
enhanced COntent distribUtion with Social INformation

www.ict-ecousin.eu

© Copyright 2014 eCOUSIN Consortium

Project funded by the European Union under the

Information and Communication Technologies FP7 Cooperation Programme

Grant Agreement number 318398

Deliverable D6.2

Final Plan for System Integration and Assessment

Public, Version 1.0, 30 June 2014

Authors

FT Bertrand Mathieu, Patrick Truong

AL-BELL

IMDEA Joerg Widmer, Nicola Bui, Foivos Michelinakis

TSP Noël Crespi

ALUD Ivica Rimac, Klaus Satzke

TUD Christian Koch, Julius Rückert, Fabian Kaup, Timo Thräm, David Hausheer,

TI Fabio Mondin

UCAM

UC3M Rubén Cuevas

Reviewers Ivica Rimac

Abstract

The WP6 of the eCOUSIN project will demonstrate and assess the technical solutions developed in

the other WPs. This deliverable assesses the finalization of the plan started in the deliverable D6.1

[D6.1]. Here, four different and integrated demonstrators show how to realize the overall project

objectives and validate the project claims by means of thorough testing campaigns. In particular, the

functionalities described by the WP2 functional architecture are integrated in four demonstrators,

each covering a different use case scenario. The four demonstrators cover the innovative aspects of

the overall architecture, and are used to showcase and assess the overall eCOUSIN results.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 2 of 51

Copyright © eCOUSIN Consortium, June 2014

EXECUTIVE SUMMARY

This document updates the content of the deliverable D6.1 [D6.1] and provides the final descriptions

of the various eCOUSIN’s target demonstrators. It shows how they fit the overall architecture and

drafts a program of high-level tests to check the system coherence during the entire project lifecycle.

Demonstrators reflect use cases expressed by partners to fulfil their business related expectations.

Demonstrators and platform components will be developed in parallel in order to speed up the

prototyping phase and to setup a dynamic feedback process between functionalities required by the

use case definitions and those realized in the platform. Also, this will finally make a solid match

between demonstrators, architecture and the final platform. The main additions with respect to D6.1

are to be found in the module and the assessment sections: new modules have been added to better

realize architectural functions; new test have been added and old test have been updated to further

improve the integration and the completeness of the demonstration and assessment work.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 3 of 51

Copyright © eCOUSIN Consortium, June 2014

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 2

TABLE OF CONTENTS .. 3

INTRODUCTION .. 6

1. DEMONSTRATORS .. 6

1.1 Content Placement .. 6
1.1.1 Motivation ... 6
1.1.2 Description .. 7
1.1.3 Functionalities ... 8

1.1.3.1 Social and Content Information Collection ... 8
1.1.3.2 Data Analysis, Mining and Aggregation .. 8
1.1.3.3 Social Prediction ... 8
1.1.3.4 Strategies for Content Placement .. 8

1.2 Personal Sharing Clouds .. 9
1.2.1 Motivation ... 9
1.2.2 Description .. 9
1.2.3 Functionalities ... 9

1.2.3.1 Social Data Collector/Data Analysis, Aggregation and Mining ... 9
1.2.3.2 Content Lookup/Content Copy Selection/Content Dissemination ... 10

1.3 Information-Centric Networking ... 10
1.3.1 Motivation ... 10
1.3.2 Description .. 11

1.3.2.1 Implementation of the OSN Application and the NDN Networking ... 11
1.3.2.2 Extension with Dynamic Routing Configuration ... 11

1.3.3 Orange Testbed ... 12
1.3.4 Functionalities ... 13

1.3.4.1 Social-aware Content Naming .. 13
1.3.4.2 Content Dissemination Algorithms ... 13
1.3.4.3 In-Network Content Routing and Caching .. 14
1.3.4.4 Cached Content Update Message (Network Monitoring) .. 14
1.3.4.5 Content-Centric Routing Information Update (Network Configuration) .. 14

1.4 Content Offloading for Mobile Networks .. 14
1.4.1 Motivation ... 14
1.4.2 Description .. 14
1.4.3 Functionalities ... 15

1.4.3.1 Social Data Collection And Analysis .. 16
1.4.3.2 Content Access Prediction .. 16
1.4.3.3 Prefetching of Content Items ... 17
1.4.3.4 Bandwidth Availability Prediction .. 17
1.4.3.5 Bandwidth allocation optimization .. 17
1.4.3.6 Network Visualization... 18

2. MODULES ... 18

2.1 Content Placement .. 19
2.1.1 Social Data Collector ... 19
2.1.2 Content Info Collector.. 19
2.1.3 Data Analysis, Mining and Aggregation .. 19
2.1.4 Social Predictor .. 19
2.1.5 Content Placement Strategies ... 20

2.2 Personal Sharing Clouds .. 21
2.2.1 Social Data Collector ... 22
2.2.2 Data Analysis and Mining.. 23
2.2.3 Content Lookup ... 23

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 4 of 51

Copyright © eCOUSIN Consortium, June 2014

2.2.4 Content Copy Selection/Content Dissemination Algorithms ... 23
2.3 Information-Centric Networking ... 24

2.3.1 Social-Aware Content Naming Scheme ... 24
2.3.2 NDN Content Dissemination Algorithms ... 24
2.3.3 In-Network Content Routing and Caching ... 25
2.3.4 Module IN1: Logically Centralized ICN Controller.. 26
2.3.5 Module IN2: ICN Controller Client ... 27

2.4 Content Offloading for Mobile Networks .. 28
2.4.1 Module C01: Social Data Collector .. 29
2.4.2 Module C02: Data Aggregator .. 30
2.4.3 Module C03: Social Aggregator ... 31

2.4.3.1 Information Retrieval ... 31
2.4.3.2 Data Visualization ... 32
2.4.3.3 Deployment .. 34

2.4.4 Module C04: Social Tracer ... 34
2.4.5 Module C05 Video Player .. 35
2.4.6 Module C06: Social Predictor .. 36
2.4.7 Module C07: Content Prefetcher ... 36
2.4.8 Module C08: Download Scheduler .. 36
2.4.9 Module C09: Download Client ... 37
2.4.10 Module C10: NS-3 Simulator Extensions and Test Scenarios .. 37
2.4.11 Module C11: Bandwidth optimization. ... 37
2.4.12 Module C12: Bandwidth prediction .. 38
2.4.13 Module C13: Network visualization .. 38
2.4.14 Module C14: Passive measurement .. 39

3. ASSESSMENT .. 39

3.1 Content Placement .. 39
3.1.1 Test CP1 (Data Collection) ... 39
3.1.2 Test CP2 (Data Analysis and Social Prediction) ... 39
3.1.3 Test CP3 (Emulation Environment) .. 39
3.1.4 Test CP4 (Content Placement Strategies) .. 39
3.1.5 Test CP5 (Integrated Demonstrator Test) ... 40

3.2 Personal Sharing Clouds .. 40
3.2.1 Test PSC01 (Social Data Collector/Data Analysis, Aggregation and Mining) 40
3.2.2 Test PSC02 (Content look up/Content Copy Selection/Content Dissemination) 40
3.2.3 Test PSC03 (Hardware Performance) .. 40
3.2.4 Test PSC04 (Usability Testing) ... 41

3.3 Information-Centric Networking ... 41
3.3.1 Test IN1 (Content-Centric Routing Strategies for Twitter) .. 41
3.3.2 Test IN2 (Integration of Video Live Streaming) ... 41
3.3.3 Test IN3 (Content Information Aggregation) .. 41
3.3.4 Test IN4 (Route Calculation) .. 41
3.3.5 Test IN5 (Programming of Forwarding Elements) ... 41
3.3.6 Test IN6 (Final Evaluation of the Testbed)... 41

3.4 Content Offloading for Mobile Networks .. 42
3.4.1 Test C01 (Social Data Collection and Aggregation) ... 42
3.4.2 Test C02 (Social Aggregator) ... 42
3.4.3 Test C03 (Social Tracer) ... 43
3.4.4 Test C04 (Social Predictor) ... 43
3.4.5 Test C05 (Video Player).. 44
3.4.6 Test C06 (Content Prefetcher) ... 44
3.4.7 Test C07 (Download Scheduler and Download Client) .. 45
3.4.8 Test C08 (Evaluation of Bandwidth Availability Prediction) .. 45
3.4.9 Test C09 (Evaluation of Bandwidth Allocation Optimization) ... 46

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 5 of 51

Copyright © eCOUSIN Consortium, June 2014

3.4.10 Test C10 (Evaluation of the Network Visualization) .. 46
3.4.11 Test C11 (Evaluation of the Passive Measurement Module) .. 47

3.5 Timelines ... 47
3.5.1 Content Placement .. 47
3.5.2 Personal Sharing Clouds .. 48
3.5.3 Information-Centric Networking ... 48
3.5.4 Content Offloading for Mobile Networks .. 49

4. CONCLUSIONS .. 50

REFERENCES ... 51

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 6 of 51

Copyright © eCOUSIN Consortium, June 2014

INTRODUCTION

The flexibility of content distribution models empowered by the viral effect of social sharing is having

huge impacts on the network. We have proposed a set of novel techniques to address the associated

challenges and we have selected several examples of use cases to demonstrate how our platform can

dramatically improve network efficiency and/or users QoE. Furthermore eCOUSIN will be providing

mechanisms to assist novel smart content delivery chains advancing the upcoming network

infrastructure evolution, which is expected to bring more bandwidth at the edges.

In the following four demonstrators will be described covering the different functionalities included

in the architecture defined in WP2. In particular the following aspects of the architecture will be

addressed by the different demonstrators.

The content placement demonstrator will focus on showing the optimizations for the delivery of the

long tail of the distribution of the content popularity (medium to low popularity) studied in WP4. This

will be achieved using emulation platforms such as PlanetLab or Emulab configured so as to mimic

characteristics of real user social patterns.

The second demonstrator is called Personal Sharing Clouds and addresses the interactions between

users of different social networks by leveraging on unique user identities. This concept makes it

possible to access and interact with contents and users of any social networks the user is connected

to without the need for using different credentials in each social network.

The third demonstrator addresses the implementation of a Twitter-like social networks with live

streaming support adopting a Content Centric Network based architecture and open source

protocols. The ultimate goal of the demonstrator is to show the improvement on content delivery

performance thanks to the adopted social-aware content centric solutions.

Finally, the fourth demonstrator will concentrate on the benefits provided both to the user QoE and

to the overall network performance by leveraging the end user device capabilities to optimize

content distribution in terms of time, network and content.

1. DEMONSTRATORS

This section will describe the demonstrators and how they will be realized, starting from modules

developed by individual partners and followed by their combination into joint showcases and

testbeds.

1.1 Content Placement

1.1.1 Motivation

On the one hand, content, and more specifically video, is responsible for more than half of the

Internet traffic nowadays. This trend is expected to increase, and as reported by CISCO
1
, video traffic

will be responsible for 67% of the whole Internet traffic by 2017. As a consequence, different stake-

holders such as Content Providers or Internet Service Providers (ISPs) seek for techniques to improve

the content delivery process, and Content Delivery Networks (CDNs) are expected to carry more than

half of the Internet traffic by 2017. Therefore, we expect an increase in both the volume of content

to be distributed and the utilization of optimized content delivery techniques, in the next years.

1
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-

481360_ns827_Networking_Solutions_White_Paper.html

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 7 of 51

Copyright © eCOUSIN Consortium, June 2014

On the other hand, it is well known that content popularity in the Internet follows a Zipf distribution

with a few contents attracting a large number of downloads and a large subset of contents (the long

tail) attracting a low number of downloads. Current caching and prefetching algorithms deployed in

content delivery infrastructures (e.g., CDNs) use prediction techniques that have been proven very

efficient for popular content. However, these techniques are not well suited for content placement

for the long tail of the popularity distribution. Furthermore, in the recent years, the proliferation of

User Generated Content (UGC) platforms such as Youtube as well as the creation of new channels to

distribute content such as the Online Social Networks (OSNs) have increased the volume of mid/low

popular content (i.e., the long tail of the distribution) and thus the impact of such content in the

operational costs of different players such as Content Providers, CDN operators or ISPs.

In this context it is important to develop new algorithms and solutions to enhance current content

delivery infrastructures for the optimized distribution of mid popular and/or low popular content.

The most critical aspect in the design of the aforementioned algorithms is to properly predict which

users are going to consume which content and where these users are located in the network. This

data will serve as input to caching and prefetching algorithms, which decide in which servers (or

datacenters) of the content delivery architecture mid and/or low popular content is stored. In this

demonstrator we implement the solutions designed in WP4, which leverage social information to

predict the most likely location(s) where a content distributed through OSNs is expected to be

consumed. These techniques will be implemented in an emulation environment that will serve as a

proof of concept and to evaluate the enhanced performance introduced by such solutions.

