reservation management device, this hardware also works as a data logger. It registers figures such as GPS location, speed, completed km, autonomy, etc. The OBU sends this data to the Back Office. In the hybrid bus, a Bus On-Board Unit exists that is used as data logger and on which the Efficient-driving [OnTrip dashboard] component runs on.
- 2. **Booking system:** Apart from the information coming from the vehicles, the Back Office system is also provided by car reservation information registered from the operator's booking systems. This will be the second source of information for the local database.
- 3. User uptake: The last source of data will be the drivers of the vehicles (EV cars and hybrid bus), who will contribute with personal impressions about the service provided by the operators. This qualitative data will be collected through surveys of the users/drivers. The methodological approach to the qualitative data collection including surveys is defined in D4.4 *smartCEM Assessment Tools*.

The general system of data collection for both, carsharing and hybrid is illustrated in the figure below:

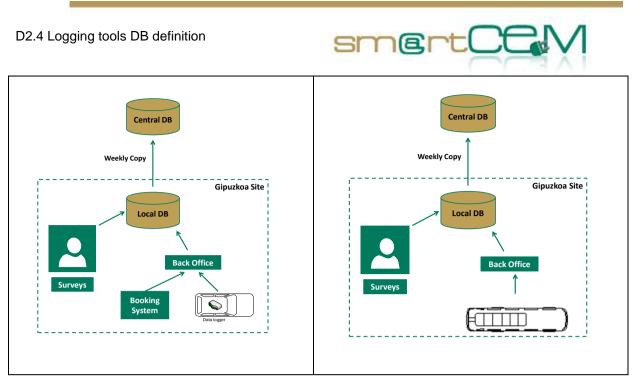


Figure 3-1 Schematic description of data collection in Gipuzkoa for carsharing (left) and hybrid bus (right)

The data stored in this local database will be sent weekly to a central database allocated in an external server.

3.2 Approach

The local database will be composed of five different tables. Figure 3-3 Proposed database structure shows the proposed database structure.

Table1: Reservations /Trips

The reservations table will be for carsharing case for will store all the data corresponding to each of the reservations registered in any of the car-sharing operator's systems.

The trips table will store all the data corresponding to each of the trips carried out in any of the bus routes participating in the project.

Table2: Monitoring

This table will monitor the car fleet's and hybrid bus real-time data, in order to control the status of the trips. It will just record data for a 15 min time span or window. Registering frequency should be established in a rate around 5 seconds/per_reg. A higher frequency will imply a higher resolution for events post processing.

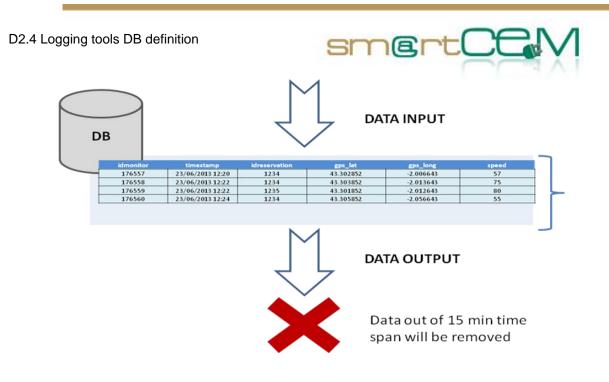


Figure 3-2 Monitoring table

Table3: Events

This table will register any event given during the reservation trip. Watchdogs will be enabled to detect different event types held on-trip. The watchdogs will attend to the real-time data collected in the fleet **Monitoring** table, in order to identify differences or specific actions. For example, if a decrease of 40km/h is registered in a 5 sec span between registers, a Hard Braking event will be detected and stored.

Table4: Post Process

The post process table will be filled with the data obtained from the processing of the **Reservations/Trips** and **Events** table. Some algorithms will be applied to the reservations table every week in order to fill the **Post Process** table, before sending it to the central database.

Table5: User Uptake

This table will collect the inputs given by the users of the service. These inputs will be obtained from surveys and questionnaires distributed among the users.

05/11/2013

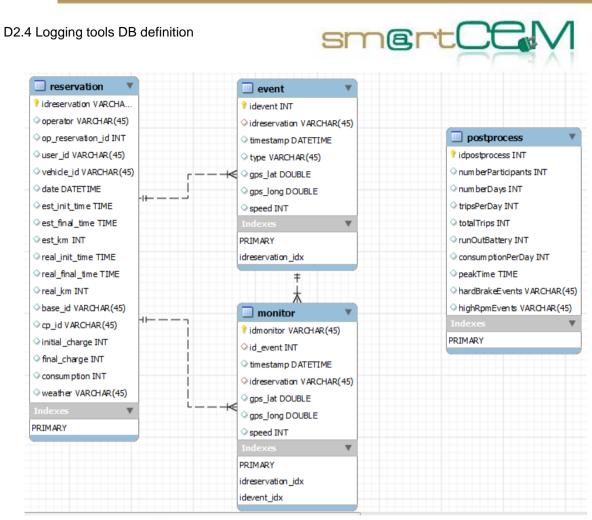


Figure 3-3 Proposed database structure

Different processes will help in the completion of the data tables. The columns for each of the defined tables are presented separated in the following two sections, one for the EV cars case and other for the hybrid bus case.

3.2.1 Tables for EV cars

The following tables are defined for the EV-cars and associated carsharing service.

able 5.1.1. Reservations		
NAME	ТҮРЕ	DESCRIPTION
RESERVATION_ID	INT	A unique identifier to define each reservation (unique for all operators and reservations)
OPERATOR	VARCHAR	Car-sharing operator of the reservation
OP_RESERVATION_ID	INT	A subjective unique identifier for reservations for each operator. This identifier can overlap between two reservations of two different operators,

