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This deliverable reports the modeling of the human-robot collaborative be-
havior used to recognize actions and activate robot primitives. This report
describes a new framework based on probabilistic interaction primitives for
creating such a collaborative model. The assumption that human-robot
trajectories can be linearly correlated in an appropriate lower dimensional
space forms the basis of our approach. We have investigated multi patterns
of interaction with a mixture of models, and also how to generalize proba-
bilistic primitives when manipulating objects of different sizes and shapes.
We also discuss how this work is currently being integrated with the works
in deliverable D3.1.
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D4.1: Modeling and Prediction of Human Intent TUDa

Executive Summary

This report discusses the first year achievements in human action recog-
nition and activation of the corresponding robot movement primitive for
collaborative tasks. Throughout the first year we have introduced Interac-
tion Probabilistic Movement Primitives [MEL+14, ENL+15] (in short, in-
teraction primitives), as a framework aimed at probabilistically modeling
human-robot collaborative tasks. Interaction primitives are used to predict
the human intent (action recognition), which is then used to activate and
coordinate the movement primitive of the robot assistant. To generalize the
robot grasping to different objects, we have also investigated how parame-
ters extracted from point-cloud images can be used to warp known objects
into new objects [BKP14], which are then used to modify the movement
primitives. Currently we are addressing the close connections between the
interaction primitives and higher level plans of deliverable D3.1. Specifically,
we are considering generalization to new scenarios by making use of rela-
tional policies that satisfy an underlying reward with the work of [MPG+15],
and the pre-triggering of robot primitives with the recognition of assembly
phases as proposed in [BML+15].

So far progress has been evaluated by experiments with Darias, the
robotic platform based in TU-Darmstadt, consisting of a 7DoF KUKA
lightweight arm with a DLR-HIT five-fingered hand. We have shown proof-
of-concept experiments where a toolbox is assembled with the help of Darias
acting as a third hand.

Role of Modeling and Prediction of Human Intent
for Primitive Activation in 3rdHand

This is an essential part of an assistive robot framework as, ultimately,
the action that the robot takes must not only be correlated to the human
observations, but must also be represented as a primitive that can be suitably
used by a low-level control loop. Action recognition for primitive activation
is useful to inform the logical learning method in [MPG+15] in order to
improve higher level decisions. Although not addressed during the first
year, future work will leverage on the interplay between the detection of
pair-wise interaction phases and situational awareness [BML+15, MMRL15],
described in D3.1, with action recognition at the primitive level. Combined
with D3.1, our role is to provide algorithms for assistive/collaborative robot
policies at both relational and movement primitive level of representation.
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Contribution to the 3rdHand scenario

In this deliverable we have developed collaborative movement primitives
in multi-task scenarios, by using both supervised [MEL+14] and unsuper-
vised [ENL+15] learning; and also proposed the generalization of primitives
for grasping different objects based on warping functions [BKP14]. The con-
trol accuracy of Darias under the policies generated by the proposed methods
using hand over of different objects during the assembly of a toolbox were
also evaluated.

1 Tasks, objectives, results

1.1 Planned work

As a deliverable specified within Work Package 4 (WP4) (Learning Primi-
tives for Cooperative Manipulation) the planned work is largely motivated
by the following requirements

• Our method must be able to model the mutual dependencies of two
agents, particularly the interaction between a human and a robot

• The robot must be proactive, it must predict and execute a task by
reasoning about the next, most probable human action

• In the case of unsatisfactory response, the robot skills must be modified
on-demand by means of natural human instruction, ideally by simply
observing a demonstration from the human coworker, rather than by
direct kinesthetic teaching

• The robot must be able to compose complex actions based on simpler
collaborative primitives

• The robot must optimize its own primitives in order to increase the
efficiency of the interaction

1.2 Actual work performed

During the first year we have been able: (1) to develop and validate the
use of interaction primitives for handover of different parts during assembly
tasks [MEL+14], (2) to generalize probabilistic primitives during grasping
using warping functions [BKP14], and (3) to address multiple interaction
patters between the human coworker and the robot assistant [ENL+15] us-
ing unlabeled data, (4) we have been able to record trajectories and poses
of objects with high-precision magnetic trackers (USTT), motion capture
(Inria), and off-the-shelf Kinect and cameras (UIBK, TUDa).
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Figure 1: Current results where the robot acts as a third hand by handing
over a plate or a screw depending on the action recognized. The robot is
also able to hold and release a tool such that the coworker can have both
hands free.

We evaluated the physical capabilities and control accuracy of the Darias
platform by proposing hand over experiments during the assembly of a tool-
box. We could accomplish grasping of small and delicate parts, such as the
head of a five millimeter screw, by using auxiliary stands for objects.

Figure 1 shows the three subtasks that were used during the experiments.
The bottom row shows the demonstrated pairs of human-robot trajectories.
Videos of our current results in collaborative interaction primitives are avail-
able from the two links:
http://youtu.be/2Ok6KQQQDNQ related to the published material [MEL+14], and
http://youtu.be/9XwqW_V0bDw for the submitted publication [ENL+15].

There are many problems to be solve in order to fulfill all requirements of
Work Package 4 of the 3rdHand proposal. Great part of future work relates to
the integration of several of the works described in D3.1. While we have been able
to recognize a task by observing the current human movement, we have not yet
implemented preemptive action in the interaction primitive framework. In the short
term, we expect to add anticipative/preemptive robot behavior to the interaction
primitive framework, in the sense that primitives can be pre-triggered by learning
a sequence of co-related chain of tasks. This can be achieved by identifying such a
sequence using conditional random fields with the work of temporal segmentation
of pair-wise interactions [BML+15].

The results of this deliverable are constrained to a specific scenario, and the
assembly of a toolbox can not be generalized since it is based on a pure imitation
learning approach. We will incorporate Relational Inverse Reinforcement Learn-
ing [MPG+15] reported in D3.1 to provide generalization to interaction primitives
such that different tasks can be accomplished from the same demonstrations.

Interaction primitives must also seamlessly integrate with optimal trajectories
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provided by the Open Robot Simulator of USTT (described in see D5.1). We have
been working on the parsing of whole trajectories into segments encoded in a skill
library by using the algorithms of [LMPN15], described in D3.1.

Also, current work is addressing the use of motion capture data from two collab-
orators to generate feasible trajectories for Darias. The outcome of this work will
free the coworker from doing kinesthetic teaching. Instead the worker is expected
to simply execute the task by himself, while the vision/motion capture system is
used to capture his/her measurements.

1.3 Relation to the state-of-the-art

Action recognition based on data analysis and classification of interactions between
multiple persons has long been addressed within the computer vision community,
in particular due to interests in visual surveillance tasks, e.g., tracking of multi-
ple pedestrians. Action recognition has motivated several works based on hidden
Markov models (HMMs) and graphical models in general, such as Oliver et al.
[ORP00], [LON10], and [BAVE+13] for example. Inference on the graphical model
allows a robot to anticipate human activity and choose a corresponding, prepro-
grammed robot response. Wang et al. [WMD+13] propose the intention-driven
dynamics model. Koppula et al. [KS13] use a conditional random field with sub-
activities, human poses, object affordances and object locations over time.

Also motivated by a robot assistant, Tanaka et al. [TKSK12] use a Markov
model to predict the positions of a worker in an assembly line. The space in which
the worker moves is discretized into different regions. A Gaussian mixture model
relates positions to procedures. Using this information a robot, then, delivers tools
and parts to a human worker along the assembly line. Llorens et al. [LBA] present
hybrid design for a to arm robot to be used on the shoulder. Colored Petri Nets
have been used to model high level transitions, e.g., the robot holds the panel in
position or the screw is in position, etc. Petri Nets accounts for discrete control
transitions while at the motion level, Partial Least Squares Regression has been
used to find the best action of the robot at future time steps.

Interaction dynamics need to be specified in a way that allows for robust repro-
duction of the collaborative task under different external disturbances, and a com-
mon approach is based on direct force sensing or emulation. Rozo et al. [RCC+13]
proposed a framework for haptic collaboration between a human and a robot ma-
nipulator. Given a set of kinesthetic demonstrations, their method learns a map-
ping between measured forces and the impedance parameters used for actuating
the robot, e.g., the stiffness of virtual springs governing the collaborative task. In
another force-based approach, Lawitzky et al. [LMLH12] proposed learning phys-
ical assistance in a collaborative transportation task. In the early learning phase,
the robot uses the measured force values to follow the human guidance during the
task. Recorded force and motion patterns are then used to learn a Hidden Markov
Model (HMM) which can predict the human’s next action, and over time the robot
learns to take over a more active role in the interaction. Kulvicius et al. [KBA+13]
also address a transportation task where the two agents are modeled as two point
particles coupled by a spring. The forces applied by the other agent tell the robot
how to adapt its own trajectory.

Although graphical models and HMMs have a history of successful applications
for action and intention recognition in a discretized symbolic level, the generation
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of the commands that determine the interaction dynamics at the low level is usu-
ally addressed by a different representation, e.g. a lower-level HMM [LON10] or
DMPs [GNIU14]. This needs is clear in the work of [LBA] where Petri nets are used
to control the state of the actions in a higher level representations while the actions
itself are predicted by partial least-square regression. As shown in [MEL+14], the
principal distinction of our method in relation to the vast bodies of work of discrete
graphical models and continuous interaction dynamics is that it provides solutions
to both problems with a single representation that fully correlates human-robot
interaction that can be easy to acquire by imitation learning.
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2 Annexes

• Learning Interaction for Collaborative Tasks with Probabilistic Movement
Primitives.
Maeda, G.; Ewerton, M.; Lioutikov, R.; Amor, H.; Peters, J. Neumann, G.
Accepted for publication: Proceedings of the International Conference on
Humanoid Robots (HUMANOIDS), 2014

This paper introduces the use of Probabilistic Movement Primitives (ProMPs)
for interaction. This paper uses the TUDa-based experimental platform as a
third hand to perform the assembly of a toolbox.

Abstract:
This paper proposes the formulation of a probabilistic interaction model
based on movement primitives for robots that work in collaboration with
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a human partner. Since the human partner can execute a variety of unfore-
seen tasks a requirement of our system is that the assistant robot must be
able to adapt and learn new skills on-demand, without the need of an expert
programmer. Thus, this paper leverages on the framework of imitation learn-
ing and also on its application to human-robot interaction using the recently
introduced concept of Interaction Primitives (IPs). We present the use of
Probabilistic Movement Primitives (ProMPs) as an interaction framework
that both recognizes the action of a human and generates the appropriate
movement primitive of the assistant robot. We evaluate our method on ex-
periments using a lightweight arm interacting with a human partner and also
using motion capture trajectories of two humans assembling a box. The ad-
vantages of ProMPs in relation to the original formulation for interaction are
exposed.

• Learning Multiple Collaborative Tasks with a Mixture of Interaction Primi-
tives
Ewerton, M.; Neumann, G.; Lioutikov, R.; Amor, H.; Peters, J.; Maeda,
G. Submitted to: 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA)

This paper proposes a mixture of interaction primitives to learn different
collaborative tasks from unlabeled training data. This paper uses the TUDa
based experimental platform as a third hand to perform the assembly of a
toolbox.