1.1.2 Description

Note that this demonstrator is based on the Use Case 1 named Enhanced Content Placement Using

Users’ Social and Coarse-Grain Location Information and described in the Deliverables D2.1 [D2.1]

and D2.2 [D2.2]. Furthermore, the different algorithms and mechanisms implemented in this

demonstrator are developed within the WP4, an initial description of which can be found in the

Deliverable 4.1 [D4.1] and a full description in the Deliverable 4.2 [D4.2]. As part of the work

developed in the WP4, the aforementioned use case and the developed algorithms have been

extensively evaluated through data-driven simulations using real data collected from Twitter.

In WP6, we will complement the large-scale simulation-based evaluation conducted in WP4 with the

evaluation of the implementation of some of the designed algorithms in an emulation environment.

In particular, we will simulate a set of users that are connected through friend-follower connections

effectively mimicking the relation model found in several OSNs such as Twitter or Google+. Note that

the social graph formed by these users will follow the properties of real-world social graphs collected

as part of the work developed in WP3. In our emulation, different users will be located in different

topological (ISPs) locations, for which the emulation environment will consider a topological

infrastructure formed by different ASes and ISPs. Furthermore, the demonstrator will emulate a

distributed content delivery infrastructure with servers distributed across the different ASes.

In this scenario users will produce posts (e.g., tweets) with an associated content (e.g., a video). The

content posted by a user will be consumed by a subset of the followers of the user. The posting rate

and consumption rate emulated will correspond to realistic values obtained from our traces collected

in the WP3 and data reported in the literature.

We will study the use of different emulation platforms (e.g., Modelnet or PlanetLab). After carefully

considering the pros and cons of each one of them we will chose one to develop our demonstrator.

We will run different content delivery mechanisms on the chosen emulation environment: we will

compare the performance of traditional caching and prefetching algorithms used by current CDNs

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 8 of 51

Copyright © eCOUSIN Consortium, June 2014

with the algorithms designed in WP4 that leverage social graph information and user location. Using

these social-enhanced algorithms we will emulate pull-based and push-based solutions.

1.1.3 Functionalities

In this section we describe the functionalities of the eCOUSIN infrastructure defined in the

Deliverable 2.1 that will be implemented in this demonstrator. In particular we will address: Social

and Content Information Collection, Data analysis, Mining and Aggregation, Social Prediction and

Strategies for Content Placement.

1.1.3.1 Social and Content Information Collection

The tools for the collection of social information have been developed as part of the work in WP3.

While these modules will not be fully integrated in this demonstrator they will be used to extract the

properties of real-world social graphs and content posting rates in OSNs. This information will be

used as input to run the social-enhanced content placement mechanisms designed in WP4.

The demonstrator will implement a module for obtaining content included in user posts/tweets, i.e.,

content inserted in posts or a links to external content.

Therefore, this demonstrator along with the different tools developed in WP3 will help to

demonstrate to what extend it is possible to collect social and content information within the current

Internet and Online Social Networks configurations.

1.1.3.2 Data Analysis, Mining and Aggregation

A fundamental function of our demonstrator relies on data processing and aggregation. Using this

demonstrator we will exploit our work in WP4 and describe how to properly process the social graph

as well as the different content information in order to provide useful information to the

development of social enhanced content placement solutions. In particular there are two main tasks

to be deployed as part of this function: 1) computation of the socio-geographical relationships for

each user in order to derive the social graph and the geographical distribution of users, 2) parsing of

the information including in the posts. We are specifically interested in identifying posts that include

content such as photos and videos or a link to external sources of content (e.g., an external video).

1.1.3.3 Social Prediction

The main goal of this demonstrator is to show how the social information available in OSNs is useful

for predicting where long-tail content distributed through OSNs is going to be consumed. To this end,

we leverage the social graph and the location information derived from the Analysis, Mining and

Aggregation function in order to predict where a content published by a user is likely to be

consumed.

1.1.3.4 Strategies for Content Placement

Finally, we will implement social-enhanced content placement strategies for the delivery of non-

popular content shared by users through OSNs. In particular we will implement the strategies

designed in WP4 including social-enhanced pull-based caching solutions in which content is pulled

from an origin server and stored in a local cache server after the first local request depending on the

number of social links of the uploader of the content within that specific location. In contrast,

traditional pull-based caching algorithms replicate the content in the local cache server after the first

request without taking any further consideration (e.g., estimating the presence of other potentially

interested users). Furthermore, we will study social-enhanced push-based prefetching techniques in

which content is pushed from the origin server to those replica servers that serve a sufficient large

number of followers of the content uploader.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 9 of 51

Copyright © eCOUSIN Consortium, June 2014

We will analyze the performance of the different content placement algorithms in the emulation

environment designed for this demonstrator.

1.2 Personal Sharing Clouds

1.2.1 Motivation

OSN users have been dramatically increasing in the last few years to a point where they even

attracted new user to the Internet. As the amount of content and information shared by the users of

OSNs is ever increasing, so are their concerns regarding privacy and data ownership. Where is

content stored? Who is the content owner? How can my content be used? By clearly answering

these questions Federated Social Network and Mobile Federated Social Network solutions aim at

offering alternative platforms to current OSNs. The basic idea is to separate user identity and

relationship from the kind of service they belong to: instead of having different user accounts on

different online services, the aim of this proposal is to leverage on a unique user identity, for

instance the phone number.

At the time of writing, the attention of public institutions and private companies about privacy issues

and right-to-be-forgotten has been growing more and more, together with data portability issues.

Most of OSN services ask users to give ownership over their data to the service provider, which ties

the user to the service provider. The latter usually don’t provide for any constraint on data

portability.

1.2.2 Description

The final goal of this use case is providing a content sharing ecosystem where media centres and/or

enabled (mobile) devices will communicate and share multimedia resources at different levels

(defining Access Control Lists), using different technologies (such as UpNP and DLNA) and exploring a

content sharing model based on social relationship.

A solution based on web standards for communications between providers, allowing a distributed

architecture, solving data portability and data ownership issues, is a good way to address these

issues and highlight the need for and the advantages of such a federated architecture.

The final implementation of the use case on Personal Sharing clouds is going to closely follow the

description in the deliverables of WP2. While the federated social networks have been implemented

in a very first phase of WP6, other modules of the use case have been implemented in a preliminary

prototype covering the functionalities described in the previous work packages.

The Federated social network part has been implemented and tested as described in deliverable

D6.1. In this deliverable we describe the steps we have started taking towards the final

implementation.

1.2.3 Functionalities

1.2.3.1 Social Data Collector/Data Analysis, Aggregation and Mining

The Social Data Collector will be responsible for periodically monitoring the social networks related

to social entities and their modifications. A unique user, e.g. Alice, should be able to link its social

network accounts (Facebook, Twitter or compliant federated social network account) to the media

centre. Automatic discovery of user linked to Alice using the same app on their media centres should

be performed.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 10 of 51

Copyright © eCOUSIN Consortium, June 2014

1.2.3.2 Content Lookup/Content Copy Selection/Content Dissemination

Content lookup is responsible for periodically discovering sharing nodes’ services available on remote

nodes, either performing service discovery requests for known services or directly requiring to

remote nodes the list of registered services such as, for example, File Sharing and UPnP Proxy. The

former one supports a simple form of resource sharing; available content is provided as a simple list

of shared files. The latter one supports the communication among UPnP devices deployed in

different subnets at multi-hop distance; the content is provided to the set of enabled UPnP devices

and services based on the relationship among content owners. Once the users are linked they will be

able to browse remote resources as local.

1.3 Information-Centric Networking

1.3.1 Motivation

As multimedia services are becoming pervasive, current content distribution technologies, mainly

based on content caching at the network edges, may rapidly become too inefficient and ineffective

for guaranteeing scale, performance and flexibility needed to deliver content people want, when and

where they want it. As a matter of fact, all the current techniques for content placement (where to

place surrogate servers and which surrogates will replicate which objects) generally rely on content

popularity statistics. However, such statistics are often difficult to estimate for new disseminated

content. Media content actually ranges from very popular content (i.e. popular TV Shows, buzz

videos, etc.) to user-generated content (UGC) whose audience is mainly limited to the social

environment of the content owner. This means that a small portion of available content enjoys a high

popularity while the majority is actually receiving few downloads/views, generating the so-called

long tail distribution. Therefore, the proliferation of personal multimedia, and especially video,

leveraged by the trivialization of OSN usage in everyday life, will most likely increase the heaviness of

the long tail. In this context, there will be a large number of requests that are of interest to only small

groups of users linked together by some social relationship.

Information-Centric Networking is considered one promising approach to close the gap between the

growing content-centric Internet usage and its architecture based on the conversation model. As

such, ICN supports network infrastructure evolution with named data chunks instead of IP addresses,

by providing primitives to:

1. name any piece of content , independently on its location in the network;
2. access named content objects - not hosts;

3. using a name-based forwarding plane, route a user request identified by a destination

content-name, towards the closest copy of the content (either original server or cache

servers);

4. deliver the content back to the requester with native in-network caching along the reverse

network path.

The ICN paradigm is based on a pull model in which users send interest messages for content and the

data is delivered back if available. This model is related to the concept of OSNs which involve people

expressing an interest for a given person or for specific content shared by other users (the so-called

followers in Twitter).

As described in the deliverable D2.1 of the project, we propose a use case for deploying a social

network, say Twitter, over ICN architecture. We propose to evaluate the benefits of using ICN as a

network layer for efficiently delivering UGC disseminated in the OSN while also taking into account

the relevant interactions inside the social graph between users. To this end, we will implement a

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 11 of 51

Copyright © eCOUSIN Consortium, June 2014

demonstrator to illustrate the use case and also to serve as a basis for consistent assessment of our

proposal of using ICN as a social-assisted and content-aware delivery layer for OSNs.

1.3.2 Description

1.3.2.1 Implementation of the OSN Application and the NDN Networking

The demonstrator addresses the use case Information-Centric and Social-Driven Content Delivery,

which is described in the deliverable D2.1. The scenario depicts the live broadcast of user generated

content (UGC) over an OSN such as Twitter. In particular, users can stream videos live to their

friends, and store the videos in the cloud so their friends can watch them later.

As exposed in the deliverable D3.1 of the WP3, user locality plays an important role in social

networking applications: people are very frequently connected to other people that are in the same

town or region, in short in close vicinity (e.g. tweets are mostly distributed locally to local followers,

users often send their tweets from the same location, etc.). This means Twitter messages exchanged

between end-users are mainly addressed to local or close users, except for very popular accounts

(e.g. a Twitter account having millions of followers). Having analyzed the Twitter networking

workflow from traffic monitoring, we observe that the locality of end-users is not aligned with the

Twitter network behaviour, which always incurs transfer of messages towards remote centralized

servers, even if the real destinations of the messages are very close. The network architecture could

be then optimized so as to better reflect the end-user behaviour. We propose therefore using Name

Data Networking (NDN) architecture in the demonstrator to efficiently delivering UGC over the social

network Twitter since NDN is the most advanced project in the ICN space.

The proposed NDN architecture for the content-centric and social-driven delivery of UGC in Twitter,

as well as the networking call flow, are detailed in the deliverable D5.1 of the WP5 [D5.1] and will be

implemented in the demonstrator. We suggest in particular using routing strategies based on local

and non–local users. More precisely, for the publication of tweets, announcement messages are

always sent to the Twitter servers for both local and non-local end-users. For the routing of the

requests for the tweets, we make a distinction between local and non-local users:

• for non-local users: requests are sent towards the Twitter server (as current Twitter);

• for local users: requests are sent towards the followed end-user himself (who has previously

announced his name-based route in the network accordingly).

At the implementation level, the demonstrator consists of two parts:

1. We will first implement a Twitter-like social network with video live streaming support;

2. To convey the networking interactions of our Twitter-like application over our proposed ICN-

based architecture, we will modify the open-source NDNx
2
 implementation of the NDN

protocol to integrate our proposed content naming scheme and our locality-aware content

routing strategies.

1.3.2.2 Extension with Dynamic Routing Configuration

The envisioned extension for the demonstrator is to add dynamic configuration of routing tables

based on cached contents. The main idea is to dynamically configure the NDN network to route

requests towards nodes having the searched contents.

2
 NDNx implementation: http://named-data.net//

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 12 of 51

Copyright © eCOUSIN Consortium, June 2014

As background we assume that some OSN-related content has previously been published and is

stored in multiple caching nodes. These caching nodes keep track of cached content items, e.g., by

employing a metafile format such as (<ContentID><IP><URI>).

As a starting point, we assume that any new content is also cached and the information on recently

performed modifications on cached content is made available to the data management plane [D2.2].

As an example, a lightweight daemon could be running on the caching nodes sending a

corresponding registration message to the control plane on modifications of cached content (e.g.

about eviction from the cache due to decreasing local popularity).

The information contained in these messages are received by a logical controller and used as input

information to a controller application performing re-calculations of the actual routing information

based on caching information updates. The controller application makes use of the received

messages to make updates to the forwarding information base (FIB) of the forwarding nodes located

in the data plane. Finally, the controller pushes updated routing information from the controller

application into the forwarding tables of the forwarding nodes.

We currently consider two options for pushing the routing information updates:

Option A - The routing information can either be used to make modifications to the FIBs of NDNx

nodes running in the Orange testbed to support the scenario of using content-centric routing

strategies for Twitter with automatic configuration of NDNx nodes instead of using hard-wiring.

