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This work deals with the perception of objects for the Scenario 1. We have
proposed a new probabilistic, appearance-based method which integrates
diverse feature types, including edge orientations, depth and color. We have
used the approach in a real scenario for detecting objects and estimating their
poses. The estimation errors have been compared with other state-of-the-art
methods and it has been observed that the probabilistic, appearance-based
method has a better detection rate for textureless objects with flat surfaces
like wooden boards. We have also acquired the object models required for
the first year scenario. We have used the robot arms to obtain view samples
of the object from controlled directions. We also work on making a pose
estimation about the small parts, including screws and screw-driver bits for
robot manipulation.
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Executive Summary

This report presents the first year progress related to developing the per-
ceptual capabilities for detection and pose estimation of objects, including
tools and parts. We have acquired the object models by using the robot
arms to move the objects of interest with the robotic system based in UIBK
which has two seven-DOF' lightweight arms. After the motion segmenta-
tion, these objects have been learned without explicit user cooperation. The
robot rotated the object to obtain view samples from controlled directions.
We have introduced the probabilistic, appearance-based pose estimation
(PAPE) method [ESST15] which integrates diverse feature types, includ-
ing edge orientations, depth and color. The probabilistic, appearance-based
models can be used to recognize large flat textureless similar parts such
as wooden boards. The method has been evaluated by using the objects
which will be used for the 3rdHand Project, including the wooden parts of
a toolbox and the plastic textureless parts of a chair. It has been observed
that even in cluttered environments, the parts can be recognized. Further-
more, we have investigated the accuracy of the pose estimation by using
the ground truths obtained from the opto-tracker system which is available
at TU-Darmstadt. The pose estimation errors reveal that the estimations
can be used to grasp, manipulate and monitor the status of the object. We
are working on the integration between appearance based pose estimation
and the interaction primitives. We are also working on pose estimation and
detection of small parts [SEP15]. Since today’s sensing technology places
lower limits on the size of objects to be detected, we are going to use a
camera dedicated to detecting the small parts manipulated by the robot.

Role of Perception for Scenario 1: Objects in 3rd-
Hand

Our role is to provide the pose of the objects that will be grasped /manipulated
by the robot. We model the objects by using a probabilistic, appearance-
based method since they cannot be characterized by their shape or texture.
We learn the object models by observing them from controlled viewpoints.
Depth information provides new solutions to the pose estimation of tex-
tureless objects since it can remove some of the ambiguities; therefore we
have used RGB-D sensors which integrate both conventional and depth cam-
eras. Conventional cameras are also installed in the workspace to provide
a higher-resolution image of the workspace. We estimate the poses of the
objects on demand and inform the robot by using different feature types,
including edge orientations, depth and color. For details, please refer to
[ESST15|. We are currently working learning an object when it is presented
by a human worker to the robot and estimating the poses of small parts
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including screws [SEP15].

Contribution to the 3rdHand scenario

We have developed a probabilistic, appearance-based pose estimation (PAPE)
method [ESST15] which integrates diverse feature types, including edge ori-
entations, depth and color. We have also recorded a dataset of parts that
will be used in the 3rdHand Scenario 1. We evaluated the pose estimation
method with the learned models in the test scene by using the pose estima-
tion error. The results reveal that the pose estimation method can be used
for grasping / manipulation tasks. We are also working on detecting the
poses of the screws and screw-driver-bits in the end effector of the robot,
since they are small parts with surfaces that are not possible to detect with
cost-effective sensors (e.g. Kinect), we are developing an appearance-based
method which uses Hu-moments to precisely estimate the pose of the small
parts.

1 Tasks, objectives, results

1.1 Planned work

In the Work Package 2 (WP2), (Perception for Cooperative Manipulation),
the main concern was to detect the objects and estimate their poses. To be
able to estimate the poses of the objects, their models should be obtained
on the fly. In a typical scenario, a human worker can pick up and move the
object of interest in order to show it to the robot from diverse viewpoints.
Additionally, the robot can learn the object by turning it on its manipulator
to obtain views from different viewpoints. Since large, flat parts such as
wooden boards do not have a distinctive texture or surface, appearance-
based models were mentioned for recognizing. For distinguishing smaller
parts, (e.g., screws, screw-driver bits) since today’s sensing technology has
lower limits for distinguishing such small parts, we found an alternative
solution to using stationary cameras.

1.2 Actual work performed

We have been able to detect the objects for the Scenario 1 and estimate their
poses. We have used an appearance-based model to distinguish large flat
textureless parts such as wooden boards. We have learned the object models
by using the robot arms to obtain view samples from controlled viewpoints.
We tested the proposed approach with the object parts to be used in the
first year of the project.

We have evaluated the accuracy of the pose estimation method by using
the pose estimation of an opto-tracker as the ground-truth. The results re-
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vealed that the pose estimation results may be used for grasping/manipulation
tasks.

We are using a dedicated camera to detect the small parts and estimate
their poses when they are hold by the robot manipulator. Since it is difficult
to detect the screws or screw-driver bits with a camera at a distance, we are
using cameras that are placed at around 30cm to the robot hand holding the
screw and making a pose estimation based on an appearance-based method
and increasing the precision of the estimation by using a newly proposed
method which uses Hu-moments.