Table 3.1.1: Reservations

	1	· · · · · · · · · · · · · · · · · · ·
		that is why RESERVATION_ID (unique for all the companies) has been defined as the key identifier and first column of the reservations table
USER_ID	VARCHAR	Unique identifier (could be the User ID registered for the user) for the user that makes the reservation
VEHICLE_ID	VARCHAR	Number on the plate of the car that has been reserved
RESERVATION DATE	DATETIME	Refers to the date-time when the user has made the booking process via web
STATUS	VARCHAR	Defines the status of the reservation. If it has been completed (vehicle picked up and trip done), not completed (vehicle not picked up and trip not done) or cancelled
EST_INIT_TIME	TIME	Estimated initial time for the reservation. Estimation done by the user when making the reservation. Detects not just the time also the date when the car is expected to be picked up
EST_FINAL_TIME	TIME	Estimated final time for the reservation. Estimation done by the user when making the reservation. Detects not just the time also the date when the car is expected to be returned
EST_KM	INT	Estimated amount of KM. Estimation done by the user when making the reservation
REAL_INIT_TIME	ТІМЕ	Real initial time for the reservation. Registered when the user picks up the previously reserved vehicle
REAL_FINAL_TIME	TIME	Real final time for the reservation. Registered when the user returns the vehicle at the end of the reservation process
REAL_KM	INT	Real amount of KM travelled by the user, during the reservation
BASE_ID	VARCHAR	Identification of the base where the user has picked up the vehicle
CP_ID	VARCHAR	Identification for the charging station from which the user has picked up the

		vehicle
INITIAL_CHARGE	INT	The battery level of the car, when the user picked up the vehicle
FINAL_CHARGE	INT	The battery level of the car, when the user returned the car after the reservation
CONSUMPTION	INT	The battery level difference between initial and final
WEATHER (Optional)	VARCHAR	The weather conditions (temperature, wind speed, relative humidity, etc.) for the region, when the user picked up the car
FUEL CONSUMPTION	INT	Fuel consumption per route

Table 3.1.2: Monitoring

NAME	TYPE	DESCRIPTION
ID	INT	Unique identifier for monitoring register
REGISTER_TIME	DATETIME	Date-time when the sample is registered
RESERVATION_ID	INT	The reservation id to which corresponds the sample
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the moment
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the moment
SPEED	INT	Speed of the vehicle at the sampling instant
NUMBER INSTRUCTIONS GIVEN	INT	This is the total number of instructions that the EV efficient driving service gives to the driver during a trip. Used in the hybrid bus.
NUMBER INSTRUCTIONS FOLLOWED	INT	This is the number of instructions given by the EV efficient driving service and that have been followed by the driver. Used in the hybrid bus.

Table 3.1.3: Events

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for event register
REGISTER_TIME	DATETIME	Date-time when the event is registered
RESERVATION_ID	INT	The reservation id to which the event corresponds
ТҮРЕ	VARCHAR	Event type
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the event's moment (Define number of decimals)
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the event's moment (Define number of decimals)
SPEED	INT	Speed of the vehicle at the event instant
TRAFFIC (Optional)	VARCHAR	Traffic incidents to which the event could be related. In cases where traffic incidents are not registered around the GPS position this value could be defined as NULL

Table 3.1.4: Post Process

NAME	TYPE	DESCRIPTION
ID	INT	Unique identifier for post process register
NUMBER_PARTICIPANTS	INT	Number of different users that took part in the process
INITIAL_DATE	DATETIME	Initial date for the post process
FINAL_DATE	DATETIME	Final date for the post process
NUMBER_DAYS	INT	Number of days that the process took
TRIPS_PER_DAY	INT	Average number of trips made per day
TOTAL_TRIPS	INT	Total trips completed during the process
RUN_OUT_BATTERY	INT	Number of times the battery ran out
CONSUMPTION_PER_DAY	INT	Average consumption per day

PEAK_TIME	TIME	Time of the day when the highest average quantity of reservations is completed
HARD_BRAKING_EVENTS	INT	Number of hard braking events
HIGH_RPM_EVENTS	INT	Number of times RPM is high during idling

Table 3.1.5: User Uptake

Variables from questionnaires will be defined in D4.4 *smartCEM Assessment Tools*. The surveys are developed in collaboration with other CIP projects. Data will be stored in a set of tables as follows:

Table with the list of questions

NAME	ΤΥΡΕ	DESCRIPTION
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_DESCRIPTION	VARCHAR ()	Description or full question

A table showing user response to each question

NAME	TYPE	DESCRIPTION
USER_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
SCALE	INT	1-5

The example would be:

QUESTION_ID	QUESTION_DESCRIPTION
01	User-acceptance: It is easy for me to remember how to perform tasks using the service

Responses are given on a scale where 1= Strongly disagree; 5 = Strongly agree

USER_ID	QUESTION_ID	SCALE
U005	01	4

3.2.2 Tables for the hybrid bus

The following tables are defined for the hybrid bus and associated public transport service.

Table 3.2.1: Trips

NAME	ΤΥΡΕ	DESCRIPTION
TRIP NUMBER_ID	INT	A unique identifier to define each trip
OPERATOR	VARCHAR	dBus
USER_ID	VARCHAR	Unique identifier for the bus driver
VEHICLE_ID	VARCHAR	ID. number of the bus
REAL_INIT_TIME	TIME	Real initial date and time of the trip at the beginning of the bus line.
REAL_FINAL_TIME	TIME	Real final date and time of the trip at the end of the bus line.
BUS_ROUTE_ID	VARCHAR	Number identifying the bus line to make difference among the ones considered in the tests
DIRECTION	VARCHAR	Two directions per bus route exist. This parameter indicates the direction in which the trip has been carried out
REAL_KM	INT	Real amount of KM travelled by the bus during the trip
FUEL CONSUMPTION	INT	Fuel consumption per trip

Table 3.2.2: Monitoring

NAME	TYPE DESCRIPTION		
ID	INT	Unique identifier for monitoring register	
REGISTER_TIME	DATETIME	DATETIME Date-time when the sample is registered	
TRIP NUMBER_ID	INT The trip id to which corresponds the monitore sample. Links the sample with a trip		
DISTANCE	DOUBLE Distance travelled at the sampling instant		
SPEED	INT	Speed of the vehicle at the sampling instant	

NUMBER INSTRUCTIONS GIVEN	INT	Total number of eff. driving instructions given by the system to the driver
NUMBER INSTRUCTIONS FOLLOWED	INT	Number of eff. driving instructions given by the system and followed by the driver

Table 3.2.3: Events

NAME	ТҮРЕ	DESCRIPTION	
ID	INT	Unique identifier for event register	
REGISTER_TIME	DATETIME	Date-time when the event is registered	
TRIP_ID	INT	The trip id to which the event corresponds	
ТҮРЕ	VARCHAR	Event type: hard braking, excess RPM when idling	
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the event's moment (Define number of decimals)	
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the event's moment (Define number of decimals)	
SPEED	INT	Speed of the vehicle at the event instant	

Table 3.2.4: Post Process

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for post process register
NUMBER_PARTICIPANTS	INT	Number of different drivers that took part in the process
INITIAL_DATE	DATETIME	Initial date for the test period (different for baseline and for operational)
FINAL_DATE	DATETIME	Final date for the test period (different for baseline and for operational)
NUMBER_DAYS	INT	Number of days that the test period took
TRIPS_PER_DAY	INT	Average number of trips made per day

05/11/2013

Version 2.0

TOTAL_TRIPS	INT	Total trips completed during the process
CONSUMPTION_PER_DAY	INT	Average fuel consumption per day
HARD_BRAKING_EVENTS	INT	Total number of hard braking events
HIGH_RPM_EVENTS	INT	Total number of times RPM is high during idling
HARD_ACCELERATING_EVE NTS	INT	Total number of hard accelerating events
TOT_INSTRUCTIONS FOLLOWED	INT	Total number of instructions followed during the considered period
TOT_INSTRUCTIONS_GIVE	INT	Total number of instructions given during the considered period

Table 3.2.5: User Uptake

See what applies to Table 3.1.5 in section 3.2.1.