Abstract:
Learning human-robot interaction from demonstration presents a number of
open issues. This paper addresses the problem of learning interaction from
unlabeled demonstrations. Our proposed method builds upon the framework
of Interaction Primitives to encode the parameters that describe human-
robot interaction in a lower dimensional space. Due to the fact that one
single Interaction Primitive does not apply across different interaction sce-
narios, it is usually assumed that the training data is labeled and one model is
learned for each label. Our contribution is to propose unsupervised learning
of models of different human-robot interactions. This work endows Interac-
tion Primitives with the capability of performing clustering and conditioning
on non-linear distributions using Gaussian Mixture Models (GMMs). We val-
idate our algorithm by assembling a box with the help of a KUKA lightweight
arm. We record the movements of a human using a motion capture system
and the movements of the robot, while being driven by kinesthetic teach-
ing. Given a number of unlabeled demonstrations of different interactions,
our algorithm learns a number of probabilistic interaction models. In the
test phase, we apply conditioning to infer the reaction of the robot given the
movement of the human.

• Generalizing Manipulations Between Objects using Warped Parameters
Brandl, S.; Kroemer, O.; Peters, J. Proceedings of the International Confer-
ence on Humanoid Robots (HUMANOIDS), 2014

This paper proposes grasping generalization by extracting parameters of
point-cloud data in the form of warping functions. The method is evalu-
ated in with a pouring task using the 3rdHand experimental platform at
TU-Darmstadt.
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Abstract:
One of the key challenges for learning manipulation skills is generalizing be-
tween different objects. The robot should adapt both its actions and the
task constraints to the geometry of the object being manipulated. In this pa-
per, we propose computing geometric parameters of novel objects by warping
known objects to match their shape. We refer to the parameters computed
in this manner as warped parameters, as they are defined as functions of the
warped objects point cloud. The warped parameters form the basis of the
features for the motor skill learning process, and they are used to generalize
between different objects. The proposed method was successfully evaluated
on a pouring task both in simulation and on a real robot.
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Learning Interaction for Collaborative Tasks with Probabilistic
Movement Primitives

Guilherme Maeda1, Marco Ewerton1, Rudolf Lioutikov1, Heni Ben Amor2, Jan Peters1,3, Gerhard Neumann1

Abstract— This paper proposes a probabilistic framework
based on movement primitives for robots that work in col-
laboration with a human coworker. Since the human coworker
can execute a variety of unforeseen tasks a requirement of our
system is that the robot assistant must be able to adapt and
learn new skills on-demand, without the need of an expert
programmer. Thus, this paper leverages on the framework
of imitation learning and its application to human-robot in-
teraction using the concept of Interaction Primitives (IPs).
We introduce the use of Probabilistic Movement Primitives
(ProMPs) to devise an interaction method that both recognizes
the action of a human and generates the appropriate movement
primitive of the robot assistant. We evaluate our method
on experiments using a lightweight arm interacting with a
human partner and also using motion capture trajectories of
two humans assembling a box. The advantages of ProMPs in
relation to the original formulation for interaction are exposed
and compared.

I. INTRODUCTION

While the traditional use of robots is to replace hu-
mans in dangerous and repetitive tasks we motivate this
paper by semi-autonomous robots that assist humans. Semi-
autonomous robots have the ability to physically interact
with the human in order to achieve a task in a collaborative
manner. The assembly of products in factories, the aiding of
the elderly at home, the control of actuated prosthetics, and
the shared control in tele-operated repetitive processes are
just a few examples of application.

Only recently, physical human-robot interaction became
possible due advances in robot design and safe, compli-
ant control. As a consequence, algorithms for collaborative
robots are still in the early stages of development. Assistance
poses a variety of challenges related to the human presence.
For example, Fig. 1 illustrates a robot assistant that helps a
human to assemble a box. The robot must not only predict
what is the most probable action to be executed based on
the observations of the worker (to hand over a screw driver
or to hold the box) but also the robot movement must be
coordinated with the worker movement. Pre-programming a
robot for all possible tasks that a worker may eventually need
assistance with is unfeasible. A robot assistant must be able

1Intelligent Autonomous Systems Lab, Technische Universitaet Darm-
stadt, 64289 Darmstadt Germany. Correspondence should be addressed to
maeda@ias.tu-darmstadt.de

2Institute for Robotics and Intelligent Machines, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, GA 30332-0280, USA.

3Max Planck Institute for Intelligent Systems Spemannstr. 38, 72076
Tuebingen, Germany

Fig. 1. Illustration of two collaborative tasks where a semi-autonomous
robot helps a worker assembling a box. The robot must predict what is
the action to execute, to hand over the screw driver or to hold the box. Its
movement must also be coordinated relative to the location at which the
human worker executes the task.

to learn the interaction and to adapt to a variety of unforeseen
tasks without the need of an expert programmer.

Motivated by the described scenario, this work proposes
the use of imitation learning [1] in the context of collabora-
tion. Imitation learning has been widely used as a method to
overcome the expensive programming of autonomous robots.
Only recently, however, its application for physical interac-
tion has been introduced under the concept of Interaction
Primitives (IP) by Lee at al. in [2], defined as skills that
allow robots to engage in collaborative activities with a
human partner by Ben Amor et al. in [3].

Leveraging on the framework of [3], our approach is based
on probabilistically modeling the interaction using a distribu-
tion of observed trajectories. We propose using Probabilistic
Movement Primitives (ProMPs) [4] for modeling such a
distribution. In a manufacturing scenario such a distribution
of trajectories can be obtained by observing how two co-
workers assemble a product, several times throughout the
day, providing a rich data set for imitation learning. Such a
collection of trajectories is used to create a prior model of the
interaction in a lower dimensional weight space. The model
is then used to recognize the intention of the observed agent
and to generate the movement primitive of the unobserved
agent given the same observations. The movement primitive
of the unobserved agent can then be used to control a robot
assistant.

The main contribution of this paper is the introduction
of the Probabilistic Movement Primitives [4] in the context
of imitation learning for human-robot interaction and action



recognition. We will show how Interaction ProMPs can
be applied to address the three main problems previously
illustrated in Fig. 1, that is: (a) learning a collaborative model
by imitation learning and thus avoiding expert programming,
(b) the ability to recognize a task by observing the worker,
and (c) the coordination of the assistant movement in relation
to the worker movement. We also show the advantages of
ProMPs over the original DMP-based framework [3], and
present an algorithm for aligning data using local optimiza-
tion in order to avoid the issue of slope constraints typical
of dynamic time warping.

II. RELATED WORK

The data-driven analysis and classification of interactions
between multiple persons has long been addressed within the
computer vision community. In particular visual surveillance
tasks, e.g., tracking of multiple pedestrians, require methods
for identifying the occurrence and type of person-to-person
interactions. In a seminal paper, Oliver et al. [5] show
that hidden Markov models (HMMs), and more generally
graphical models, are suited for representing the mutual
dependencies of the behaviors between interacting agents.
Graphical models have gained popularity in the field of
human-robot interaction as they naturally include temporal
information into the inference process and the Bayesian
semantics provides a simple way to encode prior knowledge.
In [6], Lee et al. use a hierarchical HMM to learn and
represent responsive robot behaviors. In their approach, a
high-level HMM identifies the current state of the inter-
action and triggers low-level HMMs which correspond to
the robot’s motor primitives. In order to ensure that the
robot adapts to the movement of the human partner, virtual
springs are attached between markers on the human body and
corresponding positions on the robot. In a similar vein, Ben
Amor et al. [7] use a path-map HMM to model interactions
in cooperative tasks. In their approach, a backbone of shared
hidden states correlates the actions of the interacting agents.

Tanaka et al. [8] use a Markov model to predict the
positions of a worker in an assembly line. The space in
which the worker moves is discretized into different regions.
A Gaussian mixture model relates positions to procedures.
Using this information a robot, then, delivers tools and
parts to a human worker along the assembly line. Besides
HMMs, other probabilistic graphical models have also been
used to address interaction tasks. Koppula et al. [9] use a
conditional random field with sub-activities, human poses,
object affordances and object locations over time. Inference
on the graphical model, allows a robot to anticipate human
activity and choose a corresponding, preprogrammed robot
response. Wang et al. [10] propose the intention-driven
dynamics model, which models human intentions as latent
states in graphical model. Intentions can be modeled as
discrete variables, e.g., action labels, or continuous variables,
e.g., an object’s final position. The transitions between latent
states and the mapping from latent states to observations
are modeled via Gaussian Processes. As evidenced by
these works, graphical models can be very powerful tools

in classifying interactions. However, this often requires a
substantial set of training data. In particular for humanoid
motion generation with many degrees-of-freedom, it is often
challenging to acquire sufficiently large and general data sets.

For more efficient learning and generalization, various
authors investigated the projection of the original trajecto-
ries into a new, low-dimensional space where correlations
between the agents are easier to unravel. Llorens et al. [11]
show how such a low-dimensional interaction space can
be used to implement an assistive robot arm. Similarly in
[7], probabilistic principal component analysis is used to
find a shared latent space. Dynamic Movement Primitives
(DMPs) [12] allows for a low-dimensional, adaptive repre-
sentation of a trajectory. The general idea is to encode a
recorded trajectory as dynamical systems, which can be used
to generate different variations of the original movement. In
the context of interaction, Prada et al. [13] present a modified
version of DMPs, that adapts the trajectory of one agent to a
time-varying goal. By setting the goal to the wrist of another
agent, the method can be used to generate handover motions.

Although graphical models and HMMs have been suc-
cessfully used for action and intention recognition in a
discretized symbolic level, the generation of trajectories
for the continuous dynamic control of the robot is usually
addressed by a different level of representation (e.g. a lower-
level HMM [6] or DMPs). In relation to the previously
cited works, here, we propose a framework based solely
on a continuous movement representation that is used to
both recognize actions and generate trajectories in the form
of movement primitives; mainly leveraging on DMP-based
Interaction Primitives [3] and Probabilistic Movement Prim-
itives (ProMPs) [4]. By using ProMPs rather than DMPs our
prosed method naturally correlates different agents directly
in the same space in which observations are made, since
observations of a task are usually given by their trajectories.
This is an advantage in relation to the original framework
of [3] since the representation of collaboration in the space
of accelerations/forces due to the use of DMPs obfuscates
the algorithm and increases its sensitivity to noise in the
observations.

III. PROPOSED METHOD

This section briefly introduces Probabilistic Movement
Primitives for a single degree of freedom as presented in [4]
and proposes its extension for interaction and collaboration.
Although not covered in this work, in its original proposition,
the design of a feedback controller that tracks the distribution
of trajectories is also part of ProMPs and the interested
reader is referred to [4] for details; here we assume the
existence of a human-safe standard feedback controller such
as a low-gain PD controller. This section also exposes the
main characteristics of the interaction framework based on
DMPs in [3] and its relation to the approach of this paper.
Finally, a simple local optimization algorithm is proposed
for aligning several demonstrations provided by a human.