We are going to include the capability of learning the object’s appear-
ance model shown by the human worker. In principal, this model will be
similar to the one obtained by the robot arms. Since it has been shown
that the appearance-based model can be used for pose estimation, the usage
of the appearance model shown by the human worker can also be used for
estimating the pose.

1.3 Relation to the state-of-the-art

We have compared our approach against other state-of-the-art pose estima-
tion methods which use a CAD model of the object for training, also we used
an appearance-based model which does not use depth or color features. The
results showed that the correct detection rates of the flat textureless objects
are higher for our method even in cluttered environments. The details of
the comparison between our proposed approach and the other approaches
can be found in [ESS™15].
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Erkent, O.; Shukla, D.; Stabinger, S.; Lioutikov, R.; Piater J.; Sub-
mitted to: 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA)

This paper proposes a probabilistic, appearance-based pose estimation
(PAPE) method to detect and estimate the poses of textureless objects
in cluttered environments.

Abstract:

We propose a probabilistic, appearance-based pose estimation (PAPE)
method to detect and estimate the poses of textureless objects in clut-
tered environments. Our probabilistic, appearance-based model can
integrate diverse feature types, including edge orientations, depth and
color. We evaluate our approach in a real environment and compare
it against other state-of-the-art methods on a dataset of textureless
objects. The results show that our method performs better at finding
textureless objects. Finally, we demonstrate the capabilities of our
system in grasping/manipulation tasks.

A )

[Robot Manipulation|
Shukla, D.; Erkent, O, Piater, J.; In Preparation
Abstract:

Object recognition and pose estimation of small parts, including screws
and screw driver bits, is a challenging problem in computer vision.
However, a precision estimation of the poses is necessary for robot
manipulation. In this paper, we propose detection and pose estima-
tion of the minuscule objects for handing over the objects to humans,
putting a screw in the hole and fitting the screw with an automatic
screw driver. We propose an approach which finds the tips of the small
parts by using image moment invariants after applying a probabilis-
tic, appearance-based object detection algorithm. In the evaluation
we intend to show the approximate precision and detection rate of the
proposed algorithm in a real scenario.
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Probabilistic, Appearance-Based Object Detection and Pose Estimation
of Textureless Objects for Robot Manipulation

Ozgiir Erkent!, Dadhichi Shukla!, Sebastian Stabingerl, Rudolf Lioutikov2, Justus Piater!

Abstract— We propose a probabilistic, appearance-based
pose estimation (PAPE) method to detect and estimate the
poses of textureless objects in cluttered environments. Our
probabilistic, appearance-based model can integrate diverse
feature types, including edge orientations, depth and color. We
evaluate our approach in a real environment and compare it
against other state-of-the-art methods on a dataset of textureless
objects. The results show that our method performs better
at finding textureless objects. Finally, we demonstrate the
capabilities of our system in grasping/manipulation tasks.

I. INTRODUCTION

Recognition and pose estimation of a target object is a
necessary task in robotic perception. 6-DOF pose estimation
of textureless objects in a cluttered scene is still a challenging
problem in robot vision, due to occlusions and variations in
object appearance as a result of different viewpoints. When
the object has a distinct texture, stable keypoint descriptors
can be used [1], [2], but these are not suitable for textureless
objects. Integration of 3D information provide new solutions
to the pose estimation of textureless objects since it can
remove some of the ambiguities by using depth information
about the object. Emergence of RGB-D sensors with low
costs provide efficient opportunities.

In [3], a method based on a probabilistic model of
appearance is suggested to estimate the poses of the ob-
jects. A technique to recognize objects in 2D images is
introduced which is applicable to low-level, dense and/or
non-descriptive image features. In this paper, we propose a
novel joint object recognition and pose estimation method
based on a probabilistic model of appearance [3] which can
also be used together with RGB-D images. Our probabilistic
appearance-based pose estimation (PAPE) method can be
used with both textured and textureless objects in cluttered
scenes. The contribution of the paper is twofold: first, we
introduce depth and color information into the probabilistic
appearance model of objects. Secondly, a confidence rate is
introduced on the set of hypotheses. This confidence rate
behaves as a hypothesis verification step. We evaluate our
method by estimating the poses of the textureless objects in
cluttered and uncluttered scenes with known ground truth.
We show that our method works with a better accuracy than
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2 Rudolf Lioutikov is with the Intelligent Autonomous System Lab,
Technische Universitaet Darmstadt, Germany.

existing approaches even in cluttered scenes for textureless
objects.

The paper is organized as follows: In Section I-A, related
work is reviewed. In Section II, our probabilistic model
of appearance is explained in detail, and in Section III,
the confidence rate is described. The proposed algorithm is
evaluated in Section IV, and Section V concludes the paper
with a brief summary.

A. Related Work

Robotic interaction, manipulation and grasping require a
precise estimation of the pose. Some approaches use 2D
local keypoint descriptors which are obtained from different
viewpoints of the object or the 3D model of the object. For
example, in the MOPED framework [4], SIFT [1] descriptors
are used. Although this framework is reported to provide a
fast and accurate object match, it requires textured objects.
Some of the recent studies including [5], [6] can be inserted
into this category. Studies in this category cannot be used
for pose estimation of textureless objects.