3.3 Summary

3.3.1 Event Catching

When a reservation is made and the driver picks up the car, the system will start to monitor on-trip data, collecting the information in the **Monitoring** table. This table will store data for 15min time lapses, and should have a registering frequency of 5 sec/reg.

Three different algorithms will be developed, which will work as watchdogs during the monitoring process.

- 1. Hard Braking Watchdog: will detect an event, in cases when the vehicle experiences a deceleration higher than (for example) 40km/h in a time span of 5 seconds.
- 2. High Acceleration Watchdog: will detect an event, in cases when the vehicle experiences acceleration higher than (e.g.) 50km/h in a time span of 5 seconds, after an idle status.
- 3. **High RPM Watchdog:** will detect an event, in cases when the vehicle experiences a high engine RPM (only for hybrid bus)
- **4. Stop Watchdog:** will detect an event in cases in which the car doesn't change GPS position for a time span of 10 sec. (only for EV-cars)

Each time one of these watchdogs detects an event a new register will be generated in the **Event** table.

3.3.2 Post Process

Each week, when the data needs to be uploaded to the central database, a post processing task will be carried out. Both **Reservation/Trips** and **Events** tables will be analysed in order to obtain proper data for the **Post Process** table. The completed tasks will be calculations over the data already stored in those two tables (calculations such as average values, count of registers per day, etc.). The data obtained from the calculations will be stored in the **Post Process** table.

3.3.3 Local Database Upload to Central Database

In the case of the EV-vehicles, every week the local database with **Reservation**, **Events, User Uptake** and **Post Process** tables will be sent to the central database. **Monitoring** table data does not need to be uploaded, as it is just a control table with data not required for evaluation purposes.

In the case of the hybrid vehicle the information will be sent to central database twice: one for baseline and one for operational.

4 Newcastle

4.1 Introduction

The data from the Newcastle site will be collected from the data inputs of the two participating vehicle operators. The local DB for the system will be a locally built PostgreSQL server which has been previously used in the FootLITE and SwitchEV projects to similar effect.

The following different sources will be available for data acquisition:

- 1. Data Loggers: There are two different real time data loggers recording the vehicle data, due to existing historical technical capabilities. The data provided by the two logger types is on a second-by-second basis using an on-board logging system that is connected to the vehicle's CAN BUS. The two systems provide broadly similar data such as GPS, speed, power consumption etc. For the most important data types (GPS, power etc.) the data is functionally identical. Both OBUs send this data back to the local Newcastle database.
- 2. **CYC Data:** The main data supplied from CYC will be charge point location data. Data related to vehicles operating in the trial and their use of charge points will also be available.
- 3. User Uptake: The last source of data will be qualitative data provided by the drivers of the vehicles, who will contribute with personal impressions about the service provided through specially designed before-and-after surveys. The methodological approach to the qualitative data collection including surveys is defined in D4.4 *smartCEM Assessment Tools*.

The general data flow is shown below.

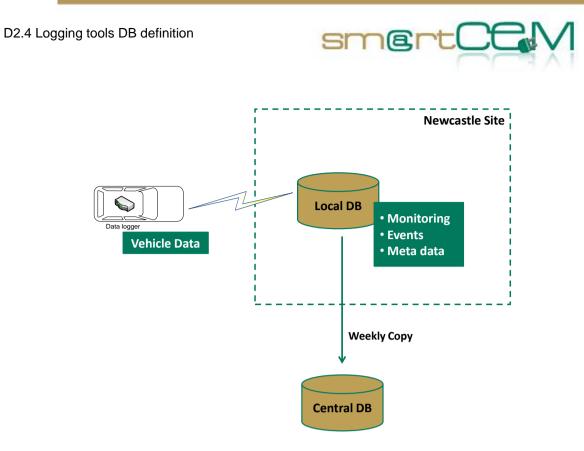


Figure 4-1 Schematic description of data collection in Newcastle

4.2 Approach

Three different tables in the local database will be populated with vehicle data.

Table 1: Monitoring

This is the main data store and will record all data from the vehicles and archive it in a spatially accessible format which can be acquired at any future point if other research questions arise. In general the data will be secure and anonymous to meet both security and ethical constraints. The measurement frequency of the data is approximately 1Hz (with some variation for data dropout) with a database update frequency after every completed trip.

Table 2: Events

In this table the aggregated results from the detailed second-by-second data in Table 1 will be stored in the form of single events. Typically a single event will be a *drive* event, a *charge* event or a *park* event. The data is constructed from automated analysis of the second-by-second data and will allow for flexible analysis of the data through the ability to alter analysis methods and techniques after the data is collected.

Table 3: Logger/Vehicle Table

This table tracks the GPS position of loggers and which vehicle each logger is installed in.

Table 4: Summary Table

This table is currently unformed and may simply be a query on the more complete "Events" table, rather than an independent table in its own right. Past experience has shown that the creation of a summary table is exceptionally quick and can thus be done on a case-by-case basis, if needed, although it is likely that a master summary table will be maintained, for each upload to the central database.

Table5: User Uptake

This table will collect the inputs given by the users of the service. These inputs will be obtained from surveys and questionnaires distributed among the users.

These will be the columns for each of the defined tables.

