3rd HAND
FP7-1CT-2013-10-610878
1 October 2013 (48months)

D3.1:
Scientific report on Protocols of Natural Instruction

Inria

(manuel.lopes@inria.fr)

Due date of deliverable: M12
Actual submission date: M12

Lead Partner: Inria

Partners: Inria, TUDa, USTT, UIBK
Revision: draft

Dissemination level: PU

This deliverable presents the results and plans on the protocols of natural
instruction. We describe how a user can interact with a robot via demon-
strations, a GUI, and gestures. Several capture systems are used to acquire
information from those various modalities creating difficult challenges to
merge and extract relevant information. We present an overall architecture
for extracting hierarchical plans of assembly tasks from observing demon-
strations and by interaction between the robot and the user. We describe
several new algorithms able to: i) decompose a demonstration in simpler
components; ii) learn high-level plans using inverse reinforcement learning;
and iii) acquiring a symbolic representation of the task.
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Executive Summary

This report presents the results of the first year on methods for Learning
from Instructions (WP3). In this first period we developed new methods
for interpreting demonstrations acquired using optical and magnetic track-
ing systems (WP1) in an hierarchical way. We created several segmen-
tation methods to decompose a demonstration in simpler components: i)
new method based on conditional random fields (CRFs); a segmentation
methods based on clustering on DMPs; and iii) a graphical model to detect
constraints.

To evaluate the results we considered metrics such as: precision of the
detection of constraints; amount of data required to learn a task; robustness
of the learned plans to changes and limited information; and number of
corrections necessary during the interactive phase.

This report uses data from D1.1, it is complement with D4.1 for learning
interactive motor primitives and the execution on the robot (simulation and
real) is presented in D5.1.

Role of Protocols of Natural Instruction in 3rdHand

The work presented here gives the robot the fundamental skills to learn a
task from a demonstration. This workpackage deals with all the interaction
with the user both in an initial learning by interaction phase and later by
allowing the user and the robot to work collaboratively. This first phase
of work considered how to learn an assembly task from demonstration and
how to interact with the user to present what was learned and allowing the
user to provide further corrections.

In the future we will consider active requests for information, transfer of
information between tasks and more in-depth collaborative tasks.

Contribution to the 3rdHand scenario

The results presented here contribute to the creation of an interactive robot
by allowing it to understand how to execute a task by observing a person
executing it. This process occurs not just in a passive way but also in an
interactive exchange of information at several hierarchical levels. In more
concrete terms we show how a complex tasks can be segmented in simpler el-
ements that explain the creation of a constraint between objects. The same
segments are also elementary unities that can be executed as a single motor
primitives. We also show how to go from low-level information to more ab-
stract plan level representations. These representation will allow the robot
to better generalize between tasks and contexts. Also, to improve collabo-
ration we need to create a shared understanding between the robot and the
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user, and these representations are easier to visualize and to exchange with
a person.

1 Tasks, objectives, results

1.1 Planned work

The goal of this task was: To develop a framework for robot instruction
including the different types of instruction the user can provide and how they
are used for learning. A first step will be to describe the different instructions
types commonly used in the different algorithms and in natural human-
human interactions. A second step will be to understand which signals can
be better extracted in the particular scenarios we envisage. Resulting in
protocols and algorithms to include multiple instructions to learn reward
function to learn motor primitives (WP4) and manipulation plans (WP1).
It was only planned to integrate these capabilities in Milestone 2.

1.2 Actual work performed

The work plan was changed mostly to consider earlier integration of the
skills in some of the robotic platforms already in Milestone 1. Parts of the
study on human-human integration were delayed.

The work was divided in several axis presented next.

1.2.1 Interactive Learning Framework

This work considers all the factors that need to be taken into account to
learn a complete description of a task in an intuitive way and efficient enough
so that the effort of programming is reduced, and that the skills are reused.
This framework will be updated with the results of the project.

The global workflow is presented on Figure[l|and described in [MMRLI5].
The work on segmentation that allows to decompose a whole demonstra-
tion in shorter motions, is presented next. Each component represents a
constraint and a motor primitive. The overall sequence of components is
described as a relational plan.

1.2.2 Segmentation of Trajectories of Multiple Objects During a
Manipulation Task

This work considered how an assembly task can be interpreted as a sequence
of manipulations acts that change the constraints between pairs of objects.
For this we created a generic CRF model that models a conditional proba-
bility distribution between the motions, and postures, of different objects.
By representing the constraint between pairs of objects as a latent variable
we can use several inference methods to estimate, for each time instant, if
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Figure 1: Interactive Learning Framework. Several processes need to be
applied to a demonstration to recover a high-level task representation and
motor primitives that can be reused in other situations. a) Task Demon-
stration; b) Interactive correction of the acquired knowledge using a GUI,
¢) Automatically detected key-frames of the demonstration; d) Motor prim-

itives extracted from the demonstration.
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there is a constraint between a pair of objects. The resulting segmentation
provides information similar to the one presented in Figure [1l Full details
of the algorithm are presented in [BML™15].

A complementary method is presented by [LMPN15]. Here the segments
are the results of a clustering of motor primitives and not on the relations
between objects. The rationale is that to learn true reusable motor primi-
tives we have to rely on the particular kinematics of the objects and of the
robot. A segment that represents the creation of a single constraint between
two objects might require more than one

1.2.3 Learning of Relational Plans

An assembly task is a complex skill that includes both high-level planning
and low-level action execution. The high-level plans have the capability to
generalize better among different objects and situation and are easier to
interpret by humans. To learn such plans we introduced a new inverse rein-
forcement learning method that works in the relational domain [MPG™15].
This method combines the advantages of relational learning with the ones
of inverse reinforcement learning. Relational learning allows representing
objects and work with a potential infinite number of objects, with the ad-
vantages of inverse reinforcement learning that allows to represent the cost
function that explains the behavior of the user.

1.2.4 Head Tracking

We implemented a head tracking and head pose estimation system using
Regularized Landmark Mean-Shift (RLMS) in combination with POSIT.
For face tracking, an implementation of RLMS by [SLC11] was used. This
method gives us 3D information for the feature points of the trained face-
model. Using these features, tracked in 2D, together with the 3D information
obtained during training, we can calculate an appropriate transformation of
the 3D points so they coincide (after projection) with the 2D features. This
gives us an estimation of the head pose relative to the pose determined
during training. For obtaining this transformation, we used the OpenCV
implementation of “Pose from Orthography and Scaling with Iterations”
(POSIT) by [DD95]. Results of the head tracking and pose estimation can
be seen in 2l

Additionally to the head pose estimation, the tracked points around the
eyes are used to gather images for gaze estimation. The head pose— and gaze
estimation will be part of a system to detect objects of interest. Together
with hand pose estimation and gesture recognition they will aid in human
robot interaction.
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Figure 2: Head tracking and estimated pose for different orientations of
the users head.

1.3 Relation to the state-of-the-art

1.3.1 Interactive Learning Framework

Learning from demonstration algorithms [Sch99, [ACV(9, [Kha99] have fo-

cused on limited forms of demonstration, in most cases just working with a
specific type of demonstration. Recently, many approaches started to con-
sider a larger variety of demonstrations that go beyond trajectories acquired
by means of optical tracking or kinesthetic teaching. This forms include Key-

points [ACJT12, [AJCTT1], learning from failures [GB11], active approaches
[LMMO09, [CV09], and even the use of loosely specified protocols [GLOT3]. In

many cases we see a trend of unifying the training and execution part where
the instructor is free to interrupt the system when a correction is needed
[ML11], and also allows the robotic system to request further instruction
when necessary [CV09].

Learning hierarchical representations of tasks in the robotic domain
would consider learning high-level task plans and also low-level motor con-
trollers. Works have mostly consider such levels separately even if several
approaches already consider the execution of such hierarchical systems. A
notably exception is [NOKBI12, NCB¥13] that presented an integrated ap-
proach to segment manipulation demonstrations into actions, each repre-
sented by a Dynamic Motion Primitive (DMP). In our work we extend this
approach by including information about object relations and by learning
high-level plans.
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1.3.2 Segmentation of Trajectories of Multiple Objects During a
Manipulation Task

Niekum et al. [NOKBT2, NCB™13] presented an integrated approach to seg-
ment manipulation demonstrations into actions, each represented by a Dy-
namic Motion Primitive (DMP). The segmentation of demonstrations is re-
alized with a Beta Process autoregressive HMM (BP-AR-HMM) [WSJE09],
which not only produces a segmentation but also a corresponding labeling,
i.e. an association with latent variable values. This approach is promising to
identify segments of robot motion and compile these into DMPs. However,
our aim is to identify the crucial interaction phases between manipulators
and objects that signify the initial and final moments of an object manip-
ulation. Therefore, in contrast to the problem setting of Niekum et al., we
aim at a binary labeling of pair-wise interactions.

A series of works [WTS08|, [CP10, MTSS11), [AML13] formulate integrated
probabilistic models of sequential or superimposed motion primitives which,
when fitted to data, imply a segmentation of motions. Again, the goal of
these approaches is to extract specific motion primitives from data rather
than to identify interaction phases. Barbic et al. [BSPT04] provide a good
discussion of traditional methods for segmenting motion capture data, in-
cluding the detection of zero crossings of angular velocities [FMJ02], and
their own PCA approach. However, in all these approaches the problem
setting focuses on the extraction of elemental motion primitives rather than
analyzing pair-wise interaction phases between manipulators, tools and ob-
jects.

1.3.3 Learning of Relational Plans

When learning from observing another agent, we can aim at learning directly
the behavior or, instead, the criteria behind such behavior. The former ap-
proach is usually called Imitation Learning (IL) while the latter is called
Inverse Reinforcement Learning (IRL). The choice of one of the two hy-
pothesis might be motivated by the application, the search for an explicit
explanation for the behavior, the representation compactnesses or the ca-
pability of generalization among different problems. These two mechanisms
can be used to model and explain many different social learning behaviors
in animals [LMKSV09].

If an explanation is found for the behavior, as a reward function for in-
stance, it is expected that the agent can generate the correct behavior in
different situations, as it can plan its actions in those new situations. As
a drawback, such approaches require some knowledge on both the original
and the new domain. Another difference between IL and IRL is the com-
pactnesses of the representation. Even in the same domain, there are tasks
that are more compactly described as a reward function while others can be
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better described as a policy. For instance, in a typical blocks world domain,
the task of making a tower with all objects requires a non-trivial policy but
can be described with a simple reward, see [DDRDOI].

Another approach for generalizing to different problems is to use rep-
resentations that are more expressive. The use of relational learning (also
known as logical learning) allows one to generalize between worlds with
different numbers of objects and agents. Learning to act from demon-
stration in relational domains have been a research problem for a long
time [SD&5, [SD87., [Kha99, [YFG02]. The use of relational representations
is attracting again more attention due to new algorithmic developments,
new problems that are inherently relational and the possibility of learn-
ing the representations from real-world data, including robotic domains
[LTT10, LTK12].

