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Executive summary 
 

This report details the design and implementation of the dynamic pricing decision support system 

(DSS) as part of the Integrated Support System for Efficient Water Usage and Resource Management 

(ISS-EWATUS) project. The software can be found at http://www.vu-bads.org.  

The adaptive pricing module is based on models for which the input is based on consumer behaviour 

data. The objective of this task is to generate predictions on water consumption in terms of changing 

the water tariffs (pricing schemes) and to compare that with baseline scenario. The adaptive pricing 

module is meant for strategic level decision makers to assess the impact of different pricing schemes. 

The DSS is able to assess: 

 possible drop of water consumption as a result of changing the water tariffs, 

 social affordability of predicted tariffs, 

 financial effect of proposed changes for water providers, 

 consistency and compatibility of proposed changes with EU law (users pays principle). 

The report describes how these goals are achieved through the design of the system in terms of its 

data models and its deployment model. Furthermore, the architectural, logical and physical overview 

provides details on the implementation. We provide a user manual for the software as well as 

descriptions on how to interpret the results. We conclude the document with a validation plan for 

the DSS. 
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1. Introduction 
 

This report details the design and implementation of the dynamic pricing decision support system 

(DSS) as part of the Integrated Support System for Efficient Water Usage and Resource Management 

(ISS-EWATUS) project. The software can be found at http://www.vu-bads.org. It is part of work 

package 6 (WP6) of the project. The goal of this work package is to develop and simulate adaptive 

water price systems. 

2. The scope of the system 
 

The adaptive pricing module is based on models for which the input is based on consumer behaviour 

data. The objective of this task is to generate predictions on water consumption in terms of changing 

the water tariffs (pricing schemes) and to compare that with baseline scenario. The adaptive pricing 

module is meant for strategic level decision makers to assess the impact of different pricing schemes. 

The main objectives are achieved through the following tasks. 

 

2.1. Main objectives and relations to the other modules of ISS-EWATUS 
 

Task 6.1 Analysis of different datasets to understand water consumption data (M1-M12) 

The understanding of residential water consumption data is key to building adaptive pricing policies. 

There are many datasets that need to be combined in order to identify the key factors in water 

demand, e.g., analysis of household and municipal data (prices, water usage), socio-demographic 

data (income, population, composition, household size), climatic data (rainfall, temperature). Based 

on data mining and descriptive statistics on datasets from Poland, Greece or other one can derive the 

average consumption per municipality based as a function of different factors, which in turn can be 

related to price elasticity. 

Task 6.2 Design of adaptive pricing models (M6-M18) 

The development of adaptive pricing models will use the output of Task 6.1 as an input. The models 

will incorporate both a resource constraint as well as a budget constraint, which may have 

consequences on the optimal pricing scheme. This is because when there is a severe water shortage, 

the resource constraint dominates the budget constraint, so the budget constraint may be irrelevant 

for the solution. Indeed, optimal prices may be set such that the more elastic demand ends up with a 

higher price. Incorporating a resource constraint depends on the water-balance equation, since the 

stock of water in a reservoir net of water saved for next period is to be released in the current 

period. In addition to the constraints, different models will be developed with alternative pricing 

structures (block tariffs, flat rates, and variable rates). The models that are developed will be 

stochastic in nature. 

 

Task 6.3 Development of simulation program (M10-M24) 

The adaptive pricing models result in high-dimensional models that are not analytically tractable. 

Therefore different means are needed for assessing the impact of alternative pricing mechanisms. In 



this task, a simulation model will be developed to assess the pricing mechanisms and to perform a 

sensitivity analysis. The results will be used to gain insights into which of the factors (among those 

identified in Task 6.1) have the greatest influence on water consumption. The simulation program 

also enables comparison of the economic efficiency of information usage in the pricing models both 

on a macro-economic as well as micro-economic level (e.g., demand policing). 

Task 6.4 Application of the DSS for policy making (M24-M36) 

This task is mainly concerned with applying the DSS based on the input data and the adaptive pricing 

models. This task will also generate the pricing schemes for different scenarios. The DSS aims to 

provide policy makers and governments, which supply water to households, an effective tool to 

assess different outcomes for the near future under alternative pricing schemes. 

 

2.2. Requirements addressed by the system 
 

The DSS should be able to assess: 

 possible drop of water consumption as a result of changing the water tariffs, 

 social affordability of predicted tariffs, 

 financial effect of proposed changes for water providers, 

 consistency and compatibility of proposed changes with EU law (users pays principle). 

 

3. Design of the system 
 

In this section we explain the design of the system in terms of three aspects of the DSS. We start with 

the data model that is underlying the DSS. This is the essential data on which the DSS is based. Then 

we proceed to explain the dynamic nature of the DSS. Finally, we describe how these elements lead 

to the deployment infrastructure of the DSS. 

3.1. Data model 
 

The data model of the DSS consists of three tables on which the output of the DSS is based on. These 

three tables are depicted in Figure 1. 

 

Figure 1: Data model of the DSS 



The table with household data contains water consumption data on a specific population in a specific 

period containing at the least four different quarters of the year. It has information on the 

household, identified by the consumer code, such as the household size (i.e., number of people in 

the household) and the total water consumption in m3 for the four quarters. 

The table with data on the pricing policy contains information on the pricing scheme that was applied 

to the households in the household data table. The pricing scheme consists of the flat rate and 

several brackets that describe which price was charged for the part of the water consumption that 

fell within the lower bound and the upper bound of the bracket. These parameters are typical for a 

progressive pricing scheme. When this data is combined with the data in the table household data, 

one can calculate the water bill of each household in each quarter.  

The table with data on the user behaviour contains information on price demand elasticity. This is 

split into two data fields, the elasticity for quarters 1 and 4 (the normal seasons) and the elasticity for 

quarters 2 and 3 (the tourist seasons). This distinction is of importance when calculating the effect of 

a different pricing scheme, since it might be that water consumption behaviour of tourists is different 

than of regular household in normal seasons. This data is used to calculate the water consumption of 

the households in the table household data for different pricing schemes. The discussion of the 

suggested value of the demand price elasticity index is presented in Appendix 2. 

Next to the three tables, the DSS maintains a table for session control. This is necessary to retain 

input values of clients over different web pages. The session control table stores an incremental ID, a 

session ID, data for the session, and the last date of the active session. This is standard session 

control as is commonly used in web applications. 

The data described in the data model are stored in an online database. These data can be changed 

and updated according to new insights and information. The dynamic pricing module reads in this 

data every time before a webpage is built. Hence, it assembles the final page that is shown to the 

user dynamically based on the latest data. Also, the input from the user, i.e., a different price 

elasticity or a different pricing scheme, is stored as a session to retain the input values of different 

pages. When first connecting to the module, the application checks is the client corresponds to a 

previously stored session. If this is the case, then the stored input values are used instead of the 

standard values in the database.  

 

 

 

 



3.2. Deployment model 
 

The deployment model of the DSS is given in the following picture, Figure 2. The setup of the 

dynamic pricing module is that a client connects to the dynamic pricing module through the internet 

over the TCP/IP protocol. The request is handled by an HTTP daemon (in our case, an Apache web 

server). The module page is then dynamically created after reading relevant data from a MySQL 

database. The functionality after creation of the first page is further done through PHP on the server 

side and Javascript on the client side. 