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for event register
USERID	INT	Individual id for each user
CHARGE_ID	INT	The id corresponding to each charge point
CHARGE_TRANS	INT	Charging transactions id
TIMESTAMP	DATETIME	Date-time of trip
LOGGERID	VARCHAR	The id corresponding to the data logger
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle
GPS_ALT	DOUBLE	GPS Altitude, may be supplemented with additional info if inaccuracy
SPEED	INT	Instant speed either measured from the vehicle or derived from GPS position

Table 4.1: Monitoring

SOC	DOUBLE	Current State of Charge (SOC) for the vehicle
Inst_Energy	DOUBLE	Energy consumption of the battery for each second
ТЕМР	DOUBLE	Ambient temperature as measured by the vehicle
BOOLEAN_#	BOOLEAN	Miscellaneous Boolean values for the different toggled states of the vehicle. For example, Headlights ON/OFF. Air Con ON/OFF, ignition ON/OFF. Varies for different vehicles

Table 4.2: Events

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for event register
USERID	INT	Individual id for each user
CHARGE_ID	INT	The id corresponding to the charge point
CHARGE_TRANS	INT	Charging transactions id
TIMESTAMP	DATETIME	Date-time when the event is registered
LOGGERID	VARCHAR	The reservation id to which the event corresponds
ТҮРЕ	VARCHAR	Event type (Charge or Drive, possibly Park)
GPS_LAT_START	DOUBLE	GPS latitude for the location of the vehicle at the event's moment (start of journey)
GPS_LONG_START	DOUBLE	GPS longitude for the location of the vehicle at the event's moment (start of journey)
GPS_LAT_END	DOUBLE	GPS latitude for the location of the vehicle at the event's moment (end of journey)

GPS_LONG_END	DOUBLE	GPS longitude for the location of the vehicle at the event's moment (end of journey)
SPEED	INT	Speed of the vehicle over the event, if applicable
EVENTDURATION	DATETIME (delta)	Duration of the event
EVENTDISTANCE	DOUBLE	Event distance, if applicable
ENERGY	DOUBLE	Total Energy either consumed or used in the charge/drive event
REGEN	DOUBLE	Total energy regenerated
TEMPERATURE	DOUBLE	Ambient Temperature of the event
HARD_BRAKE	INT	Number of hard braking events
HARD_ACCEL	INT	Number of hard acceleration events

Table 4.3: Logger/Vehicle table

NAME	ТҮРЕ	DESCRIPTION
LOGGERID	VARCHAR	Unique identifier for logger
USERID	INT	Individual id for each user
VEHICLEID	VARCHAR	Unique identifier for the vehicle the logger is on
DATE_INSTALLED	DATETIME	Date the logger was installed

DATE_REMOVED DATETI	E Date the logger was removed, if applicable	
---------------------	--	--

Table 4.5: User Uptake

Variables from questionnaires will be defined in D4.4 *smartCEM Assessment Tools*. The surveys are developed in collaboration with other CIP projects. Data will be stored in a set of tables as follows:

Table with the list of questions

NAME	ТҮРЕ	DESCRIPTION
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_DESCRIPTION	VARCHAR ()	Description or full question

A table showing user response to each question

NAME	TYPE	DESCRIPTION
USER_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
SCALE	INT	1-5

The example would be:

QUESTION_ID	QUESTION_DESCRIPTION
	User-acceptance: It is easy for me to remember how to perform tasks using the service

Responses are given on a scale where 1= Strongly disagree; 5 = Strongly agree

USER_ID	QUESTION_ID	SCALE
U005	01	4

4.3 Summary

4.3.1 Data Collection

The data collection will initially be identical to that undertaken for FootLITE and SwitchEV. The loggers will log all recorded data from the CAN-BUS which will be systematically uploaded through GPRS to a local database. This data will be stored "as-is" with no data checking or repairing at this point. The second table in the data, the "Event Table" will then be constructed from the second-by-second data on a regular basis. The error checking and correction will occur at this point with errors in data being either removed, replaced with more consistent data and interpolated over as is deemed necessary. All analysis will be conducted locally on the system, with additional FTP access used as required.

4.3.2 Data Summarising

Currently there are no firm plans for a single summary data table. However, as it will be generated from the event table it may not be necessary to create this as a stand-alone table, rather have the table exist as a series of queries on the event table. This will allow for a greater flexibility in reporting the data as the queries can be changed on a faster basis than a single concrete table.

4.3.3 Event Catching

The system will not be actively catching interesting events from the vehicles, partially due to the nature of the logging mechanisms used but mainly because a proper analysis of events is needed to put the interesting events into context before they are uploaded to a database devoid of context.

4.3.4 Local Database Upload to Central Database

The data upload will occur automatically from Table 2 (Events) and Table 4 (if the summary table exists). If Table 4 is only a virtual table produced form a local query on Table 2 then it will be this that is uploaded into the central database. Due to the size of the table, the monitored data will only be stored locally. In addition the metadata concerning the logger position will only be stored locally.

37

5 Reggio Emilia

5.1 Introduction

The registered data will be collected from the OBUs mounted onto the 10 vehicles that will be used within the project and the car sharing services of the Municipality of Reggio Emilia.

All data recorded from the vehicles will be archived it in LDB. In general the data will be secure and anonymous to meet both security and ethical constraints. Each user and vehicle will be assigned an ID not accessible to ICOOR/UNIMORE personnel, thus assuring anonymity for the smartCEM project.

The data stored in this local database will be sent daily to a central database allocated in the Newcastle external server. Update will be performed through FTP sending incremental data through *.csv* file to Central Database.

There will be three different sources for data acquisition:

- 1. Data Acquisition System: The first source of data will be the Data Acquisition System. Two OBUs (On-Board Unit) are installed in the cars in order to have a DAS connected to the vehicle network. This hardware communicates with a 7" Android tablet through Bluetooth and with Local Database through GPRS, sending data to the webserver. It registers figures such as, GPS location, speed, completed km, State of Charge.
- 2. Key management system: Apart from the information coming from the vehicles, the Back Office data are also provided by the car sharing management system of the municipality. It is a particular cabinet for vehicle key management and it will be integrated with smartCEM architecture and services providing data of vehicle usage.
- 3. User uptake: The last source of data will be the drivers of the vehicles, who will contribute with personal impressions about the service provided by the operators. This qualitative data will be collected by distributing surveys among the users/drivers of the service. The methodological approach to the qualitative data collection including surveys is defined in D4.4 *smartCEM Assessment Tools*.