Even though no approach to relational IRL has been proposed, this work
is close to TBRIL |[NJT™11]. The authors propose the use of gradient-tree
boosting [Eri01] to achieve imitation learning in relational domains.
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2 Annexes

e |[Learning and Representing Object Assembly Tasks| In this report we
present a framework for learning assembly tasks from demonstration.
We show how a complex assembly task can be automatically decom-
posed in components allowing to learn a set of constraints between
different objects. This information allows to create a high-level repre-
sentation to plan manipulation sequences. We introduce also a graph-
ical user interface that allows the user to see the sequence of actions
and the relations between objects that were learned by the robot. The
user can thus program the robot by combining demonstrations with
corrections in the GUI minimizing the overall programming phase.
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e [[nverse Reinforcement Learning in Relational Domains| In this work,
we introduce the first approach to the Inverse Reinforcement Learning
(IRL) problem in relational domains. IRL has been used to recover
a more compact representation of the expert policy leading to better
generalize among different contexts. Relational learning allows one to
represent problems with a varying number of objects (potentially in-
finite), thus providing more generalizable representations of problems
and skills. We show how these different formalisms can be combined
by modifying an IRL algorithm (Cascaded Supervised IRL) such that
it handles relational domains. Our results indicate that we can recover
rewards from expert data using only partial knowledge about the dy-
namics of the environment. We evaluate our algorithm in several tasks
and study the impact of several experimental conditions such as: the
number of demonstrations, knowledge about the dynamics, transfer
among varying dimensions of a problem, and changing dynamics.

e [Temporal Segmentation of Pair-Wise Interaction Phases in Sequentiall
[Manipulation Demonstrations| We consider how to learn a representa-
tion from bimanual assembly tasks from demonstration. We propose
to analyze the demonstration in terms of the (potentially concurrent)
interaction phases between any pair of involved bodies (hands, tools,
objects). These interaction phases are the key to extract a more ab-
stract description of the demonstration. In particular one may assume
that the goal of each interaction phase is to achieve a certain geo-
metric constraint. This gen- eralized previous approaches on LfD to
consider not just the motion of the end-effector but also the relational
properties of the motion of the objects. We present an approach to
train a Conditional Random Field to detect the pair-wise interaction
phases and based on this labeling analyze the geometric constraints
that are established. In this way we extract a higher level task ori-
ented description of the demonstrated sequential manipulation. We
test our system using data from a person assembling a toolbox of 5
parts using a screwdriver and two hands. We consider how to learn a
representation from bimanual assembly tasks from demonstration.

e |A Parser for Constructing Movement Primitive Libraries| Movement
primitives are a well established approach for encoding and executing
movements. While the primitives themselves have been extensively
researched, the concept of movement primitive libraries has not re-
ceived as much attention. The goal of this work is to learn a primitive
library from unsegmented demonstrations. The learned library is used
to parse previously unseen demonstration into a sequence of recurring
primitives. At the same time the library provides a set of primitives
which can be sequenced in order to solve previously undemonstrated
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tasks. Current approaches separate the segmentation of the demon-
stration from the learning of the primitives. This separation neglects
the dependency between the found segments and the learned prim-
itives. However this dependency is crucial for a good segmentation
and the learning of the underlying primitives. Therefore we propose
a novel method which, in contrast to previous work, takes advantage
of the dependency. Based on probabilistic inference our approach is
able to learn the segmentation and the primitives simultaneously. We
compare our work to state-of-art methods and show the advantages
of such a combined approach. Experiments on a complex bi-manual
robot platform demonstrate the applicability of our method in real
world robot tasks.
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Abstract

In this report we present a framework for learning assembly
tasks from demonstration. We show how a complex assem-
bly task can be automatically decomposed in components
allowing to learn a set of constraints between different ob-
jects. This information is used to create a high-level plan of
the manipulation sequence. We introduce also a graphical
user interface that allows the user to see the sequence of ac-
tions and the relations between objects that were learned by
the robot. The user can thus program the robot by combin-
ing demonstrations with corrections in the GUI minimizing
the overall programming phase. We show preliminary re-
sults of interpreting assembly tasks of furniture.

1 Introduction

The applications for robots are changing. New societal and
economical challenges demand new robotic systems that are
more adaptable to different environments and tasks, and
easier to use. Robots are starting to be used at home, and
in flexible industrial cells, both applications that demand a
constant change between tasks and an easy way to instruct
and personalize the behavior of the robotic system. A ma-
jor challenge is to provide intuitive and easy ways so that
a larger part of the population can instruct and work with
those robotic systems. We can thus create a list of desired
properties of a system that can be instructed and executes
joint-tasks in a friendly way:

easy to program where a simple demonstration of a task
execution must allow, in most cases, to program it;

easy to instruct where corrections of what has been
learned and, at execution time, deviations from the stan-
dard path must be easy to provide;

shared task awareness where a joint comprehension of
the task being executed, the world state and the role of
each partner, must be shared;

shared initiative where the robot does not require a step-
by-step instruction that renders the interaction very tiring,
the system must be able to start its own behavior and wait

when it is uncertain about the task, allows considering that
the user might want to correct or change the behavior at
any point in time;

hierarchical learning where all parts of the task are easy
to program. Even if assuming that the robotic system is
already equipped with many skills, at all levels there will be
limitations that must be recoverable at runtime.

We start by discussing what we can learn from a demon-
stration considering the problem of furniture assembly. An
easy way to program a task is just to execute it. From this
information the system extracts keyframes that represent
the moments where new constraints are created between
objects. This segmentation of the demonstration allows to
separate the motor primitives into clusters, and also to cre-
ate a semi-symbolic representation of the task. A plan can
also be learned from the semi-symbolic representation us-
ing logic based approaches. Unfortunately, even if there are
no mistakes in the demonstrations, the system inference of
all those components will be imperfect. For this we create
a graphical interface where the user is able to see all the
information that the system learned: sequence of manipu-
lation steps, constraints, motor primitives and others. The
user is then able to correct some of this information and to
visualize an execution of the task using the Baxter robot
simulator.

In this report we present our ongoing work and general
perspective on the interaction modalities of the project. It
will be completed in the future with with methods from
other workpackages, and with further developments.

2 Related Work

Learning from demonstration algorithms [21, 4] have fo-
cused on limited forms of demonstrations, in most cases
just working with a specific type of demonstration. Re-
cently, some approaches started to consider a larger vari-
ety of demonstrations that go beyond trajectories acquired
by means of optical tracking or kinesthetic teaching. This
forms include Keypoints [1, 2], learning from failures [11],
active approaches [14, 7], and even the use of loosely speci-
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Figure 1: Workflow for learning a hierarchical task repre-
sentation from demonstration.

fied protocols [10].

New approaches start to consider how to improve the
knowledge acquired from a demonstration through different
processes: training the user to provide better demonstra-
tions [6], providing more demonstrations, allowing the sys-
tem to request specific demonstrations or clarifications. The
last option has several advantages: theoretically it allows
faster learning [15], it provides information to the user about
what the system understands and potentially increases the
trust we can have in the system.

In many cases we see a trend of unifying the training and
execution part where the instructor is free to interrupt the
system when a correction is needed [16], and also allows the
robotic system to request further instruction when neces-
sary [7].

Learning hierarchical representations of tasks, in the
robotic, domain would require learning high-level task plans
and also low-level motor controllers. Works have mostly
consider such levels separately even if several approaches
already consider the execution of such hierarchical systems.
A notable exception is [19, 18] that presented an inte-
grated approach to segment manipulation demonstrations
into actions, each represented by a Dynamic Motion Prim-
itive (DMP). Low-level Motor primitives represented using
DMPs can also be stored in a library and then called by a
high-level planner[20].

3 Interpreting a Demonstration

Many tasks can be represented as a sequence of constraints
that are established between different, or parts of-, objects.
For instance the assembly of a chair can be seen as attach-
ing four legs and a back to a seating. Arranging the dishes
on a tray is another example where a set of constraints is
established between the different objects.

The global workflow is presented on Figure 1: these con-
straints are computed from the videos that allow to segment
a whole demonstration in shorter motions. Each of those
motions creates a new constraint. From this, we can di-
rectly learn motor primitives or merge it with other videos
to extract a general assembly plan. This plan can then be
corrected in cooperation with the user.

3.1 Detecting Operations on Objects

According to our previous assumptions, a task is the result
of a sequence of actions that establish constraints between
objects. For a set of rigid objects, and commonly avail-
able parts, we can have a very precise definition of what
a constraint is. It is a connexion that enforces a kinematic
constraint between two parts. Standard constraints include:
rigid, prismatic or rotational. Each one can be represented
by a specif constraint between object parts:

Fixed constraint: f(x1,29;Cf) = { i.ll _222 :g
Prismatic constraint: f(z1,z9;Cp) = { 3;11 _2.22 :%t
r1 — T2 =€
I.1 — .T'Q — €

Where z1 and x5 are the posture of each object, C is a
constant, ¢ is time and ¢ is a random variable of zero mean
and high variance. To detect when a constraint has been
established we will rely on the graphical model of Figure
2. The observation model is given by each of the previous
constraint’s models. In this model we rely on the motion
of at least one of the objects to observe if the constraint is
valid or not. A classic expectation-maximization algorithm
can be used to learn the parameters of the model.

© €
L

Figure 2: Constraint Detection

Unconstrained: f(z1, z2; Cy) =

The formalism presented in [5] will be used in the future.

3.2 Extract Motor Primitives

The previous step allows to extract the frames in the as-
sembly plan that result in the establishment of a constraint
between parts. If a robot is highly capable it could be able
to plan actions to establish such constraints, but in most
cases new parts will require different motor primitives that
can be learned from the information already contained in
the demonstration. Taking into account the classes of ob-
jects, a single demonstration can already include more than
one example of a single motor primitive, e.g. inserting a leg
in the seating occurs 4 times in a single demonstration.
Other methods aim at segmenting and learning motor
primitives just at the signal level, see for instance [8]. But,
in many situations extra information already exists in the
environment that can be exploited. Figure 3 shows the seg-
mented trajectories on a single demonstration on a single
dimension. Highlighted parts are the time between the last



detected constraint time and the time of the detected con-
straint.

back
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Figure 3: Segmented trajectories (relative height) with re-
spect to the seating during a single demonstration

After having these segments of data, Dynamical Move-
ment Primitives (DMPs) can be used to learn the segmented
trajectories [12].

3.3 Learning the Motor Primitives

Our goal is to learn a generalized trajectory for each con-
straint given the segmented trajectory at each demonstra-
tion. The first step is to average the segmented trajectories
to get a single trajectory on which we can learn the DMPs.
As our trajectory is given in Cartesian space (z,y, z) for the
position and in quaternion space (qo, g1, g2, q3) for the rota-
tion, seven DMPs will be necessary to learn the complete
trajectory. However, it is necessary to ensure that the unit
length of the quaternion q is kept, thus a post-normalization
step is required[20].

Following the segmented trajectories using DMPs gives us
the possibility to change the position of the starting point
and still bring the object toward the desired constraint po-
sition as seen in Figure 4. This add some flexibility in the
system as an object can be picked at an arbitrary position.