A. ProMPs for a Single DOF

For the purposes of the following derivations we generi-
cally refer to each joint or Cartesian coordinates of a human
or robot simply as a degree of freedom (DOF) with position
q and velocity q̇. Starting with the case of a single DOF, we
denote y(t) = [q(t) q̇(t)]T and a trajectory as a sequence
τ = {y(t)}t=0,...T . We adopt linear regression with n
Gaussian basis functions ψ. The state vector y(t) can then
be represented by a n-dimensional column vector of weights
w as

y(t) =

[
q(t)
q̇(t)

]
=

[
ψ(t)

ψ̇(t)

]
w + εy, (1)

where Ψt = [ψ(t), ψ̇(t)]T is a 2×n dimensional time-
dependent basis matrix and εy∼N (0,Σy) is zero-mean i.i.d.
Gaussian noise. The probability of observing the whole
trajectory is then

p(τ |w) =
T∏

0

N (y(t)|Ψtw,Σy). (2)

Similar to DMPs the speed of the execution of the move-
ment is decoupled from the speed of the original trajectory
by using a phase variable z(t). The phase variable replaces
the time in order to control the location of the basis functions
with ψ(z(t)). For simplicity we will use z(t) = t such that
ψ(t) = ψ(z(t)) while remembering that any monotonically
increasing function can be used [4].

Each trajectory is now represented by a low-dimensional
vector w since the number of basis is usually much smaller
than the number of time steps. Trajectory variations obtained
by different demonstrations are captured by defining the
distribution over the weights p(w|θ), where θ is the learning
parameter. The probability of the trajectory becomes

p(τ |θ) =
∫
p(τ |w)p(w|θ)dw. (3)

So far θ captures the correlation among the weights within
the trajectory and between demonstrations of the same DOF.

B. ProMPs for Collaboration

The key aspect for the realization of the interaction prim-
itives is the introduction of a parameter θ that captures the
correlation of all DOFs of multiple agents. Assuming that
the distribution of trajectories of different agents is normal,
then p(w;θ) = N (w|µw,Σw). Under this assumption we
redefine the vector of weights w to account for all degrees of
freedom of multiple-agents. Following the definitions in [3]
we will refer to the assisted human as the observed agent,
and assume that he/she provides the observed DOFs of the
model (e.g by motion capture). The robot will be referred to
as the controlled agent.

For an observed agent with P DOFs and a controlled
agent with Q DOFs, we construct a row weight vector by
concatenating the trajectory weights

w̄d = {[wT
1 , ...w

T
p , ...,w

T
P ]

o, [wT
1 , ...w

T
q , ...,w

T
Q]

c} (4)

where w̄d is the augmented weight vector corresponding
to the d-th demonstration, wp is the n-dimensional column
vector of weights of the p-th DOF of the observed agent, and
wq is the vector of weights of the q-th DOF of the controlled
agent. The mean and covariance are then computed by
stacking all demonstration weights

µw = mean([w̄1, ..., w̄d, , ..., w̄D]T ),

Σw = Cov([w̄1, ..., w̄d, , ..., w̄D]T ),
(5)

where D is the number of demonstrations.
Gaussian conditioning can then be applied on-line as each

new observation is made using recursive updates in the form

µ+
w = µ−

w +K(y∗(t)−HT
t µ

−
w)

Σ+
w = Σ−

w −K(HT
t Σ−

w)

K = Σ−
wH

T
t (Σ

∗
y +H

T
t Σ+

wHt)
−1,

(6)

where K is the Kalman gain matrix, y∗(t) is the observed
value at time t, Σ∗

y is the measurement noise, and the upper-
scripts − and + the values before and after the update. The
observation matrix Ht is block diagonal and each diagonal
entry contains the 2×n basis [ψ(t), ψ̇(t)]T for each observed
joint

Ht =




Ψt . . . 0
...

. . .
...

0 . . . Ψt


 (7)

In the collaboration case only measurements of the ob-
served agent are provided. By maintaining consistency with
definition (4) where the entries of the observed agent
come before the controlled agent, the mean is then µw =
[µo

w µc
w]

T and the observation matrix Ht is partitioned as

Ht =




(Ψo
t )(1,1) 0 0 0

0 (Ψo
t )(P,P ) 0 0

0 0 0c
(1,1) 0

0 0 0 0c
(Q,Q)




(8)

where each zero entry is of 2×n dimension. Note that if only
positions of the observed agent are provided (Ψo

t )(p,p) =
[ψ(t), 0(t)]T .

In general, since (6) is a full state linear estimator, any
partial combination of observations (for example when y∗

only contains positions, or velocities, or a mixture of both)
provides the optimal estimate of states µ+

w and their uncer-
tainty Σ+

w .

C. Action Recognition for Primitive Activation

Here we use the ProMP framework in a multi-task scenario
where each task is one encoded by one interaction primitive.

Consider a specific task s ∈ {1, ..,K} and assume that
for each task an Interaction ProMP has been generated as it
was proposed in section III-B. Using the recursive notation
of (6), the upper script (·)− refers to the parameters of the
Interaction ProMP updated up to the previous observation,
that is θ−s = {µ−

w ,Σ
−
w}s. The probability of the observation



at a subsequent time t given the parameters θ−s of one of
the tasks is

p(y∗(t);θ−s ) =
∫
p(y∗(t)|Ψtw,Σ

∗
y)p(w|θ−s )dw (9)

= N (y∗(t)|Ψtµ
−
w ,ΨtΣ

−
wΨt + Σ∗

y). (10)

The task s can now be recognized by applying Bayes rule

p(s|y∗(t)) =
p(y∗(t)|θ−s )p(s)∑K
k=1 p(y

∗(t)|θ−k )p(k)
, (11)

where p(s) is the initial probability of the task (e.g. p(s) =
1/K for uniform distribution). We will evaluate Eqs. (9)-(11)
using real collaboration data in the experimental section of
this paper.

D. Relation to Interaction DMPs

It is now straightforward to relate our proposed method
with the previous interaction primitives based on DMPs
[3]. The principal difference is that in the framework of
interaction DMPs the weights are mapped from the forcing
function f(t) as opposed to the positions q(t). Using the
linear basis-function model

f(t) = ψ(t)Tw, (12)

where ψ(t) are the normalized Gaussian basis functions.
Similarly to the ProMP case a distribution of weights p(w)
is learned based on several demonstrations of a task.

For each DOF, the forcing function adds a nonlinear
behavior on the movement which complements a linear and
stable spring-damper system

q̈ = [αy(βy(g − q)− q̇/τ) + f(t)]τ2, (13)

where g is the goal attractor, αy , βy are user-defined pa-
rameters that characterize the spring-damper behavior and τ
controls the speed of execution. For details on DMPs please
refer to [12] and references therein.

When using imitation learning a demonstration is executed
and measurements are usually given in the form of positions,
which must be differentiated twice such that the forcing
function can be computed

f(t) = q̈/τ2 − αy(βy(g − q)− q̇/τ). (14)

Referring back to (6) the Gaussian conditioning is now
based on the observation of forces or accelerations, that
is y∗(t) = f(q̈, (·), t)∗. As our evaluations will show,
the fact that forces are usually computed using second
derivatives of the position can be restrictive for applications
with asynchronous or sparse measurements as the observed
accelerations needed for conditioning are hard to obtain in
this case. In contrast, in the ProMP framework, it is possible
to directly condition on the observed quantities, i.e., the
position of the agent.

E. Time Warping with Local Optimization

One issue of imitation learning for trajectories is that
multiple demonstrations provided by humans are usually,
sometimes severely, warped in time. Demonstrations must
be unwarped or time-aligned before the distribution of the
weights can be computed. Here we propose aligning trajec-
tories by taking one of the demonstrations as a reference yr
and using local optimization of the time warping function
with

tj+1
w = vj0 + g(v

j)tjw, (15)

where tjw represents a vector containing the warped time of
demonstration yw at the j-th iteration of the optimization.

We propose g as a smooth, linear Gaussian-basis-model
with P weights vj = [vj1, ..., v

j
P ] as the parameters to be

optimized. The extra parameter vj0 is used to shift the time
which is useful when the reference and warped trajectories
are, in fact, identical but start at different instants. The
optimization is initialized with vj0 = 0 and tjw = tr for
j=1. The parameters vj are optimized with gradient descent
to decrease the absolute cumulative distance between the
reference and warped trajectories

v = argmin
v

K∑

k=0

|yr(tr(k))− yw(vj0 + g(vj)tjw)|. (16)

While Dynamic Time Warping (DTW) [14] is widely
used for such problems, our local method forces alignment
without “jumping” the indexes of the warped time vector
which is an usual outcome of DTW and renders unrealistic
and non-smooth trajectories. While this problem is usually
minimized by imposing a slope constraint [14], the use
of a smooth function g not only avoids the tunning of
this parameter but also preserves the overall shape of the
trajectory.

IV. EXPERIMENTS

This section presents results on a simple simulated sce-
nario to compare the differences between the original work
of Interaction DMPs with Interaction ProMPs. Next, we
evaluate the accuracy of Interaction ProMPs for generating
reference trajectories for an anthropomorphic robot arm
conditioned on the movement of a human. Finally, we will
show experimental results with Interaction ProMPs used in
a collaborative scenario of a box assembly to both recognize
and predict the action of two collaborators.

A. Comparison with Interaction DMPs

In a typical interaction task the observations of a coworker
might arrive asynchronously, at irregular periods of time, for
example, when the measurement signal is prone to interrup-
tion (a typical case is occlusion in motion capture systems).
Fig. 2 (a) illustrates a simple case where both observed and
controlled agents have a single joint each. The training data
was created by sketching two sets of trajectories on a PC
screen using a computer mouse. We than use these two sets
as proxies of the observed and controlled agents resulting
on the initial distribution of trajectories (in blue). The upper
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Fig. 3. Root-mean-square prediction error of the movement of collaborator
B as a function of the number of observed samples of the trajectory of
collaborator A. The different bars indicate the amount of noise added to the
observation of the position of collaborator A.

plot shows the prediction (in green) of the observed agent
after observing four measurements. Note that following (4)
the predicted mean µ+

w has the dimension of the augmented
weight vector, that is, if each single-DOF agent trajectory
is encoded by n basis functions µ+

w is a column vector of
size 2n. The bottom figure depicts the predicted distribution
of the controlled agent. Note that the same experiment can
not be reproduced with Interaction DMPs as the second
derivative on such sparse measurement is hard to compute
and introduce innacuracies on the representation of the true
force.

In Fig. 2 (b) the ProMP is being conditioned on a constant
synchronous stream of noisy position measurements. The
plot shows the case where the true trajectory is corrupted
with a Gaussian noise with variance σ2 = 0.04. Interaction
DMPs suffer from noisy position measurements as the obser-
vation must be differentiated twice to compute the forcing
function. While low-pass filters alleviate this problem, the
introduction of phase lag is an issue that can be potentially

(a)

(b)

Y

Z

Test

Training

Fig. 4. An interactive task where the robot has to point at the same position
previously pointed by the human. The robot, however, has no exteroceptive
sensors and its predicted trajectory is based solely on the correlation with
the observed human movement. (a) The nine positions used to create the
Interaction ProMP (dot markers) and the extra nine positions used to test
the method (cross markers). (b) An example where the human points at the
test position #1 and the robot points to the same position.

avoided with ProMPs.
Fig. 3 compares the prediction error over the whole trajec-

tory of Interaction DMPs and ProMPs given the same noisy
observed data. With DMPs the error is greatly influenced by
the amount of noise while ProMPs show much less sensi-
tivity. For the case where the full trajectory of collaborator
A is observed (indicated by the arrow) the prediction error
increased by a factor of five times using the Interaction
DMPs when noise ranged from a clean signal to a signal
of noise variance 0.04. In contrast, the error deteriorates by
a factor of two with Interaction ProMPs.