38

The general system of data collection is illustrated below:

05/11/2013

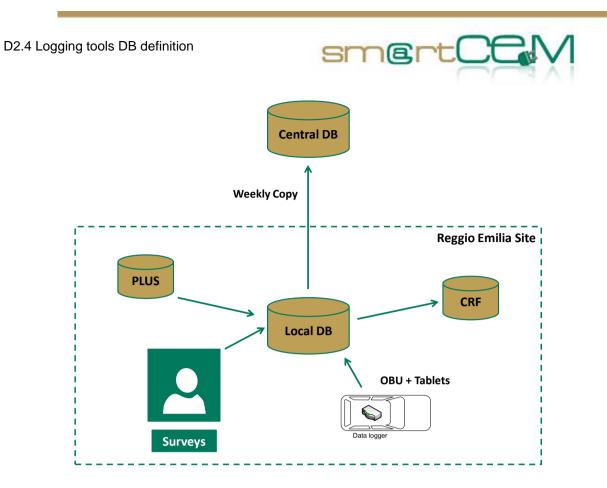


Figure 5-1 Schematic description of data collection in Reggio Emilia

5.2 Approach

The local DB is currently being designed. The tables for this new database will keep the information that is needed in order to complete the table of measures specified for WP4. The local database will be composed of four different tables.

Table1: Vehicle

This table will report details of vehicles involved in project. It will be fixed as much as possible, but also data about covered distance, status and SoC will be reported.

Table2: Users

This table will report details of users involved in project. It will be fixed as much as possible, but also data about covered distance and status will be reported.

Table3: Charging Spot Area

This table will report data about Charging Spot Areas and Point of Charge. Their status will be present.

Table4: Monitoring

This table will monitor the car fleet's real-time data, in order to control the status of the reservations. Registering frequency should be established at a rate of 2seconds/per_reg (0,5 Hz). Data coming from DAS will be reported in this table.

Table5: Trips

This table will present post-processed data about performed trips reporting data such as vehicle, driver and covered distance.

Table6: Events

This table will register any event given during trip. Watchdogs will be enabled to detect different type of events held on-trip (e.g. battery run-out events).

Table7: Post Process

The post process table will be filled with the data obtained from the processing of the **Events** table.

Table8: User uptake

This table will collect the inputs given by the users of the service. These inputs will be obtained from surveys and questionnaires distributed among the users.

These will be the columns for each of the defined tables:

NAME	ТҮРЕ	DESCRIPTION
VEHICLE_ID	INT	Unique identifier for vehicle
PLATE	VARCHAR	Vehicle plate number
VEHICLE_STATUS	INT	Status of vehicle concerning project

Table 5.1: Vehicle

STARTING_DISTANCE	INT	Km covered at project starting (from odometer)
CURRENT_DISTANCE	INT	Current km covered (from odometer)
COVERED_DISTANCE	INT	Km covered during project
VEHICLE_SOC	INT	Current vehicle State of Charge
RUN_OUT_BATTERY	INT	Number of times the battery ran out
TOTAL_CONSUMPTION	INT	Total consumption during project

Table 5.2: Users

NAME	ТҮРЕ	DESCRIPTION
USERS_ID	INT	Unique identifier for user
GENDER	VARCHAR	User gender
YEAR_BIRTH	INT	Year of birth of users
USER_STATUS	INT	Status of user concerning project
COVERED_DISTANCE	INT	Km covered during project
TOTAL_CONSUMPTION	INT	Total consumption during project

05/11/2013

41

NAME	ТҮРЕ	DESCRIPTION
CSA_ID	INT	Unique identifier for Charging Spot Area
CSA_STATUS	VARCHAR	Status of Charging Spot Area
DESCRIPTION	VARCHAR	Charging Spot Area description
ADDRESS	VARCHAR	Address of Charging Spot Area
СІТҮ	VARCHAR	City of Charging Spot Area
CSA_LAT	DOUBLE	GPS Latitude of Charging Spot Area
CSA_LONG	DOUBLE	GPS Longitude of Charging Spot Area
PDR	INT	Number of Charging Point for each Charging Spot Area

Table 5.4: Monitoring

NAME	ТҮРЕ	DESCRIPTION
MONITORING_ID	INT	Unique identifier for monitoring register
TIMESTAMP	DATETIME	Date-time when the sample is registered
VEHICLE_ID	INT	Vehicle running

KEY_STATUS	INT	Status of vehicle in logging (e.g. Key ON event, Key on and running, Key OFF event, Key OFF continuous, charging)
USER_ID	INT	User driving
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the moment (Define type of GPS coordinate to be logged)
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the moment (Define type of GPS coordinate to be logged)
ALTITUDE	INTEGER	Altitude of the vehicle
SPEED	INT	Speed of the vehicle at the sampling instant
HEADING	VARCHAR	Direction
INCREMENTAL_DISTANCE	INT	Incremental distance from Key ON Event to Key OFF event
INCREMENTAL_TIME	INT	Incremental Travel Time from Key ON Event to Key OFF event
CURRENT	DECIMAL	Electricity (A)
TENSION	DECIMAL	Potential Difference (V)
STATE OF CHARGE	DECIMAL	Charge of the battery

Table 5.5: Trips

NAME	ТҮРЕ	DESCRIPTION
TRIP_ID	INT	Unique identifier for Trip
VEHICLE_ID	INT	Vehicle used in trip

05/11/2013

	I	
USER_ID	INT	User driving in trip
STARTING_TIME	DATETIME	Starting time of trip
END_TIME	DATETIME	End time of trip
TRIP_DURATION	TIME	Duration of trip (s)
ENERGY CONSUMPTION	DECIMAL	Energy consumed
STARTING_SOC	INT	Starting State of Charge
END_SOC	INT	Ending State of Charge
STARTING_LAT	DOUBLE	GPS Latitude of Trip Starting
STARTING_LONG	DOUBLE	GPS Longitude of Trip Starting
STARTING_CSA	INT	Starting Charging Spot Area ID
ENDING_LAT	DOUBLE	GPS Latitude of Trip Ending
ENDING_LONG	DOUBLE	GPS Longitude of Trip Ending

44

ENDING_CSA	INT	ENDING Charging Spot Area ID
TRAVELLED_DISTANCE	DECIMAL	Travelled distance
SMARTCEM_SERVICES_ON	INT	Active smartCEM services (0=none, 1=Navigation, 2=Efficient Driving, 3=Both).