4 Planning Actions

In order to learn and then execute the assembly plan, we
propose the use of high-level reasoning relying on rela-
tional representations and leveraging new algorithmic de-
velopments.

06| —— average segmented trajectory
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Figure 4: Example of a range of possible starting positions
for the DMPs

4.1 Symbol Learning

Before being able to learn abstract plans of a task, it is
necessary to find an abstract representation of the context
where those actions are executed. Requiring symbols to
be pre-defined would rather limit the usage to a particular
system. During a demonstration, a robotic system should
be able to acquire new symbols allowing it to represent new
tasks. Those symbols can be the labeling of key feature of
a state [13], or even the meaning of instruction signals [9].

For this case study, we propose to use only kinematic
constraints. We can thus use a generic 3-ary relation
"is_constraint(O1, 02, C)” where O1 and O2 are two ob-
jects and C is a constraint symbol. The constraint symbols
are computed from extracted constraints that are clustered.
In a similar fashion we propose to have 3-ary relational ac-
tions 7action(O1, 02, C)”. Applying such an action will
produce the corresponding constraint.

4.2 Create an Abstract Representation of
the Assembly Plan

Once symbols are known, one can deduce relational MDP
trajectories from raw data. Decision points are placed each
time a constraint C is detected. The starting state sq is
the empty set and is modified in the following way: if the
constraint "is_constraint(O1, 02, C)” is present from time
t (counted as the number of past decision point) s;41 =
seU{is_constraint(01,02,C)} and a; = action(01,02,C).

A relational policy learning algorithm like BLMRIL [17]
can then be used to learn the policy m € S x A.



4.3 Planning and Executing Hierarchical
Plans

Two options are available to execute the previously learned
actions: offline or online planning.

The offline approach computes a complete plan before
executing it, it does not allow a shared task between a hu-
man and the robot. It is simpler in the sense that it does
not require to detect actions that have already been un-
dertaken by somebody else. By providing a model to the
system we can determine the sequence of actions that have
to be followed. In this case the model would be a single rule
action(01,02,C) : sy — s¢ U {is_constraint(01,02,C)}.

On the contrary using online planning computes the next
action according to the current scene state. It does require
constraints detection in real time but endows the system
with error recovery capabilities as it is able to re-plan. If
one can detect constraints it is straightforward to follow
the previously computed policy. In this setup a model is
not compulsory.

We illustrated the offline approach with two datasets: an
assembly of a chair and an assembly of a bench. Here is an
example of the plan we learn from the chair:

e action(seating,leg2, c2)
e action(seating,legl, c3)

e action(seating,leg4, cl)

action(seating,leg3, cb)
e action(seating, back, c4)

Where ¢* symbols represents the clustered constraints.

5 Context Awareness

When several people work together sharing a task, commu-
nication between them is crucial. In human teams, people
ensure this communication through team meetings, reports
and more generally through their verbal and nonverbal com-
munication. All of these must be part of an information sys-
tem that make people aware about what the task and the
activities of others. Moreover, in case things are not clear,
people naturally ask questions to clarify the situation.

In the field of machine learning, clarifying questions have
already been studied in active learning [14, 7, 15]. But,
studying awareness in a context of learning from demonstra-
tion, has been little researched [3]. In this context a human
and a robot working together on the same task should be
aware of what the other coworker knows and is working on.
Especially, after teaching a new task to a robot it is impor-
tant that the humans know what the robot has understood
about it and that they are able to correct this knowledge if
necessary. This is a question of representing training data

and correcting them either manually from coworkers or with
active learning.

To achieve this goal we propose a Graphical User Inter-
face (GUI) able to represent these constraints and to ask
users for clarification and correction. This allows to correct
a wrong interpretation of the task from the learning algo-
rithms but also enables knowledge transfer. By assuming
that some knowledge has been learned for the task ”assem-
bly of a chair”, this can be reused to assemble a bench af-
ter small corrections provided by the user through the GUI
since the scale and the parts — a bench has a seating and
legs but no back — are slightly different.

5.1 Constraint representation and correc-
tion

In this GUI we first represent the fixed constraints, i.e. the
learned coordinates of each object with respect to its frame
of reference. To achieve this, a 3D view of the parts shows
them with the pose defined by the fixed constraints. The
user can browse into the different objects, see their parent
and consult the values of the constraints. A specific color is
attributed to the selected object (in orange, e.g. the back)
and another one for its parent (blue, e.g. the seating). This
color scheme is kept whatever the current selection is, and
names of both objects are recalled with this color as well.

Additionally to the fixed constraints, we represent linear
constraints using thick lines along the three axes of the con-
strained object. And we also represent angular constraints
using arrows around fixed axes (roll, pitch and yaw). An ex-
ample is presented on Figure 8 including zero angles, a full
rotational joint and lower angles being noise in this case.

The GUI can ask the user for constraint clarification by
animating sequentially the 6 possible degrees of freedom.
This visual animation helps the user to focus on the wrong
degrees of freedom needing corrections.

The user can provide corrections through the graphical
widgets for rough adjustment or directly raw values he
would have measured with a tape-measure. A right-click
menu triggers a menu to correct parent (framing) or trig-
ger animations. Once editing is finished the modified con-
straints are sent back to the system for execution.

5.2 Assembly plan representation

The assembly plan is represented thanks to keyframes. We
call keyframe each time ¢ a new constraint is created. A
snapshot of all the objects — constrained or still uncon-
strained — represent a stage in the assembly plan. The user
can view a list of ordered keyframes, which correspond to
the assembly plan, example in Figure 5.

Ltranslation is set to a default value of £1m
2user is then asked along or around which axis x, y or z
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Figure 5: Sequence of keyframes shown to the user after
learning the plan and the constraints

6 Experiments

6.1 Setup

Our experimental setup can be splitted in three phases:
data recording, asking for clarification in the GUI, and
execution. Similar to the data presented in Figure 6, we
recorded 22 demonstrations of users taking different assem-
bly and disassembly tasks using an Optitrack tracking sys-
tem with four infrared cameras (Flex 13: 1280x1024 reso-
lution at 120Hz) placed at the upper edges of the working
space looking top-down. Reflective markers were placed so
that we tracked each part of the whole object independently
from each other. This system provided in output the ab-
solute pose of all parts at 120Hz during the whole demon-
stration and also a video of the user and his working space
recorded thanks to a webcam.

Figure 6: Recorded chair assembling

For the second phase, a 3D model and constraints learned
from the previous demonstrations were loaded into the GUI.
The 3D model could be either the same object assembled
during demonstrations or a different one in case we wanted
to perform task transfer. We used simplified 3D models
(e.g. cylinders for legs while real legs have a more complex
shape). A user was provided a screen, a keyboard, a space
mouse to facilitate 3D navigation and a regular mouse to
click on dialog boxes. He was then asked to assemble in
simulation the object shown in the GUI by using available
features to visualize, modify and animate the constraints.
Figure 8 represents this step of correction of the wrong fixed
constraints and degrees of freedom. The assembly plan is
created and sent to the execution system in an offline mode.

Execution of the motions was ensured by Moveit soft-
ware for motion planning and environment simulation, and
by a 1-DoF electric gripper of a Baxter robot simulated
in Gazebo for control. To simplify the process we ignored
collisions between the fingers of the robot and the picked ob-
jects. We also did not simulate the grasp itself, so a grasp
request (resp. a place request) did not actually close (resp.
open) the gripper and systematically ended up to an object
successfully attached to (resp. detached from) the gripper.
The execution system was given an assembly plan as an in-
put and was in charge of planning collision-free trajectories
to pick and assemble objects in the order and with the con-
straints specified in the plan. In this context a constraint in
an assembly task can be seen as the final pose of the gripper



in a pick-and-place task. In case the motion planner fails to
assemble two objects, it automatically computed a random
variation in the assembly pose according to what degrees
of freedom are authorized in the constraints. If the system
would not have been told that some degrees of freedom ex-
ist, that could cause the motion planning to fail definitely
because the final pose of the gripper is unreachable or gen-
erates collisions.

6.2 Tasks

Our first task was the assembly of a chair for children
composed of six parts: a seating, a back and four identical
legs that can be inserted in any leg hole of the seating. A
video showing the whole workflow can be found online 3

Our second task was the assembly of a simpler bench
for children composed of five parts: a seating and four
identical legs. Assuming a reference coordinate system at
the barycenter of the seating, both chair and bench have
not the same constraints: the bench is smaller so the legs
are closer to the center but they have the same relative
orientations. Figure 7 represents the bench after assembly.
We can observe that the final poses of the legs are not
aligned, the robot having considered the possible degree of
freedom of the legs around themselves in order to create
feasible trajectories.

Figure 7: Bench and its degrees of freedom after assembly
by the robot in simulation

Our last task illustrated task transfer: we learned con-
straints and plan from the demonstrations of the blue chair,
asked user to adapt them in order to assemble the bench,
and executed the assembly in simulation. A video can be
found online 4

3http://vimeo.com /109165299
4http://vimeo.com/109165300

6.3 Results

We measure the efficiency of the whole workflow in several
ways: by counting the number of parameters (i.e. parent +
relative pose) that the user needs to modify before getting
a satisfying result with the displayed constraints; the preci-
sion of the detected constraints; and the quality of the plan
that was found.

For the case of the chair, we can recover the correct con-
straints with and error of .8cm % .1em? and an error in
orientation of 4.7deg + .6deg?. For the bench the results are
2cm = .6em? of error in position and 14deg 4 13deg? of error
in orientation.

In table 1 we show for each task the average number of
parameters to be corrected manually compared to the total
we should set to define the constraints from scratch with
no demonstrations. By using demonstrations we reduce of
50.85%the number of parameters that the user needs to pro-
vide compared to a manual programming from zero.

Table 1: Number of parameters to be corrected from demon-
strations compared to no demonstration

task €rror pos error orient corrections
chair  .8cm + .1em?  4.7deg & .6deg®  15.25/30
bench  2cm 4 .6em?  l4deg 4 13deg®  14.25/28

Despite a fair numerical precision for a single object, a
significant visual error is noticeable in the GUI, that is most
explained by our use of meshes simpler than the real objects
and our difficulty to align the frames of the tracked objects
(whose real shape in quite complex) with their meshes using
the tracking system.

To evaluate the quality of the assembly plan, we com-
pute how many times a correct plan is generated. A plan
is considered correct if all parts have been attached to the
seating in different slots. The evaluation have been con-
ducted for a number of demonstrations varying from 1 to
4. Because the algorithm is stochastic, each experiment is
run 96 times and the results are averaged (when possible,
different demonstrations are used). The results are summed
up in Table 2. We observe that increasing the number of
demonstrations allows to learn the plan more robustly.