Updates to caching could be tracked by deploying daemons which send registration messages to the

control plane.

Option B - Alternatively, we can use the routing information to make modifications to the

forwarding/service tables of forwarding nodes deployed in an ALUD local testbed, in which caching

node functionalities and caching node update events can be emulated in addition.

1.3.3 Orange Testbed

The demonstrator will be run in a testbed hosted inside an Orange specific network dedicated to

perform functional tests. As this specific network is also used by Orange to assess its own services,

there is unfortunately no remote access due to security and privacy issues. So we will mainly use the

testbed for implementing and evaluating the proposed social-enhanced ICN architecture in a real

network environment. A video of the system and of the demonstration will be prepared for

presentation during the EC reviews as well as at any other dissemination event.

Figure 1 below depicts the testbed we envision for this use case. The testbed will include different

regions (1, 2, 3 and 4) to illustrate the different locality-aware behaviours as identified in WP3. We

will target a representative environment for the testbed with a real network structure (access,

aggregation, core and interconnection). The access network will be in ADSL, FTTH or Ethernet. We

will use a Linux PC for the Twitter server, and the Twitter clients will run on laptops, smartphones

and tablets. The possible testbed configuration is as follows:

• a Twitter Server will be set up in a remote AS (similarly to the official Twitter server in US):

region 4 in Orange’s testbed structure shown on Figure 1;

• end-users from 3 different regions to show local (and non-local) activity;

• NDNx routers deployed in edge nodes;

• an ICN controller.

For obvious lack of a native content-centric network layer, i.e. whose forwarding decisions are solely

based on named pieces of content (instead of IP addresses as it is the case for the current IP network

layer), our ICN-based architecture for delivering content in Twitter will be deployed as an overlay

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 13 of 51

Copyright © eCOUSIN Consortium, June 2014

network. Without global change to the current infrastructures, this deployment consists in carrying

the NDNx payload over the current legacy IP network layer. The underlying network acquires then

the requested content and delivers it to the user. This means that NDNx will not overhaul the

existing network pipelines, but it will use them to restructure the way networks manage resources

and distribute information. The NDNx routers will be hosted on Linux-based machines.

Figure 1 - Orange’s testbed structure

1.3.4 Functionalities

Our information-centric and social-driven demonstrator will include the following functionalities of

the eCOUSIN architecture defined in the deliverable D2.2 [D2.2].

1.3.4.1 Social-aware Content Naming

The demonstrator will include a social-aware naming scheme for content objects that can be later

disseminated or retrieved within the ICN delivery infrastructure. The naming is then defined as

follows:

• /Twitter/Local/UsersAAA/Tweet_BBB.

1.3.4.2 Content Dissemination Algorithms

The content dissemination layer provides capabilities to the demonstrator for delivering content to

OSN end-users and includes a media streaming transport protocol over the NDN network layer so as

to allow end-users to share and consume videos in live streaming. The demonstrator will show an

improved delivery based on expected consumption of generated contents.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 14 of 51

Copyright © eCOUSIN Consortium, June 2014

1.3.4.3 In-Network Content Routing and Caching

The ICN architecture that is implemented in the demonstrator for social-driven content delivery

provides the following networking functionalities:

• Name-based forwarding plane based on our locality-aware naming scheme with an in-path

resolution of content names into locators (hosts storing content) and a native integration of

content caching functions;

• Traffic engineering for efficiently delivering content, with routing management and cache

strategies to meet the time requirement of live content streaming. It can exploit social

information related to user relationships, user locations, and user interests, etc.

1.3.4.4 Cached Content Update Message (Network Monitoring)

A daemon monitoring a caching node sends an update information messages to a controller. The

implementation of the data path infrastructure and the caching systems is out-of-scope of this

demonstration. Thus, we will resort to emulating the update functionality by implementing a light-

weight daemon in caching nodes. The daemon tracks a local metafile for changes where the metafile

would simulate, e.g., a cache index. Upon detecting changes in the metafile, the daemon sends an

update message carrying information for newly added (or removed) content including at least the

content identifier, the content URI, and the IP address of the node. The update is received by the ICN

controller.

1.3.4.5 Content-Centric Routing Information Update (Network

Configuration)

When the controller receives an update message, it re-calculates routes using topological and OSN

information. If a newly calculated routing requires modifications to one or more forwarding

elements, the controller communicates the changes to the controller clients running on the impacted

forwarding nodes. A client on a forwarding node receives the instruction from the controller and

manipulates the FIB tables of the forwarding nodes accordingly.

1.4 Content Offloading for Mobile Networks

1.4.1 Motivation

This demonstrator addresses the use cases defined in [D2.1, Section 3]: in particular the social-

assisted time-unconstrained content delivery and the mobile content uploading scenario will be

evaluated in this testbed.

The main idea of the testbed is to show the user-provider experience improvement obtained with

the eCOUSIN solutions from two different angles: on the one hand we will visualize the benefit

brought by the technical contributions of eCOUSIN on the network performance by means of

simulations, controlled experiments, and user traces; on the other hand, the user experience will be

evaluated through mobile applications on smartphones using the prefetching and bandwidth

optimization functionalities.

1.4.2 Description

For the social-enhanced time-unconstrained content delivery use case, the technical solutions

developed in WP4 and WP5 of eCOUSIN have the overall goal to reduce the load on the mobile

cellular network and at the same time improve the user experience. This can be done by shifting a

part of the data to be transferred to other access technologies, such as WiFi, e.g. when the user is at

home. This is especially interesting for data-intensive content that is not time-critical and, thus, can

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 15 of 51

Copyright © eCOUSIN Consortium, June 2014

be prefetched at the user device. By using a prefetching mechanism that is running directly at a

mobile device, the use of energy and monetary costly mobile connections is expected to be reduced.

This is especially important since, mobile data subscriptions are usually costly or limited in their

monthly transfer volume.

Prefetching efficacy highly depends on the possibility to predict the data that, with a high probability,

is going to be transferred in the future and, consequently, can be prefetched. Prediction can happen

at different time scales: short-term to optimize the bandwidth usage of the mobile connection (e.g.,

to smooth traffic peaks in mobile traffic and to reduce the load of congested cells) or long-term to

proactively load content items that the user might access in the course of a day. For the latter case,

the goal is to show that an accurate prediction of access, for example, to video clips on YouTube can

happen by using information from OSNs. For the former case, even more detailed information on the

current activities of a user is likely to be needed.

The mobile prefetching related part of the demonstrator aims to show how an integrated mobile

prefetching application could be implemented. Thereby the developed mobile application is meant

as proof-of-concept implementation of the social-enhanced prefetching mechanisms designed in the

context of the work of WP4 and WP5 of the eCOUSIN project. The target platform for the mobile

prefetching demonstrator is Android. The assessment of the solution is planned to be done using

collected usage traces of real-world users and through actual real-world trials, where users will be

asked to test the application and provide feedbacks on the effectiveness of the solution.

Furthermore, parts of the functionalities and findings related to the impact on the mobile network

are planned to be visualized for demonstration purposes using graphical user or management

interfaces. In this deliverable, an overview on the planned functionalities and modules of the

application is provided. In addition, first module implementations are reported in more details.

For what concerns the mobility aware content delivery scenario, the demonstrator objective is to

show the impact of technical solutions developed in WP4 and WP5, such as bandwidth usage

optimization when future knowledge about channel condition is available. The demonstrator will

address scenarios whose durations vary from tens of seconds to a few minutes or an hour.

The impact on the mobile network will be investigated by means of thorough ns-3 simulations

performed on scenarios where bandwidth prediction is likely to be possible with good accuracy: for

instance, commuter paths from home to work by car or using public transportation, or when user

movements are easily understandable and predictable.

In order to show the outcomes both offline aggregate results and online simulation, animation will

be realized in order to give both an overall evaluation and a runtime visualization of the benefits

brought by the eCOUSIN solutions.

As a result, the demonstrator will evaluate the effectiveness of the eCOUSIN technical solutions in

two parallel ways. The improvement on the user experience will be measured thanks to the

development of an actual mobile application that will be tested on real-world traces and through

actual trials. For what concerns overall network performance a graphical visualization tool will be

used to show the network dynamics while the eCOUSIN solutions are applied.

In this way, the demonstrator can show the impact of the developed solutions on the two sides of

the consumer-provider field at once, thus making clear what are the pros and the cons of applying

the project results in real environments.

1.4.3 Functionalities

The described components and their functionalities are to be seen in close relation with the modules

and functionalities as presented as part of the initial system architecture of eCOUSIN in [D2.2,

Section 5]. For the demonstrator of the time-unconstraint content delivery (long-term prefetching)

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 16 of 51

Copyright © eCOUSIN Consortium, June 2014

to mobile devices, three different functionalities are defined: Social data collection and analysis,

Content access prediction, and the integrated Prefetching of content items. Their exact mapping to

the modules in [D2.2] is described in Section 3.4. In particular, the following modules are involved for

the presented functionalities: Social Data Collector, Data Analysis, Mining, and Aggregation, Social

Predictor, Prefetching, and Network Monitoring. In a similar way Bandwidth Availability Prediction,

Bandwidth Allocation Optimization and Network Visualization functionalities will be realized for the

mobility-aware content delivery scenario (short-medium term prefetching). Finally, the demonstrator

will showcase the interaction of all the functionalities in the overall scenario.

1.4.3.1 Social Data Collection And Analysis

Collecting and analyzing social information is a key functionality of the demonstrator and a

prerequisite for all further functionalities of the mobile prefetching demonstrator. This functionality

is going to be implemented in a Social Data Collector module that is described below. For further

processing, the collected data has to be analysed and aggregated to perform content access

predictions and prefetching decisions. This processing happens as part of the Data Aggregator of the

prefetching application and thereby conceptually as part of the Data Analysis, Mining, and

Aggregation module of eCOUSIN. To ease the analysis of the data, visualization functionality for

some key properties of the collected and aggregated data is going to be provided as well.

Furthermore, extended data collection and analysis functionalities are required to collect usage

traces of individual OSN users for later evaluation and assessment purposes. This functionality,

therefore, is also going to be part of the Data Analysis, Mining, and Aggregation module.

As the envisioned prefetching application is planned to be run by an individual user on his own

mobile device, it is assumed to be able to access the OSN with the content access permissions of this

particular user. It can retrieve structural information on the user’s one-hop friendship graph, meta-

data about the user and its friends, as well as the ongoing interactions of the user with its friends and

the interaction history. Besides, the app can access the news feed of the user that aggregates the

most recent activities that might be relevant to the user. The application has to access and retrieve a

subset of this available information for any further analysis, processing, and aggregation. The vision

is that the application can access multiple OSNs that the user actively uses such that content can be

prefetched for these different networks together. For the proof-of-concept implementation, the

functionality is assumed to be able to access a single OSN, but this could be extended later on.

1.4.3.2 Content Access Prediction

Based on aggregated social information, including structural information on a user’s friendship

graph, other meta data, and the current news feed, content items have to be determined that a user

will access with a high probability in the near future. This functionality is part of the Data

Management Plane of eCOUSIN and implemented by the Social Predictor module that is introduced

in Section 2.4.4.

Content items that were identified as being relevant for the user are passed on as prefetching

candidates to the prefetching mechanisms. The prefetching mechanisms then deal with the actual

download of content items. To allow for prioritization in the prefetching process, it would be

desirable to assign items numeric importance/relevance values on a yet to define scale.

The prediction functionality itself might consider rather static social properties of content items, e.g.

whether they are part of the user’s news feed due to group memberships or shared by direct friends.

Besides, also rather dynamic properties could be used to decide on an item’s relevance, such as the

temporal importance of a relationship to a friend. The latter could be determined using the user’s

interaction history, e.g. how often a user liked/shared/commented posts by a certain friend. In

addition, also input from global predictions could be used to influence the identification of

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 17 of 51

Copyright © eCOUSIN Consortium, June 2014

prefetching candidates. Global predictions could come from a module of the eCOUSIN Data

Management Plane that takes a broader view (in comparison to the limited view of the individual

user) on an OSN into account to predict, e.g. content that is about to be viral and, thus, also relevant

to the user.

1.4.3.3 Prefetching of Content Items

Based on the identified content items that are prefetching candidates, decisions have to be taken

when and how to download/prefetch which of these content items. This functionality is part of the

Content Dissemination Plane of eCOUSIN and implemented by the Prefetching module that is

introduced in Section 2.4.7.

Some of the items might be more important than others as identified by the Social Predictor.

Besides, the time to download the items might be limited by the user’s connection to a WiFi network

and by the available bandwidth of that connection. The prefetching functionality should account for

these characteristics. To plan the downloading process, input from the Network Layer of eCOUSIN

and in particular the Network Monitoring module is required on the network availability.

For an extended scenario, it is planned to investigate the potential of exchanging prefetched content

items with other clients in proximity using WiFi Adhoc communication and, thus, further offloading

traffic from the involved infrastructure-based networks. Here, also input from the Network

Monitoring module is required to detect Adhoc partners in proximity of a device.