 

 

Figure 2: Deployment model of the DSS. 

4. Architecture of the system 
 

In this section we describe the architecture of the DSS. We first provide an overview of the 

submodules of the DSS and describe their functions. Then we provide a logical architecture overview 

for each of the modules. Finally, we end with a description of the physical architecture overview. 

 

4.1. Architecture overview 
 

The logic of the DSS is separated into four parts of the application logic. These parts are depicted in 

Figure 3. 

 

 

Figure 3: Architecture of the DSS. 

 

The application logic statistics calculates the water consumption and water bill per quarter for each 

of the households mentioned in the household database. A similar computation is done for the 

pricing scheme given by the user. These values and the differences therein is given in the statistics 

module.  



 

The application logic details breaks down the statistics of the application logic statistics into detailed 

information per household. This allows for assess the impact on individual households. The 

application logic influence is concerned with the implementability of pricing schemes. It creates 

statistics on how households are affected by new pricing schemes. Which are the households most 

affected by price increases and which are the ones most influenced in their water consumption. 

 

The application logic simulation generates a lot of pricing schemes and evaluates these schemes. It 

provides information on the possible performance of pricing. It shows the non-linear relation 

between revenues and water consumption as a function of the input variables. 

 

4.2. Logical architecture overview – a list of functional modules 
 

The logical architecture of the DSS consists of three layers, see Figure 4. The first layer is the 

presentation layer, the second is the application logic layer, and the third is the data source layer. 

  

 

Figure 4: Logical architecture overview. 

The presentation layer contains functions that builds elements on the web page to show the client. 

The functions that are implemented in this layer pertain the creation of graphs, tables, and checking 

and passing on information from user forms. The rest of the presentation is taken care of by static 

elements of the web page (e.g., HTML and CSS). 

The application logic layer implements a function for the evaluation of a pricing policy. However, 

other functions differ in the implementation for each of the sub modules described in the previous 

subsection. In the first module (statistics), one main function for the calculation of the statistics is 

implemented. This is similar for the second module (details) and the third module (influence). The 

last module (simulation) has a function for the generation of a pricing policy that satisfies certain 

constraints and for the simulation of pricing schemes.  



The data source layer implements functions that deal with reading data from the data model. 

Moreover, it has implementation of function for reading and writing session data.  

4.3. Physical architecture overview 
 

The physical architecture can be seen in Figure 2. The DSS is a web-based system that interacts with 

the client. The whole DSS runs on a single server that runs an Apache web server, a MySQL database, 

and is PHP-enabled. 

5. Implementation details 
 

The structure of pricing and the effect on revenues and water consumption is very intricate and 
difficult to assess analytically. The step to optimization adds even more to this complexity. We have 
adopted theory from ordinal optimization to approach this complexity and to quantify the complexity 
of water pricing. 

The essential idea of ordinal optimization is simulate pricing policies uniformly from the space of all 
pricing policies.  Let a pricing policy be denoted by 𝜃 from the space Θ of all pricing policies. Let the 
economic indicators of the policy 𝜃 be denoted by 𝐽(𝜃). The optimization problem can be stated as 
max𝜃∈Θ 𝐽(𝜃) which turns out to be Ε 𝐿(𝜃, 𝜉), the expectation of the sample performance 𝐿 as a 
function of 𝜃 and the randomness in the system 𝜉. The problem is that the search space Θ is a huge 
and perhaps with little structure limiting the performance of search-based methods. 

Two essential ideas in our approach lead to a feasible technique to handle the complexity. First, the 
order of two alternative pricing policies (i.e., which one is better) converges exponentially fast while 

the value (i.e., the exact difference in performance) converges at rate 1/√𝑁, where 𝑁 is the number 
of simulations. The second observation is that goal softening eases the computional burden of 
finding the optimum. In this case, one does not go for the optimal solution in Θ, which is a single 
alternative in the set. Instead, the objective is to find a pricing policy that is in the top-𝑛% of the 
choice for 95% of the time. This probability improves dramatically with the sizes of these sets. 

The above method allows one to come up with a Monte Carlo method to optimize pricing policies. At 

the same time one can quantify the complexity of pricing in practice through ordered performance 

curves (OPC curves). These are plots of the values of 𝐽 as a function of the order of performance (i.e., 

the best, the second best, and so on).  The OPC curve is robust against noise and displays the order of 

various complexities. In the following table we list the main functions in the software to achieve 

these goals. 

Function: read_household_data() 

Input: database, table, login, password 
 
Output: data structure with records on household, number of occupants, water consumption per 
quarter 
 
Description: this function reads stored data from a specified table on households containing records 
on a household specified by an ID, the number of occupants in the household, the water 
consumption per quarter of this household. 
 
 
 



 
 
 

Function: read_pricing_policy() 

Input: database, table, login, password 
 
Output: data structure with records on the pricing policy used for the baseline scenario 
 
Description: this function reads stored data from a specified table on the pricing policy used in the 
baseline scenario of the pricing module. The pricing policy consists of the flat rate, the lower and 
upper brackets for the volumetric usage with its corresponding price within that bracket. 

Function: read_elasticity() 

Input: database, table, login, password 
 
Output: data structure with values of the price demand elasticity for the baseline scenario 
 
Description: this function reads stored data from a specified table on the price demand elasticity 
used in the baseline scenario of the pricing module. The elasticity values contain values for the 
normal season and the touristic season. 

Function: read_session() 

Input: session_ID 
 
Output: session data 
 
Description: this function reads in session data that corresponds to the user with session_ID. The 
data is stored in a pre-specified table, specifically meant for session data. The session data consists of 
values for the price elasticity, the flat rate, the lower and upper brackets with its corresponding price. 

Function: write_session() 

Input: session_ID, session_data 
 
Output: none 
 
Description: this function writes session data that corresponds to the user with session_ID to a pre-
specified table, specifically meant for session data. The session data consists of values for the price 
elasticity, the flat rate, the lower and upper brackets with its corresponding price. 

Function: evaluate_pricing_policy() 

Input: baseline_pricing, new_pricing, household_data 
 
Output: new_household_data 
 
Description: this function uses the baseline pricing scheme and the new pricing scheme to generate 
new household data that can be compared to the old household data. Let the pricing scheme in the 
baseline scenario be determined by the flatrate 𝑓𝑟 and the lower brackets 𝑙𝑏(𝑖) and upper brackets 
𝑢𝑏(𝑖) with corresponding price 𝑝(𝑖). The expenditure 𝑒 for a household with water consumption 𝑤𝑐 

will be 𝑒 = 𝑓𝑟 + ∑ min(𝑚𝑎𝑥(𝑤𝑐 − 𝑙𝑏(𝑖), 0) , 𝑢𝑏(𝑖)) ∗ 𝑝(𝑖).𝑛
𝑖=1  A similar calculation can be done with 

the new pricing scheme with 𝑓𝑟’, 𝑙𝑏’(𝑖), 𝑢𝑏’(𝑖), and, 𝑝’(𝑖) as input. This gives a new expenditure 𝑒’ 

given by the equality 𝑒′ = 𝑓𝑟′ + ∑ min(𝑚𝑎𝑥(𝑤𝑐 − 𝑙𝑏′(𝑖), 0) , 𝑢𝑏′(𝑖)) ∗ 𝑝′(𝑖).𝑛
𝑖=1  The relative 

difference in the expenditure is then given by 𝑑𝑖𝑓𝑓 = (𝑒′ − 𝑒)/𝑒. Based on this difference the new 
water consumption 𝑤𝑐′can be calculated by 𝑤𝑐′ = 𝑤𝑐 ∗ 𝑝𝑑𝑒, where 𝑝𝑑𝑒 is the price demand 
elasticity. When this is done for every household in the household data, then many statistics can be 
calculated. This includes the total water consumption by the complete population in the household 



data per quarter, the total revenues generated by that population before and after the change in the 
pricing scheme. 
 