Table 2: Plan quality in terms of success.

number of demonstrations 1 2 3 4

0.52 0.75 0.75 0.88

success rate

7 Conclusions and Ongoing Work

We proposed a way to program a robot by demonstration
that considers automatic decomposition of subparts of the



Constraints from demonstration

Constraints after<grrection

Figure 8: Correction of wrong constraints in the interface:
The leg is tilted around z; as for degrees of freedom shown
by arrows, noise around z and z are cleaned, and rotation
around y is increased to 2w

demonstration, learning of hierarchical plans and an inter-
face to improve mutual awareness and easy error correction.
We represented object assemblies in the form of different
types of constraints between different objects. We showed
that we could exploit non-rigid constraints to execution by
allowing more solutions to the planing problem. Then we il-
lustrated our approach with simulated assemblies of a chair
and a bench whose assembling plan and constraints have
been extracted from demonstrations. In these simulations
we controlled the robot by trajectory planning but an ex-
traction of motor primitives from the demonstrations is also
possible.

We also illustrated the notion of task transfer by assem-
bling a bench thanks to the demonstrations of the assembly
of a chair, the user being asked to adapt the constraints since
they are slightly different for these two objects. Despite the
limitations of our work we showed that we could simplify a
lot assembly tasks by combining both demonstrations and
user corrections.

Concerning the GUT itself, it could also be used to modify
the assembly plan by drag-and-drop in the keyframes list
and edit the trajectories through editable key points when
we use motor primitives instead of planned trajectories. As
another extension we could tap into all other motions of
the demonstrations that do not end up to a new constraint
but are key motions in the assembly, for instance returning
the seating to assemble the back or moving objects closer
to the robot in case the assembly still leads to an unfeasible
trajectory. These key motions are often the same over all
demonstrations, and we should be able to detect them
when demonstrations are performed by a single user but
also when we record human-human cooperation, in order
to assemble more complex objects. Detecting these key
motions will be a compulsory step before executing the
assembly tabletop with a real Baxter robot.

We should also benefit of all available arms of our robot
to speed up and complexity the tasks that we are able to
perform by executing some actions in parallel. Executing
a disassembly for instance will require both arms and syn-
chronized parallel motions.
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Abstract

In this work, we introduce the first approach to
the Inverse Reinforcement Learning (IRL) prob-
lem in relational domains. IRL has been used
to recover a more compact representation of the
expert policy leading to better generalize among
different contexts. Relational learning allows one
to represent problems with a varying number
of objects (potentially infinite), thus providing
more generalizable representations of problems
and skills. We show how these different for-
malisms can be combined by modifying an IRL
algorithm (Cascaded Supervised IRL) such that
it handles relational domains. Our results indi-
cate that we can recover rewards from expert data
using only partial knowledge about the dynamics
of the environment. We evaluate our algorithm
in several tasks and study the impact of several
experimental conditions such as: the number of
demonstrations, knowledge about the dynamics,
transfer among varying dimensions of a problem,
and changing dynamics.

Introduction

Learning policies from observations is an intuitive way
to learn complex skills (Schaal, 1999; Argall, Chernova,
and Veloso, 2009; Khardon, 1999). When learning from
observing another agent, we can aim at learning di-
rectly the behavior or, instead, the criteria behind such
behavior. The former approach is usually called Imi-
tation Learning (IL) while the latter is called Inverse
Reinforcement Learning (IRL). The choice of one of the
two hypothesis might be motivated by the application,
the search for an explicit explanation for the behav-
ior, the representation compactnesses or the capability
of generalization among different problems. These two
mechanisms can be used to model and explain many
different social learning behaviors in animals (Lopes et
al., 2009).

If an explanation is found for the behavior, as a re-
ward function for instance, it is expected that the agent
can generate the correct behavior in different situations,
as it can plan its actions in those new situations. As a
drawback, such approaches require some knowledge on
both the original and the new domain. Another differ-
ence between IL and IRL is the compactnesses of the
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representation. Even in the same domain, there are
tasks that are more compactly described as a reward
function while others can be better described as a pol-
icy. For instance, in a typical blocks world domain,
the task of making a tower with all objects requires a
non-trivial policy but can be described with a simple
reward, see Dzeroski, De Raedt, and Driessens (2001).

Another approach for generalizing to different prob-
lems is to use representations that are more expressive.
The use of relational learning (also known as logical
learning) allows one to generalize between worlds with
different numbers of objects and agents. Learning to act
from demonstration in relational domains have been a
research prolblem for a long time (Segre and DeJong,
1985; Shavlik and DeJong, 1987; Khardon, 1999; Yoon,
Fern, and Givan, 2002). The use of relational represen-
tations is attracting again more attention due to new
algorithmic developments, new problems that are in-
herently relational and the possibility of learning the
representations from real-world data, including robotic
domains (Lang and Toussaint, 2010; Lang, Toussaint,
and Kersting, 2012).

Even though no approach to relational IRL has been
proposed, this work is close to TBRIL (Natarajan et
al., 2011). The authors propose the use of gradient-tree
boosting (Friedman, 2001) to achieve imitation learning
in relational domains.

In this work, we generalize a previous approach for
IRL, namely Cascaded Supervised IRL (CSI) (Klein et
al., 2013), to handle relational representation. The first
section presents the Markov Decision Processes (MDP)
framework and its extension for relational data. A sec-
ond section reviews IRL in general and presents the CSI
algorithm. We then generalize this method to the rela-
tional domain in the third section. Finally, we present
our results and the conclusions in the two last sections.

Relational Learning and Markov
Decision Processes

This section introduces the notation and the formalism
for MDPs and its extension to the relational domain.



Markov Decision Process

The proposed approach for learning by demonstrations
relies on the MDP framework. MDP models the in-
teractions of an agent evolving in a dynamic envi-
ronment. It can be represented by a tuple Mg =
{S, A, R, P,v} where S = {s;}1<i<n, is the state space,
A = {ai}1<i<n, is the action space, R € RSx4 ig
the reward function, v €]0,1[ is a discount factor and
P € AZ** is the Markovian dynamics which gives the
probability, P(s'|s,a), to reach s’ by choosing the ac-
tion a in the state s. A policy m maps each state to
an action, so it is an element of A% and defines the
behavior of an agent.

The quality function Q% € RS*4 for a given state-
action couple (s,a) is defined as the cumulative dis-
counted reward for starting in state s by doing the ac-
tion a and following the policy 7 afterwards. More for-
mally, Q% (s,a) = E;r’a[z;og Y R(sy, as)], where ET, is
the expectation over the distribution of the admissi-
ble trajectories (so,ao, s1,m(s1),...) obtained by exe-
cuting the policy 7 starting from sqg = s and ag = a.
Moreover, the function Q% € RS*4 defined as: Q% =
max, ¢ as QF is called the optimal quality function (the
optimal policy 7* is greedy resp. to it).

Relational MDP

One can derive a relational MDP that generalizes the re-
inforcement learning formalism for high level represen-
tations (Dzeroski, De Raedt, and Driessens, 2001). So-
lutions to the planning and learning problems have al-
ready been developed (Kersting, Otterlo, and De Raedt,
2004; Lang and Toussaint, 2010). Relational represen-
tations generalize the commonly used representations
in MDPs and machine learning. Instead of represent-
ing data as attribute-value pairs, it relies on first order
logical formulas. Given all objects and a set of possible
relations (or predicates), data is represented by the set
of logical rules that are true under a particular assign-
ment (grounding).

Under this representation, the state of the environ-
ment is the set of predicates that are true for the current
grounding of the formulas. The state of the environ-
ment can change when (relational) actions are applied.
Actions have a different semantics than in finite MDPs.
A relational action is abstract and so its application de-
pends on choosing an object to apply it, i.e. grounding
the action. For instance, the action take(object) can be
applied to different objects: take(cup) or take(box), and
so leading to different effects. As in classical systems
such as STRIPS rules, actions are defined as precondi-
tions ¢, that must be fulfilled so that the action can be
applied. More formally, an abstract action a is avail-
able, in a given state s if there exists a grounding o
such that co € s, e.g. for that particular grounding of
the action the precondition is true in that state. Upon
applying such action, the state evolves to another state.
This is defined as outcomes o. Formally, if there is a
substitution o such that c;oc € s; then applying ac in
s¢ will lead to sg11 = (st \ ¢io) Uojo with (¢;,0;) € R,

the set of rules of action a.

Blocks world

We present a simple example domain that is going to
be used to validate our approach. This is a classical do-
main that has several interesting and challenging char-
acteristics such as possibility of defining different tasks,
easy to visualize, possibility of defining problems with a
changing number of objects. Being a relational domain
the blocks world can be defined by a set of objects, a
set of predicates and a set of actions. The objects are
the blocks and floor, a surface where the blocks lies.
There are six predicates: on(X,Y) (is true if object X
is on object Y), clear(X) (is true if X is a cube and
no object lies on him), cube(X), floor(X), red(X) and
blue(X).

The blocks world offers two abstract actions
move(X,Y) and wait(). The wait() abstract action is
available in every state and does not modify the state.
The move(X,Y) abstract action is defined with three
rules that describe when the actions can be applied and
what becomes the next state: e.g. can only be applied
when the object that is to be grasped has no object
on top and the object where we will put it also has no
object on top.

We can define multiple tasks in this domain but, to
simplify discussion, we will discuss only two rewards:
the first, called stack, is 1 when all blocks are stacked
and 0 otherwise, the second one, called unstack, is 1
when all blocks are on the floor and 0 otherwise.

IRL and CSI

In the learning from observations paradigm, an appren-
tice tries to learn a behavior from demonstrations of an
expert agent. An interesting way to address the prob-
lem, using MDPs is the IRL framework (Ng, Russell,
and others, 2000; Russell, 1998). IRL is a method that

tries to find a reward function R that could explain the
expert policy mg. More formally, an IRL algorithm re-
ceives as inputs a set Dg of expert sampled transitions
Dg = (sk,ak,s%)lngNE where s;, € S, ap ~ WE(-‘Sk)7
and s}, ~ P(.|sg,ar) and a set of non expert sampled
transitions Dyg = (s1,a1,5])1<i<Nyy Where s; € S,
a; € A, and s} ~ P(.|s;,a;). Then the algorithm out-

puts a reward R such that any optimal policy 71'}% with

Example Domain :

respect to Ris also optimal with respect to the unknown
reward R or at least as good as the expert policy with
respect to R. In order to realize that, one can search
for a reward such that the expert policy is optimal for
this reward. But, as for the null reward every policy is
optimal, we have to use a bias. For exemple, a reward
for which only the expert actions are optimal.

Most of IRL algorithms (see the work of Neu and
Szepesvéri (2009) for a survey) can be encompassed
in a unifying framework called the trajectory matching
framework and defined by Neu and Szepesvari (2009).
These algorithms try to find a reward function such
that trajectories that one obtains by following the opti-
mal policy with respect to this reward function become



close to the observed expert trajectories. Each step of
the minimization requires an MDP to be solved. These
algorithms are for instance Policy Matching (Neu and
Szepesvari, 2007) where the objective is to minimize
directly the distance between the obtained policy and
the expert policy and Maximum Entropy IRL (Ziebart
et al., 2008) where the objective is to minimize the
Kullback-Leibler (KL) divergence between the distribu-
tion of trajectories. Those algorithms are incremental
by nature and must solved several MDPs.