There are also some studies which detect and track the
textureless objects [7], however since they make a coarser
estimation of the object pose, here we only consider studies
which claim that they have a sufficient precision to be
used with robot tasks including grasping and manipulation.
Precise pose estimation is generally handled by recognition
methods that use a 3D model of the object. In some of these
approaches, explicit 3D models of the object are used [8],
however the modeling of differences in the appearance is
limited by the shape [9]. [10] uses an efficient RANSAC-like
sampling strategy to establish a correspondence between the
scene and the model; however this work requires a robust
local descriptor like SHOT descriptors [11]. For objects
without distinctive depth features from the features in the
scene, it can be difficult to find a correct match. The OUR-
CVFH descriptor is based on a global pipeline that uses
the histograms in which the distributions of surface normals
are important [12]. Therefore, for surfaces in which the
distribution of normals is not distinctive, it can be difficult
for the approach to find a match.

Recently, there are also studies which consider the inte-
gration of different modalities for recognition of textureless
objects. For example in [13], for each point, a corresponding
color information is obtained and integrated into recognition.
Point pair features are used as features, and color is used
for pruning hypotheses. Although the method is capable
of recognizing daily objects in a cluttered environment, its
computation is expensive since all of the point pairs are



considered. In another study, the integration of multiple
features is given in a more generalized framework [3]. In
this multiview probabilistic model of appearance, edge ori-
entations and coarse-scale gradients are learned from several
training samples. Since edges are selected as one of the
features in this framework, the number of features to be
compared decreases significantly with respect to the methods
where the dense surface normals are compared. Also, since
this approach uses a continuous pose estimation strategy, it is
capable of making a precision pose estimate with a reduced
search space.

Our approach adopts the idea of a probabilistic appearance
model [3] and integrates the depth and color information
without increasing the computation time. We also introduce
a novel confidence rate on the possible set of results, and
make a final decision by using this confidence rate. We also
modify the continuous pose estimation approach by using a
densely-sampled viewpoint database. A general flow of our
pipeline can be seen in Fig. 1.
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Fig. 1: General pipeline of our algorithm.

II. PROBABILISTIC MODEL OF APPEARANCE

In this Section we briefly explain how we turn a set of
image features into a distribution of features. These distribu-
tions, from multiple images from different viewpoints, build
our multiview object model. By using these distributions,
we describe how to recognize the learned object in the
test image. Then we explain the coarse-to-precision search
strategy and finally we describe the voting table which gives
a score on our hypothesis about the pose estimation.

A. Probability Distributions

Let each type of feature index be denoted by: f =
1,..., F. These features can be edge points, depth values
obtained from the RGB-D sensor, or the hue value of the
HSV color space. Then, each feature can be defined by its
position in the image plane p, € R? and its appearance
property a,; where a, = [a%,a,ac]’ is consisting of depth,

orientation and color with corresponding positions p, =
b3, pg. 5"

For the edges, the local orientation is used (a2 € S =
[0, 7]); for depth, the depth value is used (a? € R in meters)
and for color, hue value from HSV color space is used (a5, €

[0, 1]). Then, a test image contains multiple feature types, i.e.,
Tiest = U? Zg;st where each feature type contains multiple

features, that is, Itfest = ny I xfc , and each feature consists
of an appearance and a position zf =< aél,pgi >; A =
ol Vi=1..|f].

After the features for the test image have been extracted,
the distribution of feature f can be defined as defined in [3]:

Slest (@) = Y W@ )N (p,s5p],05)K (az,320), ()
'T{’EItfest,
where A is Gaussian kernel for feature positions and K/ is
an appearance kernel. w(xfc ) is the weight of feature x; and
set, ie., w(z;) = 1/||Z}]..,||° Va; € Z/.,,, and ¢ € R is a
priori constant to control the effect of the size of the number
of features on the weight. If ¢ = 1, then an image with a
small number of features will have larger weight values w.r.t.
an image with large number of features.
In a similar manner, a distribution ¢£mm can be obtained
for the features of a set of training images, containing one
image for each viewpoint v € S2.

B. Recognition with Probability Distributions

Let in-plane transformations w* (a translation, rotation and
scale) and viewpoint v* € S? denote the optimal set of the
learned viewpoint in the test image. Then (v*, w*) represents
the 6 DoF of the object.

The similarity between the test and the training images
can be obtained by the cross-correlations of the images as
mentioned in [3]:

(¢1{est * Qs{'r‘ainv) (w) = / (:b{est ¢1J;"ain,u (transformw (I))dl’
v @

To increase the efficiency of the system, samples are drawn
from the test and training samples by using Monte Carlo
integration [14]. L particles from test distribution and L’
particles are drawn from the training distribution. Then the
cross-correlation for one feature type f becomes

L L

(6oat % D, ) ) = 735 DD Wl
ioJ

(pl'i ; transform,, (prj )7 O'pos)Kf(ami; Qg ; )

3)

This can be further defined over all the feature types:

Simﬂaritytest,trainv (w) = H (¢{est * gbt{ainv ) (U)) (4)
!