To round up this part of the demonstrator, the prefetching application requires a way to allow users

to access prefetched content items on the mobile device. It would be desirable if this functionality

could be integrated into an existing mobile OSN client, such as the Facebook App, in a seamless way.

In particular, the app should act as usual but redirect the access to video to the locally stored video

rather than, e.g. the Youtube App. How this could be done and, more importantly, how the view on

the news feed by the official Facebook App and the Social Data Collector could be synchronized, is

yet an open question. For the time being, this functionality is planned to be realized as a Facebook

clone application that is under our full control and synchronization can be guaranteed. Due to the

many open questions, this part of the demonstrator is going to be reported in a later version of this

deliverable.

1.4.3.4 Bandwidth Availability Prediction

The system will predict the bandwidth availability based on statistical prediction on the user mobility

and typical bandwidth availability on the predicted path. It shall be possible to provide bandwidth

availability estimate from a few seconds up to minutes and tens of minutes in advance. The predictor

shall provide a confidence range of the provided estimate. This function will contribute to the

realization of the prefetching modules defined in D2.2 (section 5.2.1) through the network

monitoring functionality.

1.4.3.5 Bandwidth allocation optimization

Given some future channel condition knowledge, it shall be possible to schedule transmission in

order to optimize some objective function. For instance, for the case of real-time contents, the

objective is to minimize the re-buffering time and the bandwidth cost (the bandwidth cost is higher

when the capacity is lower), while for time unconstrained contents only the bandwidth cost

optimization is needed. Again, this functionality is a component of the Network Resource

Configuration functionality defined in D2.2.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 18 of 51

Copyright © eCOUSIN Consortium, June 2014

1.4.3.6 Network Visualization

In order to graphically evaluate the network behaviour, simple graph based visualization is needed.

For instance, it shall be possible to show link metrics, such as the link bandwidth cost and throughput

graphically on the edge of a graph, where edges represent links between users and base stations. In

addition, vertices (representing users, base stations and servers) shall provide graphical indicators of

their status, such as the buffer state or the actual re-buffering time.

2. MODULES

The eCOUSIN functional architecture, presented in the Deliverable 2.2, is formed by three layers: the

Social Layer, the Content Dissemination Layer and the Network Layer. Each of these layers includes

different functional modules that constitute the basis of the modules implemented in each one of

the demonstrators.

Figure 2 – eCOUSIN functional architecture

Next we describe each of the modules implemented by each demonstrator and describe the

interdependencies between them.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 19 of 51

Copyright © eCOUSIN Consortium, June 2014

2.1 Content Placement

2.1.1 Social Data Collector

The social data collector module has been implemented as part of our contribution in WP3 where we

have designed and implemented tools that collect data from different OSNs (Twitter, Facebook and

Google+) and store the information in a database. There are two main pieces of information of

interest for this demonstrator: the user’s social graph (that includes the links between this user and

other users as well as the nature of that link (friend � follower or followed � friend) and the user’s

geographical location (if available). This database will be used in order to produce the emulation

scenario of this demonstrator including a realistic social graph formed by the users considered in the

emulation. Note that the information about the social graph will serve as input to the Data Analysis,

Mining and Aggregation module.

2.1.2 Content Info Collector

This module is responsible to parse user posts in order to identify posts that include content (e.g., a

video or a photo) to be distributed. Note that the content can be directly embedded in the post or

the post can include a link to an external content (e.g., a link to a YouTube video). Furthermore, it will

identify the user who uploaded a specific content and will collect other important information about

the content such as: type (e.g., video vs. photo), size or location (e.g., external server in the case of

YouTube videos).

This module will provide information regarding the content and uploader ids to the Data Analysis,

Mining and Aggregation and the content id to the Social Predictor module.

2.1.3 Data Analysis, Mining and Aggregation

This module will receive as input the user-id of the uploader for a given content from the Content

Info Collector module. Furthermore it will receive the social-graph of that user from the information

obtained from the tools developed in the WP3 that form the Social Data Collector module.

It will process the received information and provide as a result a list of user-ids with their associated

properties (i.e., geographical location). These user-ids correspond to the followers of the uploader

who are more likely to consume this specific content. This module will provide to the Social Predictor

module the uploader’s user-id and location, the list of followers and their location and the associated

content-id.

Note that this module needs to process information associated to multiple content/uploader pairs in

parallel and in real time.

2.1.4 Social Predictor

The social predictor module will receive from the Data Analysis, Mining and Aggregation module the

uploader’s id and its location and the list of followers with their location and the associated content-

id. Furthermore, using this content-id it will retrieve from the Content Info Collector the specific

information about the content (e.g., type, size and location). Using this information the Social

Predictor will implement the algorithms designed in the WP4 in order to predict the specific locations

(and thus their associated cache servers) where the content is more likely to be consumed based on

the social and location information of users.

This module will provide input data to the Content Placement module to implement the social

enhanced content placement solutions.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 20 of 51

Copyright © eCOUSIN Consortium, June 2014

Figure 3 - Modules implemented in the Content Placement Demonstrator and their

interdependencies

2.1.5 Content Placement Strategies

This module is responsible for implementing both traditional content placement and social-enhanced

content placement strategies.

Among traditional content placement strategies we will focus special interest to pull-based caching

strategies since it is one of the most widely used strategies by current Content Distribution

architectures such as CDNs. In this strategy a specific content is cached in a local cache server after

the first request from a user located in the geographical area associated to that cache server. We will

also consider push-based content placement strategies.

Furthermore, this module will implement social-enhanced content placement strategies that are

designed in the WP4. These strategies include pull- and push-based algorithms that extend

traditional solutions by taking into account the information provided by the Social Predictor

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 21 of 51

Copyright © eCOUSIN Consortium, June 2014

regarding the most likely location where content is expected to be consumed based on the social

graph and location information of users.

We will develop a mock-up Internet using a network Emulator. In this emulator we will implement a

realistic scenario where different Autonomous Systems (ASs) will be represented as well as the

connections and delays between them. Moreover, each one of the represented ASs will use a cache

server as a gateway connection with the users.

This emulator will be the base where the users and the services will be connected.

2.2 Personal Sharing Clouds

The Personal Sharing Clouds use case will impact several functional architectural elements at each

layer. In the following figure we perform a mapping of the impacted components. Those ones

highlighted by continuous lines are the central ones, where the demonstrator aims at adding core

functionalities. Those highlighted in dot lines are the ones the demonstrator aims at reusing and

possibly side contributing to the functionalities list.

Figure 4 - Modules implemented in the Personal Sharing Clouds Demonstrator.

The overall use case is described by the Figure 5. The main idea of the use case is to link social

identities to media centres, in order to create a real network among them, exploiting the user’s

social relationships. As of Deliverable D6.1 just a small part of the overall demo was implemented,

which was the federated social network part. The final objective of this use case is to build a dynamic

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 22 of 51

Copyright © eCOUSIN Consortium, June 2014

network leveraging on Online Social Networks as a meeting point. Since the mission of the project is

to bring value to open solutions, besides using Twitter and Facebook we decided to implement an

opensocial/ostatus protocol stack to leverage on.

Figure 5 – Overall Personal Sharing Clouds picture

In the next subsections we describe the updates with respect to the status of the modules reported

in Deliverable D6.1 [D6.1].

2.2.1 Social Data Collector

The social data collector implementation of D6.1 just took into account the Federated Social Network

part, implementing interfaces to link users belonging to different social networks, compliant to the

federation standard. Interfaces and data exchanges have been already described there.

The Social data collector is responsible for exploring and keeping updated the social relationships

among users, which will be used to build a social based peer-to-peer network among users with the

application installed on their media centre. This module acts as a social observer: when a user links

his/her account to a media centre, it grabs online and federated social network data in order to

understand who in the user’s social graph is willing to be linked to the network.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 23 of 51

Copyright © eCOUSIN Consortium, June 2014

Social information is then processed and passed to the Data Analysis and Mining module which will

be responsible of actually setting up the network resources.

2.2.2 Data Analysis and Mining

The Data Analysis, and Mining module will be responsible for actually controlling the merging of the

local sharing nodes with remote ones.

The information provided by the Social Data Collector is passed to this module and specifically it will

know:

• If and how users having this app installed on their media centres are linked among them;

• The type of social relationship between them;

• A unique way to reach each Social Merger endpoint remotely.

The local Data Analysis and Mining module interacts with remote Data Analysis, Mining and

Aggregation modules to generate a symmetric key and provide one another the references to be

connected (e.g. public IP address and ports). By means of the key and the type of social relationship

each sharing node knows which filtering rules should be applied on packets coming from the

Internet.

The Data Analysis and Mining module forwards the required information (including the IP addresses,

ports, key and filtering rules) to the eCOUSIN proxies, which are actually responsible of giving

access/move/place content.

The Data Analysis and Mining module is orchestrating the way in which the system puts the different

users in contact. This is the point in which the user’s social actions start influencing the

communication network; this is the point in which having a clear picture of social relationships

becomes a requirement.

2.2.3 Content Lookup

The personal sharing clouds demonstrator has a content lookup component by introducing a support

for Social p2p sharing of contents structured over two layers: sharing services and shared contents.

Once the system determines whether a content can be shared to other nodes, the content lookup

will be able to determine which service (e.g. UpNP or simple file sharing) is the most appropriate to

share it. The basic idea is to decouple the content with the mechanism to share it, this will give the

infrastructure the capability to be flexible and extensible thus able to support the unconstrained

growth and evolution of sharing mechanisms together with clients embedded in commercial devices.

The Content Lookup module acts in this use case as a Resource Locator. It is responsible for

periodically discovering:

• Services shared on remote nodes, either performing service discovery requests for known

services or directly requiring to remote nodes the list of registered services;

• Content provided by a preselected set of well-known services.

From a user’s perspective the content lookup contributes to allow the access to physical resources

shared by other users. Once the network resources have been set, based on social information, this

layer will help in discovering remote media, acting as an interface to show them as local resources.

2.2.4 Content Copy Selection/Content Dissemination Algorithms

Network resources are configured based on social information in order to reduce traffic load. This

module chooses the right delivery method to serve a content to a particular client (e.g. direct

delivery or with a peer-assisted video delivery protocol). These algorithms are responsible of placing

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 24 of 51

Copyright © eCOUSIN Consortium, June 2014

the content in the best place, where best means the place maximizing globally the level of user

experience.

The Content Dissemination Algorithms module takes into account social information and network

traffic/geographic information. Considering a specific content, if we know it will be shared over a

social network on a specific territory the content should be placed in the node which can be accessed

more easily over the network in that specific territory. Content dissemination algorithms will take

into account network/hardware capabilities of nodes.

In the case where a peer-assisted video delivery protocol is used to help offloading the end users’

sharing nodes, this module selects the most adequate node among the different options (sharing

node or peer-assisting server) to serve the requested content, once again to place the content so to

maximize the overall level of user experience.

2.3 Information-Centric Networking

This section provides a high-level view of the interactions between the functional modules of the

eCOUSIN architecture (as defined in the deliverable D2.2) that are involved in the information-centric

and social-driven demonstrator, as depicted in Figure 6.

2.3.1 Social-Aware Content Naming Scheme

The social-aware content naming scheme developed in our demonstrator allows managing and

addressing pieces of content by names independently from their location. Our social-driven solution

is based on the differentiation of end-users depending on the degree of their popularity in the OSN

graph. The locality-aware property implies that the OSN application needs to determine when and

how to change the status of a user. This can be done with information of the social graph of the user

from the module Data Analysis and Mining in the Social Layer of the eCOUSIN architecture. A

reconfiguration announcement in the network for the adaptive popularity change needs then to be

defined for the user and the history of some past messages could be imported in this new profile for

being remotely accessed.

2.3.2 NDN Content Dissemination Algorithms

The real-time media streaming case study is put forward in the demonstrator for proving the validity

and testing the performance of the proposed content-centric and social-driven delivery layer in a

realistic ISP application context, presenting stringent QoS/QoE requirements. To support the timely

delivery requirements of media streaming services over the NDN architecture, the following model

will be developed in the demonstrator. Media files (i.e. videos) are decomposed into identifiable and

named chunks according to our social-driven naming scheme, and then a suitable transport protocol

over NDN requests the fetching of content data at the granularity of chunks, specifying also required

delivery time.

The time requirement for live streaming might be turned into priorities for treating the data packets

in the network according to the time elapsed and the network conditions. Appropriate deadline-

aware link scheduling schemes might then to be in place at network nodes. Those relevant

interactions between the modules Network Monitoring and Content Dissemination of the eCOUSIN

architecture will not be implemented for the demonstrator.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 25 of 51

Copyright © eCOUSIN Consortium, June 2014

Figure 6 - Modules implemented in the Information-Centric and Social-Driven Demonstrator and

their interdependencies

2.3.3 In-Network Content Routing and Caching

This module will be based on our naming scheme defined at the Data Management Plane of the

eCOUSIN architecture. Following the NDN architecture, it will contain functions necessary for the

treatment of named content from Data Management Plane. Specifically, it will provide functions for

the handling and forwarding of the INTEREST and DATA packets defined in NDN for requesting and

retrieving named content.