Others IRL algorithms such as Structured Classifica-
tion for IRL (SCIRL) (Klein et al., 2012) and Cascaded
Supervised IRL (CSI) (Klein et al., 2013) avoid resolv-
ing recursively MDPs. The main idea used in those
algorithms is the link which can be made between a
score function of a classifier and the quality function
(Geist et al., 2013). SCIRL requires a linear parame-
terization but CSI is able to avoid this drawback. In-
deed, CSI can be seen as a first step of classification
followed by a step of regression which are two well know
general Supervised Learning (SL) algorithms. Thus, if
we use a first step of non-parametric classification fol-
lowed by a non-parametric regression, CSI becomes a
non-parametric IRL algorithm which provides a reward
function, avoiding the choice of features. This seems to
be a good candidate for an IRL algorithm adapted to
the relational paradigm.

CSI

The idea behind CSI lies in the link between a score
function of a multi-class classifier and the optimal
quality function. Indeed, given a data set Do =
(si»TE(si) = a;)1<i<nN. (the states s; are seen as inputs
and the actions a; as labels), a classification algorithm
outputs a decision rule 7 € A which generalizes the
relation between inputs and labels observed in the data
set Deo. One can remark, that it is quite easy to ex-
tract the set D¢ from the set D which is the usual
input of an IRL algorithm. In the case of a Score Based
Classification (SBC) algorithm, the decision rule 7¢ is
obtained via a score function go € RS*4 such that:

Vs € S,me(s) € argmax go (s, a). (1)
acA

A good classifier provides a policy m¢ which chooses
often the same action as mg and the classification error
is defined as:

€= Y Ynp(s)tno(s)}- (2)
sesS

If the expert is considered optimal with respect to the
unknown reward R, mp satisfies:

Vs € S,mg(s) € argmax Q%(s,a). (3)
acA

Thus, if the classification has a good performance (ec
is small), g can be seen as a near-optimal quality func-
tion for the expert policy.

Moreover it is quite easy to find the reward R¢ such
that ¢¢ = Q% by inverting the Bellman equation,

Y(s,a) € S x A:
Ro(s,a) = qo(s,a) — YEp(s)s,a) [g}gﬁ qo(s',a’)]. (4)

So, R¢ is a reward function for which the expert policy
7w is near-optimal if the classification error ¢ is small.
It is possible to avoid trivial rewards by imposing that
argmax,c 4 qc(s,a) is a singleton: in that case R¢ is
a reward for which most of the expert actions are the
only optimal actions if ¢¢ is small. For a sound proof
of the performance of CSI, see the work of (Klein et al.,
2013).

However, Rc can be computed exactly only if the
dynamics P is provided. If not, we can still esti-
mate R¢c by regression. For this, we assume that we
have a set of samples from the dynamics of the envi-
ronment, called non-expert Dyg, and so we can eas-
ily form the set Dry, = Dg U Dyg. Our regression
data set D = {(s4,a;), 7 }1<i<ng, 1S then constructed
from Dry, = (8, a4, $5)1<i<ngp, Where 7 = qc(si, ai) —
ymaxqea ¢o(s;,a). The regression can be done by a
regression tree (Breiman, 1993; Geurts, Ernst, and We-
henkel, 2006) or by a least squares method for instance.
The output of the regression algorithm is an estimate

Re of the target reward Rc.

Reward shaping The CSI algorithm has the appeal-
ing property of allowing one to learn a reward with-
out relying on a simulator by casting the IRL prob-
lem as two supervised learning tasks. The two learning
tasks are very different due to the relations between the
demonstrations, quality functions and reward spaces.
There is an infinity of quality functions that explains
one set of demonstrations and the goal of the first step
is to find one of them. On the other hand, there is only
one reward for a given quality function and the goal of
the second step is to approximate it.

We can assume, given the demonstration set, that
some rewards are easier to approximate. However, the
first step is totally agnostic of how hard it will be to ap-
proximate the reward when choosing the quality func-
tion.

For any function f € R, ¢/ (s,a) = qo(s,a) + f(s)
and g¢ have the same optimal policy (Ng, Harada, and
Russell, 1999). So, we propose to add an intermediary
step to CSI where a shaping function, f, is found such
that it makes the second step easier. Under the assump-
tion that a function with low entropy is easier to learn
with decision trees (as fewer leaves are needed), we use
a stochastic optimization algorithm (a simplified ver-
sion of CMA-ES (Hansen, Miiller, and Koumoutsakos,
2003)) to find f such that when building D with g
the set of reward values has a low entropy.

Relational IRL

This section shows how the CSI algorithm can be lifted
to the relational setting. In order to do so, we will rely
on relational trees (Blockeel and De Raedt, 1998) as
our relational regression algorithm and will introduce
the use of a boosting approach to use in as the score-
based classifier.



TILDE

TILDE is an algorithm designed to do classification and
regression over relational data. It is a decision tree
learner similar to C4.5 (Quinlan, 1993). It follows the
principle of Top Down Induction of Decision Tree where
the dataset is recursively split by building a tree accord-
ing to some criteria until all data point in one subset
share the same label. The only change made to handle
relational data is to have first order logic test in each
node. These tests are logical formula of one atom with
free variables.

TILDE can be used for regression if one allows leaf
to contain real numbers.

Boosted Large Margin Method

In order to obtain a SBC that handles relational
data, we propose to use the boosted large margin
method (Ratliff, Bagnell, and Srinivasa, 2007). The
idea behind this algorithm is to optimize a function g¢
such that it minimizes the following functional:

Jo(0) = 7o D malaton o) + s s} —alo )
i (5)

where [ € is called the margin function. If it is
zero, minimizing Jo(¢q) attempts to find a score function
go for which the example labels are scored higher than
all other labels. Choosing a nonzero margin function
improves generalization (Ratliff, Bagnell, and Srinivasa,
2007). Instead of requiring only that the demonstrated
label is scored higher than all other labels, it requires it
to be better by an amount given by the margin function.

The functional J¢ is optimized by functional gradi-
ent descent, a method really close to classical gradi-
ent descent except that the gradient is a function. No
parametrization of the function q¢ is available, yet it
should have generalization properties, so one can com-
pute the empirical gradient and use function approxi-
mation (regression) algorithm to approximate it (Grubb
and Bagnell, 2011).

Learning the gradient can be seen as a projection
of the gradient to K, a set of allowable directions. In
boosting literature, this restriction set corresponds di-
rectly to the set of hypotheses generated by a weak
learner. The nearest direction k*, which is the projec-
tion of the gradient d,Jc, is defined by:

SxXAxXA
R+

Algorithm 1 Boosted Classification

Require: ¢o =0,7=0,T € N* and (§;){jen} a family
of learning rates.

While ¢ < T do

Calculate 9y, Jc.

Find &} for the gradient dy, Jc.

Git1=q —&ki,i=1i+1

end While, output ¢r = q¢

k* = argmax M, (6)
vex kIl
The boosted classification algorithm, which is a func-
tional projected gradient descent, is summarized in the
Algo. 1. We detail more how k is calculated. In order
to find k£* for the gradient d,Jc, we choose the restric-
tion set K to be classification trees (Breiman, 1993)
from R¥*4 to {—1,1} which is a particular choice of
weak learners. In particular, S x A being logical for-
mula we choose logical classification trees (Blockeel and
De Raedt, 1998). Thus each k € K has the same norm.
It is sufficient to find k* = argmax, ¢ g (k, 04 Jc). To do

that, we calculate J,Jc for a given ¢ € RS*4:

aq meaf‘({q(siv a) + l(siv Qi a)} = 6(5,,;,11;.‘)7 (7)

994(8i,ai) = O(s,,0:) (8)
1

OgJo =+~ Y Fsian) ~ Osian- (9)
¢ i<i<Ng

where af = argmax, ¢ 4[q(si, a;) +1(s;, ai, a)]. Then, we
calculate (k,0,Jc):

N¢

(k, 0, J0) = Nic S k(sial) — k(sia).  (10)

i=1

To maximize (k,,Jc), we have to find a classifier k
such that k(s;,af) = 1 and k(s;,a;) = —1 for a maxi-
mum of inputs. Thus, in order to obtain £*, we train a
classification tree with the following training set:

Do = (((si, i), =1) U ((s6,07), Di<icne (1)

Here the couples (s;,a;) and (s;,af) are the inputs, and
1 and —1 are the labels. Finally, the output gr = q¢ is
a weighted addition of T classification trees.

Experiments

To validate the proposed approach, experiments have
been run to 1) confirm Relational CSI (RCSI) can learn
a relational reward from demonstrations and 2) study
the influence of the different parameters.

Blocks world

Experimental setup To test RCSI in a quantita-
tive way we use the following setup. From a target
reward R*, we compute the optimal policy 7*. The
algorithm is given, as expert demonstrations, Nezpert
trajectories starting from a random state and ending
when the (first) wait action is selected. As random
demonstrations, the algorithm is given N,qndom One-
step trajectories starting from random states. The op-
timal policy 7 of the learned reward R is then com-
puted. As proposed by Klein et al. (2013) the expert
dataset is added to the random one to ensure that it
contains important (state, action, next-state) triplets
such as (goal-state, wait, goal-state). Each experiment
is repeated 100 times and the results are averaged.
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Figure 1: Different abstract states and the correspond-
ing number of grounded states

To sample the random dataset we use the following
distribution, Psqse : we first draw uniformly from dif-
ferent relational configurations and then, for each one,
uniformly from the possible groundings. Fig. 1 shows
the different configurations and the number of grounded
states for 5 blocks: there are 501 states and only one
where all blocks are on the floor.

The main parameters are set as follows: 40 trees of
maximum depth 4 are learned during the boosting step,
the reward is learned with a tree of depth 4 which acts
as a regularization parameter.

Performance measure To evaluate the proposed so-
lution we define a performance measure, perf, that mea-
sures the ratio between the value of the learned policy
(optimal policy derived from the learned reward) and
the optimal one.

1000 4
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Figure 2: Performance for different amounts of training
data on the stack (Top) and unstack (Bottom) task.
Error bars represent Standard Error

Relation to TBRIL The first step of RCSI have the
same algorithmic structure than TBRIL (Natarajan et
al., 2011). The large margin method is a gradient-tree
boosting algorithm, so both rely on gradient-tree boost-
ing to do imitation learning. In fact, TBRIL could re-
place the first step of RCSI. The main difference be-
tween them is the functional that is optimized. In
TBRIL the likelihood of expert actions is maximized.
TBRIL and RCSI have very different goals, different
assumptions, and thus must not be compared directly.
However it is an interesting indicator of what to expect
from RCSI. We use the first step of RCSI as this indi-
cator under the name Boosted Large Margin Relational
Imitation Learning (BLMRIL).

Sensibility to dataset sizes Figure 2 shows the re-
sults of using RCSI to learn the stack and unstack re-
ward of the blocks world domain. RCSI is capable of
learning the reward with enough expert and random
training points. This graphs also shows that the re-
ward shaping step increases the performance of the al-
gorithm.