From Eqgs. 3 and 4, the likelihood of observing the trained
object from the viewpoint v with the transformation w can
be obtained. Then, the pose estimation problem becomes that
of finding the maxima of Eq. 4:

(v*,w*) = arg max(similaritytest’trainv (w)) 5)

VW



C. Coarse-to-Fine Search

In this study, we apply a coarse-to-fine search strategy
to decrease the size of the search space. First, a coarse
pose estimation is performed on the uniformly selected
viewpoints. Let the distance between the uniformly selected
viewpoints be denoted by 6,. A set of hypotheses H. =
(ve, w,) is obtained which give the viewpoints v. and trans-
formations w, in the test image. In the close neighborhood
Ve + 00, we + dw, of each hypothesis, a new search is made
which we call a precision search. It should be noted that
although the neighborhood can be selected to be any arbitrary
value, dv. < 0, is a well-motivated choice. Then, for each
coarse estimation H., a precise estimate 7, is obtained.
The selection procedure of the best estimate is explained
in Section III.

D. Feature Types: Edge Orientations, Depth and Color

a) Edge Orientations: We use an intensity-based Canny
edge detector [15]. Each edge point feature has an ap-
pearance attribute of the local orientation of the edge at
a given position, A° = R? x Sf' . The kernel uses a von
Mises distribution on the half circle, which is defined as:
K°(a3,,a3,) = Cye® (@2, 922)  Our distance measure
can be said to be a general form of the directed chamfer
distance [16].

b) Depth Values: The depth value obtained from the
RGB-D sensor is taken as the depth feature. Each depth
feature has only one depth value as an appearance attribute,
A? = R*. The kernel can be defined as K%(a¢ ,a,) =
Cel®0179%:)° Val ,al € R*. For the locations where it
is not possible to find a depth value, due to transparency
or shiny surfaces, the kernel is set to a predefined constant
K< = (5. Then, the method tries to use other features
(e.g. edges and color) if the depth is not available. Since
the values of features are combined with a product, C'5 sets
the importance of other features in the absence of depth.

c) Color Values: The color feature is selected from the
hue component of the HSV color space. Then the kernel can
be defined as K°(at, ,al,) = Cye™ O (*1 %) Val af €
[0,1], K¢ = Cs.

E. Voting Table

Finding the maximum similarity between the training
features and the test features will result in a pose estimate.
For efficiency, since all of the feature values are integrated
via a product in the similarity measure, first the sparse edge
points are found. Then the depth and color features around
these sparse edge points are computed. It would also be
possible to directly use depth and color features if the edge
features are not detectable.

If you consider a voting table H with discrete votes at
image locations p,, with weights w,;, and if you convolve
this table with an isotropic Gaussian kernel with 0., then
you can obtain a score at each location [

H() =D wo, N (6 poys Tpos)- ©6)
J

III. CONFIDENCE RATE

The score obtained from the voting table #(l) computes
the vote for the viewpoint with the downsampled edge
orientation features based on Monte Carlo integration [14].
As it was explained in Section II, this is necessary to increase
the efficiency of the algorithm. However, this downsampling
can affect the accuracy of the result. To select the best
possible match, a measure is necessary to decide on the best
hypothesis by using various available cues including edge,
intensity, depth and surface normals on the whole object.
After this measure is computed, the one with the highest
score is selected. The confidence is selected as the following
logistic function for any hypothesis of pose estimate j:

1

p"(j) = g 14+ exp (V™ (™ —y(4)))

)

Here, ¢i* and ;" are a priori constants for each object model
m and cue type <. Although, they are determined by using the
object model images manually, they could also be computed
automatically from these images. C is the set of cues used to
test the hypothesis, and y/*(j) is the corresponding distance
measure for hypothesis j for cue . The hypothesis with the
highest confidence is selected as the candidate pose:

p™* = argmaxp™ (j) (8)

J

If the highest confidence is lower than a threshold, p™* < 7,
then the method decides that the object is not in the scene.
The distance measure y}"(j) is computed by finding the dif-
ference between the features of the corresponding viewpoint
of the training image and the features in the vicinity area of
the transformed test image for the corresponding hypothesis:

2
m( ) (Itrain{:,j - Itrain{,.j) (9)
Yr ) =
! HItruin{:j ”

where f is the feature type of hypothesis cue. The difference
is normalized with the size of the corresponding viewpoint
of the training image. The following cue features are used:

o Edge: Intensity-based Canny edge detector [15] is used
to extract the edge features.

« Intensity: The intensity values are taken as the features.
It should be noted that the camera in the test scene is
color corrected at the beginning of the experiments by
using a gray card.

o Depth: The depth information from the RGB-D sensor is
taken as the feature after the corresponding transforma-
tions are applied on the corresponding area. (including
in-plane rotations and scale)

 Surface Normals: The surface normal at each pixel VZ
is taken as the feature.

It should be noted that these features could also be used in
Sec. II-D, however due to efficiency, they are used only to
validate the final hypothesis.