Function: calculate_statistics() 

Input: baseline_pricing, new_pricing, household_data 
 
Output: total_water_consumption, total_revenue_before_change, total_revenue_after_change 
 
Description: this function relies on evaluate_pricing_policy(), which is called first. After the call to this 
function a table with household data is acquired with respect to the new pricing scheme. Hence it is 
known what 𝑒, 𝑤𝑐, 𝑒’, and 𝑤𝑐’ are. Based on 𝑤𝑐’ one can calculate 𝑒’’, the real expenditure due to 
effects of the price elasticity, and the relative difference with the baseline scenario. These statistics 
are reported by aggregating household data over different quarters, and over all quarters.  

Function: calculate_household_details() 

Input: baseline_pricing, new_pricing, household_data 
 
Output: new_household_data 
 
Description: this function relies on evaluate_pricing_policy(), which is called first. After the call to this 
function a table with household data is acquired with respect to the new pricing scheme. Hence it is 
known what 𝑒, 𝑤𝑐, 𝑒’, and 𝑤𝑐’ are. Based on 𝑤𝑐’ one can calculate 𝑒’’, the real expenditure due to 
effects of the price elasticity, and the relative difference with the baseline scenario. These statistics 
are reported for each household. The data structure used to represent this data has filters attached 
to them such that data can be easily sorted on the different statistics. 

Function: calculate_household_influence() 

Input: baseline_pricing, new_pricing, household_data 
 
Output: new_household_data, data structure with the difference in water consumption and 
expenditure per household 
 
Description: this function relies on evaluate_pricing_policy(), which is called first. After the call to this 
function a table with household data is acquired with respect to the new pricing scheme. Hence it is 
known what 𝑒, 𝑤𝑐, 𝑒’, and 𝑤𝑐’ are. Based on 𝑤𝑐’ one can calculate 𝑒’’, the real expenditure due to 
effects of the price elasticity, and the relative difference with the baseline scenario. The statistics on 

𝑒’’ –  𝑒, (𝑒’’ –  𝑒)/𝑒, (𝑤𝑐’ –  𝑤𝑐)/𝑤𝑐 are reported as key statistics to base the economic 
implementability on. 

Function: generate_pricing_policy() 

Input: max_upper_bracket, max_price, number_of_brackets 
 
Output: pricing_policy 
 
Description: this function generates a pricing policy uniformly drawn from the space Θ of pricing 
policies. Let 𝑛 be the number of brackets that are needed to be generated. Then the 𝑖-th upper 
bracket is generated be drawing from a uniform 𝑈[𝑢𝑏(𝑖 − 1), 𝑚𝑎𝑥_𝑝𝑟𝑖𝑐𝑒] distribution, where 𝑢𝑏(0) 
= 0. The lower brackets are generated by 𝑙𝑏(1)  =  0, and 𝑙𝑏(𝑖)  =  𝑢𝑏(𝑖 − 1) for 𝑖 >  1. 
 
 
 
 
 
 



 
 
 

Function: simulate_pricing_schemes() 

Input: number_of_simulations 
 
Output: data structure with the policies and statistics 
 
Description: this function relies on the function generate_pricing_policy(), evaluate_pricing_policy(), 
and create_graph(). Let 𝑛 be the number of simulation is specified as input for the function. Then, 
the function generates 𝑛 times a pricing policy that is uniformly drawn from the space Θ of pricing 
policies, evaluates it, and stores it in a data structure. This data structure is passed on to 
create_graph() to plot a Pareto frontier.  

Function: create_graph() 

Input: data structure with pairs of (𝑥, 𝑦) coordinates 
 
Output: an HTML data structure for graphs 
 
Description: this function converts a data structure with (𝑥, 𝑦) coordinates to a graph to be included 
on an HTML page as a javascript object. The framework used for this function is the highcharts.js 
framework.  

Function: create_table() 

Input: data structure with information represented in tuples 
 
Output: an HTML data structure for tables 
 
Description: this function converts a data structure with information represented in tuples to a table 
to be included on an HTML page as a javascript object. The framework used for this function is the 
datatable.js framework. The framework applies search capabilities as well as filters to the tables. 

Function: check_input() 

Input: none 
 
Output: none 
 
Description: this function in invoked when pressing a button in the software and it is attached to the 
behavior of the elements in the user input module. The function guarantees that the user input is 
valid, i.e., that all data is filled in, 0 = 𝑙𝑏(1) < 𝑢𝑏(1) = 𝑙𝑏(2) < 𝑢𝑏(2) = ⋯ = 𝑙𝑏(𝑛) < 𝑢𝑏(𝑛), and 
that 𝑝(1) ≤ ⋯ ≤ 𝑝(𝑛). In case these constraints are violated and error is thrown and the user input 
form is not serialized and processed. 

Function: reset_form() 

Input: none 
 
Output: none 
 
Description: this function in invoked when pressing the reset button in the software. It makes sure 
that the user input form is filled in with values corresponding to the baseline scenario. 

 

 

 



 

6. User manual 
 

The dynamic pricing module consists of four tabs with various statistics on pricing schemes. The main 

page has a focus on global characteristics of pricing policies. The input to the module consists of the 

price demand elasticity for a normal season (Q1/Q4) and the tourist season (Q2/Q3) (i.e., how does 

water consumption by consumers change as the price changes), and the pricing policy (which 

consists of the flat rate and the prices as a function of different water consumption brackets). The 

user can input these quantities in the grey area on the main page of the module, see Figure 5 below. 

The prices are specified in euros per m3, and the brackets indicate the region in m3/calculation period 

(quarter) in which the price is in effect. 

 

Figure 5: Input parameters of the module. 

Once the parameters have been given by the user, the parameters can be submitted to the module 

by the submit button. The tool will then display the new pricing policy together with the benchmark 

policy. The benchmark policy is the policy that was in use a specific year to create a benchmark with 

the new pricing policy. One can see an example of this graph in Figure 6. 

 

Figure 6: Example of pricing scheme. 

Statistics of the new pricing policy are calculated automatically and are depicted in a table on the 

main page. The table includes the total water consumption in m3 over a year, as well as the 

breakdown into the different quarters of the year. It also lists the total revenue based on the water 



consumption not considering any effect of demand elasticity of consumers. This gives an intuitive 

idea of how much one would receive in revenues by changing the pricing schemes while everything 

else remains constant (this quantity is also specified per quarter). However, a change in the pricing 

schemes comes with changes in water consumption. Hence, the total revenue that one really collects 

is different. This is listed in the total revenue after change in the water consumption, which has also a 

breakdown in quarters. 