The set of parameters consisting of 300 random
episodes and 15 experts episodes gives the best results
and so we will use it in for the following experiments.

Noise robustness A important property of IRL is
its robustness to noise in the demonstrations. Table. 1
presents the performance of RCSI given a percentage
of noise in the demonstrations. Both rewards can still
be learned with acceptable accuracy when noise per-
centage is equal or under 20%. Because we stop the
expert episodes when the action wait is selected, states
that have few actions have a higher probability to be
stopping state.

Table 1: Impact of noise. N percent means that the
expert chooses a random action N% of the time.

reward 0 10 20 50

stack 0.97 093 0.86 0.71
unstack 0.98 094 0.84 0.49

Transfer performance The main claim of relational
learning is the capability of transferring among domains
sizes. Fig. 3 shows the performance measures for vary-
ing the number of blocks, for training the algorithm
and for evaluating it. For the stack reward, the graphs
show almost no loss of performances due to a changing
number of blocks. On the other hand, for the unstack
reward, results are clearly worse when using 4, 5 or 6
blocks for training. By looking at the learned rewards,
we have observed that, in most cases, one of the two
following rewards is learned: One where the value is
high when the number of clear is 4, 5, or 6 (depending
on the number of blocks in the training set) and the a
second where high rewards are given when the pattern
on(X,Y) and block(Y') can not be matched. Both solu-
tions are correct for a given domain size, as long as the



number of blocks is the same. However, if we change
the number of blocks, an ambiguity appears and only
the second one stays correct. Yet, there is no reason to
prefer one over the other and it is not possible to make
a system that could learn both rewards since the expert
demonstrations would be similar.

One way to counter this phenomenon is to use a vary-
ing number of blocks during learning. This results is
shown in the last column of Fig. 3 where a reward
learned with a dataset mixing demonstrations with 4
and 5 blocks successfully transfers over to 6 blocks prob-
lems. One can also observe that learning the reward
does performs better than directly learning the policy.
This results would be surprising in a propositional do-
main and shows how relational representations allow to
easily transfer among tasks. The advantage of IRL is
shown in the next experiment.
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Figure 3: Performance of RCSI (and BLMRIL) when
different number of blocks are used for training and
testing the stack (Top) and unstack (Bottom) task.

Dynamics changes Learning the reward rather than
directly the policy of the expert leads to more robust re-
sults even to large modifications of the dynamics of the
environment. To evaluate this capability, the dynamics
of the blocks world is modified between learning and
evaluation. One of blocks has been made unmovable
so in order to build a tower one must stack them on
top of this fixed block. The results are shown in Table
2, as expected, in this setup, learning the reward leads
to significantly better performance after changes in the
dynamics.

Chair world

We tried our algorithm on another domain that models
several different industrial tasks. In this domain there

Table 2: Impact on the performance of BLMRIL and
RCSI when changing the domain dynamics.

Algorithm  constant changed impact

BLMRIL 0.98 0.57 -0.41
RCSI 0.95 0.89 -0.06

are two kinds of objects : parts and connectors. For
instance a chair can be assembled with the parts : legs,
sitting and back. Legs and backs have a male connec-
tor, while the sitting has five female connectors, 4 of
them are compatible with legs and one is compatible
with backs. The agent can connect or unconnect two
connectors (if compatible) and wait. The build reward
is 1 when every connector is connected and 0 otherwise.

This domain increases the difficulty for the algorithm
because it violates some of its assumptions. The func-
tional (5) that is minimized in the first step of RCSI
enforces that only the expert actions are optimal, cor-
responding to assuming that the expert policy is deter-
ministic. Nevertheless, we are still able to learn the cor-
rect reward achieving an average performance of 0.97,
using a tree depth (for the reward) of 6 and 1000 ran-
dom episodes.

Conclusions

In this paper, we presented the first approach to IRL
for relational domains. We showed how the IRL algo-
rithm CSI (Klein et al., 2013) can be generalized to
the relational domain. The results indicate that it is
possible to learn a relational reward that explains the
expert behavior and derive from it a relational policy
that achieves a performance similar to the expert. Be-
sides generalizing the classification and regression steps
in CSI, we introduced a reward shaping step to reduce
the entropy of the reward function to estimate, and a
new trans-dimensional perspective on data collection
where we increase robustness to domain size changes
by including in the training set demonstrations with
different sizes.

IRL has the advantage of more compact explanations
of behavior and more robustness to changes in the en-
vironment dynamics. The use of relational representa-
tions allowed for generalizing policies for changing the
number of objects in a given domain. This shows one
great strength of relational representations, and such re-
sult would not be possible in propositional or factored
domains even with special feature design. Nevertheless,
when the dynamics changes, we can see the interest of
inferring the reward that allows the system to reevalu-
ate the expected behavior in the new conditions.

In the future, we plan to apply these algorithms to
more complex problems, relaxing the assumption that
the expert has a deterministic policy, and considering
the generalization of other IRL algorithms. Interesting
generalizations are the active (Lopes, Melo, and Mon-
tesano, 2009) and interactive settings, multi-agent do-
mains and consider the problem of simultaneously learn
the symbolic representation and the task.
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Temporal Segmentation of Pair-Wise Interaction Phases in Sequential
Manipulation Demonstrations®
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Abstract— We consider how to learn a representation from
bimanual assembly tasks from demonstration. We propose
to analyze the demonstration in terms of the (potentially
concurrent) interaction phases between any pair of involved
bodies (hands, tools, objects). These interaction phases are the
key to extract a more abstract description of the demonstration.
In particular one may assume that the goal of each interaction
phase is to achieve a certain geometric constraint. This gen-
eralized previous approaches on LfD to consider not just the
motion of the end-effector but also the relational properties of
the motion of the objects. We present an approach to train a
Conditional Random Field to detect the pair-wise interaction
phases and based on this labeling analyze the geometric
constraints that are established. In this way we extract a higher
level task oriented description of the demonstrated sequential
manipulation. We test our system using data from a person
assembling a toolbox of 5 parts using a screwdriver and
two hands. We consider how to learn a representation from
bimanual assembly tasks from demonstration.

I. INTRODUCTION

A major challenge in robotics is to provide intuitive and
easy ways for non-experts to instruct and work with robotic
systems. This is true in household domains, where consumers
demand more flexibility and personalized functionalities, as
well as in new industries that are required to be much more
flexible in their production lines and switch between products
to meet this new demand. Learning from Demonstration
(LfD) is a teaching paradigm through which the robotic
system learns to perform new tasks directly by observing
the tasks themselves, which are showcased by a demonstrator
through either kinesthetic teaching or his own body [?], [?].
While such approaches are intuitive for the user, they are
limited in several respects: with few exceptions ([?], see
below) previous LfD work has focused on the instruction
of single robot movements rather than the instruction of
complex sequential manipulation tasks, such as the assembly
of furniture using tools. Furthermore, such type of instruction
is rather low level, providing data for the motion primitives
itself, whereas instructing complex and sequential tasks
seems more efficient and intuitive on a more abstract level.

We approach LfD under the assumption that sequential
manipulation can well be understood as a sequence of
interaction phases, where the goal of each interaction phase
is to move objects into a fixed geometric configuration,
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which we call constraint. If there are multiple manipula-
tors (hands or tools), multiple such manipulator-object (or
manipulator-tool, tool-object) interactions can concurrently
be active. Under this view, instructing a robot to perform a
sequential manipulation (potentially involving tools) implies
to demonstrate which interactions should be performed in
which order and what their desired outcomes are in terms of
the created geometric constraints. A LfD algorithm should
therefore automatically analyze demonstrations by detecting
these interaction phases and extracting the achieved geo-
metric constraints. This approach leads to a much more
abstract understanding of the task from demonstrations rather
than modeling the low-level robot or manipulator motions
themselves.

We propose to train a Conditional Random Field (CRF)
to detect the interaction phases between any pair of moving
bodies (manipulator, tool or object). Roughly, the CRF
learns to exploit features that indicate a temporarily rigid
transformation between two moving bodies. The trained
CRF will automatically segment a sequential manipulation
demonstration into its (concurrent) interaction phases. Based
on this, we analyze in a second stage the outcome of these
interaction phases w.r.t. the geometric constraints that have
been established by the interaction, for instance that a screw-
driver has been positioned right above a screw. This gives a
task-space description of the goal of each interaction phase
and thereby a goal-oriented analysis of the demonstration.

In Section II we first review the related work. We then
describe the CRF formalism, its features and training meth-
ods in Section III. We briefly discuss, in Section III-E, the
possibility of extracting constraints based on the CRF-guided
segmentation. Finally, we demonstrate our approach on data
recorded from a human assembling a toolbox in Section 1V,
and conclude in Section V.

II. RELATED WORK

Learning from Demonstration algorithms [?] have mostly
focused on forms of demonstration where any hierarchical or
sequential aspect is explicitly described by the teacher. The
notion of key-frame demonstration was introduced in [?], [?],
where users are not asked to provide full demonstrations, but
rather only the key aspects by presenting the most important
via-points. Recent research started to consider how a com-
plex demonstration can be represented and decomposed in
simpler parts.

Niekum et al. [?], [?] presented an integrated approach
to segment manipulation demonstrations into actions, each
represented by a Dynamic Motion Primitive (DMP). The



segmentation of demonstrations is realized with a Beta
Process autoregressive HMM (BP-AR-HMM) [?], which
not only produces a segmentation but also a corresponding
labeling, i.e. an association with latent variable values. This
approach is promising to identify segments of robot motion
and compile these into DMPs. However, our aim is to
identify the crucial interaction phases between manipulators
and objects that signify the initial and final moments of an
object manipulation. Therefore, in contrast to the problem
setting of Niekum et al., we aim at a binary labeling of pair-
wise interactions.

Pieropan et al. [?] model human activity while also anno-
tating different segments based on the object-hand relation.
While their aim of characterizing the affordances of objects
differs from ours, the idea to base this characterization on
the time sequence of object-hand (or object-object) relation
is similar to our approach. However, their method of labeling
the object-hand relations is heuristic, based on proximity and
approach directions in the 2D video and not suited for our
problem.

A series of works [?], [?], [?], [?] formulate integrated
probabilistic models of sequential or superimposed motion
primitives which, when fitted to data, imply a segmentation
of motions. Again, the goal of these approaches is to extract
specific motion primitives from data rather than to identify
interaction phases. Barbic et al. [?] provide a good discussion
of traditional methods for segmenting motion capture data,
including the detection of zero crossings of angular velocities
[?], and their own PCA approach. Incremental creation of
motor primitives has also been used to create a dictionary
of full-body motions relying on zero-acceleration heuristics
for segmentation [?]. Another approach relied on clustering
to segment low-level sequences to learn motor primitives
and grammar at an high level [?]. However, in all these
approaches the problem setting focuses on the extraction of
elemental motion primitives rather than analyzing pair-wise
interaction phases between manipulators, tools and objects.

In conclusion, we are not aware of previous work that
explicitly aimed at training a segmentation algorithm to
identify atomic manipulations in the midst of a more complex
demonstration—as a prerequisite to describe such complex
manipulations as a sequence of interactions which generate
specific object relations.