It will also include control functions for the management and maintenance of the Pending Interest

Table (PIT) and Forward Information Base (FIB). The routing of data will follow the rules declared in

the FIB module of the NDN nodes. The FIB will be filled via an on-path routing protocol such as

OSPFN or LSRN. This will allow end-users to inform about their reachability for contents they offer.

Typically, it is mostly valid for local end-users who will provide the content themselves. This FIB

configuration is one option. Another one is via the ICN controller, which will have knowledge of the

network topology and social network graph and can dynamically control and configure the NDN

routers via a configuration protocol (see next sections). The ability to know if an end-user should

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 26 of 51

Copyright © eCOUSIN Consortium, June 2014

behave as a local one or a non-local one could be on a declaration-basis but could be also known

from the Data Analysis Mining Aggregation module.

Additionally, as pervasive caching is a native feature, NDN nodes are also enhanced with functions

for nodal caching and nodal cache control. Cache control encompasses the required intelligence for

controlling the caching functions in terms of a) caching decisions at the node level (which requested

objects to consider for storing in the cache) and, b) cache replacement policies (what to drop in

order to meet the needs of live streaming delivery).

Having also knowledge of cached contents, the controller might dynamically configure the routing

tables so that requests are forwarded to appropriate nodes.

2.3.4 Module IN1: Logically Centralized ICN Controller

The ICN controller is part of the eCOUSIN Network Resource Configuration functional block. When

the controller receives a cache update message, it re-calculates routes using topological and OSN

information. It then forwards the updated information to the ICN controller client in the In-network

Routing/Caching functional block accordingly.

Figure 7 - ICN controller architecture

ICN

Controller

ICN

Topology

LL ControllerSwitches

LL_Topology

Content meta-info

(CID)

attachment
points

ICN node

Service

Table(SR)

ICN nodes

add_service(ID, ICN_node)
rem_service(ID, ICN_node)
start_cache(ID, ICN_node)

remove_cache(ID, ICN_node)
previously

negotiated policies
for content access

Management and

Control Functions

ICN_Topology

Link Layer Functions

ICN FW module

ICN Agent

updated_mapping(CID)
add_service (CID)

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 27 of 51

Copyright © eCOUSIN Consortium, June 2014

The ICN controller component manages the mapping of service names to ICN nodes and the

launch/removal of caches on facility nodes.

The ICN Controller learns about new mappings from observing the service announcements of the

controlled ICN nodes. Moreover, it processes incoming content requests and further information

from the topology component to calculate a path across the network from requestor to the

appropriate service.

The resulting overlay path is associated with the corresponding resources and their overlay

connections, and the corresponding routing information is pushed to the registered ICN agents which

in turn perform the required modifications to the forwarding tables of the concerned ICN forwarding

nodes.

The service table entries at the controller and on the ICN nodes are provisioned without a lifetime

definition. As a side effect of this mechanism of deploying the overlay path the controller is

automatically informed about local service de-registration events communicated through the ICN

client whenever a service gets removed and can update his service table immediately.

2.3.5 Module IN2: ICN Controller Client

The ICN controller client is part of the In-network Content Routing/Caching functional block and is

deployed on ICN forwarding nodes. The ICN controller client is able to communicate out-of-band

with the controller IN1 and instructs the forwarding node.

Figure 8 - ICN node configuration

The ICN controller client offers an interface to the centralized ICN controller to enable the

configuration of forwarding tables and to receive routing information for adding, modifying and

deleting forwarding rules.

Service Table Flow Table

ICN Agent

IP Forwarding Table

Interface with ICN

controller for

Service Table

configuration

ICN Daemon

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 28 of 51

Copyright © eCOUSIN Consortium, June 2014

The ICN controller client receives instructions from ICN controller in a meta-format, which describe

the corresponding modifications independent from the implementation of the forwarding nodes

with different implementations. Therefore, the ICN controller client will translate the routing

information updates provided by the ICN controller to make the corresponding modifications also to

the Forwarding Information Base (FIB) of NDNx based forwarding nodes.

As an option, forwarding table updates related to caching can be tracked by daemons running on the

ICN nodes that send back registrations to the ICN controller via the ICN interface (see Figure 8).

2.4 Content Offloading for Mobile Networks

Figure 9 - Mapping between the demonstrator modules and the functional architecture.

The high-level architecture of the mobile prefetching application is shown in Figure 2 while Figure 9

provides details on the mapping between the demonstrator functionalities and the high-level

architecture. Note that modules C01-C06 act on the data (collection and management) plane of the

architecture, while module C07 provides a hook in the content plane, and modules C11-C12 and C14

provide networking functionalities. Finally, modules C10 and C13 are depicted as external since their

role is ancillary to the architecture itself as they aim at simulating and visualizing the results of the

system.

From a different perspective, modules C01-C05 and C07 focus on selecting what content to prefetch,

while modules C06, C08, C09, C11, C12, and C14 address when and how to prefetch a given content.

Modules C10 and C13 are to visualize the results of the other modules.

Finally, the mobile phone application will show the enhanced user experience by leveraging on

modules C01-C09, C11, C12, and C14, while the overall network performance improvement will be

shown as a result of the interactions among modules C07-C14.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 29 of 51

Copyright © eCOUSIN Consortium, June 2014

The shown modules are a subset of the modules presented in the overview on the eCOUSIN modules

for the time-unconstraint content delivery use case as presented in [D2.2, Section 5.2.1]. In the

following subsections, the core modules of this architecture and their implementations are

introduced.

Figure 10 - The core mobile prefetching architecture and its modules

In Figure 10, the overall architecture of the Demonstrator and its modules are presented. We have

there high-level components, the Network, the Content Prefetcher and the Social Data Manager (and

Collector).

The Network component continuously analyze the network status in order to provide the other

components with numerical indicators related to the effectiveness of prefetching at any given time in

the future. This component exploits a Network database, where typical network behaviours and how

to deal with them are stored.

The Content Prefetcher includes the functionality modules which are necessary to download the

content. Here prefetching candidates are scheduled to be downloaded by the Download Scheduler

module. This allows to postpone the download until certain conditions are met e.g. a WiFi

connection is available. The Download Client module performs the actual download and takes care of

connection abortions and also chooses the quality of the video if multiple qualities are available. The

decoder service helps the Download Client to find the URI of the mp4 video file. Therefore it gets a

video id as an input and outputs a URI or a list of URIs to the mp4 representations of the video

hosted at the content provider or a CDN.

The Social Data Collector & Manager continuously monitors the OSNs used, which is at this point in

time Facebook only. For every OSN used, a special crawler is used. The Social Data Collector hands

the information acquired by the crawler module to the Data Aggregator Module. Here the date is

brought into a common representation which is stored in a local database by the Social Tracer

module. To determine which items should be prefetched first the Social Predictor module stores the

candidates with a priority in the local Prefetching Candidates database, which is used by the Content

Prefetcher.

The user of the App is using the native Facebook App. If a YouTube video is accessed the Video Player

module is called by intent and plays the video. Additionally the user behaviour observed by the Video

Player is send to the Social Tracer module and stored.

2.4.1 Module C01: Social Data Collector

The Social Data Collector module was implemented, so far, to access the OSN Facebook only. Further

crawler subcomponents for other OSNs could be added later on.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 30 of 51

Copyright © eCOUSIN Consortium, June 2014

For the access to Facebook, the Facebook Graph API
3
 was used. In particular, two different methods

are currently used to access the Graph API: the Facebook Query Language (FQL)
4
 and the Facebook

SDK for Android
5
. Compared to the previous Version of the Social Data Collector, where RestFB was

used, FQL allows for more sophisticated queries which move data processing from the client side to

facebooks’ side. By using FQL and the Facebook SDK for Android, JSON objects are returned from the

APIs that are processed in the Social Data Collector and converted into Java objects. The Social Data

Collector module collects structural data and metadata, such as the one-hop friendship graph of a

user, its membership in user groups, or its interests. Besides, information on content items that are

presented to the user on the so called news feed is retrieved. Using the Social Tracer App, this data

can actively be used to trace how a user interacts and consumes content. Furthermore, the history of

a user’s interaction with content items can be analysed. Here, the information on videos that were

watched by the user in the past would be of particular interest for the work on prefetching. While

this detailed information is not available as such, it is possible to retrieve all content items that the

user interacted with, i.e. liked, re-shared, or commented on in the past. In addition our Video Player

module keeps track of fine-grained events while the user is playing YouTube videos. This allows us to

gain in-depth information about the user’s video consumption behaviour, e.g. how long and when a

video was watched as well as if the user paused or skipped the video during the playback.

To access all the previously described data using the Facebook Graph API turned out to be very time

consuming if done in a single-threaded way. The reason is the fact that the response times of a single

query can be very high. We observed response times in the order of almost two seconds to fetch 25

posts from a sample user’s news feed. Due to the required nested requests that are necessary to

retrieve, e.g., the likes and comments of all the post, the overall response time can easily add up to

several minutes. This is especially a problem if a user front-end is connected to the data collector and

waits for input to be rendered for the UI. Facebook monitors the average API response time live on a

webpage
6
, but does not state its absolute value. The graph suggests that the response time seems to

be rather stable and only changing gradually over the day. Together with our observations over two

months, we assume that response times in this order are the usual case, not an exception. In the

previous version of the Social Data Aggregator, we relied on a highly multi-threaded approach to deal

with this fact. It turned out that this greatly helps to reduce the overall time to retrieve the data.

However, we figured out a more elegant way to get our hands on the data. By using FQL queries we

are able to retrieve the same data in a much faster manner. Limited pre-processing like filtering is

possible and helps to reduce processing load on the client. For example the likes of a comment can

be requested, as well as the likes that were given from the users friends only.

2.4.2 Module C02: Data Aggregator

The Data Aggregator module uses the inputs from the Social Data Collector module, which are

essentially Java representations of the retrieved content items and metadata, and stores them in a

local SQLite database. The Data Aggregator module, thereby, can do an initial filtering and

aggregation of the data to avoid duplicate entries in the database and combine the input from

different OSN crawlers. As for now we only use a single crawler/data collector for Facebook, the

current aggregation part is rather simple.

3
 Facebook Graph API: https://developers.facebook.com/docs/graph-api/

4
 FQL: https://developers.facebook.com/docs/reference/fql/

5
 Facebook SDK for Android: https://developers.facebook.com/docs/android/

6
 https://developers.facebook.com/live_status/

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 31 of 51

Copyright © eCOUSIN Consortium, June 2014

The structured and relational representation of the data in the local database eases the work with

the data for all further steps, using the build-in features and capabilities of the database engine. The

input and output representations and the described interactions with other modules are depicted in

Figure 11.

Figure 11 - The Data Aggregator module and its dependencies.

2.4.3 Module C03: Social Aggregator

The Social Aggregator module is a desktop application implemented in Java to allow the analysis of a

single users’ Facebook feed to study and derive content to be prefetched from the incoming items.

The analysis is based on past interactions between the user running the software and his/her friends

(the history). For this, the Facebook feed is fetched from Facebook servers to allow a more

comprehensive analysis of the users’ interactions. This is necessary, as the Facebook API heavily

restricts the users in this respect. The collected information is used to analyse and visualize the

relations between a user and his friends. Visualizations currently implemented are a user interaction

graph and a modification of the FB stream allowing filtering the displayed posts based on the content

type.

2.4.3.1 Information Retrieval

As stated before, the implementation makes use of the RestFB library as part of the Social Data

Collector module and, thus, uses the Graph API to connect to Facebook. After an initial aggregation

and filtering, the retrieved data is available as local SQLite database as output of the Social

Aggregator module.

By issuing SQL statements to the database, filtering, sorting and combining table entries becomes

possible. Such it is possible to return videos appearing on last week’s FB feed, which were

commented or liked by friends. These are then candidates likely to be pre-fetched. This selection

process can then be improved by including past interactions between the user and his friends to

weigh the likeliness of future interactions. This weighting can be based on the number of exchanged

messages, the percentage of liked or commented videos posted by this user, or the general number

of comments by friends, who watch similar videos.

The Social Aggregator is structured as detailed in Figure 12. All components except the Visualization

are written in Java and triggered by a central component. The authentication is implemented as a

Java WebView, as it is not easily possible to retrieve the generated access token from the browser

without user interaction.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 32 of 51

Copyright © eCOUSIN Consortium, June 2014

Figure 12 - Preliminary architecture diagram of the Social Aggregator

After the successful authentication, the Facebook Client retrieves the friends list, the wall posts and

the interactions on these from FB. The information retrieved is:

• List of friends

• Posts visible on the wall

• Posts visible by friends

For each post, additional information is loaded:

• All comments

• Number of likes

2.4.3.2 Data Visualization

The collected data can be visualized in different ways. Currently implemented is a static graph,

visualizing the user’s interactions with his friends. The collected data can also be used to generate a

FB feed, which is filtered and ordered by different criteria.