In the following example (see Figure 7) one can see that a new pricing scheme is in effect. The 

scheme is such that if the water consumption would remain the same (at the level of 51,949 m3 per 

year) for this population, then the total revenue would increase by 11.46% (from 68,216.10 euro to 

76,034.28 euro). However, due to the fact that the water consumption decreases with 9.22% the 

total increase in revenues is actually less than 11.46%. It turns out that the revenues increase only by 

0.27%. This example directly illustrates the difficulty in assessing pricing schemes. In cases where one 

expects that the revenues go up while at the same time water usage is reduced, it turns out that in 

practice different numbers correspond to reality. This warrants the development of a dynamic pricing 

tool.  

 

Figure 7: Statistics of a new pricing scheme. 

The tab with the details gives insight in the underlying data that the dynamic pricing tool works with. 

It is based on consumer data on water usage over a specific period. The table shows the customer 

code, the number of people in the household of the consumer, the water usage over the different 

quarters, the water bill in each quarter, the new price for the consumer of the new policy per 

quarter, and the water usage based on the new price per quarter. The columns BM Cons 1 to BM 

Cons 4 denote the water consumption in m3/household for that quarter in the baseline scenario. The 

columns BM WB Q1 to BM WB Q4 depict the expenditures in the baseline scenario in euros for that 

quarter. The columns WB Q1 to WB Q4 are the expenditures in the new scenario in euros for that 

quarter. Finally, Cons Q1 to Cons Q4 denote the water consumption in the new scenario in m3 per 

household. The data on this page essentially aggregates to the statistics on the main tab. The 

dynamic pricing tool internally calculates for each household the effect of price changes using the 

price demand elasticity and then aggregates this data on the statistics tab. Figure 8 gives an 

impression of part of the data on the detailed level.  



 

Figure 8: Detailed information on the household level. 

When a pricing scheme has been set the main page calculates several statistics, of which the most 

important ones are the effect on water consumption and total revenues. However, for a complete 

picture, it is necessary to also evaluate how this impacts the household on an individual level. The 

details tab already give some insight into individual behaviour, however, the influence tab allows for 

further analysis. The table on this tab provides a sorted overview of the top 10 households that are 

affected most in several ways. One can select the top 10 households that have the highest 

expenditure, but also the top 10 households that have the highest reduction in water consumption. 

The table lists the costumer code, the number of people in its household, the total water 

consumption and water bill under the benchmark policy, and the total water consumption and water 

bill under the new pricing policy. The last two columns display the difference in expenditure of the 

consumer (in %) and the difference in water consumption (in %). Both of these columns can be 

sorted on to generate different top 10 listings.  

Figure 9 depicts are screenshot of the table. One can see that the household set by this policy are 

affected such that there is an increase in expenditures of at most 5.59%. At the same time, this 

household, as a result of price changes, will use 14.44% less water. 

 

Figure 9: Influences on the household level. 

 

There are many different pricing schemes that can be devised and evaluated. The different 

combinations of the flat rate, the volumetric brackets and the respective prices therein are immense. 

Therefore, one needs to be assisted in the evaluation of different pricing schemes. The simulation tab 

provided help in this requirement. This module simulates a large number of randomly generated 

pricing policies for a given price demand elasticity and flat rate. It change the volumetric brackets 

and the prices therein. For each simulation the module records several statistics, in particular, the 

difference in water consumption (in %) and the difference in revenues (in %) simulated over a period 



of one year. The module displays the Pareto frontier of the different pricing schemes, i.e., all 

combinations of the two performance indicators.  

Figure 10 displays the Pareto frontier for a specific setting (in this case, an elasticity of -0.4 and a flat 

rate of 12 euro). The results show that it is hard to obtain both an increase in revenues and reduction 

in water consumption at the same time. One the one hand, an increase in prices has such an impact 

on the reduction of water consumption that it will not generate additional revenues. On the other 

hand, lowering pricing is also a possibility. This will increase the water consumption, but will not 

generate sufficient demand that additional revenues are generated. Hence, the curvature of the 

graph.  

Note that there a few policies that do attain a higher revenue while at the same time also reduce 

water consumption (there is a point at -6.5% in water consumption and 1.09% in revenues), 

however, the final result depends on the value of demand price elasticity index. These are quite rare 

though and indicate that setting a good pricing schemes is a difficult problem that needs to be 

approached with considerable care. 

 

Figure 10: Pareto frontier of different pricing schemes. 

The price demand elasticity is a very important factor in this analysis. If the elasticity changes from 

the value -0.4 to -0.3, then there are more policies that attain better performance in water 

consumption and revenues simultaneously. In Figure 11 we can see how the graph changes as the 

elasticity changes. It clearly shows that there are more points above the zero-line for the revenues. A 

similar analysis can be done with the flat rate. 

 

Figure 11: Pareto frontier of different pricing schemes with reduced price elasticity. 

The graph depicts the realm of possibilities of different pricing schemes. In order to get more insights 

in the type of policies that obtain these result, a table is presented with all simulated policies and 



there performance. The table lists the policy, identified by a vector of the brackets and the price 

therein, the difference in water consumption (in %), the difference in revenues when no difference in 

consumption is taken into account (in %), and the expected revenues taking into account the changes 

in water consumption (in %).  

Figure 12 shows a screenshot of the table. There are filters for sorting the results on the different 

performance indicators. Currently, the table is sorted on the final revenues. The discrepancy 

between the different revenue values shows that the changing a pricing scheme while ignoring the 

elasticity in water consumption has potential threats. The ninth policy shows that in the pricing 

scheme one would expect an increase in revenues if one ignores consumer behavior, however, in 

practice one would observed a decrease in revenues. Note that the fourth policy achieves both a 

reduction in water consumption while at the same time the revenues are increased. 

 

Figure 12: Details on the simulated policies. 

The dynamic pricing tools allows to simulate different pricing schemes under different assumption. It 

shows that the dynamic pricing problem is a hard problem in which a lot of care needs to be taken. 

The policies that are simulated need to be judged together with the information on the influences 

tab. One need to find a balance between water reduction, increase in revenues, and feasibility of the 

policy in terms of influences and fairness. The dynamic pricing tool assists in finding this balance and 

has the potential to be integrated in important pricing policy decisions at a strategic level. 

7. Technical requirements and development environment 
 

The DSS does not require any specific technical requirements on the server than the ones described 

in the architecture above. A regular server with common specifications connected to the internet will 

suffice to run the DSS. 

8. Testing 
 

In order to test the module, one needs to address the influence on KPIs and the pricing schemes. The 

most important KPIs are: changes of water consumption due to saving water and the related financial 

effects (change in total revenues, change in expenditure for purchasing water services).  



Taking in to account the primary target of the project – reduction of water consumption and in this 

way balancing the demand with available resources – the methodology for testing will be focused on 

the assessment of the water savings using the economic instrument (water tariffs). The general 

approach can be described as dQ = f(dP), where dQ are the changes of the quantity of a raw good or 

services (water supply in this case), and dP is the change of the price for good/service. 