ITI. CONDITIONAL RANDOM FIELDS TO DETECT
INTERACTION PHASES

A generic CRF models a conditional probability dis-
tribution as a normalized product of (typically log-linear)
potentials:

p(y | x) 1Hwk Y,z ()

where the potentials may establish arbitrary correlations
between any subset of the latent variables y and the ob-
served variables x, and the partition function Z(x) =
> 1x ¥x(y, =) acts as a normalizing constant.

In a linear-chain CREF, the latent variables form a sequence
which can be referenced by an index, and the potentials only
couple directly adjacent latent variables.

A linear-chain CRF describes the following distribution:

ply | @) - Hwt Yy, )

wt(yu ):exp (¢t(yt7yt713 ) 9) . (3)

where ¢, is a feature vector that may include features that
couple two consecutive latent variable y;_; and y; as well
as features that couple the latent variables to the observed
sequence .

The contents of the feature vector are discussed in Sec-
tions III-B and II-C'.

A. Training

The model parameters 6 are learned by applying the
Maximum Likelihood (ML) estimator to a set of labeled
demonstrations. The neg-log likelihood of a linear-chain CRF
model is a convex function of # which means that it has
only one optimal point, and that it is a relatively simple
problem to optimize, and that a variety of first- and second-
order iterative algorithms already exist.

Given a set of labeled sequences D = {(y, @)},
the neg-log-likelihood associated with it is

D)= L(6:y",2") )
i=1
L(0;y,x) = —logp(y | =;0)

T
= log Z(x;0) Z¢t (yt,ye—1,2)70  (5)
t=1

whereas the respective gradient is

Zvc sy, 2l) (6)
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- Z Ge(Ye, Y11, ) (7)
t=1

The values of the partition function Z(x;6) and of the
joint conditional probabilities p:(@:,Jt—1 | ) can be effi-
ciently computed using the forward-backward algorithm, the
details of which we leave out.

B. TRANSITION FEATURES

In our model, objects are characterized exclusively by
their trajectories, which are assumed to be fully observable.
Given an object A, its trajectory is a sequence of poses
a = (ay)L_,, where o, € SE(3). Positions and orientations
are denoted as o, € T(3) and o, € SO(3) respectively.

IAs a detail we mention that, because there is no latent variable Yo in
our model, the feature vector ¢1 needs special consideration: For simplicity
of notation, we define all features that depend on yo as identically zero.



Given two trajectories v and 3, we model the interaction
between the respective objects A and B with a linear-chain
CRF. We define the latent variables y of the CRF as a
sequence of binary variables which represent the interaction
between the objects at each time step; and the observation
sequence as the fully observed trajectories of the two objects
throughout the whole demonstration « = («, 3).

Our feature vector ¢, is composed of a transition feature
vector and a state feature vector, ¢, = (@I, ¢F)T. As
is typical in linear-chain CREF, the transition features ¢, ;
indicate the discrete latent state transitions and do not depend
on the observation sequence x (although in principle, they
could):

]I[yt = 0] H[ytfl = O]
Grt (Yt Yi—1) 1= %Eﬁ z ﬂ %Eﬁj z (1)} ’ ®
Iye = 1] Iye—1 = 1]

where I is the indicator function.

C. STATE FEATURES

The type of interaction we are trying to model may be
described as one which takes place when the same time-
varying transformation is applied to both objects. We want
to detect whether both objects are moving, and whether
the relative transformation between them remains constant
throughout the movement.

We choose the state features ¢, ; to capture the individual
object movements as well as relative transformation between
the objects.

1) OBJECT MOVEMENT: For any given object A, we
compute features which vary according to the object’s move-
ment at any given time step. Because position and orienta-
tion represent ontologically different entities, we compute
separate features for transitional movements and rotational
movements, respectively v, ¢(A) and v, (A).

A straightforward choice for v, ; and v, ; is represented
by the instantaneous linear and angular speeds at time t.
However, instantaneous speeds may vary wildly between
adjacent time steps, and may be relatively high even in
situations where the actual movement is neglectible, resulting
in noisy features and degraded inference performance.

Instead, we define a discrete window length w and com-
pute a scalar variance measure from the object’s w most
recent absolute positions and rotations:

t

firgp(A) = w ™ Z Q1 9)
t'=t—w+1
t
(A =w™ Y (10)
t/'=t—w+1
t
var(A) =w™ Y lawwe(A) = p o (A))F A1)
t=t—w+1
‘ 2
vpe(A) =0t D [l (A) =, a (AT (12)
t'=t—w+1

One practical consideration to correctly compute the above
quantities concerns the fact that the space of quaternion
is a double-covering group of SO(3). To avoid introducing
fictitious variance, all quaternions are adequately inverted
such that the scalar products of quaternions belonging to
adjacent time-steps are always positive.

2) RELATIVE TRANSFORMATION: A similar approach
is used to construct the features of the relative transformation
between objects. Given A and B and their respective trajec-
tories o and 3, we define § as the trajectory of B w.r.t. the
coordinate frame of A,

(13)
(14)

67r,t = Oépjtlt (ﬁﬂ',t - aﬂ',t)
6p,t = a;%ﬁp,t
We finally compute features ¢, .(A,B) and (,+(A, B)

using the same variance measure and the same window-
length parameter w described previously:

t
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t
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Our intended goal is to create a model which is agnostic
to the identities of the involved objects, and invariant to
properties other than the trajectories themselves. There is
thus no justification in having different parameters associated
with features vy ;(A) and v, 4(B); as well as v,;(A) and
v, +(B). To enforce the fact that the above pairs of features
share the same pair of parameters, we add the respective
values into the resulting state feature vector, which is as
follows:

e

e = 1] (Vp,t + Vot

bocvo®) = | 1, Z1]¢. (A, B) (4
]I[yt = 1] Cp,t(Aa B)

D. RELATION WITH LOGISTIC REGRESSION

The described CRF is a generalization of logistic regres-
sion, which learns a classification from x to y, using a
discriminative function linear in the state features ¢, ¢ (y:, )
only. In that sense, the CRF is a smoothed version of such
independent logistic regression classifications. We exploit
this as follows: We first train a logistic regression classifier
using standard Newton methods and then adopt the resulting
parameters as an initialization of the CRF training, which
greatly speeds up training effort.

In the experimental section we also report on the benefit of
using the CRF versus the non-smoothed logistic regression
classifications.
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Fig. 1: Representation of a “build toolbox™ task description
which is extracted from the respective demonstration. Each
figure shows the state of the toolbox at points in time which
are associated with the end of the manipulation of a wooden
piece.

E. CONSTRAINT EXTRACTION

In certain tasks, it is important to be able to analyze
different aspects of the motion of the agent and objects
separately. For example, an assembly task features several
types of behaviors: The agent may act on a single object
by grasping it and using it as a tool, or moving it to
another location; he may perform an action which results
in the assembly of two previously distinct parts; or he may
perform other auxiliary actions to deal, for example, with
obstacles. The behaviors of the second type which arise
during a demonstration provide a transferable description of
the performed task which is independent from the executing
system. The relevance of this type of task description for the
purpose of transferring information from a human execution
to a robotic system is clear.

We define an assembly task as a sequence of operations
that enforce rigid body constraints between pairs of objects.
The CRF model we presented in the previous section is able
to detect several segments where pairs of objects display
coherent motions. We thus regard some of the transitions
between those segments as key points in the demonstration
where constraints are being created (or potentially removed)
between the respective pair of objects.

Figure 1 shows a sequence of constraints which is ex-
tracted using the automated segmentation as a starting point.

IV. EVALUATIONS
A. DATA COLLECTION

Using a motion-capture setup, we recorded a demonstra-
tion where a human assembles a toolbox consisting of 5
wooden pieces. The task involves the pick and place of wood
pieces, the insertion of screws in appropriate holes, and the
use of a screwdriver to screw pieces together.

The object trajectories were recorded using a Polhemus G4
magnetic tracking hardware system, which is able to provide
poses at 120Hz. In practice, we have no need to create
models which describe the interaction so densely. To soften
the load of the model’s training and inference, we generate
about 10 latent variables for each second of demonstration
in our model. Also for practical reasons, only the human’s
thumb, index and middle fingers and the wooden pieces were
being tracked. Object models were constructed for the sole
purpose of showcasing results: each object is identified solely
by the pose measured by the corresponding sensor.

left hand / training
12377.2 (0.4391)
2464.9 (0.0875)

right hand / test
16371.5 (0.5809)
1912.8 (0.0679)

Logit Reg
CRF

TABLE I: Neg-log-likelihoods of annotated training and test
sequences for the logistic regression and CRF segmentation.
Sequences involving the left hand are used for training, and
the ones involving the right hand are not. In parentheses, the
average neg-log-likelihood per latent variable.

The demonstration was hand-labeled using professional
software developed to provide natural language annotations
to videos?, which we used to directly annotate one of the
video-recordings. The resulting annotations indicate, for each
hand-object pair, whether the hand is actively manipulating
the object at any given time during the demonstration.
The labels of each finger is assumed to coincide with the
corresponding hand’s labels.

B. RESULTS

We use the labeled motions for the left hand as training
data for the CRF model, and the motions relative to the
right hand as test data (although we also show the outputs
relative to the left hand for completeness). Table I contains
the neg-log-likelihoods computed by the logistic regression
and the CRF model. Figure 2 contains screen-shots of the
segmentation when applied to the toolbox assembly task.
Figure 3 shows the individual output sequences for a various
finger-object pairs.

V. CONCLUSIONS

We have considered how to analyze complex sequential
demonstrations of bimanual assembly tasks. In contrast with
classical LfD approaches, whose main concern is often
that of being able to replicate the performer’s motions, we
focused our attention on detecting higher-level interactions
between objects in the scene, which represent the real
motivation behind each of the performer’s motions.

We defined a graphical model with which to detect such
interaction phases which only requires the estimated trajec-
tories of the involved objects to be specified. The model was
used to segment an assembly demonstration and to extract
the individual manipulation actions which were performed.
Furthermore, an elaboration was provided on how to use such
segmentation to generate an assembly task description which
is independent on the actual execution.