The interaction graph is generated by counting the comments or likes visible to the user of the Social

Aggregator from each of his friends. The resulting list of friends with the interaction count is then

sorted by the number of comments and visualized using D3
7
. An example of the visualization is given

in Figure 13. In the resulting graph, ten friends with the highest interaction count are highlighted.

7
 JavaScript based plotting library: http://d3js.org/

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 33 of 51

Copyright © eCOUSIN Consortium, June 2014

Figure 13 - Visualization of the user’s interaction count

This information can then be used to weigh or filter incoming posts before any interaction has

occurred. This promises to be useful for the selection of items to prefetch to local devices, in

particular video content.

A first implementation of the history-based FB feed filtering is also implemented. Currently it is

possible to filter the feed based on the last update time and content type (i.e. all/photo/video). The

remaining posts are then sorted by the number of interactions on the post. In the first

implementation we count the comments and likes on each post, and sort by comment count first,

then by like count. An example of the FB feed filtering and sorting is given in Figure 14. The left is a

screenshot of the actual FB stream, while the screenshot on the right is the filtered and sorted feed.

On the left, the user must scroll down a bit until the first video is displayed. On the right, the video as

defined by the filtering and sorting is displayed at the first position.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 34 of 51

Copyright © eCOUSIN Consortium, June 2014

Figure 14 - Comparison of the original and filtered FB feed

The static visualization of the interaction count is statically generated by the Java code. The feed

filtering is implemented using a simple Java based web server providing a web socket to allow the

page to refresh itself.

2.4.3.3 Deployment

The Social Aggregator is written in Java to allow deployment on a variety of different systems. As an

analyser, the software can be run on different desktop systems. After the user has authenticated, the

data is fetched from the FB server and the visualizations are prepared. Then the user can connect to

the provided web server or open the generated HTML file to visualize his/her social network and

his/her interactions.

Another deployment option is to run the Social Aggregator on a centralized machine for a number of

users. This allows retrieving the information over a longer time interval without affecting the user.

The Social Aggregator can then be used to give recommendations for items to prefetch, based on the

collected history. To allow this, an API must be implemented to allow configuration of the Social

Aggregator and retrieval of the suggestion. The only information needed for operation is the userId

and an access token of the user requesting the service.

2.4.4 Module C04: Social Tracer

The Social Tracer module has two goals: first, it is used to collect usage traces for real mobile OSN

users and, second, it is used to test and further develop the functionality of the Social Data Collector

and the Data Aggregator module that were presented above, as well as the Video Player module. The

collected usage traces are essential for the analysis of the content access behaviour of real users to

design and implement advanced prediction mechanisms for the Social Predictor module.

To collect the user traces, the Social Tracer uses the output of the Data Aggregator, presents the

news feed posts to the user and logs the user’s interaction with the items. In particular, the access to

videos that are shared using the OSN are relevant for the study on prefetching and the design of

prediction mechanisms that are going to build the core of the Social Predictor module. The user

accesses its Facebook wall like common over the native facebook app or the browser on his

smartphone.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 35 of 51

Copyright © eCOUSIN Consortium, June 2014

The collected traces can be uploaded to a trace server that is run by us. The upload is triggered

periodically by the app.

Figure 15 shows the Social Tracer module, its interactions and related modules.

Figure 15 - The Social Tracer module and its dependencies.

For reasons of privacy and to be compliant with the German law, collected trace data is anonymized

directly in the Social Data Collector module, when run in the tracing mode. Therefore, all personal

information of a user is hashed, using the cryptographic hash function MD5. This way, we are still

able to correlate content items as the hash function will always map a certain string to the same hash

but we do not process any personal information of a user. Once a user study is finished and all users

uploaded their traces to the trace server, the data sets are further anonymized by replacing hashed

identifiers with enumerations (an integer value for each hash); where the same hash values can be

assigned to the same items.

2.4.5 Module C05 Video Player

The Video Player module is going to be responsible for the mobile video playback. This module is

only called when the user opens a video in his App. Therefore the user can use the native Facebook

client without limitations but leverage on our prefetching app. If the user clicks on a YouTube video

in his stream an event is raised from the Android system. The Video Player module has been

registered on the Android system to handle such events. Therefore the user is allowed to choose

between all video players he has installed. He can choose to always use our video player for video

playback and won’t be asked every time which player he wants to use.

Besides the playback, the Video Player module is going to record different events related but not

limited to the user behaviour. These event logs are then passed to the Background Service, which

stores the event logs in a local MySQL database. The following events are planned to be recorded:

• The system time, when the Video Player module has been started;

• The system time, when the playback starts;

• The system time and the playback time, when the video is paused by the user;

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 36 of 51

Copyright © eCOUSIN Consortium, June 2014

• The system time and the playback time, when the video is resumed by the user;

• The system time and playback time, when the video player is closed;

• The system time and playback time before and after the user skipped in the video.

Figure 16 - The Data flow of the Video Player module

2.4.6 Module C06: Social Predictor

The Social Predictor module is going to be responsible to select/identify content items (e.g. videos)

from the personal news feed that the user with high probability will access in near future. The

module bases its prediction on the collected and aggregated structural and history information as

delivered by the Data Aggregator module.

Besides identification, the goal is also to assign a relative importance value to the individual items.

This information is then going to be used by the Content Prefetcher module to plan and execute the

download of content items.

2.4.7 Module C07: Content Prefetcher

The Content Prefetcher module is going to be responsible for the planning and execution of the

prefetching/download of content items that were identified by the Social Predictor module as being

relevant for the user with a high probability in the near future. The module uses input on the

network status to trigger the download process or learn when to schedule the next downloads. To do

so, the module might use simple rule-based or learning models to identify the best time to download

relevant items.

Downloaded items should then be opened and presented to the user once he accesses the item on

his smartphone. It is yet to be investigated how this presentation to the user could work. While

having a proprietary Facebook-clone application that is used by the user to access the OSN would be

the easiest solution to control and trigger the access to the content item, it is rather hard to maintain

such an application with the rich set of features that state-of-the-art OSN applications, such as the

official Facebook App, provide. Therefore, a hybrid approach would be desirable, where the

prefetching runs in the background as a service and intercepts the access of videos from the official

Facebook application. We are currently investigating whether this is possible. All core modules of the

mobile prefetching application that were described so far should be compatible with such an

approach.

2.4.8 Module C08: Download Scheduler

The Download Scheduler module is going to determine, when videos are prefetched. A simple

approach is to download only if a Wi-Fi connection is established to benefit from the energy-saving

properties of Wi-Fi compared to cellular networks. Sometimes this might be insufficient since the

user is not connected to a Wi-Fi or if the video is predicted by the Social Predictor module to be

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 37 of 51

Copyright © eCOUSIN Consortium, June 2014

consumed in the near future. In this case a download has to be scheduled while the device has only

connectivity to a cellular network. To define this decision metric is ongoing work.

2.4.9 Module C09: Download Client

The Download Client module is going to perform the actual download. Therefore it stores the

prefetched files in a dedicated folder and marks the video as downloaded in the Prefetching

Candidates database afterwards. The module is also responsible for handling failures like aborted

downloads, e.g., when a TCP session is aborted due to a change or loss of network connectivity.

To download the videos we need a service which translates the URL of a YouTube video to the actual

URL of the mp4 file which we want to download. Therefore we use a small Decoder Service running

on a server. This server uses Youtube-dl
8
 to retrieve the URL.

2.4.10 Module C10: NS-3 Simulator Extensions and Test Scenarios

We plan to test our use case described in deliverable D2.1 and realized by the modules described in

the sections above by means of simulations. To this end, we intend to modify the Network Simulator

3 (NS-3), in order to both accept input from these modules and to be able to simulate properly the

related use case scenarios.

Initially, we aim for modifying the existing LTE scheduler implementations of NS-3, which currently

focus on a more conservative approach to the allocation of network resources. The modified versions

of NS-3 LTE schedulers will allow for a more dynamic resource allocation, modelling more accurately

the current commercial installations of LTE. This will be possible by taking into account when a UE

does not have any more data at the related eNodeB queues and then excluding it, by subsequent

scheduling decisions.

Also, we will create new modules that represent both the transmitting and receiving applications of

the server and the client respectively. Finally, we will modify a big number of already existing files in

order to generate custom traces, test scenarios that require core parts of the LTE network to behave

differently and allow proper integration of the new modules.

2.4.11 Module C11: Bandwidth optimization.

This module is intended to dynamically vary the bitrate of a multimedia server in order to take

advantage of the variations in capacity that a UE experiences during the consumption of multimedia

content. It will take as an input:

• The predicted future capacity of a UE;

• QoE constraints specific to the content being consumed, i.e., in the case of a video, the user

must not suffer pauses caused by rebuffering, despite the possible impact on the network;

• Further constraints, e.g., the module should not transmit more data than that can be stored

in the application buffer at any given time instance;

• Feedback from the UE client application.

This module will be implemented on the server side, with only minor extensions to the client side,

which will be limited to feedback generation.

The core concept of our approach is the following:

• Transmit at the maximum possible rate, allowed by the actual capacity and the constraints,

when the UE is experiencing good capacity compared to the expected capacity of the near

future;

8
 http://youtube-dl.org

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 38 of 51

Copyright © eCOUSIN Consortium, June 2014

• Avoid transmission when the UE is experiencing bad capacity compared to the expected

capacity of the near future and instead rely on the data that has been transmitted at

previous time instances;

• If the buffered data are not sufficient, transmit regardless of the possible impact on the

network.

Since the prediction of future capacity and the actual capacity are different, it is expected that the

actual rate of data being received will deviate from the predicted one as it has been modelled in

[BUIE14]. Thus, the server module will request feedback from the client module in order to assess

the magnitude of the deviation between the expected state of the UE and its actual state. If the

deviation is bigger than a threshold, the server is expected to recalculate the future allocated

transmission rates, in order to make the UE reach again an expected state.

2.4.12 Module C12: Bandwidth prediction

In order to be able to feed the Bandwidth Optimization module with predictions and their

confidence, a bandwidth prediction module is in order. For instance, this module will take into

account statistical information about user mobility and the bandwidth availability in a given cell.

In order to combine all the statistical information together, different predictors will be jointly used.

In particular, we are planning to have at least three different stages of prediction:

• the short term predictor [operating in the order of seconds or tens of seconds]

• the medium term predictor [operating in the order of minutes]

• the long term predictor [operating in the order of tens of minutes]

The first time will be based on models such as ARIMA filters, tuned according to the actual

information about the user position and the cell congestion information. This predictor is supposed

to offer the most accurate prediction of the available bandwidth.

2.4.13 Module C13: Network visualization

This module is intended to be an overall network performance visualization tool. It shall accept both

traces collected from simulation and real time output of network monitoring devices and web

applications. The idea is to be able to show the evolution of the network behaviour while the

eCOUSIN solutions are applied.

In particular, the visualization tool will build a dynamic network graph based on performance

metrics: vertex of the graph will represent nodes in the network, such as users, servers, etc., while

edges will represent relationships between any couple of nodes. With the term relationship, we

intent to capture any possible information related to two nodes at once: for instance, edges can be

used to represent the channel condition between users and base station or the social correlation

among users. In the former case, the graph will represent the wireless connectivity map, while in the

latter the graph will become the social connectivity map.

In addition, the network visualization tool will draw nodes and edges using different sizes and colours

in order to be able to easily represent node and link metrics at glance: for instance, it will be possible

to show the variation of bandwidth usage on a given link by varying the thickness of the edge

connecting the two devices, as well as representing the QoE perceived by a given user by varying the

colour of the vertex.

Finally, as a mean to evaluate the benefits of the eCOUSIN solutions, a split screen mode will be

considered in order to show the system working with and without them at the same time.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 39 of 51

Copyright © eCOUSIN Consortium, June 2014

2.4.14 Module C14: Passive measurement

This module aims at providing lightweight and frequent measurement in order to enable the

prediction to work on a time scale small enough for the bandwidth optimization module to operate

properly. Note that to efficiently run, the optimization module needs to be able to receive bandwidth

estimation samples at a frequency of about one per second. When mobiles are used intensely (video

playing, gaming, etc.), this is not a problem, since a passive monitoring application can measure the

throughput achieved by the device without performing any advanced operations.

Conversely, when the device is not so intensely used (browsing, email checking, etc.), it is important

to be able to estimate the bandwidth availability from very few communication samples. This

module achieves that by inferring the steady state throughput of a TCP connection by computing the

median bandwidth achievable by considering group of packets at one, thus providing the system

with a frequent estimation of the bandwidth availability.

3. ASSESSMENT

This section will describe the assessment of the different demonstrators.

3.1 Content Placement

3.1.1 Test CP1 (Data Collection)

In this test we will address the social and content information retrieval functionality. In particular we

will evaluate the Social Data Collector and the Content Information Collector modules. We plan to

test this functionality first on real OSNs (Twitter and Google+) and afterwards in our emulation

environment as part of the demonstrator. We will evaluate the capacity of these modules to capture

the information regarding the social graph associated with a user as well as the information about a

specific uploaded content, and properly store the derived information in a database for further use.