IV. EXPERIMENTS

In this section we compare our results against [3], [10], and
[12]. The implementation of [3] is available online'; [10]
and [12] are included in the Point Cloud Library (PCL) [17].
This allows for a fair comparison of the algorithms. The
test scenarios consist of various object parts which have
to be assembled by a human with the help of a robot
to demonstrate human-robot interaction. We compare the
pose estimation methods in two ways, (1) the number of
objects detected per test scene and (2) the object pose error
with respect to the ground truth data. The ground truth
data was acquired using a Natural Point OptiTrack system
with eleven "Flex13" cameras to track 4 reflective markers,
shown in Fig. 2 (left). OptiTrackers are placed manually at
approximately the center of the object. The test scene can
be seen in Fig. 2 (right). The two Kinects that we use to
capture the images can be seen (1) positioned above the
robot arms and (2) suspended from the ceiling which is
orthogonal to the first Kinect. We use SHOT [11] descriptors
for [10] and [12] with a descriptor radius of 0.04, and 5
iterations for the ICP (Iterative Closest Point) method [18].
For [3] and the proposed method, in-plane rotations are in
the range of @ € [0,7/2] and scale is in the range of
sc € [0.5,1.1]. Additionally, we use a confidence rate of
0.5 for the proposed method in the first set of experiments.

Fig. 2: Left: 4 reflective markers of the OptiTracker placed
on an object. Right: The camera setup.

The point cloud methods [10] and [12] initially removes
planar surfaces (e.g. floor, wall, etc.). Therefore these meth-
ods tend to have problems in detecting planar objects placed
on a surface (e.g. a table) as shown in Fig. 3. We therefore
limit our comparison to test scenes like the ones shown in
Figs. 5a and 6a.

The training data is captured using a Kinect and 2 KUKA
Light weight robot arms. The used setup is shown in Fig. 4.
The left arm moves the camera along an arc around the object
and the right arm changes the azimuth (i.e. rotation) of the
object. The training images are captured for azimuths in the
range of 6 € [0,27] and elevations in the range of ¢ €
[0,7/2]. After segmentation the objects are used, along with
ground truth poses, as training data.

Thttp://www.montefiore.ulg.ac.be/ dteney/code.htm

Fig. 4: Robot training.

A. Object recognition

As with conventional object recognition algorithms, an
object is said to be detected if the estimated bounding box
overlaps the ground truth by more than 50% [19]. This
criterion is not sufficient for robot manipulation. For our
purposes we consider an object to be detected if there is an
overlap of at least 90%. We compare our results in a practical
setup as shown in Figs. 5a and 6a. The setup consists of
three visually similar tool box parts (Box partl, Box part2,
Box part3) and an automatic drill. A comparison of the
investigated methods can be seen in Figs. 5 and 6. Due to
space limitation we can only present some of the detections.

As can be seen, the proposed method is robust when
detecting highly similar objects, while [3] tends to get them
confused. The point cloud methods [10] and [12] can detect
Box part2 (both instances; Figs. 5j, 5k, 6j, 6k) but also
generates false positives for other Box parts, despite being
fully observable. As previously discussed, [10] and [12] tend
to have problems with detecting objects placed flat on the
table plane due to planar segmentation.

We perform a quantitative comparison for different test
scenes where the objects are placed flat on the table, occluded
by other objects, or seen only partially by the camera.
The different tested configurations can be seen in Table I.
Results for those configurations are presented in Table II.
We measure the performance of the algorithms by comparing
the number of correctly detected objects (true positives,
TP) and the number of incorrectly detected objects (false
positive, FP) to the total number of objects detected (DO).
Our experiments suggest that the proposed method (PAPE)
performs better than state-of-the-art methods for our test
cases. The test scenes are combinations of objects placed
flat and askew on the table plane, which can be encountered
in a real robot-human interaction scenario.

The superiority in the performance of PAPE for planar ob-
jects can be attributed to its appearance-based method which
can integrate different features like edge orientation, depth
and color. Additionally, the low number of false positives in
object detection can be associated with the confidence rate.
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Fig. 5: Object detection test scene 1: (a) Test scene, (b-e) PAPE, (f-i) Objects detected by [3], (j) True positive by [10] and

(k) True positive by [12].
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Fig. 6: Object detection test scene 2: (a) Test scene, (b-e) PAPE, (f-i) Objects detected by by [3], (j) True positive by [10]

and (k) True positive by [12].
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TABLE I: Test scene configurations.
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TABLE II: Test scenes results: DO - Detected objects, TP -
True positives and FP - False positives.

B. Evaluation on a Robot

In the second part of the experiments, we investigate
the precision of our method in terms of pose estimation

error. As it was mentioned in Sec. IV-A, the RANSAC-like
sampling strategy [10] and OUR-CVFH descriptor [12] tend
to eliminate flat objects on the table while performing plane
segmentation. Since the objects in this Section are lying
flat on the table, these methods have a poor performance
in detection. Therefore we investigate the pose estimation
output of only our method. The confidence threshold is
selected to be 7. = 0.6, the scale range is sc € [0.6,0.9],
and ¢ = 0.125, which controls the the effect of the size of
the number of features on the weight w.