Of course there are many other factors influencing on changes in quantity of consumed water but 

this module is focused on economic instruments. In more detail, but still focusing only on the 

economic aspects, the following formula describes the responsiveness of the quantity of a raw good 

or service demanded to changes in its price dQ = ep * dp / P * Q, where ep is the coefficient of price 

elasticity of demand, P is the initial price, Q is the quantity demanded before changes of the price in 

the calculation period.  

In case of water demand, the term “price” is more complicated especially for a mixed tariff that 

consists of a flat rate and volumetric charge. Therefore, the real price of water is derived using 

formula P = Ex / Q, where Ex is the total expenditure per client in the calculation period (Ex = FLr + 

Vch, where FLr is the flat rate in the calculation period and Vch is the volumetric charge (quantity or 

quantities multiplied by price or prices). 

The desk review gives us the estimation of the ep in local conditions, the other data was derived from 

water operators. Such methodology creates the possibility of predicting water saving by introducing 

changes in water tariffs. Such effects are related to an increase of water tariffs, however constructed 

model allows to review and check the affordability aspect. 

Appendix 1: survey on dynamic pricing 
 

1. Introduction 

Dynamic pricing is the study of determining optimal selling prices of products or services, in a setting 

where prices can easily and frequently be adjusted. This applies to vendors selling their products via 

Internet, or to brick-and-mortar stores that make use of digital price tags. In both cases, digital 

technology has made it possible to continuously adjust prices to changing circumstances, without any 

costs or efforts. Dynamic pricing techniques are nowadays widely used in various businesses, and in 

some cases considered to be an indispensable part of pricing policies.  

Digital sales environments generally provide firms with an abundance of sales data. This data may 

contain important insights on consumer behavior, in particular on how consumers respond to 

different selling prices. Exploiting the knowledge contained in the data and applying this to dynamic 

pricing policies may provide key competitive advantages, and knowledge how this should be done is 

of highly practical relevance and theoretical interest. This consideration is a main driver of research 

on dynamic pricing and learning: the study of optimal dynamic pricing in an uncertain environment 

where characteristics of consumer behavior can be learned from accumulating sales data.  

The literature on dynamic pricing and learning has grown fast in recent years, with contributions 

from different scientific communities: operations research and management science (OR/MS), 

marketing, computer science, and economics/econometrics. This survey aims at bringing together 

the literature from these different fields, and at highlighting some of the older (and sometimes 

forgotten) literature where many important results and ideas already can be found. 



A few literature reviews on dynamic pricing and learning do already exist. Araman and Caldentey [2] 

and Aviv and Vulcano [3, Section 4] review in detail a number of recent studies, mostly from the 

OR/MS community; Christ [4, Section 3.2.1] contains an elaborate discussion of a selection of 

demand learning studies; and Chen and Chen [5] review recent research on multiple-product pricing, 

pricing with competition, and pricing with limited demand information. Our survey complements 

these publications by aiming at a larger scope, and, although our main focus is on the OR/MS 

literature, we also address relevant contributions from computer science, marketing, economics and 

econometrics. 

Content. This survey reviews the literature on dynamic pricing with demand uncertainty. We discuss 

how this is embedded in the literature on dynamic pricing in general, but do not review all relevant 

research topics associated with dynamic pricing; for this we refer to Bitran and Caldentey [6], 

Elmaghraby and Keskinocak [7], Talluri and van Ryzin [8], Phillips [9], Heching and Leung [10], Gönsch 

et al. [11], Rao [12], Chenavaz et al. [13], Deksnyte and Lydeka [14] and Özer and Phillips [15]. We 

focus on studies where selling price is a control variable; we only scarcely discuss learning in capacity-

based revenue management [8] or learning in newsvendor/inventory control problems. Neither do 

we consider mechanism design [16, 17] or auction theory with incomplete information (see e.g. [18, 

19] and the references therein), although there are some similarities with dynamic pricing and 

learning.  

Most of the studies that we discuss are written from an (online) retailer perspective; we do not 

consider social welfare optimization [20, 21]. We do not dive into specific details associated with 

particular application area such as pricing in queueing or telecommunication environments [22], road 

pricing [23–25], or electricity pricing [26,27], to name a few. We also neglect a recent stream of 

empirical studies that aims to explain the dynamic pricing strategies of sellers by fitting models to 

sales data (see e.g. [28] for an example on prices of airline tickets, Sweeting [29] on prices of Major 

League Baseball tickets, and Huang et al. [30] on pricing for a used-car dealership). Finally, this survey 

focuses on studies where the seller learns about the demand function, and not on studies where 

buyers (or sellers) learn (typically about the quality of the product) [31–37]. 

Methodology. We used Google Scholar to find all relevant references that were available online 

October 1, 2014. We excluded double versions of the same papers, or conference papers that largely 

overlap with journal papers. For all papers that we found this way we looked on Google Scholar for 

relevant other work citing these papers. We also checked the websites of key authors in the field for 

relevant publications. We aimed for a comprehensive review of the dynamic-pricing-and-learning 

literature; for the other sections, on e.g. demand estimation or dynamic pricing under full 

information, we restrict to key papers and reviews. 

2. Historical origins of pricing and demand estimation 

Dynamic pricing with learning can be regarded as the combined application of two research fields: (1) 

statistical learning, specifically applied to the problem of estimating demand functions, and (2) price 

optimization. Both these fields are already quite old, dating back more than a century. In this section 

we briefly describe the historical fundaments out of which dynamic pricing and learning has 

emerged, by pointing to some key references on static pricing and estimating demand functions that 

have been important in the progress of the field. 

2.1. Demand functions in pricing problems 

Cournot [38] is generally acknowledged as the first to use a mathematical function to describe the 

price–demand relation of products, and subsequently solve the mathematical problem of 



determining the optimal selling price. As vividly described by Fisher [39], such an application of 

mathematical methods to study an economical problem was quite new and controversial at the time, 

and the work was neglected for several decades. Cournot showed that if F (p) denotes the demand as 

a function of price p, where F (p) is continuous, decreasing in p, and pF(p) is unimodal, then the price 

that maximizes the revenue pF(p) can be found by equating the derivative of pF(p) to zero. If F (p) is 

concave there is a unique solution, which is the optimal price (this is contained in Chapter IV of 

Cournot [38]). In this way, Cournot was the first to solve a ‘‘static pricing’’ problem by mathematical 

methods. 

2.2. Demand estimation 

To make theoretical knowledge on optimal pricing theory applicable in practical problems, one needs 

to have an estimate of the demand function. The first known empirical work on demand curves is the 

so-called King–Davenant Law [40] which relates the supply and price of corn (see [41], for an 

exposition on the origins of this work). More advanced research on estimating demand curves, by 

means of statistical techniques such as correlation and linear regression, took off in the beginning of 

the 20th century. Benini [42], Gini [43] and Lehfeldt [44] estimate demand curves for various goods 

as coffee, tea, salt, and wheat, using various curve-fitting methods. Further progress on methodology 

was made, among others, by Moore [45,46], Wright [47] and Tinbergen [48]; the monumental work 

of Schultz [49] gives a thorough overview of the state-of-the-art of demand estimation in his time, 

accompanied by many examples. Further references and more information on the historical progress 

of demand estimation can be found in [50, Section II], [51, particularly section iii], [52–54]. A small 

sample of the many contemporary studies on demand estimation in different contexts is Berry et al. 