3.1.2 Test CP2 (Data Analysis and Social Prediction)

In this test we will address the data analysis and social prediction functionalities. In particular, we will

evaluate the Analysis, Mining and Aggregation and the Social Prediction modules. Again we will

evaluate these modules using both real data collected from Twitter and Google+ with the tools

implemented in the WP3 and controlled experiments in our emulation platform. In particular, we will

check the correct functionality and the coordination of these modules. They are expected to process

the social and content information and to produce a social-based prediction regarding the most likely

locations where a specific content is expected to be consumed.

3.1.3 Test CP3 (Emulation Environment)

In this test we will check whether the emulation environment allows us to reproduce the interaction

among users in a social network system. To this end, we will check the functionality of our mock-up

social network using the Analysis, Mining and Aggregation and the Social Prediction modules as a

social network and content provider services and we will simulate the existence of users in the

system publishing and consuming content.

3.1.4 Test CP4 (Content Placement Strategies)

In this test we will evaluate the correct functionality of the different content placement strategies

implemented within the Content Placement Strategies module. In particular we will develop

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 40 of 51

Copyright © eCOUSIN Consortium, June 2014

different scenarios for each of the implemented strategies in order to confirm that the placement is

done correctly.

3.1.5 Test CP5 (Integrated Demonstrator Test)

In this test we will evaluate the correct integration between the different modules of this

demonstrator and thus it involves all modules. We study the performance of the social-enhanced

content placement algorithms designed in WP4 in our emulation environment. Furthermore we will

compare the performance of these algorithms with the ones offered by traditional content

placement techniques.

In a first phase we will consider simple emulation set ups that allow us to carefully analyze the

correct integration of the different modules and the proper communication between them. In this

phase we will use the data obtained with the data collector to generate a scenario following the

parameters extracted from real traces. This scenario allows us to understand the best solution in

different circumstances

In a second phase we will use real data in order to evaluate the performance of social-enhanced

content placement solutions and compare them to traditional content placement mechanisms. To

this end we will select a subset of the connected users from the data collector and we will reproduce

the behaviour of these users in the social network.

This test along with the simulation studies conducted within WP4 will allow deriving conclusions

about the real gain that the proposed social-enhanced content placement solution brings compared

to traditional mechanisms.

3.2 Personal Sharing Clouds

3.2.1 Test PSC01 (Social Data Collector/Data Analysis, Aggregation and

Mining)

This functional test shall test the user linking and friend discovery phase which is strictly necessary to

set up the network. The user should access the media centre web interface and link one or more

social accounts to the media centre itself. The media centre should automatically discover which

social network friends/followers have the same app. Their names and their statuses (online/offline)

should appear as well as an access to an interface allowing browsing remote content.

3.2.2 Test PSC02 (Content look up/Content Copy Selection/Content

Dissemination)

In this functional test we will test the functionality of browsing remote resources on top of the social-

based peer-to-peer network. The application on the media centre should provide an interface to

browse local content and remote content the same way. Access to resources should be managed in

order to change if the social relationships change.

3.2.3 Test PSC03 (Hardware Performance)

In the assessment process a phase should be included to understand the precise hardware

requirements of the media centre hosting the application. Besides the regular playback and browsing

operations, local protocol dissemination of remote information tends to broadcast a lot of packets

which can someway slow down connections or create problems if the hardware of the media-centre

is not powerful enough. The goal of this test is to set precise hardware requirements for different

target environments

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 41 of 51

Copyright © eCOUSIN Consortium, June 2014

3.2.4 Test PSC04 (Usability Testing)

A heuristic analysis of the prototype performed by user interaction expert should give precise

indication of the operation needed to turn a prototype into a product.

3.3 Information-Centric Networking

3.3.1 Test IN1 (Content-Centric Routing Strategies for Twitter)

In this functional test, the demonstrator is in a first stage of development and will only provide an

integration of a Twitter-like social network over the proposed ICN architecture. The demonstrator

will be run either on a local network or using virtual machines, both targeting to emulate a realistic

networking environment. We will mainly verify that our locality-aware naming scheme is valid and

that our content-centric routing approach based on this naming scheme can work for publication and

retrieval of tweets as expected and in the same way as the vanilla Twitter application.

3.3.2 Test IN2 (Integration of Video Live Streaming)

In this second test phase, we will integrate the video live streaming capability into our demonstrator.

We will first ensure that the demonstrator can work correctly with respect to the use case defined in

the deliverable D2.1. In particular, we will verify that our proposed content-centric and social-driven

routing approach are correctly running, proving the feasibility to use NDN as a content transport for

an OSN such as Twitter.

3.3.3 Test IN3 (Content Information Aggregation)

In this test we will address the correct functionality to collect and aggregate content availability

information obtained from the content infrastructure via a daemon monitoring a caching node and

sending update information messages to an ICN controller

The daemon on the caching node tracks a local metafile for changes in a cache index. Upon

detecting changes in the metafile, the daemon sends an update message carrying information for

newly added or removed content.

We will evaluate the capacity of the daemon to send update messages and of the logically

centralized ICN controller module to capture the respective cache information updates received from

caching nodes.

3.3.4 Test IN4 (Route Calculation)

In this test we will address the calculation of network routes for individual content objects using

topological and content availability information. We will evaluate the benefits provided by evaluating

quality parameters such as expected latency (i.e., number of hops traversed by the requests).

3.3.5 Test IN5 (Programming of Forwarding Elements)

In this test we will address the correct functionality of the ICN controller to instruct the forwarding

elements according to the calculated content routes. We will check for the correct communication

between a logically centralized ICN controller and the ICN controller clients deployed on forwarding

nodes communicating out-of band with the controller.

3.3.6 Test IN6 (Final Evaluation of the Testbed)

In this last test phase, we will measure the performance of the demonstrator as a whole (i.e. Twitter-

like application + video streaming + NDN delivery layer). We will assert the performance and

efficiency of routing and caching, showing for example that processing and routing tweets/videos

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 42 of 51

Copyright © eCOUSIN Consortium, June 2014

locally in an efficient way can lead to a large reduction of network traffic and processing load on the

OSN servers. The expected results should quantify the benefits of using ICN architecture for an OSN

such as Twitter.

We will focus on the performance evaluation of the integrated testbed. Accordingly, the evaluation

tests will belong to one of three main categories:

• NDN node performance evaluation with respect to specific functionalities developed in the

WP5 for the data and control planes (naming, routing, caching, cache control…),

• Functional and performance evaluation of the social interactions of users in the Twitter-like

application (sending and receiving tweets, sharing videos in live streaming, quality of video

streaming, etc.),

• Validation, performance assessment and demonstration of the integrated prototype,

showing the benefits of delivering UGC over the ICN architecture.

3.4 Content Offloading for Mobile Networks

3.4.1 Test C01 (Social Data Collection and Aggregation)

The purpose of C01 is to test the data collection and aggregation implementation functionality.

Target functionality: Accessing, processing, and aggregating data from Facebook using the Graph API

is a rather complex process due to the large number of different content types. Especially nested

items that refer to, e.g. items that were reshared and not directly posted to the feed, require a

recursive processing. Test C01, therefore, aims at testing the correctness of this process.

Involved module(s): The involved modules are the Social Data Collector and the Data Aggregator as

well as their components.

Methodology: In the course of this test, a representative set of content items are to be identified

and generated using a real Facebook account that can be used to test the data collection and

translation to Java objects (Step 1). Besides, it is to be tested if the objects are correctly mapped and

inserted in the local SQLite database (Step 2). For both steps, it would be desirable to use an

automated test framework, such as JUnit
9
 and define a set of automated tests.

Expected results: The results of Test C01 are to show that the Social Data Collector and the Data

Aggregation functionality are working. Thus, the expected result is a passing of all defined tests. Over

time, tests might not pass anymore due to changes to the Facebook Graph API and data structures.

The tests should help in such a case to identify and fix the encountered problems.

Impact on eCOUSIN: working Social Data Collection and Data Aggregation modules are essential for

all further steps of the mobile prefetching demonstrator. The test, therefore, is also important for

the eCOUSIN demonstrator.

3.4.2 Test C02 (Social Aggregator)

The correctness and completeness of the displayed information can be tested by manually

comparing the Social Aggregator visualization with the data available on the Facebook website or the

output of the retrieved data available in Test C01. Furthermore, aggregated statistics can be printed

and compared to the data of the Facebook website.

Target functionality: The quality of the feed generator can only be assessed by conducting user

studies. For this, the generated feed, or in the case of pre-fetching suggestions the generated list of

items, can be compared with traces generated by the Social Tracer (C03).

9
 http://junit.org/

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 43 of 51

Copyright © eCOUSIN Consortium, June 2014

Involved module(s): The only involved module required assessing the completeness and correctness

of the collected data is the Social Aggregator module as well as the Facebook web page. The quality

of the generated feed, furthermore, might be verified using the traces generated by the Social Tracer

(C03).

Methodology: The static visualization must be manually compared with the data on Facebook. As

the Facebook API is strictly limited in frequency and scope of the possible requests, no 100%

guarantee for the completeness of the data can be given. The quality of the generated feed can be

assessed by comparing the traces generated by Test C03 with the generated feed. As this approach is

only possible on historical data, the usability is limited. The best approach, also assessing the quality

of the generated information, is to conduct user studies. For this, the information retrieved from the

Social Aggregator is compared with the user interactions on the feed.

Expected results: The outputs of the Social Aggregator module are charts detailing the past user

interactions and a feed generated based on the historical data. If the Social Aggregator module is

deployed on a centralized instance, a list of candidates as also presented to the Social Predictor

module is returned.

Impact on eCOUSIN: The Social Aggregator module provides a way to investigate and study the

output of the Data Aggregator and analyse potential future interests in content items based on social

information. This information might be used to define appropriate prediction mechanisms and, thus

is important for the prefetching process. Besides, the module is essential for a demonstration of sub-

steps of the prefetching process.

3.4.3 Test C03 (Social Tracer)

The purpose of C03 is to test the tracing functionality that is to collect real OSN user traces.

Target functionality: The Social Tracer is a module with an Android service, running in the

background. Its functionality is to upload user traces to a static server. As introduced before, the

purpose of the module is to collect user traces that include structural and behaviour information of

an OSN user. Several sub-functionalities and components are to be tested individually, such as the

activeness itself, its functionalities, as well as the upload component.

Involved module(s): The directly involved module is only the Social Tracer and its components. Also

important are the inputs from the Social Data Collector and Data Aggregator module that the Social

Tracer is based on.

Methodology: Sub-functionalities that are required for this module are going to be tested

programmatically using a test framework, such as JUnit, similar to the methodology described in C01.

Expected results: the expected result of this test is a basic verification of the trace collection and

upload functionality.

Impact on eCOUSIN: the collected user traces are important as basis for the design and

implementation of the Social Predictor module and are expected to highly impact the efficiency of

the overall mobile prefetching solution and how it matches the behaviour of real users.

3.4.4 Test C04 (Social Predictor)

The purpose of C04 is to test the prediction functionality used to select and rate content items to be

prefetched on a mobile device.

Target functionality: The Social Predictor module uses as input the structural information on the

one-hop friendship graph of a target user and a list of news feed posts of the user. Based on this

data, it identifies items that a user will consume on his mobile device in near future with a high

probability. Besides, the module assigns a relative importance score to the individual items.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 44 of 51

Copyright © eCOUSIN Consortium, June 2014

Involved module(s): The directly involved module is the Social Predictor and its components. It bases

its prediction on the output of the Social Data Collector and the Data Aggregator.

Methodology: The predictions of the module are planned to be evaluated using the real user traces

as collected by the Social Tracer module. For an observed list of content items of a real user, the

predictions of the module are planned to be compared to the traced user behaviour.

Expected results: The results should allow estimating the potential to predict the behaviour of an

OSN user for the access of content items as displayed on his wall.

Impact on eCOUSIN: A mechanism that is able to predict the content items that a user is about to

access in the near future is essential to build mechanisms to improve the content delivery process, in

particular to mobile devices using prefetching techniques.

3.4.5 Test C05 (Video Player)

The purpose of C05 is to test the functionalities of the video player under different circumstances.

Target functionality: the functionalities to be tested are playback of video content and pausing and

skipping during the video payback. The tests will also check if the performed actions have been

logged appropriately in a local database.

Involved module(s): Video Player, the Social Tracer is responsible to store the event logs of the video

player in a local database.

Methodology: The tests are performed for videos which have been prefetched as well as for those

which have not. For those videos which have not been prefetched we perform the testing with

different network connections, e.g. Wi-Fi and 3G. Also the abortion of the mobile internet

connection is part of the test. For a meaningful set of interactions the event logs will be compared

and checked for correctness.

Expected results: The result should show that the video player is working under various

circumstances in the expected manner for different basic functionalities like playback, pausing and

skipping.

Impact on eCOUSIN: The result should demonstrate that the video player is a usable tool to gain

meaningful information about the user behaviour.

3.4.6 Test C06 (Content Prefetcher)

The purpose of C06 is to test the Content Prefetcher functionality of the mobile prefetching

application.

Target functionality: The functionality to be tested is the actual prefetching of content items. This

includes the decision on which of the selected content items to be prefetched are to be downloaded

in which order and when.