2ELAN 4.7.2, Max Planck Institute for Psycholinguistics, The Language
Archive, [?].
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Fig. 2: Reconstruction of the toolbox assembly demonstration, with segmentation output shown by color-coding the objects.
The fingers are shown as colored rounded cylinders; right hand in red and left hand in green (top-left frame). The model’s
segmentation is shown by coloring each object according to a hand’s color, if at least two of the outputs of the hand’s fingers
indicate that an interaction is taking place.
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Fig. 3: Each of the above plots contains the labeled ground truth interaction sequence (in blue) and the CRF model’s most
likely sequence as computed by the Viterbi algorithm (in green) for the whole toolbox assembly demonstration. From top to
bottom, the plots refer to the following pairs: Left hand index with toolbox front side; left hand middle finger with toolbox
left side; left hand thumb with toolbox middle piece (handle); right hand index with toolbox front side; right hand middle
finger with toolbox left side; right hand thumb with toolbox middle piece (handle);
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DRAFT
A Parser for Constructing Movement Primitive Libraries

Rudolf Lioutikov', Guilherme Maeda®, Jan Peters'? and Gerhard Neumann®

Abstract— Movement primitives are a well estab-
lished approach for encoding and executing move-
ments. While the primitives themselves have been ex-
tensively researched, the concept of movement primi-
tive libraries has not received as much attention. The
goal of this work is to learn a primitive library from
unsegmented demonstrations. The learned library is
used to parse previously unseen demonstration into a
sequence of recurring primitives. At the same time the
library provides a set of primitives which can be se-
quenced in order to solve previously undemonstrated
tasks. Current approaches separate the segmentation
of the demonstration from the learning of the prim-
itives. This separation neglects the mutual depen-
dency between the found segments and the learned
primitives. However, this dependency can be used to
improve the quality of the found segments as well as
the learned primitives. Therefore we propose a novel
method which, in contrast to previous work, respects
this dependency. Based on probabilistic inference our
approach is able to learn the segmentation and the
primitives simultaneously. We compare our work to
state-of-art methods and show the advantages of such
a combined approach. Experiments on a complex bi-
manual robot platform demonstrate the applicability
of our method in real world robot tasks.

I. INTRODUCTION

A key goal of modern robotics is to provide robots
with the ability to learn new tasks. A commonly followed
concept in order to achieve such behavior is imitation-
learning [1]. The idea is to provide the robot with one
or more demonstrations of the tasks, which the robot
subsequently applies and improves. This idea was applied
successfully on a variety of tasks, e.g. the ball-in-a-cup
task or even playing table tennis [1]. In both examples the
entire task consisted of a single motion, that the robot
needed to learn. A common way to encode such single
motions or actions are Movement Primitives.

However, representing more complex, multi-step tasks
as single Movement Primitives implies a great loss of
generality. Considering such tasks as a sequence of Prim-
itives offers multiple advantages, e.g. generalization at
the points between the primitives is simpler, the same
set of primitives can be used to execute different tasks
and the task can be adapted by replacing one primitive
of the sequence by a different one. At the same time

ITechnische Universitit Darmstadt, Intelligent Autonomous
Systems Group, Darmstadt, Germany {liout ikov, maeda,
peters, neumann}@ias.tu-darmstadt.de

2Max Planck Institute for Intelligent
Department Empirical Inference, Tibingen,
jan.peters@tuebingen.mpg.de

Systems,
Germany

problems arising from such a sequence of primitives
lead to the question how to obtain these primitives and
how to subsequently sequence them. In this paper we
address the former problem by proposing a framework for
the automated segmentation of Probabilistic Movement
Primitives [2] given demonstrations of the entire task.

II. RELATED WORK

Algorithms for automatic segmentation has long at-
tracted the attention of researchers, especially in regards
to the classification of motion. For example, in the work
of Brand and Kettnaker [3] video images are analyzed to
train a HMM to classify if a person is walking, running
or crouching. Segmentation has been used to group
motions hierarchically, where higher level representations
of symbols can then be used to orchestrate and generate
low level robot movements [4]. More recently, Kulic et
al. [5] proposes on-line segmentation based on HMMs
for robot movement generation. The method creates a
tree of primitives; the lower nodes representing detailed
movements with generality increasing towards the root.

In contrast, here we propose an algorithm that directly
encodes trajectories as Dynamical Movement Primi-
tives (DMP) [6] or Probabilistic Movement Primitives
(ProMPs) [2]. The use of either DMPs or ProMPs brings
several advantages. Segmentation becomes invariant to
movements with different velocities due to the use of
a phase variable, allowing the generation of compact
libraries of movement. Algorithms for segmentation can
take advantage of a much lower dimensional weight space
representation rather than the robot trajectories. The
output of the method is a continuous low-level primitive
that can be used to directly control the robot.

From the movement primitive perspective, our algo-
rithm relates to the work of [7], and [8] where DMPs
have been used in different ways. In the first, a library of
primitives assumed given, while in our work we design
our algorithm to start from an empty set. Compared
to the work of [8] where segmentation and learning of
primitives are independent processes, here we propose
an integrating segmentation and primitive learning as an
iterative process, which should, therefor improve the final
quality of the solution.

A wusual problem of movement segmentation is the
use of a heuristic to inform the initial segmentation.
Perhaps the most natural and intuitive criterion is the
zero crossing velocity (ZCV) which has been used by
several authors [9], [10]. Here, we also use ZCV as a



heuristic to identify potential candidates. In the context
of movement primitives, however, zero crossing velocities
usually leads to over-segmentation, especially when the
robot trajectories move at low speed. As it will be shown
this will require from our method the capability to merge
and decrease the number of segments.

II1. METHOD

We will consider trajectories 7; with several possible
cutting points (candidate cuts) ¢;;. The task is to find
a probabilistic movement primitive representation (as a
mixture of MPs) and an appropriate segmentation for the
trajectories. This is an hidden variable problem that can
be solved with probabilistic inference. We need two EM
algorithms, the inner loop runs the EM on the mixture
models and the outer loop on the segments. Lets for
now assume that we have a generative model p(S|6) for
segments, where S = [g:1,qt2,...,¢tN] is a segment and
0 are the parameters of the model. For example, the
generative model could be a mixture model of ProMPs,
ie.,

p(S10) = mip(gry iy |K),
k

where p(gs, ¢ |k) is the probability of a trajectory given a
single ProMP k. We assume that we can train the model
by maximum likelihood, or, more generally, by a weighted
maximium likelihood estimate. Given several segments

S =[S1,...Sn], the weighted maximum likelihood esti-
mate max is given by

Ly (S,1) =Y uilogp(Si6),
i

where u; is the weighting for the i—th segment. The
weighted log-likelihood can be easily optimized by EM
for Gaussian mixture models. However, the segments are
not given as we do not know which cuts are active or not.
Hence, we need to optimize the following log-likelihood
(only given for a single trajectory)

21\4

Ly(r)=log» p(D;) [[ p(Suld).
j=1

ShEDj

where Dj is one of the possible segmentations (out of
2M segmentations). In this formulation, we marginalized
out all possible segmentations D;. p(D;) is a prior over
a certain segmentation. Typically, we can set this prior
uninformative, i.e., p(D;) = 1/2M

A. Outer EM loop

This model is very hard to optimize. However, if we
treat the segmentations as hidden variables we can use
EM to find a locally optimal model.

The EM on the possible segmentations can be formal-
ized as follows.

a) E-Step:: In the E-Step, we have to compute the
probability of each segmentation D; given our current
model for the segments p(S|0), i.e., the unnormalized
responsibilities are given by

3 =pD;) [[ »(Snl6)

ShEDj

and the normalized therefore by

i
DRT
b) M-Step:: In the M-step, we need to optimize the
complete-data log likelihood which is given by

v =p(Dj10,7) =

(2)

21\/[
Q(0,001a) = Y _p(Djlfoa,7)log | p(D;) [ p(SklOXT)
Jj=1 SpeD;
21\/[
= > v Y logp(Sul6),
Jj=1 ShEDj

where we neglect the prior p(D) by assuming it is fixed.
We can formulate Eq. 2 more efficiently by summing over
all possible segments instead of all possible segmenta-
tions.

|S| 2]\/[
QO,00a) = > | D l(SheD;) |logp(Snl6)(3)
h=1 \j=1

Le., for each segment, we need to sum all responsibili-
ties of segmentations, where the segment is part of the
segmentation. We can see that Equation 3 is of the same
form as the log-likelihood L; for the inner loop with

21%
Uj = Z’yiH(Sj S Dl)
i=1
It can therefore be optimized by an inner loop EM
that optimizes the weighted log likelihood of all possible
segments.

B. Inner EM loop

The inner EM loop is given by optimizing L;, which
is done by running a weighted EM on the segments for
the mixture modell.

It is important to note that, in order to properly evalu-
ate the log-likelihood, the segmentation is not allowed to
change the number of data points for a single trajectory.
Consequently, each segment will have a different number
of data points.

C. Assumption

The observations feed into our framework are multiple
endeffector trajectories of the same or different tasks.
We assume that each trajectory is a combination of
various segments, where each segment was produced by a
ProMP representing a point-to-point movement. A point-
to-point movement is defined as a trajectory which starts



and ends with zero velocity. Given the observations the
framework now aims to find the set of ProMPs, which
could have produced the observed trajectories.

D. Finding the Segments

By assuming point-to-point movements we can define
the beginning or the end of a segment each time the tra-
jectory hits zero velocity. Applying the framework to the
real world means dealing with noise. Noisy observations
might lead to false zero crossings in the velocity. We
counteract this effect by smoothing the velocities with
an averaging low-pass-filter and introducing an absolut
threshold instead of zero.

Given the assumption that each segment was gener-
ated by a ProMP, it needs to be considered, that the
same MP might have produced segments with different
durations. Therefore a temporal scaling of each segment
is necessary. So far we apply a simple linear scaling,
while in the future non-linear scaling methods might be
beneficial.

Since the order of the ProMPs is not fixed there will
be similar segments which significantly differ in absolute
values due to translational and rotational transforma-
tions. In order to still be able to find the underlying MPs
the framework translates all segments such that they
start at [0,0,0]7. Subsequently a rotation around the z-
axis is performed which aligns the vector from the start
to the end point of the segment with the x-axis of the
coordinate frame. Note that these transformations are
necessary for the detection of similar segments, but at the
same time the found ProMPs will have 0 variance at the
start point and also 0 variance for the y-dimension of the
end point. While these effects should not be problematic
for the detection of segments in unseen trajectories, they
first appear to be significat limitations for a subsequent
sampling of segments from the found ProMPs.

However, considering the premise that the obsrvations
are results of a sequence of MPs, the variance for the
start point of each segment is not important, since it
has to start where the previous segment ended. The
lost variance along the y-axis can be circumvented by
adding the angle of the rotation around the z-axis as
and additional variable in the primitive.

Finally the segments are projected into the
weightspace of the primitives, which has the benefit of
reducing the dimensionality of the segments.

IV. EXPERIMENTS

In order to illustrate our approach we evaluated the
algorithm on a one dimensional data set. The data set
consist of multiple trajectories representing sine waves
which always start with a value of zero and a negative
tendency and end with a value of zero and a positive
tendency. As Illustrated in Figure 1 there are multiple
zero velocity cuts, marked in red, in such a trajectory, but
the two green segments will always occur together. There
fore it makes sense to assume that such trajectories could

\

Fig. 1.

Example of a training trajectory.

Fig. 2. Learned skills

have been generated by only three underlying skills. The
three skills found by our approach are shown. In Figure
2, where the skills are represented by random samples
drawn form the primitives.

V. CONCLUSION

Currently, for the sake of simplicity the presented
method relied on the assumption that cuts are initially
given by instants of zero velocity, which usually over-
segments trajectories. However out method is able to
compensate for this oversegmentation and finds skills
which can produce trajectories with zero velocities.
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