[55], McFadden and Train [56] and Bajari and Benkard [57]. 

2.3. Practical applicability 

Estimating demand curves of various products was in first instance not aimed at profit optimization 

of commercial firms, but rather used to support macro-economic theories on price, supply, and 

demand. Application of the developed methods in practical problems was initially far away. An 

illustrative quote is from [58], who doubted the possibilities of applying the theory of monopoly 

pricing on practical problems, exactly because of the difficulty of estimating the demand curve: 

It is evidently the opinion of some of the writers under discussion that the modern theory of 

monopoly is not only capable of throwing considerable light on the general principles 

underlying an individualistic economic structure, but that it is also capable of extensive use in 

the analysis of particular practical economic problems, that is to say, in applied economics. 

Personally, I cannot but feel skeptical about this. [. . . ] There does not seem to be any reason 

why a monopolist should not make a mistake in estimating the slope of the demand curve 

confronting him, and should maintain a certain output, thinking it was the position which 

maximized his profit, although he could actually have increased his profit by expanding or 

contracting. [58, p. 18,19]. 

Hawkins [59] reviews some of the attempts made by commercial firms to estimate the demand for 

their products. Most of these attempts were not successful, and suffered from difficulties of 

obtaining sufficiently many data for reliable estimates, and of changes in the quality of the product 

and the prices of competitors. Even a very detailed study of General Motors on automobile demand 

ends, somewhat ironically, with: 



The most important conclusion from these analyses of the elasticity of demand for 

automobiles with respect to price is that no exact answer to the question has been obtained. 

[60, p. 137]. 

In view of these quotations, it is rather remarkable that dynamic pricing and learning has nowadays 

found its way in practice; many applications have been reported in various branches such as airline 

companies, the hospitality sector, car rental, retail stores, internet advertisement, and many more. A 

main cause for this is the fact that nowadays historical sales data is typically digitally available. This 

significantly reduces the efforts required to obtain sufficiently accurate estimates of the demand 

function. In addition, whenever products are sold via the Internet or using digital price tags, the costs 

associated with adjusting the prices in response to updated information or changed circumstances 

are practically zero. In contrast, a price-change in the pre-digital era would often induce costs, for 

example because a new catalog had to be printed or price tags had to be replaced. For a detailed 

study on such price-adjustment costs we refer to Zbaracki et al. [61] and the references therein. 

Slade [62] and Netessine [63] are two studies that consider dynamic pricing with costly price 

adjustments. 

3. Dynamic pricing 

In this section we discuss the literature on dynamic pricing. Because of the huge amount of literature 

on this subject, we cannot give a complete overview of the field. Instead, we briefly describe some of 

the major research streams and key references, in order to provide a context in which one can 

position the literature on dynamic pricing with learning discussed in Section 4. For a more elaborate 

overview of the vast literature on dynamic pricing, we refer to the books Talluri and van Ryzin [8], 

Phillips [9], Rao [12], Özer and Phillips [15], and the reviews by Bitran and Caldentey [6], Elmaghraby 

and Keskinocak [7], Heching and Leung [10], Gönsch et al. [11], Seetharaman [64], Chenavaz et al. 

[13] and Deksnyte and Lydeka [14]. 

The literature on dynamic pricing by a monopolist firm can roughly be classified as follows: 

 Models where the demand function is dynamically changing over time. 

 Models where the demand function is static, but where pricing dynamics are caused by the 

inventory level. 

In the first class of models, reviewed in Section 3.1, the demand function changes according to 

changing circumstances: for example, the demand function may depend on the time-derivative of 

price, on the current inventory level, on the amount of cumulative sales, on the firm’s pricing history, 

et cetera. In the second class of models, reviewed in Section 3.2, it is not the demand function itself 

that causes the price dynamics: a product offered in two different time periods against the same 

selling price is expected to generate the same amount of average demand. Instead, the price 

dynamics are caused by inventory effects, more concretely by changes in the marginal value of 

inventory. Naturally, it is also possible to study models that fall both in classes, where both the 

demand function is dynamically changing and the price dynamics are influenced by inventory effects; 

some of this literature is also reviewed in Section 3.2. 

3.1. Dynamic pricing with dynamic demand 

3.1.1. Demand depends on price-derivatives 

Evans [65] is one of the first to depart from the static pricing setting introduced by Cournot [38]. In a 

study on optimal monopoly pricing, he assumes that the (deterministic) demand is not only a 

function of price, but also of the time-derivative of price. This models the fact that buyers do not only 



consider the current selling price in their decision to buy a product, but also anticipated price 

changes. The purpose of the firm is to calculate a price function, on a continuous time interval that 

maximizes the profit. The problem is solved explicitly using techniques from calculus of variations. 

Various extensions to this model are made by Evans [66], Roos [67–70], Tintner [71], and Smithies 

[72]. Thompson et al. [73] study an extended version of the model of Evans [65], where optimal 

production level, investment level, and output price have to be determined. Closely connected to 

this work is Simaan and Takayama [74], who consider a model where supply is the control variable, 

and where the time-derivative of price is a function of the current supply and current price. Methods 

from control theory are used to derive properties of the optimal supply path. 

3.1.2. Demand depends on price history 

A related set of literature considers the effect of reference prices on the demand function. Reference 

prices are perceptions of customers about the price that the firm has been charging in the past; see 

[75] for a review on the subject. A difference between the reference price and the actual selling price 

influences the demand, and, as a result, each posted selling price does not only affect the current 

demand but also the future demand. Dynamic pricing models and properties of optimal pricing 

strategies in such settings are studied, among others, by Greenleaf [76], Kopalle et al. [77], Fibich et 

al. [78], Heidhues and Köszegi [79], Popescu and Wu [80] and Ahn et al. [81]. 

3.1.3. Demand depends on amount of sales 

Another stream of literature on dynamic pricing emerged from diffusion and adoption models for 

new products. A key reference is Bass [82], and reviews of diffusion models are given by Mahajan et 

al. [83], Baptista [84], and Meade and Islam [85]. In these models, the demand for products does not 

only depend on the selling price, but also on the amount of cumulative sales. This allows modeling 

several phenomena related to market saturation, advertisement, word-of-mouth effects, and 

product diffusion. Robinson and Lakhani [86] study dynamic pricing in such a model, and numerically 

compare the performance of several pricing policies with each other. Their work stimulated much 

further research on optimal dynamic pricing policies, see e.g. [87–89], and the references therein. 

The models studied in these papers are deterministic, and somewhat related to the literature 

following Evans [65]: both types of pricing problems are solved by principles from optimal control 

theory, and the optimal pricing strategy is often given by the solution of a differential equation. 