Table 5.6: Events

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for event register
TIMESTAMP	DATETIME	Date-time when the event is registered
ТҮРЕ	VARCHAR	Event type
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the event's moment
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the event's moment
SPEED	INT	Speed of the vehicle at the event instant
TRAFFIC (Optional)	VARCHAR	Traffic incidents to which the event could be related. In cases where traffic incidents are not registered around the GPS position this value could be defined as NULL
EVENT STARTING TIME	DATETIME	Starting time of the charging session

EVENT END TIME	DATETIME	Ending time of the charging session
----------------	----------	-------------------------------------

Table 5.7: Post Process

NAME	ТҮРЕ	DESCRIPTION
ID	INT	Unique identifier for post process register
NUMBER_PARTICIPANTS	INT	Number of different users that took part in the process
NUMBER_DAYS	INT	Number of days that the process took
TRIPS_PER_DAY	INT	Average number of trips made per day
TOTAL_TRIPS	INT	Total trips completed during the process
RUN_OUT_BATTERY	INT	Number of times the battery ran out
CONSUMPTION_PER_DAY	INT	Average consumption per day

Table 5.8: User Uptake

Variables from questionnaires will be defined in D4.4 *smartCEM Assessment Tools*. The surveys are developed in collaboration with other CIP projects. Data will be stored in a set of tables as follows:

Table with the list of questions

NAME	ΤΥΡΕ	DESCRIPTION
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_DESCRIPTION	VARCHAR ()	Description or full question

A table showing user response to each question

NAME	TYPE	DESCRIPTION
USER_ID	INT	Unique identifier for the question as identified in surveys of WP4
QUESTION_ID	INT	Unique identifier for the question as identified in surveys of WP4
SCALE	INT	1-5

The example would be:

QUESTION_ID	QUESTION_DESCRIPTION
	User-acceptance: It is easy for me to remember how to perform tasks using the service

Responses are given on a scale where 1= Strongly disagree; 5 = Strongly agree

USER_ID	QUESTION_ID	SCALE
U005	01	4

5.3 Summary

5.3.1 Data Quality Check

Data will be checked for integrity and completeness before being processed.

5.3.2 Post Process

Each week, when the data needs to be uploaded to the central database, a post processing task will be done. The **Events** table will be analysed in order to obtain proper data for the **Post Process** table. The completed tasks will be calculations of the data already stored in those two tables (calculations such as average values, count of registers per day, etc.). The data obtained from the calculations will be stored in the **Post Process** table.

5.3.3 Local Database Upload to Central Database

Every day the local database with **Events**, **User Uptake** and **Post Process** tables will be sent to the central database. **Monitoring** table data does not need to be uploaded, as it is just a control table with data not required for evaluation purposes.

6 Conclusion

This document has described the local systems and processes in place at the smartCEM pilot sites for collecting, storing, and managing data that is the minimum appropriate for the project's evaluation phase. The local databases have been presented on a site-by-site basis.

Each site will collect data to a number of tables. Broadly (with some slight variations) these are Monitoring, Events, Post Process and User Uptake. The User Uptake tables store qualitative data collected from driver response questionnaires and are not presented in detail in this document. These will be populated based on the methodological approach and designed surveys to be presented in D4.4.

Data from the Monitoring tables will not be uploaded to the central database as this is a control table with large amounts of data not required for evaluation purposes.

Table 6.1 presents the Events data that will be transferred from each pilot site local database to the central database on a weekly schedule. This table will not be replicated in the database, but is for information only. It shows which data is common across the sites and which is specific to individual sites. Note that the name of some events may vary between sites (for precise names please refer to the tables shown in the site-by-site chapters).

Table 6.1: Consolidated table of events for all pilot sites showing events data to be transferred from local databases to the central database

			PILOT SITE					
NAME	ТҮРЕ	DESCRIPTION	BAR	GIP	NEW	REG		
RESERVATION_ID	INT	A unique identifier to define each reservation (unique for all operators and reservations)	1	1	1	1		
ID	INT	Unique identifier for the event register	1	1	1	1		
REGISTER_TIME	DATETIME	Date-time when the event is registered	1	1	1	1		
ТҮРЕ	VARCHAR	Event type (charge, drive or park)	1	1	1	1		
GPS_LAT	DOUBLE	GPS latitude for the location of the vehicle at the event's moment	1	1	1	1		
GPS_LONG	DOUBLE	GPS longitude for the location of the vehicle at the event's moment	1	1	1	1		
SPEED	INT	Speed of the vehicle over the event	0	1	1	1		
SHF_SPEED	DECIMAL	Speed of the vehicle at sampling time	1	0	0	0		
TRAFFIC	VARCHAR	Traffic incidents to which the event could be related	0	1	0	1		
START TIME CHARGING EVENT	DATETIME	Starting time of the charging session	0	0	0	1		
END TIME CHARGING	DATETIME	Ending time of the charging session	0	0	0	1		

05/11/2013

49

	7/05	DESCRIPTION	PILOT SITE						
NAME	ТҮРЕ	DESCRIPTION	BAR	GIP	NEW	REG			
EVENT									
EVENT DURATION	ON DATETIME Duration of the event		0	0	1	0			
EVENT DISTANCE	DOUBLE	Event distance if applicable	0	0	1	0			
ENERGY	DOUBLE			0	1	0			
REGEN	DOUBLE	Total energy regenerated	0	0	1	0			
TEMPERATURE	DOUBLE	Temperature of the event	0	0	1	0			
HARD_BRAKE	INT	Number of hard braking events	0	0	1	0			
HARD_ACCEL	INT	Number of hard acceleration events	0	0	1	0			

This document should be read in conjunction with D3.2 *Common Data Exchange Protocol for smartCEM* in which a final version of the above table will be produced.

References

- [1] smartCEM, D2.1 Reference Architecture, 2012
- [2] smartCEM, D2.2 Platform Architecture, 2012
- [3] smartCEM, D2.3 Guidelines and requirements for the integration of local systems into the smartCEM architecture, 2012
- [4] smartCEM, D3.2 Common data exchange protocol for smartCEM, due October 2013
- [5] smartCEM, D4.3 smartCEM experimental design, 2013
- [6] smartCEM, D4.4 smartCEM Assessment Tools, 2013smartCEM, Description of Work, 2012
- [7] Switch EV <u>http://vehicletrial.switchev.co.uk/the-project/what-is-switch-ev.aspx</u> (checked 1st August 2013)

51

[8] Footlite <u>http://www.foot-lite.net/</u> (checked 1st August 2013)

List of Figures

Figure 1-1 Connection between local and central databases 11
Figure 2-1 Schematic description of data collection in Barcelona 13
Figure 2-2 Proposed database structure 17
Figure 3-1 Schematic description of data collection in Gipuzkoa for carsharing (left) and hybrid bus (right) 20
Figure 3-2 Monitoring table 21
Figure 3-3 Proposed database structure 22
Figure 4-1 Schematic description of data collection in Newcastle 32
Figure 5-1 Schematic description of data collection in Reggio Emilia