B. Robot Control with Interaction ProMPs

We evaluated the ability of Interaction ProMPs in gen-
erating the appropriate movement primitive for controlling
a robot based on observations of a human partner. The
experiment consisted in measuring the [x, y, z] trajectory
coordinates of the wrist of an observed agent via motion
capture1 while pointing at a certain position on a table
placed in front of our robot (a 7-DOF anthropomorphic
arm with a 5-finger hand). Then, the robot was moved in
gravity compensation mode to point with its index finger
at the same position on the table while its joint positions
were being recorded (kinesthetic teaching). This pair of

1All human positions were measured in relation to the world reference
frame located at the torso of the robot (as shown in Fig. 4(b)).
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Fig. 5. The upper row shows the human Cartesian coordinates of the wrist. The bottom row shows the first four joints of the 7-DOF robotic arm. (a)
Conditioned results of the test position #6. (b) Conditioned results of the test position #8.

trajectories formed by the Cartesian positions of the wrist
and the joint positions of the arm where then mapped into
the weight space and concatenated as in Eq. (4). In total,
nine different positions were pointed to collect training data,
sparsely covering an approximate circular area of diameter
30 cm. The pointed positions are shown in Fig. 4(a) by the
dots.

After creating the Interaction ProMPs, as described in
Section III-B, we defined extra nine marked positions shown
in Fig. 4(a) by the crosses. The human then pointed at one
of the crosses while motion capture was used to measure the
trajectory of the wrist. These observations were then used
to condition the Interaction ProMP to predict trajectories for
each joint of the robot, whose mean values where used as
reference for a standard trajectory tracking inverse dynamics
feedback controller with low gains.

Fig. 4(b) shows one example of the interactive task where
the human pointed to the position marked by the cross #1,
which was not part of the training; the robot was capable of
pointing to the same position. Note that the robot was not
provided with any exteroceptive feedback, such as cameras,
to reveal the location of the pointed position. Although
the robot was not directly “aware” of the position of the
pointed cross, the interaction primitive provides the robot the
capability to predict what movement to make based solely
on the observed trajectories of the partner.

Figure 5 shows two examples on the conditioned interac-
tion primitives when the human pointed at positions #6 in (a)
and #8 in (b) (refer back to Fig. 4(a) for the physical position
of the crosses). The first row in each subplot shows the
[x, y, z] coordinates of the wrist. The second row shows the
first four joints of the robot, starting from the shoulder joint.
Since we are only interested in the final pointing position, the
interaction primitive was conditioned on the final measure-
ments of the wrist position. As positions #6 and #8 were
physically distant from each other, the difference between
their predicted trajectories were quite large in relation to
each other, roughly covering the whole span of the prior
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Fig. 6. Accuracy of the pointed positions by the robot when using the test
positions given by the cross markers. The error was computed by taking the
actual pointed position and the true position of the markers on the table.

distribution (in blue) for some certain DOFs of the arm.
Figure 6 shows the distance error on the plane of the

table between the position pointed by the robot and its true
position. The robot was able to reasonably point even at
locations at the limits of the training data such as position
#1, #7, and #8 (see Fig. 4). The maximum error was of
3 cm, or 10% in relation to the total area covered by the
training points (approximately a circle of diameter 30 cm).
The experiments show that the physical movement of the
robot is clearly conditioned by the position indicated by the
human (see the accompanying video2).

Note that this not a precision positioning experiment; the
markers on the wrist were not fixed in a rigid, repeatable
manner, neither the finger of the robot could be positioned
with milimetric precision during the kinesthetic teaching
phase. The framework of Interaction ProMPs allows, how-
ever, to seamlessly integrate additional sensing to increase
accuracy in precision tasks. This is naturally achieved adjust-
ing the observation vector y∗ in (6) and the zero entries in
(8) to include new sensory information such as the reference
position of a hole in which the robot must insert a peg.

C. Action Recognition for Primitive Activation

While in the previous experiments interaction primitives
were evaluated for the case of a single task, here we show

2also available from http://youtu.be/2Ok6KQQQDNQ
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Fig. 7. Three collaborative tasks involved when assembling a box by two co-workers. From left to right, the photos show the hand over of a screw, the
fastening of the screw where one agent grasps the screw driver while the other holds the box steadily, and the insertion of a plate, which requires one
agent to flip the box such that the slot becomes accessible to the other agent. The distribution of aligned demonstrations for each task are shown under
their respective photos. The plot shows the covariance in the x-y plane at each corresponding z height.

how Interaction ProMPs can be used for recognizing the
action of the observed agent and to select the appropriate
desired movement primitive of the controlled agent. This
capability allows the robot to maintain a library of several
tasks encoded as Interaction ProMPs and to activate the
appropriate primitive based on the observation of the current
task.

As shown in the photos of Fig. 7, we collected collabo-
rative data in the form of the Cartesian coordinate positions
of the wrists of two humans assembling a box. As in the
previous experiment of section IV-B, all measurements were
taken in relation to the torso of the robot. The collaborator
on the right plays the role of the observed agent while the
collaborator at the left plays the role of the controlled agent.
The controlled agent will be referred to as the predicted agent
since he/she can not be controlled.

In the ”hand-over” task shown in Fig. 7(a), the observed
agent stretches his hand as a gesture to request a screw.
The predicted agent then grasps a screw sitting on the table
and hand it over to the collaborator. In the ”fastening” task
shown in Fig. 7(b), the observed agent grasps an electrical
screwdriver. The predicted agent reacts by holding the box
firmly while the observed agent fastens the screw. In the
”plate insertion” task shown in Fig. 7(c), the observed agent
grasps the bottom plate of the box. The predicted agent then
flips the box such that the slots to which the plate slides in
are directed towards the observed agent.

Each task is repeated 40 times. All trajectories are aligned
using the method described in Section III-E. The aligned
trajectories are shown in Fig. 7 under their respective photos
as three-dimensional plots for each of the tasks where the
covariance in x-y directions are shown at the corresponding
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Fig. 8. Action recognition based on conditioning the movement primitives
of the observed agent. In this example the observations of the fastening task
also overlaps with the primitives of the hand over task.

heights (Z direction) of the movement. Interaction ProMPs
are created for each task using the distribution of aligned
trajectories.

We evaluated action recognition using Eqs. (9)-(11) on
the three presented tasks for box assembly. Fig. 8 shows
one evaluation as an example. Note from the figure that the
majority of observations indicate that the fastening task is
taking place. The last five observations (surrounded by the
ellipse), however, fits both tasks and could be a potential
source of ambiguity in task recognition. Even in those
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Fig. 9. Action recognition given three different Interaction ProMPs, one for
each task involved in assembling the box. The three Interaction ProMPs are
conditioned on the same observations of the observed agent. Probabilities
of tasks are shown as a function of the number of observations along the
trajectory of the observed agent. (a) Recognition of the hand over task. (b)
Recognition of the fastening task. (c) Recognition of the plate insertion task.

cases, ProMPs can clearly distinguish among tasks as shown
by the plots in Fig. 9 where the probabilities of the task
are given as a function of the number of observations.
Subplots (a), (b) and (c) show the task recognition for the
fastening, hand over and plant insertion tasks, respectively.
In general, we observed that 3-5 observations are required to
achieve a 100% certainty for each task. (The last part of the
accompanying video shows our method controlling the robot
assistant to assembly a box with recognition of two different
handover tasks).

V. CONCLUSION

This paper introduced a method for collaboration suited
for new applications using semi-autonomous robots whose
movements must be coordinated with the movements of a
human partner. By leveraging on the original framework of
Interaction Primitives [3] we proposed the use of ProMPs
for the realization of primitives that capture the correlation
between trajectories of multiple agents. This work com-
pared the main differences between DMPs and ProMPs for
interaction and advocates the later for applications where
measurements are noisy and/or prone to interruption. Using
a 7-DOF lightweight arm we evaluated the capability of
Interaction ProMPs in generating the appropriate primitive
for controlling the robot in an interactive task involving
a human partner. We also proposed a method for task
recognition that naturally fits the ProMP framework.

Our current work addresses the use of mixture-models to

automatically generate different Interaction ProMPs without
a priori hand labeling of multiple tasks. We are also inves-
tigating tasks in which some of the involved DOFs do not
correlate linearly and also when certain tasks do not induce
correlation. The later is especially true for tasks where the
movement of the agents are not related by causality.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
grammes (FP7-ICT-2013-10) under grant agreement 610878
(3rdHand) and (FP7-ICT-2009-6) under grant agreement
270327 (ComPLACS). The authors would like to acknowl-
edge Filipe Veiga, Tucker Hermans and Serena Ivaldi for
their assistance during the preparation of this manuscript.

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[2] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication model
with compliant physical contact in humanhumanoid interaction,” The
International Journal of Robotics Research, vol. 29, no. 13, pp. 1684–
1704, 2010.

[3] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in Pro-
ceedings of 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[4] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2616–2624.

[5] N. Oliver, B. Rosario, and A. Pentland, “A bayesian computer vision
system for modeling human interactions,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 831–843,
Aug 2000.

[6] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication model
with compliant physical contact in human-humanoid interaction,” Int.
Journal of Robotics Research., vol. 29, no. 13, pp. 1684–1704, Nov.
2010.

[7] H. Ben Amor, D. Vogt, M. Ewerton, E. Berger, B. Jung, and J. Peters,
“Learning responsive robot behavior by imitation,” in Proceedings of
the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013, pp. 3257–3264.

[8] Y. Tanaka, J. Kinugawa, Y. Sugahara, and K. Kosuge, “Motion
planning with worker’s trajectory prediction for assembly task partner
robot,” in Proceedings of the 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 1525–
1532.

[9] H. S. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response.” in Robotics: Science
and Systems, 2013.
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Learning Multiple Collaborative Tasks with a
Mixture of Interaction Primitives

Marco Ewerton1, Gerhard Neumann1, Rudolf Lioutikov1, Heni Ben Amor2, Jan Peters1,3 and Guilherme Maeda1

Abstract— Robots that interact with humans must learn to
not only adapt to different human partners but also to new
interactions. Such a form of learning can be achieved by
demonstrations and imitation. A recently introduced method
to learn interactions from demonstrations is the framework
of Interaction Primitives. While this framework is limited
to represent and generalize a single interaction pattern, in
practice, interactions between a human and a robot can consist
of many different patterns. To overcome this limitation this
paper proposes a Mixture of Interaction Primitives to learn
multiple interaction patterns from unlabeled demonstrations.
Specifically the proposed method uses Gaussian Mixture Mod-
els of Interaction Primitives to model non-linear correlations
between the movements of the different agents. We validate
our algorithm with two experiments involving interactive tasks
between a human and a lightweight robotic arm. In the first
we compare our proposed method with conventional Interaction
Primitives in a toy problem scenario where the robot and the
human are not linearly correlated. In the second we present a
proof-of-concept experiment where the robot assists a human
in assembling a box.

I. INTRODUCTION

Robots that can assist us in the industry, in the household,
in hospitals, etc. can be of great benefit to the society. The
variety of tasks in which a human may need assistance is,
however, practically unlimited. Thus, it is very hard (if not
impossible) to program a robot in the traditional way to assist
humans in scenarios that have not been exactly prespecified.