Chen and Jain [90], Raman and Chatterjee [91], and Kamrad et al. [92] extend these models by 

incorporating randomness in the demand. In [90], the demand is determined by a finite-state Markov 

chain for which each state corresponds to a deterministic demand function that depends on price 

and cumulative sales. The optimal price path is characterized in terms of a stochastic differential 

equation, and compared with the optimal policy in a fully deterministic setting. Raman and 

Chatterjee [91] model uncertainty by adding a Wiener process to the (known) deterministic 

component of the demand function. They characterize the pricing policy that maximizes discounted 

cumulative profit, and compare it with the optimal price path in the fully deterministic case. Under 

some specific assumptions, closed form solutions are derived. Similar models that incorporate 

demand uncertainty are analyzed by Kamrad et al. [92]. For various settings they provide closed-form 

solutions of the optimal pricing policies. 

3.2. Dynamic pricing with inventory effects 

There are two important research streams on dynamic pricing models where the dynamics of the 

optimal pricing policy are caused by the inventory level: (i) ‘‘revenue management’’ type of 



problems, where a finite amount of perishable inventory is sold during a finite time period, and (ii) 

joint pricing and inventory–procurement problems. 

3.2.1. Selling a fixed, finite inventory during a finite time period 

In this stream of literature, a firm is assumed to have a certain number of products at its disposal, 

which are sold during a finite time period. There is no replenishment: inventory that is unsold at the 

end of the selling horizon is lost, and cannot be transferred to another selling season. In these 

problems, the dynamic nature of optimal prices is not caused by changes in the demand function, but 

by the fact that the marginal value of remaining inventory is changing over time. As a result, the 

optimal selling price is not a fixed quantity, but depends on the remaining amount of inventory and 

the remaining duration of the selling season. 

Kincaid and Darling [93] may be the first to characterize and analyze the optimal pricing policy in such 

a setting. A more recent key reference is Gallego and van Ryzin [94]. They consider a continuous-time 

setting where demand is modeled as a Poisson process, with arrival rate that depends on the posted 

selling price. The pricing problem is formulated as a stochastic optimal control problem, and the 

optimal solution is characterized using the Hamilton–Jacobi–Bellman equation. For the exponential 

demand function a closed-form solution is derived. Because the optimal policy changes prices 

continuously, which may be undesirable in practical applications, two heuristics are proposed: one 

based on a deterministic version of the problem, and one based on determining the optimal fixed 

price. Both these heuristics are shown to be asymptotically optimal as the expected amount of sales 

grows large or as the length of the time horizon converges to zero. The authors further propose price 

heuristics – and show their asymptotic optimality – for many extensions of the problem: a discrete 

instead of a continuous set of feasible prices, customers who arrive according to a compound Poisson 

process, a demand function that depends both on price and on the time elapsed since the start of 

the selling season, the presence of holding costs and a discount rate, the case where initial inventory 

is a decision variable, and a setting where resupply, cancellations and overbookings are possible. 

Numerous other extensions and variations of the model by Gallego and van Ryzin [94] have been 

studied: for example, settings with restrictions on the number of allowable prices or price changes 

[95–98], time-varying demand functions [99,100], and extensions to multiple stores [101] or multiple 

products [102,103] that share the same finite set of resources. 

The extension to multiple products can be formulated as a dynamic program, which typically is 

intractable due to the curse of dimensionality. A number of papers study heuristic solutions [102, 

104–109], which are typically based on static-price policies or on deterministic approximations or 

decompositions of the original dynamic program. Another stream of literature focuses on deriving 

structural properties of the price optimization problem, for various models of consumer demand 

[110–113].  

Another important extension to Gallego and van Ryzin [94] is strategically behaving customers: 

customers who, when arriving at the (online) store, do not immediately decide whether to buy the 

product, but instead wait for a while to anticipate possible decreases in the selling price. In contrast, 

so-called myopic customers instantly decide whether to buy the product at the moment they arrive 

at the store. In such settings, the demand at a certain moment depends on the past, present, and 

future selling prices.  

Dynamic pricing in view of strategic customers has received a considerable amount of research 

attention in recent years; a representative sample is Su [114], Aviv and Pazgal [115], Elmaghraby et 

al. [116], Liu and van Ryzin [117], Levin et al. [118], Cachon and Swinney [119] and Su [120]. Reviews 



of these literature are given by Shen and Su [121] and Gönsch et al. [122]. These studies typically 

have a game-theoretic flavor, since both the firm and the strategic customers have a decision 

problem to solve, with contradicting interests. 

3.2.2. Jointly determining selling prices and inventory–procurement 

A main assumption of the literature discussed above is that the initial capacity level is fixed. In many 

situations in practice this is a natural condition: the number of seats in an aircraft, rooms in a hotel, 

tables in a restaurant, or seats in a concert hall are all fixed for a considerable time period, and 

modifications in the capacity occur at a completely different time scale than dynamic price changes. 

In many other settings, however, the initial capacity is a decision variable to the firm; in particular, 

when the firm can decide how many items of inventory should be produced or purchased. Pricing 

and inventory management can then be considered as a simultaneous optimization problem. 

This research field bridges the gap between the pricing and inventory management literature. Many 

different settings and models are subject to study, with different types of production, holding and 

ordering costs, different replenishment policies (periodic or continuous), finite or infinite production 

capacity, different models for the demand function, et cetera. Extensive reviews of the literature on 

simultaneous optimization of price and inventory decisions can be found in [123,124], [7, Section 

4.1], [125–128]. 

4. Dynamic pricing and learning 

In the static monopoly pricing problem considered by Cournot [38], the demand function is 

deterministic and completely known to the firm. These assumptions are somewhat unrealistic in 

practice, and eventually it was realized that demand should be modeled as a random variable. One of 

the first to pursue this direction is Mills [129], who assumes that the demand is the sum of a random 

term with zero mean and a deterministic function of price. He studies how a monopolist firm that 

sells finitely many products in a single time period should optimally set its production level and 

selling price. Further extensions of this model and properties of pricing problems with random 

demand are studied by Karlin and Carr [130], Nevins [131], Zabel [132], Baron [133,134], Sandmo 

[135] and Leland [136]. An important research question in these studies is how the firm’s optimal 

decisions are influenced by the demand uncertainty and by the firm’s attitude towards risk (risk-

neutral, risk-averse, or risk-preferred). 

The papers mentioned above model demand as a random variable, but still assume that the expected 

demand (as a function of the selling price) is completely known by the firm. This makes these models 

somewhat unrealistic and not usable in practice. The common goal of the literature on dynamic 

pricing and learning is to develop pricing policies that take the intrinsic uncertainty about the relation 

between price and expected demand into account. 

In the next two sections we discuss the literature on dynamic pricing and learning. Section 4.1 

considers the literature on the problem of a price-setting firm with infinite inventory and unknown 

demand function. This basically is the monopoly pricing problem described in Section 2.1, with 

uncertainty about the demand function. The full-information case of this problem is static; the price 

dynamics are completely caused by the fact that the firm learns about the price–demand relation 

through accumulating sales data. Section 4.2 discusses literature on pricing policies for firms selling a 

fixed, finite amount of inventory, with unknown demand function. For this problem, the full-

information case is already dynamic by itself, as discussed in Section 3.2, and the learning aspect of 

the problem provides an additional source of the price dynamics. 