List of Tables

Table 0.1 Abbreviations	. 6
Table 2.1: Bikes	14
Table 2.2: Book Log	14
Table 2.3: Event	15
Table 2.4: Signal_HF	15
Table 2.5: Signal L_F	16
Table 3.1.1: Reservations	22
Table 3.1.2: Monitoring	24
Table 3.1.3: Events	25
Table 3.1.4: Post Process	25
Table 3.1.5: User Uptake	26
Table 4.1: Monitoring	33
Table 4.2: Events	34
Table 4.3: Logger/Vehicle table	35
Table 4.5: User Uptake	36
Table 5.1: Vehicle	40
Table 5.2: Users	41
Table 5.3: Charging Spot Area	42
Table 5.4: Monitoring	42
Table 5.5: Trips	43
Table 5.6: Events	45
Table 5.7: Post Process	46
Table 5.8: User Uptake	46
Table 6.1: Consolidated table of events for all pilot sites showing events data to transferred from local databases to the central database	

Appendix A - Measures

The table below is an abbreviated version of the full measures table for each pilot site, presented in full in D4.3.

					PILO	SITE			ACQUIRE	DATA
FIELD	CODE	NAME	DESCRIPTION	BAR	GIP	NEW	REG	UNIT	D OR REQUIRED	ТҮРЕ
DEMOGRAPHICS	ME_001	NumP	Number of participants	1	1	1	1	Participant	Required	Integer NEW: character
MOBILITY	ME_101	Td	time of day	1	1	1	1	hh:mm:ss	Required	Date time NEW: POSIXIt
MOBILITY	ME_102	da	Date	1	1	1	1	yy:mm:dd	Required	Date NEW: POSIXIt
MOBILITY	ME_103	Stt	Starting time of trip	1	1	1	1	hh:mm:ss	Required	Date time
MOBILITY	ME_104	Ett	End time of trip	1	1	1	1	hh:mm:ss	Required	Date time
MOBILITY	ME_105	du	Duration of trip	1	1	1	1	min	Required	Date time
MOBILITY	ME_106	NumD	Number of days.	1	1	1	0	Number	Required	Integer
MOBILITY	ME_107	dt	travelled distance	1	1	1	1	km (kilometers)	Required	Integer
MOBILITY	ME_108	kmd	Kilometers travelled per day	1	0	1	0	km/ day (kilometers per day)	Required	
MOBILITY	ME_111	NumIT	Number of incentivized trips per day.	1	0	0	0	Number	Required	Integer
MOBILITY	ME_112	NumTT	Number of complied trips per day	1	1	1	1	Number	Required	Integer
MOBILITY	ME_118	NumT	Number of trips	1	1	1	0	Number	Required	Integer

05/11/2013

54

MOBILITY	ME_119	GPS	Lat,Long,altitude	1	1	1	1	Degrees	Acquired	Float (double)
ENGINE	ME_204	Fc	Fuel consumption per route	0	1	0	0	l(liters)	Required	Float
VEHICLE	ME_251	VIS	Vehicle instant speed	1	1	1	1	Km//h per time unit	Required	Float
VEHICLE	ME_252		Vehicle ID	1	1	1	0	Code	Required	string / varchar
BATTERY	ME_301	SOC initial	State of charge of the battery initial.	1	1	1	0	kWh (kilowatts x hour)	Required	Float
BATTERY	ME_302	SOC final	State of charge of the battery final.	1	1	1	0	kWh (kilowatts x hour)	Required	Float
BATTERY	ME_303	NROB	Number of run-out of battery events	1	1	1	1	Number	Required	Integer
BATTERY	ME_305		State of charge	1	1	1	1	%	Acquired	
BATTERY	ME_306	Current	Current of battery	1	0	1	1	Amps	Acquired	
BATTERY	ME_307	Voltage	Voltage of battery	1	0	1	1	Volts	Acquired	
ENERGY	ME_401	E	Energy consumption	0	0	1	1	kWh (kilowatts x hour)	Required	Integer
ENERGY	ME_402	Re	Regenerated energy	0	1	1	0	kWh (kilowatts x hour)	Required	Float
ENERGY	ME_403	Ec	Energy consumption per day	1	0	1	1	kWh	Required	Integer
ENERGY	ME_405	Emx	Energy mix	1	1	1	0	kWh	Required	Float
ENERGY	ME_407	Ekm	Energy consumption		0	1	0	kW/km	Acquired	Integer
CHARGING	ME_501	Ece	End time charging event	0	0	1	1	hh:mm:ss	Required	Date

05/11/2013

55

Version 2.0

Smart Connected Electromobility

	WE 500	6	Starting time charging						D I	Detection
CHARGING	ME_502	Sce	event	0	1	1	1	hh:mm:ss	Required	Date time
CHARGING	ME_505	cpID	Charging post ID	0	1	1	1	post per day	Required	Integer (varChar)
CHARGING	ME_506	ctID	Charging transaction ID	0	1	1	1	Number	Required	Integer
CHARGING	ME_507	Pt	Peak- Time	0	1	1	1	hh:mm:ss	Required	Date time
CHARGING	ME_508		Number of charge events	0	0	1	0		Acquired	
USER UPTAKE	ME_601	NumSc	Number of score	1	1	1	1	score	Required	Integer
USER UPTAKE	ME_602	AnS	Range anxiety score	1	1	1	1	score	Required	Integer
USER UPTAKE	ME_603	GAccS	General acceptance scores for electric vehicles	1	1	1	1	score	Required	Integer
USER UPTAKE	ME_604	Gwp	General willingness to pay items	1	1	0	1	score	Required	Integer
USER UPTAKE	ME_606	AccSs	User acceptance score of smartCEM services	0	0	1	1	score	Required	Integer
USER UPTAKE	ME_607	ConSc	Confidence questionnaire items	0	0	1	0	score	Required	Integer
USER UPTAKE	ME_609	Uss	Usefulness scale scores	0	0	1	0	score	Required	
USER UPTAKE	ME_610	Sss	Satisfaction scale scores	0	0	1	0	score	Required	
USER UPTAKE	ME_611	AccSIT	User acceptance scores for incentived trips.	1	1	1	0	score	Required	Integer
USER UPTAKE	ME_613	Swp	Willingness-to-pay scores	1	1	0	1	score	Required	Integer
DRIVER BEHAVIOUR	ME_701	NumlF	Number of instructions followed by EV driver	0	1	0	0	instruction	Required	Integer
DRIVER BEHAVIOUR	ME_702	NumlG	Number of instructions given by EV driver	0	1	0	0	instruction	Required	Integer
DRIVER BEHAVIOUR	ME_712	InsAccel	Instant acceleration (EVs)	1	0	0	0	m/s2	Required	Float
DRIVER BEHAVIOUR	ME_716		Number of hard braking events	0	1	0	0	Number	Required	Integer