Learning from demonstrations is therefore a promising
idea. Based on this idea, Interaction Primitive (IP) is a
framework that has been recently proposed to alleviate the
problem of programming a robot for physical collaboration
and assistive tasks [1], [2]. At the core, IPs are primitives
that capture the correlation between the movements of two
agents—usually a human and a robot. Then, by observing
one of the agents, say the human, it is possible to infer the
controls for the robot such that collaboration can be achieved.

A main limitation of IPs is the assumption that the
movements of the human and the movements of the robot
assistant are linearly correlated. This assumption is reflected
in the underlying Gaussian distribution that is used to model

1Intelligent Autonomous Systems Lab, Department of Computer
Science, Technical University Darmstadt, Hochschulstr. 10, 64289
Darmstadt, Germany {ewerton, neumann, lioutikov,
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of Technology, 801 Atlantic Drive, Atlanta, GA 30332-0280, USA
hbenamor@cc.gatech.edu

3Max Planck Institute for Intelligent Systems, Spemannstr. 38, 72076
Tuebingen, Germany jan.peters@tuebingen.mpg.de

Human trajectories Robot trajectoriesPlate handover Holding tool Screw handover
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Human trajectories Robot trajectories

Fig. 1. Illustration of a task consisting of multiple interaction patterns,
where each can be represented as an Interaction Primitive. In this work, we
want to learn multiple interaction patterns from an unlabeled data set of
interaction trajectories.

the demonstrations. While this assumption holds for tasks
that cover a small region of the workspace (a high-five task
in [1] or handover of objects in [2]), it limits the use of IPs in
two aspects. First, as illustrated in Fig. 1, a task such as the
assembly of a toolbox consists of several interaction patterns
that differ significantly from each other and therefore can not
be captured by a single Gaussian. Moreover, even within a
single interaction pattern, the correlation between the two
agents may not be linear, for example, if the movements of
the human are measured in the Cartesian space, while the
movements of the robot are measured in joint space.

Manually labeling each subtask (e.g. “plate handover",
“screw handover", “holding screw driver") is a way to model
interactions with multiple subtasks. Ideally, however, robots
should be able to identify different subtasks by themselves.
Moreover, it may not be clear to a human how to separate
a number of demonstrated interactions in different, linearly
correlated groups. Thus, a method to learn multiple inter-
action patterns from unlabeled demonstrations is necessary.
The main contribution of this paper is the development
of such a method. In particular, this work uses Gaussian
Mixture Models (GMMs) to create a Mixture of Interaction



Probabilistic Movement Primitives [2].
The remainder of this paper is organized as follows.

Section II presents related work. In Section III, Probabilistic
Movement Primitives (ProMPs) and Interaction ProMPs are
briefly introduced, followed by the proposition of the main
contribution of this paper: a Mixture of Interaction ProMPs
based on Gaussian Mixture Models (GMMs). Section IV
evaluates the proposed method, first on a toy problem that is
useful to clarify the characteristics of the method, and then on
a practical application of a collaborative toolbox assembly.
Section V presents conclusions and ideas for future work.

II. RELATED WORK

Physical human-robot interaction poses the problem of
both action recognition and movement control. Interaction
dynamics need to be specified in a way that allows for
robust reproduction of the collaborative task under different
external disturbances, and a common approach is based on
direct force sensing or emulation. Rozo et al. [3] proposed a
framework for haptic collaboration between a human and a
robot manipulator. Given a set of kinesthetic demonstrations,
their method learns a mapping between measured forces and
the impedance parameters used for actuating the robot, e.g.,
the stiffness of virtual springs governing the collaborative
task. In another force-based approach, Lawitzky et al. [4]
proposed learning physical assistance in a collaborative trans-
portation task. In the early learning phase, the robot uses the
measured force values to follow the human guidance during
the task. Recorded force and motion patterns are then used
to learn a Hidden Markov Model (HMM) which can predict
the human’s next action, and over time the robot learns to
take over a more active role in the interaction. Kulvicius et
al. [5] also address a transportation task where the two agents
are modeled as two point particles coupled by a spring. The
forces applied by the other agent tell the robot how to adapt
its own trajectory.

Our work differs significantly from the cited works in the
sense that our method does not use nor emulate force signals,
but instead learns the correlation between the trajectories of
two agents. Correlating trajectories not only simplifies the
problem in terms of hardware and planning/control but also
allows us to correlate multi-agent movements that do not
generate force during the interaction, for example, the simple
gesture of asking and receiving an object.

Graphical models have also been used to describe interac-
tion dynamics. In the computer vision community, HMMs
have been widely adopted to model interaction dynamics
from input video streams [6], [7]. As a result, graphical
models have also gained considerable attention in the field
of human-robot interaction. In [8], Hawkins and colleagues
use a Bayes network to improve the fluency in a joint
assembly task. The Bayes network learns to infer the current
state of the interaction, as well as task constraints and the
anticipated timing of human actions. Tanaka et al. [9] use
a Markov model to predict the positions of a worker in an
assembly line. Wang et al. [10] propose the Intention-Driven
Dynamics Model (IDDM) as a probabilistic graphical model

with observations, latent states and intentions where the
transitions between latent states and the mapping from latent
states to observations are modeled as Gaussian Processes.
Koppula et al. [11] use a conditional random field with
sub-activities, human poses, object affordances and object
locations over time. Inference on the graphical model, allows
a robot to anticipate human activity and choose a corre-
sponding, preprogrammed robot response. Lee et al. [12]
learn a hierarchical HMM which triggers action primitives
in response to observed behaviors of a human partner.

While very successful for classifying actions, graphical
models, however, may not be the best option when it comes
to generating motions. In [13], for example, the use of a
HMM with discrete states, although very successful in action
classification, introduces artifacts into the motion generation
part that hinders motion generalization. Therefore, a clear
problem in physical human-robot interaction is that while
graphical models may be suitable in the action recognition
domain, motion generation at the continuous level must also
be taken into account. Llorens et al. [14] present hybrid
design for a robot to be used on the shoulder. In their work,
Petri Nets accounts for discrete control transitions while at
the motion level, Partial Least Squares Regression has been
used to find the best action of the robot at future time steps.

Perhaps the principal distinction of our method is the use
of Interaction Primitives (IPs), introduced by Ben Amor et
al. [1] and initially based on dynamical movement prim-
itives [15] and later extended to Probabilistic Movement
Primitives [16] with action recognition in the work of Maeda
et al. [2]. As shown in [2], Interaction Primitives can be
used to not only recognize the action of an agent, but also
to coordinate the actions of a collaborator at the movement
level; thus overcoming in a single framework both layers of
discrete action recognition and continuous movement con-
trol. Differently from [2], where different interaction patterns
must be hand-labeled, our contribution is the unsupervised
learning of a Mixture of Interaction Primitives.

III. MIXTURE OF INTERACTION PRIMITIVES

In this section, we will briefly discuss the Interaction
Primitive framework based on Probabilistic Movement Prim-
itives [2], [16], followed by the presentation of the proposed
method, based on Gaussian Mixture Models.

A. Probabilistic Movement Primitives

A Probabilistic Movement Primitive (ProMP) [16] is a
representation of movement based on a distribution over
trajectories. The probabilistic formulation of a movement
primitive allows operations from probability theory to seam-
lessly combine primitives, specify via points, and correlate
joints via conditioning. Given a number of demonstrations,
ProMPs are designed to capture the variance of the positions
q and velocities q̇ as well as the covariance between different
joints.

For simplicity, let us first consider only the positions q
for one degree of freedom (DOF). The position qt at time



step t can be approximated by a linear combination of basis
functions,

qt = ψ
T
t w + ε, (1)

where ε is Gaussian noise. The vector ψt contains the N
basis functions ψi, i ∈ {1, 2, 3, ..., N}, evaluated at time
step t where we will use the standard normalized Gaussian
basis functions.

The weight vector w is a compact representation of a
trajectory1. Having recorded a number of trajectories of q,
we can infer a probability distribution over the weights w.
Typically, a single Gaussian distibution is used to represent
p(w). While a single w represents a single trajectory we
can obtain a distribution p(q1:T ) over trajectories q1:T by
integrating w out,

p(q1:T ) =

∫
p(q1:T |w)p(w)dw. (2)

If p(w) is a Gaussian, p(q1:T ) is also Gaussian. The distri-
bution p(q1:T ) is called a Probabilistic Movement Primitive
(ProMP).

B. Interaction ProMP

An Interaction ProMP builds upon the ProMP formula-
tion, with the fundamental difference that we will use a
distribution over the trajectories of all agents involved in
the interaction. Hence, q is multi-dimensional and contains
the positions in joint angles or Cartesian coordinates of all
agents. In this paper, we are interested in the interaction
between two agents, here defined as the observed agent
(human) and the controlled agent (robot). Thus, the vector q
is now given as q = [qo, qc]T , where (·)o and (·)c refer to
the observed and controlled agent, respectively.

Let us suppose we have observed a sequence of positions
qot at m specific time steps t, m ≤ T . We will denote this
sequence by D. Given those observations, we want to infer
the most likely remaining trajectory of both the human and
the robot.

Defining w̄ = [wT
o , w

T
c ]

T as an augmented vector that
contains the weights of the human and of the robot for
one demonstration, we write the conditional probability over
trajectories q1:T given the observations D of the human as

p(q1:T |D) =

∫
p(q1:T |w̄)p(w̄|D)dw̄. (3)

We compute a normal distribution of n demonstrations
by stacking several weight vectors [w̄1, ..., w̄n]

T , one for
each demonstration, such that w̄ ∼ N (µw,Σw). A posterior
distribution can be obtained after observing D with

µnew
w = µw +K(D −HT

t µw)

Σnew
w = Σw −K(HT

t Σw)
(4)

1In order to cope with the different speeds of execution during demon-
stration, the trajectories must be time-aligned before parameterization. The
interested reader is referred to [2] for details.

where K = ΣwH
T
t (ΣD + HT

t ΣwHt)
−1, ΣD is the

observation noise, and

Ht =




(ψo
t )(1,1) 0 0 0

0 (ψo
t )(P,P ) 0 0

0 0 0c
(1,1) 0

0 0 0 0c
(Q,Q)




(5)

is the observation matrix where the unobserved states of the
robot are filled with zero bases. Here, the human and the
robot are assumed to have P and Q DOFs, respectively.

Now, by combining (1), (3) and (4), we can compute the
probability distribution over the trajectories q1:T given the
observation D. For a detailed implementation the interested
reader is referred to [2].

C. Mixture of Interaction ProMPs

The goal of our method is to learn several interaction
patterns given the weight vectors that parameterize our unla-
beled training trajectories. For this purpose, we learn a GMM
in the weight space, using the Expectation-Maximization
algorithm (EM) [17].

Assume a training set with n vectors w̄ representing the
concatenated vectors of human-robot weights as defined in
section III-B. In order to implement EM for a GMM with a
number K of Gaussian mixture components, we need to im-
plement the Expectation step and the Maximization step and
iterate over those steps until convergence of the probability
distribution over the weights, p(w̄|α1:K ,µ1:K ,Σ1:K), where
α1:K = {α1, α2, · · · , αK}, µ1:K = {µ1,µ2, · · · ,µK} and
Σ1:K = {Σ1,Σ2, · · · ,ΣK}. Here, αk = p(k), µk and
Σk are the prior probability, the mean and the covariance
matrix of mixture component k respectively. We initialize the
parameters α1:K , µ1:K and Σ1:K using k-means clustering
before starting the Expectation-Maximization loop. The num-
ber K of Gaussian mixture components is found by leave-
one-out cross-validation.