Involved module(s): Using the output of the Social Predictor, the only involved module is the

Content Prefetcher.

Methodology: The module and its sub-components are planned to be tested programmatically, using

a test framework like JUnit. The overall integrated functionality is planned to be evaluated by

conducting a user study.

Expected results: The results should show that the prefetching functionality is able to download

content items before the user is accessing these items on the mobile device.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 45 of 51

Copyright © eCOUSIN Consortium, June 2014

Impact on eCOUSIN: A working and efficient content prefetching functionality is essential for a final

integrated mobile prefetching demonstrator application and, thus, a proof of concept of the whole

mobile prefetching concept developed.

3.4.7 Test C07 (Download Scheduler and Download Client)

Target functionality: The functionalities of the Download Scheduler module and the Download Client

module are tested.

Involved module(s): Download Scheduler, Download Client

Methodology: A meaningful set of videos is passed to the Download Scheduler. Here we might insert

erroneous items, e.g. videoIDs for videos which do not longer exist, duplicate entries, or a malformed

URL. The Download Client is tested while the content is validated after the transfer. It will also be

checked if the item is marked as downloaded in the database after the download finished.

Expected results: The correct functionality of the Download Scheduler and Download Client should

be proven.

Impact on eCOUSIN: The output of the Download Scheduler and Download Client are the actual files

which are prefetched. Therefore this is one of the major component for the Mobile Content

Offloading scenarios, since it allows further to request the data downloaded by the modules from

local storage and not from remote over the mobile network.

3.4.8 Test C08 (Evaluation of Bandwidth Availability Prediction)

Target functionality: The quality of the bandwidth and connectivity prediction can be evaluated by

comparing the predicted values to real values in various scenarios. Since it is impossible to achieve

perfect prediction, we will examine the magnitude of the deviation between the real and the

predicted values and whether this deviation is small enough to enable us to use the output of the

predictor to other modules. The evaluation will be materialized by means of simulation using the NS-

3 simulator tool.

Involved module(s): This task will require the cooperation of the Network Monitoring module, as

described in WP2, with external modules that provide a more detailed overview of the context of the

UE. These include a mobility module and a background traffic module that monitors the behaviour of

other UEs in the current and neighbouring eNodeBs.

Methodology: We will run a set of simulations representative of both simple toy scenarios and

scenarios that represent real world situations (e.g., commuting by metro, car, and on foot). From

these scenarios we will collect traces of key performance indicators (KPI). Our KPIs will include the

size and time of arrival of transport layer packets to the UE, the size and time of arrival of LTE

transport blocks to the UE, the RBGs allocated by the scheduler to the UE over time, signal quality

indicators and finally, the position and velocity of the UE.

We will use these traces as input to the predictor and compare the output of the predictor with the

output of the simulation.

Expected results: This test should allow us to evaluate the magnitude of the deviation between the

expected and the real bandwidth values in different scenarios.

Impact on eCOUSIN: The output of the predictor is one of the main inputs to the bandwidth

optimization algorithm. A proper understanding of its potential can allow us to maximize its

contribution to an optimized utilization of network resources.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 46 of 51

Copyright © eCOUSIN Consortium, June 2014

3.4.9 Test C09 (Evaluation of Bandwidth Allocation Optimization)

Target functionality: This test will allow us to evaluate the real life gains in regards to network

resources, of using the bandwidth allocation optimization algorithm. We expect to test its behaviour

in different scenarios and monitor the consumed network resources and QoE indicators related to

the multimedia content being consumed by the users in each scenario. The evaluation will be

materialized by means of simulation using the NS-3 simulator tool.

Involved module(s): This test will require the cooperation of the Network Monitoring module, the

Network resource allocator module and external modules that keep track of the behaviour of the

client and server applications that participate in the content transmission.

Methodology: We will run a set of simulations representative of both simple toy scenarios and

scenarios that represent real world situations (e.g., commuting by public transport, car, and as

pedestrian). Initially, we will observe the behaviour of a benchmark application that generates

constant bit rate traffic and generate traces of network KPIs and QoE indicators specific to the

multimedia content. Next, we will run the same scenarios and we will collect the same traces, but

instead of CBR we will use a varying bit rate which will be dictated by the bandwidth allocation

optimization algorithm.

Finally, we will compare the performance of the benchmark and the optimization algorithm in regard

to capacity savings, robustness and overhead.

We intend to repeat the same process for various implementations of the optimization algorithm in

order to both examine the possible tradeoffs of each implementation, as well as find the most

appropriate values of the various parameters for each scenario.

Expected results: The output of the optimization algorithm is the varying bit rate which the server

application should use at different time intervals. We will compare the aggregated performance,

derived by the combination of KPIs and QOE, of different implementations of varying bit rate servers

both between them and against a CBR server, in different scenarios.

Impact on eCOUSIN: One of the main objectives of eCOUSIN is the reduction of utilization of network

resources, while guaranteeing QoE. The optimization algorithm and in turn its output (the varying bit

rates) is the last step towards achieving this goal. Thus, its fine-tuning that this test enables, can

significantly contribute to this end.

3.4.10 Test C10 (Evaluation of the Network Visualization)

Target functionality: The network visualization functionality will be tested here. However, in order to

be sure that the impact of the other functionalities can be properly visualized, this test will be

repeated on the output of the other tests.

Involved module(s): The main module under test here will be the network visualization tool, but the

actual output of the test will also depend on the positive outcome of the tests of the other modules.

Methodology: First, synthetic inputs will be fed to the visualization in order to verify the intended

behaviour under controlled and repeatable conditions. The synthetic inputs will be diverse so as to

be able to visualize all the needed performance metrics.

Subsequently, the output of the previous tests will be fed to the demonstrator in order to verify

whether it is possible to effectively show the outcome of the tests and to be able to highlight the

benefit of the eCOUSIN solutions.

Finally, the visualization tool will be tested against real-time data, in order to verify whether it can be

used as real-time network visualization tool.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 47 of 51

Copyright © eCOUSIN Consortium, June 2014

Expected results: The test is meant to verify the capabilities of the network visualization tool and the

tool is expected to be able to visualize networks and their performance in a practical and well-

understandable way.

Impact on eCOUSIN: The project will highly benefit from this test as it will be a crash test for actual

demonstration and dissemination activities.

3.4.11 Test C11 (Evaluation of the Passive Measurement Module)

Target functionality: The network monitoring functionality will be tested here.

Involved module(s): Passive monitoring module.

Methodology: Passive measurement techniques will be compared to active and lightweight active

technique in order to validate the accuracy of passive solutions.

Expected results: This test should be able to prove that accurate passive measurement can be

achieved without the need for expensive and time-consuming bandwidth probing.

Impact on eCOUSIN: This test will prove that advanced techniques such as bandwidth prediction and

optimization, which require a quite dense bandwidth sampling, are feasible on mobile devices.

3.5 Timelines

The timeline for each demonstrator will be given in terms of functionality and test definitions and

test execution.

3.5.1 Content Placement

Functionality

name
Module code

Test

code

SW 1
st

rel

SW

final

rel

Test

defined

Test

done

Final

assessment

Social and

Content

Information

Collection

Social Data

Collector

Test

CP1

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Test

CP4

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Content

Information

Collector

Test

CP1

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Test

CP2

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Data Analysis,

Mining and

Aggregation

Data Analysis,

Mining and

Aggregation

Test

CP2

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Test

CP4

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Social Predictor Social Predictor

Test

CP2

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Test

CP4

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 48 of 51

Copyright © eCOUSIN Consortium, June 2014

Strategies for

Content

Placement

Content

Placement

Strategies

Test

CP3

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Test

CP4

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Integrated

Functionality
All Modules

Test

CP4

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

3.5.2 Personal Sharing Clouds

Functionality

name
Module code

Test

code

SW 1
st

rel

SW

final rel

Test

defined

Test

done

Final

assessment

Social Based Peer

Interconnection

Social Data

Collector

SC01
Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

SC02
Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Network

monitoring
SC03

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Content Sharing

Social Data

Collector
SC01

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Social aware

content

naming

scheme

SC04
Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

Content

Availability and

Binding

Content Look

Up
SC04

Month

24-26

Month

28-29

Month

18-20

Month

27-28

Month 29-

30

3.5.3 Information-Centric Networking

Functionality

name
Module code

Test

code

SW 1
st

rel

SW

final

rel

Test

defined

Test

done

Final

assessment

Twitter-like

Application over

the NDN

Architecture

1/ Twitter-like

OSN

2/ NDN delivery

with social-driven

content naming

Test

IN1

Month

17-18

Month

21

Month

18-19

Month

20-21
Month 21

Integration of

Video Streaming

in the

media streaming

transport

protocol over

Test

IN2

Month

23-24

Month

24-25

Month

23-24

Month

24-25

Month

25

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 49 of 51

Copyright © eCOUSIN Consortium, June 2014

Demonstrator NDN

SDN Controller to

Instruct

Forwarding

Nodes

ICN/SDN

Controller

Test

IN3

Month

23-24

Month

24-25

Month

23-24

Month

24-25

Month 25

SDN Controller

Application to

Calculate Routing

SDN/ICN

Controller App

Test

IN4

Month

23-24

Month

28-29

Month

24-25

Month

28-29

Month

29-30

Client on

Forwarding Node

Receiving

Instructions

SDN/ICN ICN

Client

Test

IN5

Month

17-18

Month

21

Month

18-19

Month

21

Month 21

Evaluation of the

Demonstrator in

the Testbed

Final

Demonstrator &

Evaluation

Test

IN6

Month

23-24

Month

28-29

Month

24-25

Month

28-29

Month 29-

30

3.5.4 Content Offloading for Mobile Networks

Functionality

name Module code Test

code
SW 1

st

rel
SW

final

rel
Test

defined
Test

done
Final

assessment

Social Data

Collection and

Analysis

Social Data

Collection and

Aggregation
C01 Month

14-16
Month

18-20
Month

16-18
Month

18-20
Month 28-

30

Social Aggregator C02 Month

14-16
Month

18-20
Month

16-18
Month

18-20
Month 28-

30

Social Tracer C03 Month

14-16
Month

18-20
Month

16-18
Month

18-20
Month 28-

30

Video Player C05 Month

22-24
Month

26-29
Month

24-26
Month

28-29
Month 28-

30
Content Access

Prediction Social Predictor C04 Month

18-20
Month

26-29
Month

24-26
Month

28-29
Month 28-

30

Prefetching of

Content Items

Content

Prefetcher C06 Month

20-22
Month

26-29
Month

24-26
Month

28-29
Month 28-

30
Download

Scheduler C07 Month

20-22
Month

26-29
Month

24-26
Month

28-29
Month 28-

30

Download Client C07 Month

20-22
Month

26-29
Month

24-26
Month

28-29
Month 28-

30
Network Bandwidth C08 M18 M20- M19 M21- M28-30

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 50 of 51

Copyright © eCOUSIN Consortium, June 2014

Monitoring prediction 24 26
Passive

measurement C11 M18-

20
M20-

24 M19 M21-

26 M28-30

Network

Configurator
Bandwidth

optimization C09 M15-

16
M20-

24 M16-18 M21-

26 M28-30

Network

Visualization All C10 M20-

22
M26-

29 M22-23 M23-

25 M28-30

4. CONCLUSIONS

This deliverable completed the preliminary plan for the realization of the eCOUSIN demonstrator and

assessment campaign. In particular, four demonstrators have been foreseen in order to speed up the

realization process while the technical work packages are still working on the technical solutions. This

will allow a cross-checking mechanism between the assessment part of WP6 and the technical

solutions.

WP6 next activities focus on the release of the software components that are forming the

demonstrators and that will be used to validate the project (D6.3 and D6.4). Finally, D6.5 will report

the outcome of the final assessment campaign.

Deliverable D6.2 Final Plan for System Integration and Assessment

 Page 51 of 51

Copyright © eCOUSIN Consortium, June 2014

REFERENCES

[BUIE14] Nicola Bui, Foivos Michelinakis, Joerg Widmer. 2014. A Model for Throughput Prediction

for Mobile Users. In Proceedings of European Wireless (EW'14). Barcelona, Spain, 14,

May 2014, pages.1-6.

[D2.1] EU eCOUSIN: Public Deliverable D2.1 - Initial report on uses cases and requirements.

May 2013.

[D2.2] EU eCOUSIN: Public Deliverable D2.2 - Initial system architecture specification, July

2013.

[D4.1] EU eCOUSIN: Public Deliverable D4.1 - Preliminary Report on the Design of Technical

Solutions on Content Placement and Delivery, October 2013.

[D4.2] EU eCOUSIN: Public Deliverable D4.2 - Final Report and Initial Software Release of the

Design Extensions and Preliminary Implementation, April 2014.

[D5.1] EU eCOUSIN: Public Deliverable D5.1 - Requirements for social-enhanced content centric

and mobile network infrastructures, October 2013.

[D6.1] EU eCOUSIN: Public Deliverable D6.1 - Preliminary Plan for System Integration and

Assessment, January 2014.

