Multi-coRe, multi-level, WDM-enAbled embedded optical enGine for TErabit board-to-board and rack-to-rack parallel optics

project presentation

www.ict-mirage.eu

- Institute of Communications and Computer Systems - National Technical University of Athens (GR): Project coordinator. Silicon chip design, component characterization and system testing
- AMS AG (AT): wafer bonding, 3D electronic-photonic integration
- OptoScribe Ltd (UK): multicore fiber glass interfaces, pigtailing
- Technische Universität München (DE): 40 GHz CWDM VCSEL arrays
- Interuniversity Microelectronics Centre (BE): transmitter \& receiver electronics for multi-level modulation, self-alignment of active chips on 3D stack
- Aristotle University of Thessaloniki (GR): system-level modeling, silicon chip design, component characterization
- AMO GmbH (DE): 8" SOI line development, optical wafer fabrication

Opticall Interconnects

- new applications require instant access to vast amounts of information
- data centers are becoming the "hot spots" of the internet!
- surging demand is pushing current parallel optics technology to its limits

Our vision

> scale line rate to 40 G
> introduce new degrees of parallelization to upgrade data density ஏ WDM \boxtimes multi-core ∇ multi-level
> fabricate a Terabit capacity Active Optical Cable (AOC)

modulation format (multi-level)

MIRAGE increasing the AOC performance envelope

How?

潧 3D electronic/photonic integration

MIRAGE is developing:
silicon photonic-electronic platform for 3D EPICs
\checkmark SOI photonic board: leverage functionality of Si photonics
\checkmark electronic drivers (Si based)
short-cavity VCSEL arrays
$\checkmark 40 \mathrm{~Gb} / \mathrm{s}$ modulation bandwidth
\checkmark monolithic CWDM arrays at long wavelength (C-band)
advanced methodology for industry-compatible 3D assembly \& packaging
$\checkmark 40 \mathrm{GHz}$ through silicon vias
\checkmark wafer bonding, flip-chip bonding with self-alignment
low cost multicore-fiber coupling
\checkmark 3D glass waveguide (in plane coupling)
\checkmark vertical SOI coupling

MIRAGE is using the developed "optical engine" to:
fabricate application-specific components
$\checkmark 208$ Gb/s board-level interconnect
$\checkmark 320$ Gb/s QSFP AOC
$\checkmark 960$ Gb/s CXP AOC
\checkmark CXP to 3xQSFP breakout AOC
evaluate in datacom environments

\checkmark board-to-board
\checkmark rack-to-rack

Exploitation plans

MIRAGE targets a reliable, industry-compatible integration technology for value added products.

MIRAGE functional platform will streamline the convergence of photonic integration technology for multiple application fields

Strong \& broad exploitation:

Markets

- datacom
- telecom

Products

- VCSELs
- chip-to-multicore coupling, multi-core fiber fanouts
- high-speed linear electronic drivers
- AOCs, board-to-board interconnects
- highly-functional 3D electro-optic components

Exploitation routes (+spin-offis)

MIRAGE addresses the entire value chain:

Contact

MIRAGE website:
www.ict-mirage.eu
Project coordinator:
Prof. Hercules Avramopoulos (hav@mail.ntua.gr)
Project technical Manager:
Prof. Nikos Pleros (npleros@csd.auth.gr)