The mixture model can be formalized as

p(w̄) =
K∑

k=1

p(k)p(w̄|k) =
K∑

k=1

αkN (w̄|µk,Σk). (6)

Expectation step: Compute the responsibilities rik, where
rik is the probability of cluster k given weight vector w̄i.

rik = p(k|w̄i) =
N (w̄i|µk,Σk)αk∑K
l=1 αlN (w̄i|µl,Σl)

(7)

Maximization step: Update the parameters αk, µk and
Σk of each cluster k, using

nk =
n∑

i=1

rik, αk =
nk
n
, (8)

µk =

∑n
i=1 rikw̄i

nk
, (9)

Σk =
1

nk

(
n∑

i=1

rik(w̄i − µk)(w̄i − µk)
T

)
. (10)



Finally, we want to use our model to infer the trajectories
of the controlled agent, given observations from the observed
agents. We need to find the posterior probability distribution
over trajectories q1:T given the observations D, as in Section
III-B.

In order to compute this posterior using our GMM prior,
first we find the most probable cluster k∗ given the obser-
vation D, using the Bayes’ theorem. The posterior over the
clusters k given the observation D is given by

p(k|D) ∝ p(D|k)p(k), (11)

where
p(D|k) =

∫
p(D|w̄)p(w̄|k)dw̄

and
p(w̄|k) = p(w̄|µk,Σk).

Thus the most probable cluster k∗ given the observation
D is

k∗ = argmax
k

p(k|D). (12)

The output of our algorithm is the posterior probability
distribution over trajectories q1:T , using cluster k∗ to model
our prior in the weight space,

p(q1:T |k∗) =
∫
p(q1:T |w̄)p(w̄|k∗)dw̄, (13)

where
p(w̄|k∗) = p(w̄|µk∗ ,Σk∗).

Algorithms 1 and 2 provide a compact description of the
methods we propose for training and inference respectively.

The mixture model, given observation D, can be written
as

p(w̄|D) =
K∑

k=1

p(k|D)p(w̄|k,D), (14)

where p(w̄|k,D) is the conditioned mixture component k.
In the case of mixture models, we have a combination of
linear models which is gated by p(k|D) and hence we can
model non-linear correlations.

IV. EXPERIMENTS

This section presents experimental results in two different
scenarios using a 7-DOF KUKA lightweight arm with a 5-
finger hand2.

The goal of the first scenario is to expose the issue of
the original Interaction Primitives [1], [2] when dealing with
trajectories that have a clear multi-modal distribution. In the
second scenario we propose a real application of our method
where the robot assistant acts as a third hand of a worker
assembling a toolbox (please, refer to the accompanying
video3).

2Regarding the control of the robot, the design of a stochastic controller
capable of reproducing the distribution of trajectories is also part of ProMPs
and the interested reader is referred to [16] for details. Here we use a
compliant, human-safe standard inverse-dynamics based feedback controller.

3Also available from http://youtu.be/9XwqW_V0bDw

Algorithm 1 Training
1) Parameterize demonstrated trajectories:
Find vector of weights w̄ for each trajectory, such that
qt ≈ ψT

t w̄.
2) Find GMM in parameter space, using EM:
Initialize GMM parameters α1:K , µ1:K and Σ1:K with
k-means clustering.
repeat
E step

rik = p(k|w̄i) =
N (w̄i|µk,Σk)αk∑K
l=1 αlN (w̄i|µl,Σl)

M step

nk =
n∑

i=1

rik, αk =
nk
n

µk =

∑n
i=1 rikw̄i

nk

Σk =
1

nk

(
n∑

i=1

rik(w̄i − µk)(w̄i − µk)
T

)

until p(w̄|α1:K ,µ1:K ,Σ1:K) converges

Algorithm 2 Inference
1) Find most probable cluster given observation:

p(k|D) ∝ p(D|k)p(k)
k∗ = argmax

k
p(k|D)

2) Condition on observation, using cluster k∗ as prior:

p(q1:T |k∗) =
∫
p(q1:T |w̄)p(w̄|k∗)dw̄

A. Non-Linear Correlations between the Human and the
Robot on a Single Task

To expose the capability of our method of dealing with
multi-modal distributions, we propose a toy problem where
a human specifies a position on a table and the robot must
point at the same position. The robot is not provided any
form of exteroceptive sensors; the only way it is capable to
generate the appropriate pointing trajectory is by correlating
its movement with the trajectories of the human. As shown
in Fig. 2, however, we placed a pole in front of the robot
such that the robot can only achieve the position specified by
the human by moving either to the right or to the left of the
pole. This scenario forces the robot to assume quite different
configurations, depending on which side of the pole its arm
is moving around.

During demonstrations the robot was moved by kinesthetic
teaching to point at the same positions indicated by the
human (tracked by motion capture) without touching the



(a) (b)

Fig. 2. Experimental setup of a toy problem used to illustrate the properties
of the Mixture of Interaction Primitives. The robot is driven by kinesthetic
teaching to point at the positions specified by the human (pointed with
the wand). Certain pointed positions can be achieved by either moving the
arm to the right (a) or to left (b) of the pole placed on the table. Other
positions, such as the one indicated by the arrow, can only be achieved by
one interaction pattern.

ground truth
prediction

(a) (b)

Fig. 3. Results of the predictions of the robot trajectories in Cartesian
space. Both subplots show the same ground truth trajectories generated
by driving the robot in kinesthetic teaching. The predictions are generated
by leave-one-out cross-validation on the whole data set comprised of 28
demonstrations. (a) Prediction using the conventional Interaction ProMPs
with a single Gaussian. (b) Prediction using the proposed method with a
mixture of Gaussians.

pole. For certain positions, as the one indicated by the
arrow in Fig. 2(a), only one demonstration was possible. For
other positions, both right and left demonstrations could be
provided as shown in Fig. 2(a) and 2(b). The demonstrations,
totaling 28 pairs of human-robot trajectories, resulted in a
multi-modal distribution of right and left trajectory patterns
moving around the pole.

In this scenario, modeling the whole distribution over
the parameters of the trajectories with one single Gaussian
(as in the original Interaction Primitive formulation) is not
capable of generalizing the movements of the robot to
other positions in a way that resembles the training, as the
original framework is limited by assuming a single pattern.
This limitation is clearly shown in Fig. 3(a) where several
trajectories generated by a single cluster GMM (as in the
original Interaction Primitive) cross over the middle of the
demonstrated trajectories, which, in fact, represents the mean
of the single Gaussian distribution.

Fig. 3(b) shows the predictions using the proposed method
with a mixture of Gaussians. By modeling the distribution
over the parameters of the trajectories using GMMs as
described in section III-C, a much better performance could
be achieved. The GMM assumption that the parameters are
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Fig. 4. Root Mean Square Error with models using up to 17 Gaussians.

only locally linear correlated seemed to represent the data
much more accurately. As shown in Fig. 4, this improvement
is quantified in terms of the Root Mean Square (RMS) Error
of the prediction of the trajectory in relation to the ground
truth using leave-one-out cross-validation over the whole data
set. The same figure also shows that there is a sharp decrease
in the RMS error up to six clusters, especially when taking
into account the variance among the 28 tests. Beyond seven
clusters it is observed that the prediction error fluctuates
around 4 cm. The experiments previously shown in Fig. 3(b)
were done with eight clusters.

B. Assembling a Box with a Robot Assistant

In this experiment, we recorded a number of demon-
strations of different interaction patterns between a human
and the robot cooperating to assemble a box. We used the
same robot described in the previous experiment. During
demonstrations the human wore a bracelet with markers
whose trajectories in Cartesian coordinates were recorded
by motion capture. Similar to the first scenario, the robot
was moved in gravity compensation mode by another human
during the training phase and the trajectories of the robot in
joint space were recorded.

There are three interaction patterns. Each interaction pat-
tern was demonstrated several times to reveal the variance of
the movements. In one of them, the human extends his/her
hand to receive a plate. The robot fetches a plate from a
stand and gives it to the human. In a second interaction the
human fetches the screwdriver and the robot grasps and gives
a screw to the human as a pre-emptive collaborator would
do. The third type of interaction consists of giving/receiving
a screwdriver. Each interaction of plate handover, screw
handover and holding the screwdriver was demonstrated 15,
20, and 13 times, respectively. The pairs of trajectories of
each interaction are shown in Fig. 54.

As described in section III, all training data is fed to the
algorithm resulting in 48 human-robot pairs of unlabeled
demonstrations as shown in the upper row of Fig. 7. The
presented method parameterizes the trajectories and performs

4Due to the experimental setup, for the sub-tasks of plate and screw
handover we added an initial hand-coded trajectory that runs before the
kinesthetic teaching effectively starts. These trajectories are used to make
the robot grasp and remove the plate or screw from their respective stands.
This is reflected in the figure as the deterministic part at the beginning of
the trajectory of the robot. This initial trajectory, however, has no effect on
the proposed method itself.



robot

human

(a) Handing over a plate (b) Handing over a screw (c) Holding the screw driver

robot
human

robot
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Fig. 5. Demonstrations of the three different interactions and their respective trajectories. For the case of plate and screw handover the beginning of the
robot trajectory shows a deterministic part that accounts for the fact that the robot has to remove objects from their respective stands, which is not part of
the kinesthetic teaching, and which does not affect the algorithm in any sense.
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Fig. 6. Root-mean-square error of the joint trajectories (averaged over all
tests) using a leave-one-out cross-validation as a function of the number of
clusters (mixture components). The plateau after three clusters seem to be
consistent with the training data since it consists of three distinct interaction
patterns.

clustering in the parameter space in order to encode the
mixture of primitives. In the figure, the human is represented
by the (x, y, z) Cartesian coordinates while the robot is
represented by the seven joints of the arm. Due to lack
of space, the figure only shows up to the first four joints
(starting from the base).

Figure 6 shows the RMS prediction error averaged over
all tests as the number of mixture components increase. The
prediction is obtained by leave-one-out cross-validation over
the whole set of 48 demonstrations. As one would expect,
since the unlabeled data contains three distinct interaction
patterns, the improvement is clearly visible up to three
mixture components. No significant improvement is obtained
afterwards, thus the GMM with three mixture components
was selected for experiments.

In the inference/execution phase, the algorithm first com-
putes the most probable Interaction Primitive mixture com-

ponent based on the observation of the position of the wrist
of the human with (12). Using the same observation, we
then condition the most probable Interaction Primitive, which
allows computing a posterior distribution over trajectories for
all seven joints of the robot arm as in (13). Finally, the mean
of each joint posterior distribution is fed to a standard inverse
dynamics feedback tracking controller.

The lower row of Fig. 7 depicts the posterior distribution
for one test example where a three-cluster GMM was trained
with the other 47 trajectories. The GMM prior is shown in
gray where the patches of different clusters overlap. The
observation consists only of the final position of the wrist,
shown as asterisks in the figure. The black lines are the
ground truth trajectories of each degree of freedom. The
posterior, in red, is represented by its mean and by the region
inside ± two standard deviations. The mean of this posterior
is the most probable trajectory for each degree of freedom
given the observed end position of the wrist of the human.