In the experiments, the same scene is observed by two
RGB-D cameras as shown in Fig. 7 except the scene on the
extreme bottom right. The average error of the estimated pose
with respect to the ground truth is shown in Table III. The left
column in Table III refers to different scenes captured by two
Kinects. For example, SIK1 means that the image is taken
from Scene 1 with Kinect 1. There are a total of three object
classes: Legs, Bottom and Back; and Legs can be observed
with more than one instance in the images. We compute
the mean error of estimated poses for multiple instances of
Leg. It should be noted that in all of the images, all of the
objects are recognized, therefore an evaluation of the number
of detected objects is not repeated in this Section.

As can be observed in Table III, the precision does not
change significantly with changes in viewpoint. Part of the



(d) S1K2

(e) S2K2 (f) S3K2 (g) S4K2

Fig. 7: Scenes with chair parts from two different cameras.
S: Scene, K: Kinect, Top: Scenes seen by Kinect 1, Bottom:
Scenes seen by Kinect 2.

remaining error is likely a result of placing the reflective
markers manually on the objects as shown in Fig. 2 (left).
This also indicates presence of the precision error. Therefore,
if the manipulation/grasping task requires a more precise
estimate of the objects, a method to register the 3-D Shape
of the obtained training viewpoint v* to the transformation
w* in the test scene should be applied, e.g. ICP (Iterative
Closest Point) [18]. The implementation of such a method
at the final stage of our approach is not in the scope of this

paper.

V. CONCLUSION

We proposed a novel joint object recognition and pose
estimation method that can be used with RGB-D images. We
showed that our method can be used with textureless objects
in cluttered scenes. Its capability of detecting objects and
estimating their poses is superior to the other methods we
compared. This can be attributed to its probabilistic frame-
work that integrates diverse types of features such as edge
orientation, depth and color. A particular contribution is the
definition of a confidence rate to select the best hypothesis
of pose estimation of the object. By using the confidence
rate, the number of false positives is reduced significantly,
as shown in the experiments. We also showed the capacity
of our system to be used for grasping/manipulation tasks by
giving the mean pose estimation error for textureless objects.

In the future, we plan to develop our method for use
with multiple cameras to increase its accuracy. Moreover,
our focus will be on active learning of object appearances in
an autonomous manner.

Leg Bottom  Back
SIKI  0.0315 0.0420 0.0479
S1K2  0.0075  0.0426  0.0500
S2K1  0.0605  0.0253 -
S2K2  0.0665  0.0262 -
S3K1  0.0639  0.0650 -
S3K2  0.0593  0.0434 -
S4K2  0.0392  0.0320 -

TABLE III: Average Pose Estimation Errors (m)
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Abstract. Object recognition and pose estimation of small parts, including screws
and screw driver bits, is a challenging problem in computer vision. However, a
precision estimation of the poses is necessary for robot manipulation. In this pa-
per, we propose detection and pose estimation of the minuscule objects for hand-
ing over the objects to humans, putting a screw in the hole and fitting the screw
with an automatic screw driver. We propose an approach which finds the tips of
the small parts by using image moment invariants after applying a probabilistic,
appearance-based object detection algorithm. In the evaluation we intend to show
the approximate precision and detection rate of the proposed algorithm in a real
scenario.

Keywords: Pose estimation, Tool tip detection

1 Introduction and Related Work

Object recognition and pose estimation has been a challenging problem in computer
vision over the years. Tasks such as pose estimation, grasping, navigating, and learning
the structure of new objects, are well enhanced in human. Performing the same by
a robot with vision system further enhances the challenge. For a robot to work in a
given environment, the vision system should be capable of estimating the pose of the
object to be manipulated. SIFT [1] and SURF [2] still seem to be the most appealing
descriptors used for object detection. They have been widely employed in robot vision
due to their robustness and relatively fast nature, which crucial for on-line applications.
More recently, the emergence of low-cost RGB-D sensors has added flexibility to robot
vision applications.

In this paper, we address detection and pose estimation of minuscule objects like
screws and various screw driver bits, as shown in Fig. 1a for robot manipulation. The
test scenarios consist of various parts of an object which have to be assembled by a
human with the help of a robot to demonstrate human-robot interaction as shown in
Fig. 1b. Some of the tasks performed by robot will be to hand over the objects to hu-
mans, put a screw in the hole and fit the screw with an automatic screw driver. Such
tasks require highly accurate pose estimates of object parts as well as tiny objects. A
common convention in object detection is that an object is said to be detected accurately
if the estimated bounding box overlaps the ground truth by at least 50% [3]. There have
been ample methodologies demonstrating impressive results based on such a criterion.
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(a) Minuscule objects (b) Robot handing over
screw

Fig. 1: Human robot interaction.

However, is not sufficient for robot manipulation task. A pixel-accurate object detec-
tion, though difficult, would be an ideal fit to perform the aforementioned robot tasks.
The popular SIFT [1] and SURF [2] methods can be used to perform pixel-accurate
object detection, but they work only with textured objects. Some of the recent method-
ologies [4, 5] can be included in this category. Such methods cannot be used for pose
estimation of textureless objects.

The RGB-D sensors like Kinect work in the range greater than 600mm. And to
detect minuscule objects at distances above 300mm will be an extremely difficult chal-
lenge. At such high distance they appear to be blurry in RGB images and have no depth
data, thus constituting RGB-D sensors unworkable. Moreover, reflective objects like
screws and relatively dark objects like screw driver tips will not provide any depth data.
The vision systems in industrial applications to detect minuscule objects employ tele-
centric lenses, which are comparatively very expensive. Visual servoing methods [6]
along with known 3D models of the objects and pose of the robot manipulator might
achieve the task of inserting a screw into its hole. Still, this requires the detection of the
screw and the screw driver tip, which are hard tasks in a real robot scenario.