05/11/2013

56

DRIVER BEHAVIOUR	ME_717	High RPM when idling	0	1	0	0	seconds	Required	Float
SITUATIONAL VARIABLES	ME-901	Weather (rain, snow)		1			On / off OR Event		VarChar
SITUATIONAL VARIABLES	ME-902	Traffic flow		0			veh/h		Integer
SITUATIONAL VARIABLES	ME-903	Road capacity		0			veh/h		Integer
SITUATIONAL VARIABLES	ME-904	Traffic events		1			Event		VarChar
SITUATIONAL VARIABLES	ME-905	Light condition		0			On/off		Boolean
SITUATIONAL VARIABLES	ME-906	Transport card use		0			Yes / NO		Boolean

05/11/2013

Appendix B -Data Logger Specifications

Barcelona

Technical specifications of the data loggers used in Barcelona are listed below.

Element	Value/ Characteristics		
Memory	32 Mb RAM		
Processor type	ARM9		
Communication	GSM/GPRS		
Interfaces with the vehicle	CAN, DIO's		
Battery Management System	NA		
OS	Android		
Interface with other devices	USB, RS 232		
SD-card size/internal memory	NA		

Gipuzkoa

The following table presents the main OBU/data logger utilised by the Gipuzkoa pilot site in projects.

Element	Value/Characteristics
Processor	32 bits RISC ARM9 220MIPS
RAM memory	64 MB
Internal Storage	128 MB
Mobile communications	Dual-Band UMTS: 900 / 2100 Mhz
	Dual-Band GSM: 900 / 1800 Mhz
GPS	Sensitivity up to -160 dBm in tracking
	Sensitivity up to -147 dBm in startup
Communication with vehicle	CAN BUS and 3 digital inputs
OS	Linux kernel 2.6.26
Temperature range	-20 to 70°C
Interfaces	USB Host
	USB Device mini A-B

Newcastle upon Tyne

The data loggers to be used in the Newcastle pilot site are supplied by RDM Telematics.

GENERAL SPECIFICATIONS

- · Power Supply:
- -Nominal Voltage Range: 6 to 36 Vdc.
- Interfaces:
 - -Power Supply.
 - -4 Digital Inputs, 3 Digital Outputs, 1 Power Output
 - -Power ON/OFF input signal.
 - -Audio IN/OUT.
 - -RS-232 Serial Port.
 - -Secondary UART.
 - —GSM and GPS antenna connectors. —1 Odometer⁽¹⁾ input.

(1) Multiplexed with one of the digital inputs.

Approvals

-CE Marking.

- -e-marking.
- Power Consumption-Typical Average # 12V

Zero Power Mode	4 uA		
Low power mode	2 mA		
Sleep ¹²	6 mA		
Run ⁽³⁾	180 mA		

(2) GSM camping and CPU I steep. (3) GPS Running and GSM transmitting at maximum power

- · External LEDs for information and internal Movement Sensor.
- RTC and GPS with dedicated battery, 1 month autonomy at 25°C.
- · Temperature Ranges:

Operating (Fully GSM compliant)	-30°C to +75°C
Operatig with GSM OFF	-40°C to +85°C
Storage	-40°C to +85°C
With internal battery back-up accessory. (4)	-20°C to +60°C

FIRMWARE SPECIFICATIONS

· 32 bits RISC ARM7 core up to 60 MIPS (Dhrystone 2.1) at 70 Mhz.

- . Linux OS (Kernel v.2.4.18).
- TCP/IP Stack
- · Memory:
 - -8 Mbyte FLASH
 - -16 Mbyte RAM
- · Application Programming Interface for:
 - -Owa21A control.
 - Power management.
 GSM/GPRS.

 - -Internet connection.
 - -Controlling all the interfaces: I/Os.
 - -GPS.

-Movement Sensor

 Multiplexed communication supported with GSM/GPRS modern allowing GSM events and SMS during GPRS connection.

GSM/GPRS SPECIFICATIONS

- GSM850 + EGSM900 + DCS1800 + PCS1900.
- · Power Output Class 4 (2W) for GSM850/EGSM900.
- · Power Output Class 1 (1W) for DCS1800/PCS1900.
- · GPRS Class B, Class 10 (4+2).
- Audio and CSD Data calls. · SMS (MT/MO).

GPS SPECIFICATIONS

- · Receiver: L1 frequency, 16 Channel.
- Update Rate: >/= 4 Hz.
 Accuracy: 2.5 m CEP (Circular Error Probability).
- Signal Acquisition:
- Cold Start: 34 sec
- Warm Start: 33 sec.
- Hot Start: < 3.5 sec.
- Aided Start: 5 sec.
- Signal Reacquisition: <1 sec. Power supply for active antenna.: + 3 Volt @ 30mA current

MECHANICAL SPECIFICATIONS

- Dimension (mm): 106 (W) x 27 (H) x 55 (L).
- Weight < 170gr (plain device with no accessories).
- Material: Aluminum anodized.
- · Connectors:
- GSM: FAKRA D Plug - GPS: FAKRA C Plug
- AMP Micro Mate-N lock 14 pins.
- RS-232 DB-9 (Female).
- Molex Mini fit 6 pins.
- Tamper-proof SIM card holder.

UNIVERSAL DEVELOPMENT KIT

- A development kit is available, including:
- GSM/GPRS, GPS and Bluetooth antennas.
- Developer's board.
- Power supply cables.
- Cables for interfaces.
- CD with: Cross compiler, API's library, manuals, and application
- notes
- Wall-plug to supply the owa21X and Development Board.

RELATED PRODUCTS AND ACCESSORIES

- Internal Battery back-up accessory 1000mAh.
- owa21A-BASIC
- -owa211-Telemetry and all owa2X products.

Reggio Emilia

Technical specifications of the data loggers used in Reggio Emilia are listed below.

Element	Value/ Characteristics		
Processor	Freescale Kinetis k60 (cortex-m4)		
Communication	GPS/GPRS/BT		
Interfaces with the vehicle	CAN, OBD-II		
User Interface (touch screen,)	N/A		
Internal Storage	N/A		