We assembled the toolbox, consisting of seven parts and
12 screws, two times. The experiments demanded more than
40 executions of the Interaction Primitives. The selection of
the right mixture component was 100% correct. (Please refer
to the accompanying video).

We evaluated the precision of the interactions by com-
puting the final position of the hand of the robot with
forward kinematics. The forward kinematics was fed with
the conditioned robot trajectories predicted by leave-one-
out cross validation. The interactions of plate handover
and holding screwdriver resulted in mean error with two
standard deviations (mean error ±2σ) of 3.2 ± 2.6 cm and
2.1±2.3 cm, respectively. We did not evaluate the precision
of the handover of the screw, as the position at which



Fig. 7. Upper row: Mixture components represented by their mean trajectories and the region inside two standard deviations (µ± 2σ). Obs.: The plots
show only the part of the trajectories generated by kinesthetic teaching. Lower row: Posterior probability distribution given observation depicted by the
blue asterisks.

Fig. 8. Handover of a plate. Conditioning on three different positions of
the wrist (using motion capture) of a human coworker.

the robot hands the screw is not correlated to the human
(please refer to the accompanying video). As an example,
Fig. 8 shows the robot executing the plate handover at three
different positions based on the location of the wrist marker.
Note that the postures of the arm are very different, although
they are all captured by the same Interaction Primitive.

V. CONCLUSIONS

In this paper we presented a Mixture of Interaction Prim-
itives where Gaussian Mixture Models are used to model
multiple interaction patterns from unlabeled data. The multi-
modal prior probability distribution is obtained over param-
eterized demonstration trajectories of two agents working in
collaboration. During the execution, the algorithm selects the
mixture component with the highest probability given the
observation of the human, which is then conditioned to infer

the appropriate robot reaction. The proposed method is able
to learn and recognize multiple human-robot collaboration
tasks from an arbitrary number of demonstrations consisting
of unlabeled interaction patterns, what is not possible with
the current Interaction Primitive framework.

In the context of human-robot interaction we are currently
addressing the estimation of the phase of the execution of
the primitive for switching tasks in real time. Also, we
are addressing the use of the stochastic feedback controller
provided by the original ProMP work in [16]. Although this
work focused on human-robot trajectories, we are currently
considering extensions of our work where the human is
replaced by other variables of interest. For example, the
same framework can be used to correlate joint and end-
effector trajectories of the same robot to learn nonlinear
forward/inverse kinematic models. Similarly the Mixture of
Interaction Primitives can be used to correlate the interaction
between motor commands and joint trajectories to learn
inverse dynamic models.
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Generalizing Pouring Actions Between Objects using Warped Parameters

Sascha Brandl, Oliver Kroemer, and Jan Peters

Abstract— One of the key challenges for learning manipula-
tion skills is generalizing between different objects. The robot
should adapt both its actions and the task constraints to the
geometry of the object being manipulated. In this paper, we
propose computing geometric parameters of novel objects by
warping known objects to match their shape. We refer to the
parameters computed in this manner as warped parameters,
as they are defined as functions of the warped object’s point
cloud. The warped parameters form the basis of the features
for the motor skill learning process, and they are used to
generalize between different objects. The proposed method was
successfully evaluated on a pouring task both in simulation and
on a real robot.

I. INTRODUCTION

In order to perform tasks in everyday environments, robots
will need to be capable of manipulating a wide range of
different objects. As objects of the same type may have
different shapes and sizes, the robot will have to adapt
its actions to the geometry of the specific object that it is
manipulating. The shape of objects is particularly important
when manipulating liquids, e.g., pouring a glass of water,
as liquids conform to the shape of their container. The robot
must therefore take into consideration a container’s geometry
when using it in a pouring task.

Although containers come in a wide variety of shapes
and sizes, the important differences can usually be defined
by a few geometric parameters [1], [2]. For example, the
volume of a container indicates how much fluid it can hold,
regardless of whether it has a spherical, or cylindrical shape.
A robot can generalize pouring actions between different
containers by using these geometric parameters. However,
the robot will not be provided with the geometric parameters
for most of the novel objects that it encounters. While a
human may annotate the geometric information for a couple
of objects, the robot will usually need to compute these
parameters on its own.

In this paper, we investigate using warped parameters to
generalize pouring skills between different objects. A warped
parameter is defined as a function on the points of a known
object’s point cloud. For example, a warped parameter may
compute the volume of a set of points’ convex hull. When
the robot encounters a novel object, it warps the point cloud
of the known object to the new object’s shape. As a result of
the warping, the value of the warped parameter changes to
match the geometry of the new object. Once the geometric
parameters have been computed, the robot can use them
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Jan Peters is also a member of the MPI for Intelligent Systems, Germany.
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Fig. 1. The robot performs a pouring task with two previously unknown
objects. The pouring action was learned from human demonstrations using
a taller cup and a wider container to pour into.

to generalize actions and task constraints between different
objects.

In Section II, we explain the process of computing the
warped parameters. In Section III, we describe how the robot
can learn pouring actions and task constraints that generalize
between objects using the warped parameters. The proposed
method was successfully evaluated both in simulation and
on the robot shown in Fig. 1. The results of the experiments
are detailed in Section IV.

Related Work

Several previous works have used warping to generalize
manipulations between objects. Hillenbrand et al. [3], [4]
used warping to map contact points onto novel objects, in
order to transfer grasps between objects. A similar approach
was used by Rainer et. al [5], [6] for transferring coordinate
frames of task constraints between objects. However, the
size and shape of the constraint regions were not adapted
to the new object’s geometry. Rather than warping only the
points on the object, Schulman et al. [7] computed warping
functions for the entire scene. The warping was then applied
to the demonstrated trajectory of the source scene in order to
obtain a trajectory for the current scene. These approaches
focus on mapping specific points from the source scene to
the target scene, and are therefore especially well-suited for
contact-based manipulations. Warped parameters can be used



to model more general features of the objects, such as areas
and volumes.

Several methods have also been proposed for learning
to perform pouring tasks. Pastor et al. [8] learned dy-
namic motor primitives (DMPs) for pouring from human
demonstrations, and used these to generalize to different cup
placements. Similarly, Muehlig et al. [9] encoded demon-
strated bimanual pouring trajectories using Gaussian mixture
models. Rozo et al. [10] proposed learning a controller for
pouring tasks based on the observed forces. The work on
learning pouring from demonstration has mainly focused on
learning with the same set of objects. In comparison, we
propose learning in a feature space defined by the warped
parameters, in order to automatically generalize between
objects.

Some work has also been done on generalizing pour-
ing actions between different objects using reinforcement
learning. Kroemer et al. [11] learned a pouring DMP from
human demonstrations, and then used a trial-and-error ap-
proach to learn the location of a novel container’s opening.
The opening was detected using a shape-similarity kernel.
Tamosiunaite et al. [12] used reinforcement learning to learn
the shape of the pouring DMP, as well as the goal point.
Reinforcement learning was also used to adapt the learned
motion to novel objects, without explicitly considering the
differences in geometry.

II. GENERALIZATION WITH WARPED PARAMETERS

In this section, we describe how a robot can compute
geometric parameters of an object by warping a known
object to match its shape. The object models and the warping
process used in this paper are described in Sections II-A to
II-C. The computation of the warped parameters for pouring
tasks is described in Section II-D.

A. Geometric Object Models

In order to generalize manipulations to a novel object,
the robot first computes correspondences between a known
source object Os and the unknown target object Ot. An
object Oi is modeled as a set of ci points located at positions
pij 2 R3 with corresponding normals nij 2 R3, where
j 2 {1, ..., ci}.

Objects often consist of multiple parts, and a manipulation
may only depend on the shape of a part of an object. Hence,
geometric parameters often describe the shape of a part rather
than the whole object. We therefore also assign each point
pij a vector lij of length ⇢ with binary labels, which indicate
which of the ⇢ object parts the point corresponds to. The
labels of the target object Ot are initially unknown, but can
be computed using the warping process.

An example of an annotated cup can be seen in Fig. 2. The
first part is the CONTAINER, which holds the liquids. The
second part is the RIM around the opening. We also label
the HANDLE as a dummy part. As not all containers have
handles, it is not used to define any warped parameters for
the pouring task, and is only included to help align objects
during the warping process.
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Fig. 2. The top row shows the point cloud of the source object, annotated
by a human user. The middle row shows the point clouds of two target
objects. The points were labelled using a classifier based on local features.
This intial estimate is only used to compute a coarse alignment with the
source object. The point clouds were pre-aligned for this figure to show more
clearly how the labels change during the warping process. The bottom row
shows the final results of the label mapping approach.

B. Warping

Given a source object and a target object, the robot can
compute correspondences between the two objects. These
correspondences are determined by warping the shape of
the source object onto that of the target object. There are
various methods for computing 3D warpings between object
[13], [14], and the proposed approach does not depend on
a specific warping algorithm. We therefore employ a basic
warping algorithm for finding correspondences between the
containers. The warping process consists of two stages: 1)
object alignment, and 2) point mapping

In the first stage, the source object is coarsely aligned
with the target object, such that their corresponding object
parts are close together. This alignment is accomplished
by computing a coordinate system based on the objects’
parts. The origin of the coordinate frame is the mean of the
container points. The first axis is given by the direction to the
mean of the rim points, and the second axis is the orthogonal
direction to the mean of the handle points. The third axis is
computed by the cross product of the first two axes. As the
part labels of the target object lt are unknown, an initial
estimate of the labels is computed using logistic regression.
One classifier is trained for each of the three object parts.
Each point pti is classified based on the local distribution



of points in its neighborhood. The features used to describe
the local distribution of points include the eigenvalues of the
covariance matrix, and the distance from the point pti to the
mean of the neighborhood points. The classifiers were trained
on the labelled points of the source object. An example of
the initial labeling can be seen in Fig. 2. The coordinate
frame of the object is estimated using this initial labeling of
points. Once the two objects are aligned, the source object
was scaled in each direction such that the variances of its
container part matched those of the target object. We denote
the aligned source objects and target objects by Õs and Õt

respectively.
In the second stage of the warping algorithm, the points

from the source object Õs are mapped onto the target
object Õt. This step is similar to the approach proposed by
Hillenbrand [15]. Each point of the aligned source object is
mapped to the mean of the k nearest neighbors in the aligned
target object. In our experiments, we set k = 1. Hence, the
warped source point pwi, with corresponding normal nwi

and labels lwi, is given by

pwi = ptj , nwi = ntj , and lwi = lsi,

s.t. j = arg min
��p̃si � p̃tj

�� and ñT
siñtj > 0.

Thus, each source point is mapped to the closest target point
with a normal pointing in the same direction. The warped
object and its point cloud are denoted by Ow.

C. Point Mapping vs. Label Mapping

The warping process defines a new position and normal
for each of the cs point of the source object Os. The location
of these new points can be used to define warped parameters,
as detailed in the next section. We refer to this approach as
point mapping, as the points of the source object are mapped
onto the target object.

However, if the source object has considerably fewer
points than the target object, then some details of the target
object may not be captured by the warped object. This issue
can be addressed by warping the target object to match the
source object. The alignment and scaling of the objects is
performed as before. However, the points of the target object
are mapped onto the source object. The label of each of the
target points is then determined using a k-nearest neighbors
classifier. In our experiments, we again used k = 1, such
that

pwi = pti , nwi = nti , and lwi = lsj ,

s.t. j = arg min
��p̃si � p̃tj

�� and ñT
siñtj > 0.