Pose estimation of the object in a single 2D image has been a challenging problem
for vision systems over the years. The object detection and pose estimation framework
proposed by [7], used in this work, is purely probabilistic, appearance-based and nat-
urally accommodates variability in scale, shape as well as appearance of objects. The
method can accommodate different types of image features, but in this work, very ba-
sic edge features along with their tangent orientation are chosen. The proposed method
comprises of two steps: (1) Object detection and approximate pose estimation with [7],
and (2) accurately estimate pose and tip of the minuscule objects.

2 Probabilistic Appearance-based Model

The probabilistic appearance-based model proposed in [7] performs object recognition
and pose estimation in 2D images, and is applicable to various types of image features.
In this framework, it is not easy to match the edge points in training and test views. In
this section we briefly explain the probabilistic approach to detect objects.
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Fig. 2: Center point feature.

2.1 Learning object models: Pose-Appearance space

We create training data from real images (see Fig. 3a) to create a pose-appearance space
for each object as detailed in [7]. For each image in training data, we extract edge points
with their tangent orientation, defined on R? x ST, accounting for the position in the
image and orientation. This space is defined as the appearance space A. Additionally,
we associate a center point feature ¢, with each training image which aids in separation
between tool tip and tip holder as shown in Fig. 2. This is not necessary for screw. Edge
features x of each image are then associated with the respective pose w to obtain a set
of pose/appearance pairs. Considering the whole training set 7', these pairs of all the
images are used to define the continuous probability distribution y as:

1
W(W,X) = M Z K (W,Wi)KZ(X,X[), (1)

(wixi)€T

where w € SE(3) and x € A. The use of kernels K; and K, on the training data can be
seen here as a smoothing over the available training edge points, effectively yielding
a continuous distribution and allowing to interpolate, to some extent, the value y over
regions not covered by the training data [8].

2.2 Pose Inference

The test scene is a new 2D image of the scene, it undergoes a similar procedure as that
of the training images. The same type of features (edges) are extracted and are stored as
the observations O = {x}Y_,, where x; € A and N is number of test scenes. For a given
set of test scenes (or a single test scene), the continuous probability density ¢ on the
appearance space A is defined as:

¢(x) = % Y Ko(x,xi). 2)

x;€0

The estimated pose of the object in a test scene is modeled as random variable W €
SE(3), the distribution of which is the likelihood function given by:

pw) = [ Wm0 g(x)a. ®
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As mentioned in [7], the above expression measures the compatibility of the training
data at a pose w, with the distribution of features observed in the test image. It can be
interpreted as the cross-correlation of the distribution ¢ of observation in the test image
with the distribution y(w,.) of the training points. The method uses a probabilistic
voting scheme on the 6D pose space to identify the modes and peaks of the distribution
of W. The algorithm locally fits such a distribution on the peaks of p(w), using non-
linear least squares. The mean of the fitted distribution is then retained as the peak of
that particular mode of the distribution i.e score of the pose. The estimated pose of
the object is described by: azimuth & elevation angle, in-plane rotation, location of the
pose with respect to the image center, change in the scale of the pose, score and the
training image index. For further details on the approach, we refer readers to [7], [9].
With this section, we achieve pixel-accurate detection of the minuscule objects and we
begin search for the tip of screw driver bit and its orientation in next section.

3 Tip Detection and Pose Estimation with Image Moments

The probabilistic object detection framework by [7] results in pixel-accurate object de-
tection. Despite of achieving pixel-accurate detection of the minuscule objects, the non-
parametric nature of the method raises difficulties to detect exact location of the tip and
its orientation. To overcome this challenge, we adopt to image moment invariants as
detailed in [10].

3.1 Image moments

The concept of image moments was introduced in [10]. Here, we briefly detail the
concept of image moments and how to extract orientation of an image.

Image moments can be used to derive simple image properties like area (for binary
images), centroid, or sum of grey level (for greyscale image). For an image the raw
image moments M;; can be calculated as:

Mi; =YY XyI(xy), 4)
Xy

where i, j are moment indexes, x,y are pixel location, and I(x,y) is pixel intensity. For
practical use, the image is summarized with functions of a few lower order moments.
The central moments for an image can be defined as:

=Y Y =0 (v—9)1(x,y), (5)
X y

where, ¥ = %—(‘)g and y = %—gé are the components of the centroid. We can derive image

orientation using the second order central moments to construct a covariance matrix.
The covariance matrix of the image I(x,y) is given by:

!/ !/
corliey)] = | M0 B ] ©
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We can then compute eigenvectors of the covariance matrix to obtain major and minor
axes of the image, so the orientation can thus be extracted from the angle of eigenvector
with largest eigenvalue. The orientation of the eigenvector can be given as

2u,
/

tan260 = 7t
Moo — Hop

)

as long as: ph, — 1), # 0. We refer readers to [10] for mathematical details.

3.2 Tip detection

To detect tool tip, first, we extract the edge points within the bounding box I, obtained
from [7]. Edge features x;;, within the bounding box I, are retained, while the others
are discarded, xp;, € Ij,. Further, we use center point feature ¢, along with in-plane
rotation ¢¢ obtained from estimated pose, to crop the tip from tip holder. We create a
binary image by filling the region within those edge points. A morphological erosion
on the binary image eliminates the unwanted edge points in the background, improv-
ing accuracy. We then compute orientation and major axis of the binary image using
image moments. This can be seen as ellipse fitting on the binary mask. A step-by-step
visualization of the procedure is shown in Fig. 3.

‘F r -
(a) Test scene (b) Detected minuscule (c) Cropped edge fea-
object tures

(d) Binary mask (e) Ellipse fitting

Fig. 3: Step-wise visualization for tip detection.

After knowing the location of centroid, major axis, and its orientation 6, the tip can
be detected by using a nearest neighbour algorithm. One of the end points ep,ep, of
the major axis is located closest to the tool tip. Since, we know the pose of the robot
hand, we also know whether the tip is facing vertically up or down in the image plane.
We use this information to select the appropriate end point ep of the major axis, either
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epj or ep;. The estimated tip of the object in image plane is computed by applying the
nearest neighbour algorithm:

x, = argmin||x; — ep||*, x; € xpp, ®)
1

where, x;, is the nearest edge point to end point ep, and x; are all the edge points within
the bounding box I,. The location of the estimated tip is given by x,, and its orientation
is given by 6.

4 Experiments and Results

The experimental setup consist of two orthogonally placed cameras. Once an object
is grasped by the robot, the robot moves to a known location in world frame such that
plane of the robot hand is parallel to the image plane of one of the cameras. An example
test scenario is shown in Fig. 4. We test the proposed approach on a diverse set of

(a) View 1 (b) Corresponding
orthogonal view

Fig. 4: Orthogonal view of the grasped object.

images, where a screw is held at different orientations. The results of screw tip detection
are shown in Fig. 5. We test the algorithm with different screw driver bit placed at
orientations. The results for tip detection and estimation of the pose of bit are shown in
Fig. 6. It can be seen from the results that the proposed method is able to detect the tip
accurately in the image plane.

5 Conclusion

We propose a novel approach to detect minuscule objects like screw and screw driver
bits. The proposed method finds the tip of small objects in two steps: (1) Pixel-based
object detection with a probabilistic, appearance-based framework and (2) Estimate tip
location and orientation by adopting to the concept of image moments. The method
demonstrates accurate detection of the tip, which can be used in human-robot interac-
tions.
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(a) Screw tip in view 1 (b) Screw tip in view 2

Fig. 5: Screw tip detection in two orthogonal views: 6, = 0.38362°, 6, = 9.2349°

AR A

122.0081" Theta - 88.8573" Thota - 129.5057"

() (b) (©

Theta - 707096

(d) (e)

Fig.6: Screw driver bit tip detection: 6, = 122.088°, 0, = 88.8573°,60, =
129.5057°, 6, = 144.562°, 6, = 70.7098°



VI

The research leading to these results has received funding from the European Commu-
nitys Seventh Framework Programme FP7/2007-2013 (Specific Programme Coopera-
tion, Theme 3, Information and Communi- cation Technologies) under grant agreement
no. 610878, 3rd HAND.

References

1. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. of Computer
Vis. 60(2) (2004) 91-110

2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer
Vision and Image Understanding 110(3) (2008) 346-359

3. Everingham, M., Eslami, S., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal
visual object classes challenge: A retrospective. International Journal of Computer Vision
(2014) 1-39

4. Teng, Z., Xiao, J.: Surface-based General 3D Object Detection and Pose Estimation. In:
2014 IEEE International Conference on Robotics and Automation. (2014) 5473-5479

5. Li, K., Meng, M.: Robotic Object Manipulation with Multilevel Part-based Model in RGB-D
Data. In: 2014 IEEE International Conference on Robotics and Automation. (2014) 3151
3156

6. Prats, M., Martinet, P., del Pobil, A.P,, Lee, S.: Robotic execution of everyday tasks by means
of external vision/force control. Intelligent Service Robotics 1(3) (2008) 253-266

7. Teney, D., Piater, J.: Modeling Pose/Appearance Relations for Improved Object Localization
and Pose Estimation in 2D images. In: 6th Iberian Conference on Pattern Recognition and
Image Analysis. Volume 7887 of LNCS., Berlin, Heidelberg, New York, Springer (6 2013)
59-68

8. Teney, D., Piater, J.: Continuous Pose Estimation in 2D Images at Instance and Category
Levels. In: Tenth Conference on Computer and Robot Vision, IEEE (5 2013) 121-127

9. Teney, D., Piater, J.: Multiview feature distributions for object detection and continuous pose
estimation. Computer Vision and Image Understanding 125 (8 2014) 265-282

10. Hu, M.K.: Visual pattern recognition by moment invariants. Information Theory, IRE Trans-

actions on 8(2) (1962) 179-187



	Tasks, objectives, results
	Planned work
	Actual work performed
	Relation to the state-of-the-art

	Annexes