We refer to this approach as label mapping, as the labels of
the source object are mapped onto the target object. When
using multiple neighbors k > 1, the point is assigned to a
part if the majority of its k neighbors belong to that part.

The benefit of using the label mapping approach is that
it guarantees that all of the points of the target object are
used for computing the warped parameters. However, when
using label mapping, points can only be referred to by their
label and not as individual points. In comparison, when using

point mapping, one can refer to individual points, e.g., pw72,
which correspond to specific points on the source object.
The bottom row of Fig. 2 shows an example of using label
mapping.

D. Warped Parameters

Having computed the correspondences between the known
source object and the novel target object, the robot can
compute the warped parameters for the target object. A
warped parameter is defined as a function on the warped
point cloud f(Ow). Warped parameters can be used to define
geometric reference parameters, such as lengths, areas, and
volumes, of an object’s part. Warped parameters can also be
used to define task frames.

For pouring, the task frame is defined by the lip point of
the first container, and the center of the second container’s
opening. The center of the opening is defined as the mean
of the rim points. The lip point is defined as the rim point
that is the closest to the other container. A pouring motion
is defined by the trajectory of the held container’s lip point
relative to the center of the second container’s opening. The
trajectory includes the relative 3D position and the tilt of
the first container about its lip point. The other two rotation
dimensions are usually assumed to be zero. If there is no
second container, the lowest rim point is defined as the lip
point.

The geometric reference parameters for pouring include
the radius of the opening, the volume of the container, the
height of the container, and a reference angle for tilting the
cup. The radius of the opening is given by the mean distance
between the rim points and the center of the opening. The
volume of the container is given by the volume of the
container points’ convex hull. The height of the container
is given by the range of all of the points along the first
dimension. A tilt reference angle is defined by the amount
that the cup must be rotated about the lip point, such
that half of the container’s volume is above the lip point.
As the warping process reshapes the points of the source
object, the estimates of the reference parameters will change
accordingly. In this manner, the warped parameter function
defines how the parameter’s value is grounded in the object’s
geometry.

As the above examples show, warped parameters can be
used to define various object properties, and can even build
on each other. These parameters can then be automatically
computed for new objects using the warping process.

III. LEARNING WITH WARPED PARAMETERS

In this section, we describe how a robot can learn pouring
actions and task constraints that generalize to new objects
using the warped parameters.

A. Learning Task Constraints

When performing a pouring task, the liquid should remain
in the cup while it is being transported, and it should only be
poured out if it will be transferred to another container. These
task constraints correspond to phase transitions [16] and can
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Fig. 3. The figure shows the ROC curves for the learned classifiers for both the pouring experiment and the filling experiment. The dashed lines indicate
the performance when the classifier is applied to data from the same object that was used for training the classifier. The solid lines indicate the performance
when the classifiers are applied to novel objects, for which they had no training data. A classifier is generally considered to perform better if it gets closer
to the top left corner. Classifiers were trained using features based on the warped parameters computed using both the label mappings and point mappings
approaches. The standard features approach did not use the reference values given by the warped parameters.

be fulfilled by learning to predict when the held container
will start to pour and when the poured liquid will fill the
second container. The conditions for pouring and filling
are learned by training a classifier for each condition. The
classification is performed using logistic regression, which is
a form of probabilistic classifier. The probability of pouring
yp = 1 from the first container is given by

p(yp = 1|xu) = (1 + exp(�!T'(x)))�1

where '(x) is a vector of features describing the state of
the container x, and the weight vector ! is computed from
training data using iterative reweighted least squares. The
features '(x) are of the form ↵/↵r, where ↵ is a variable
and ↵r is a reference value defined by a warped parameter.
For predicting pouring, the features include the tilt angle
of the cup divided by the tilt reference angle, and the fluid
volume divided by the volume of the container. The resulting
features are dimensionless quantities that automatically adapt
to the geometry of the container.

For predicting when the poured liquid increases the fluid
volume in the second container yf = 1, we expand the set of
features to include both objects and their relative positions.
The vertical distance between the containers is divided by
the height of the first container. The horizontal distances
between the containers are divided by the radius of the
second container. These features allow the robot to learn
when the poured liquid will miss the second container, as
well as predict when the container will overflow.

B. Learning Motor Primitives in Warped Spaces

The proposed warping approach can also be used to learn
motor primitives that adapt to the shape of the objects
being manipulated. Motor primitives are often used to define
desired trajectories that can be easily adapted to different
situations. In order to model distributions of trajectories, we

use the probabilistic motor primitives (ProMPs) [17]. These
motor primitives encode correlations between the different
dimensions of the trajectory, and can be conditioned on the
initial state of the objects.

The learned motor primitive defines a desired trajectory
in the task space described in Section II-D. Similar to the
features used to generalize task constraints, the trajectories
are defined as dimensionless quantities. The vertical distance
between the objects is divided by the height of the held
container, and the tilt angle is divided by the reference tilt
angle. The horizontal distances are divided by the radius of
the second container.

The motor primitives are learned by scaling the demon-
strated trajectories according to the warped parameters of
the objects used in the demonstrations. In order to execute
a pouring action, the robot samples a trajectory from the
ProMP, and rescales it according to the current objects’
warped parameters.

IV. EXPERIMENTS

The proposed method was implemented and evaluated
both in simulation and on a real robot. The robot, shown
in Fig. 1, consists of two Kuka light weight robot arms,
each equipped with a five-fingered DLR hand [18]. The robot
observes the table-top scene from above using a Microsoft
Kinect camera. Ten different cups and bowls were scanned
from multiple views. 3D mesh models were generated using
an implicit surface representation and marching cubes [19].

A. Simulated Pouring and Filling Experiments

In the first experiment, we evaluated how well task
constraints generalize between objects when using warped
parameters. The objects were simulated using the Bullet
physics engine [20] together with Fluids 2 for incorporating
smoothed particle hydrodynamics [21].
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Fig. 4. The plots show the distribution over trajectories learned by the
ProMPs in the generalized space. The blue line indicates the mean trajectory,
and the shaded regions correspond to +/- two standard deviations. The black
horizontal lines indicate when the value is one. The tilt is one when the cup
is tilted such that half of the container’s volume is above the lip points.
The X and Y values are one when the lip point is one radius away from
the second container’s center. The Z value is one when the vertical distance
between the cup and the container is the same as the height of the cup. The
red region indicates when the X-Y position of the cup’s lip point is within
one radius of the container’s center.

Each object was filled 1000 times with a random amount
of liquid, and tilted by a random angle around the lip point.
If the volume of the fluid in the cup decreased, the trial was
labelled as pouring yp = 1. Otherwise it was labelled as not
pouring yp = 0. The classifiers were trained on sets of 50
samples. The classifiers were tested on two test sets: the 950
other samples from the same object, and the 9000 samples
from the other objects. The latter dataset is used to test how
well the classifiers generalize between different objects.

A similar procedure was used for the filling experiment.
However, the cup used for pouring always contained 10
particles at the start of the trial, and the second container
was filled by a random amount. The cup was always tilted by
120�. The relative positions of the cups were varied between
trials. A trial was considered as successful yf = 1 iff none
of the particles ended up outside of the second container.

For each training set, three classifiers were computed.
The first two classifiers were trained using the warped
parameters from the point mapping and the label mapping
approaches respectively. The features used for training the
classifiers were described in Section III-A. As a benchmark,
we also evaluated the classifiers without using the warped
parameters. In this case, all of the reference values ↵r were
set to one, regardless of the objects being manipulated, and
the relative positions of the objects were defined by their
centers.

The results of the pouring and filling experiments can be
seen in Fig. 3. As one would expect, the classifiers generally
achieved similar levels of performance when evaluated on the

training object. The standard features performed considerably
worse in the filling experiment, as different cups were used
for pouring even though the second container remained the
same. The ROC curves show that the performance of all
three classifiers decreases when generalizing to novel objects.
However, the drop in performance is considerably less when
using the warped parameters. The features based on the
warped parameters are therefore better at separating the posi-
tive and negative examples across different objects. While the
two warping methods performed similarly well on the filling
experiment, the label mapping approach performed better in
the pouring experiment, detecting more than 50% of the true
positives with almost no false positives. The results show that
the warping parameters can be used to reliably generalize the
constraints of the pouring task between different containers.

B. Robot Pouring Experiment

In the second experiment, the robot used warped parame-
ters to generalize pouring actions between different objects.
The robot was provided with ten demonstrations of a pouring
task using kinaesthetic teaching. All of the demonstrations
were performed with the same two objects shown in the left
picture of Fig. 5. For safety reasons, the task was performed
with gel balls rather than an actual liquid. The cup was half
full at the start of each trial. Using the ten demonstrations, the
robot learned a ProMP for pouring, as described in Section
III-B. The learned distribution over trajectories is shown
in Fig. 4. The robot was then given the task of pouring
with different objects. The robot successfully learned to pour
from a shorter cup into a bigger bowl, a smaller cup, and
a square bowl, as shown in Fig. 5. Only a couple of gel
balls were spilled during the experiments. A video of the
robot performing the pouring task is also provided in the
supplementary material.

As the cups were half-full, pouring usually commenced
when the tilt value went above one. Fig. 4 shows that the
distribution over trajectories remains safely below this value
until the lip point is above the opening. When moving the
cup back, most of the liquid has been poured out, and hence
the cup can be tilted more. The pictures in Fig. 5 show that
the cup was often placed close to the rim of the second
container, which indicates that the robot was able to adapt
the learned trajectory to the geometry of the object being
manipulated.

C. Future Work

The autonomy of the robot can be increased by learning
warped parameters. The points could be labelled by using an
unsupervised approach to segmenting the objects into parts.
A set of generic geometric functions could then be applied to
each part in order to generate a library of warped parameters.
Feature selection methods could then be applied to select a
suitable set of warped parameters for the given task.

The focus in this paper was on learning pouring skills
from a single object. The generalization between objects
therefore relies on using the warped parameters to construct
dimensionless features for the robot. However, given data
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Pouring Task Larger Container Smaller Container Square Container
Fig. 5. The pictures show the key results of the real robot experiment. The robot was provided with multiple demonstrations of the pouring task using
kinaesthetic teaching, as shown on the left. Using the warped parameters approach, the robot successfully generalized the demonstrated actions to novel
objects with different shapes and sizes, as shown on the right.

from multiple objects, the robot can also learn how to gen-
eralize between objects. In this case, the warped parameters
could be treated as separate features that describe the object.
For example, ProMPs can be used to learn the correlations
between the trajectory parameters and the warped object
parameters. Object-specific trajectories can be obtained by
conditioning on the current object parameters. This approach
would even allow the robot to learn that only some segments
of the trajectory depend on the object parameters. However,
learning ProMPs in this manner would require additional
training trajectories with different objects. These trajectories
could be obtained from human demonstrations, or by adapt-
ing trajectories using reinforcement learning [12].

V. CONCLUSION

We proposed using warped parameters to generalize pour-
ing skills between different objects. Warped parameters are
functions defined on the point cloud of a known object. The
parameter can be computed for a novel object by warping
the known object’s point cloud to match the geometry of the
novel object.

The proposed method was successfully evaluated both in
simulation and on a real robot pouring task. The experiments
showed that the warped parameters can be used to generalize
task constraints and motor primitives between containers of
different shapes and sizes
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