4.1. No inventory restrictions 

4.1.1. Early work 

Uppsala econometrics seminar. The first analytical work on dynamic monopoly pricing with unknown 

demand curve seems to have been presented on August 2, 1954, at the 16th European meeting of 

the Econometric Society [137], by F. Billström, H. Laadi, and S.A.O. Thore, with contributions from 

L.O. Friberg, O. Johansson, and H.O.A. Wold. A mimeographed report Billström et al. [138] of the 

presented work has not been published in a journal, but an English reprint has appeared in [139,140]. 

These two works discuss the problem of a monopolist facing a linear demand curve that depends on 

two unknown parameters. 

Thore [140] proposes to use a dynamic pricing rule that satisfies sign(pt − pt−1) = sign((pt−1 − 

pt−2)(rt−1 − rt−2)), where pt , rt denote the price and revenue in period t. This models the following 

intuition: if a previous price increase led to an increase in revenue, the price will again be increased; 

otherwise it will be decreased. Similarly, if a previous price decrease led to an increase in revenue, 

the price will again be decreased; otherwise, it will be increased. In addition, Thore [140] proposes to 

let the magnitude of the price adjustment depend on the difference between the last two revenue 

observations. He specifies two pricing rules in detail, and analyzes convergence properties of the 

resulting dynamical systems. 

Billström and Thore [139] perform simulation experiments for one of these pricing rules, both in a 

deterministic demand setting and in a setting where a normally distributed disturbance terms added 

to the demand. They also extend the model to incorporate inventory replenishment, and provide a 

rule of thumb for the optimal choice of a constant appearing in the pricing rule. 

Subsequent work. These studies emerging from the Uppsala Econometrics Seminar have not received 

much research attention in subsequent years. Clower [141] studies a monopolist firm facing a linear, 

deterministic demand function whose parameters may change over time. He discusses several price-

adjustment mechanisms that may be applied by the firm to adapt its prices to changing situations. 

Baumol and Quandt [142] propose rules of thumb for the monopolist pricing problem, and assess 

their performance by a set of numerical experiments. In their Appendix A they propose a pricing rule 

equal to one of the rules proposed by Thore [140], although they are apparently unaware of that 

work. The authors investigate some convergence and stability properties of the resulting dynamical 

system, both in a discrete-time and continuous-time framework. Baetge et al. [143] extend the 

simulation results of Billström and Thore [139] to non-linear demand curves, and study the optimal 

choice of a constant appearing in the pricing rules. A final study in this line of research is from [144]. 

He studies a model where a monopolist has to decide on price, output level in the current period and 

maximum output in the next period. Three decision rules are compared with each other via a 

computer simulation. In addition, their performance is compared with a laboratory experiment, 

where test subjects had to determine their optimal pricing strategy. 

4.1.2. Bayesian approaches 

Several authors study the dynamic pricing and learning problem within a Bayesian framework. 

Work by Aoki. One of the first is Aoki [145], who applies methods from stochastic adaptive control 

theory. He considers a setting where the demand function depends on unknown parameters, which 

are learned by the decision maker in a Bayesian fashion. The purpose is to minimize (a function of) 

the excess demand. He shows how the optimal Bayesian policy can, in theory, be computed via 

dynamic programming, but that in many situations no closed-form analytical expression of the 



solution exists. He then proposes two approximation policies. In the first, certainty equivalent pricing 

(CEP), at each decision moment the price is chosen that would be optimal if the current parameter 

estimates were correct. In the second, called an approximation under static price expectation, the 

firm acts at each decision moments as if the chosen price will be maintained throughout the 

remainder of the selling period. Aoki [146] shows that the prices generated by (two variants of) CEP 

and by the static-price-expectation approximation both converge a.s. to the optimal price. 

Variations and extensions to Aoki [145]. An early study along the same lines of Aoki [145] is Chong 

and Cheng [147]. They assume a linear demand function with two unknown parameters and normally 

distributed disturbance terms, and formulate the optimal pricing problem as a Bayesian dynamic 

program. They show that certainty equivalent pricing is the optimal policy in case the slope of the 

demand function is known. For the case that both slope and intercept are unknown, they propose 

three approximations to the optimal policy: the approximation under static price expectation from 

[145], and two heuristics based on approximations of the value function. Their second approximation 

selects at each decision epoch the price that maximizes the difference between the expected profit 

and a term proportional to the covariance of the parameter estimates; this reflects the exploration–

exploitation trade-off seen in many later work on optimization under uncertainty. 

Other studies closely related to Aoki [145] are Nguyen [148,149], Wruck [150], Lobo and Boyd [151], 

Chhabra and Das [152], Qu et al. [153], and Kwon et al. [154]. Nguyen [148] considers a quantity-

setting monopolist firm facing random demand in multiple periods, where the demand function 

depends on an unknown parameter which is learned by the firm in a Bayesian fashion. Structural 

(monotonicity) properties of the optimal policy are derived, and its performance is compared with a 

myopic one-period policy. Nguyen [149, Section 5] discusses similar questions in the context of a 

price-setting monopolist. Wruck [150] considers optimal pricing of durable and non-durable goods in 

a two-period model. The support of the uniformly distributed willingness-to-pay distribution is 

learned by Bayesian updating a uniform prior, and the optimal price policy is determined by solving a 

dynamic program. Lobo and Boyd [151] consider the same setting as Chong and Cheng [147], and 

compare via simulation the performance of four pricing policies with each other. Chhabra and Das 

[152] study the finite-time performance of standard multi-armed bandit policies and of a policy that 

(possibly incorrectly) assumes a linear demand function whose unknown parameters are learned by 

Bayesian updating of a Beta prior. Qu et al. [153] assume Bernoulli distributed demand with 

expectation a logit function of price, with a normal prior on the unknown parameters. Because this 

distributional form hampers exact calculation of posterior distributions, the authors discuss how to 

calculate an approximation. They propose a Bayesian-greedy price policy which cannot be computed 

exactly either, and show how an approximation can be calculated. 

A numerical study compares the pricing policies with a few alternatives. Kwon et al. [154] study 

optimal markdown pricing in an infinite-horizon setting with discounted rewards, where the decision 

variables are the initial price, the markdown price, and the time of markdown. Cumulative demand is 

modeled as a Brownian motion with unknown drift which is either high or low and which is learned 

via Bayesian updating. The authors determine the optimal time of markdown, characterize the 

corresponding optimal initial and markdown prices, and prove a few monotonicity properties. 

Finite action set. Some literature simplifies the problem by allowing only a finite set of feasible prices. 

This transforms the pricing-and-learning problem to a Bayesian multi-armed bandit problem. Leloup 

and Deveaux [155] show for Bernoulli distributed arms that approximations to Gittins-index policies 

circumvent the computational problems associated with solving the full Bayesian dynamic program. 

Wang [156] allows two feasible prices, assumes compound-Poisson distributed rewards from a 

certain parametric family, and approximate the Gittins index. Cope [157] considers a general Dirichlet 



prior on the discretized reservation-price distribution of customers, and develops approximations to 

the intractable Bayesian dynamic program that are closely related to Gittins-index policies. He shows 

that his pricing heuristics converge to the optimal price under an average-reward criterion, and 

argues that their performance do not suffer much from a misspecified prior distribution. 

Incomplete learning and remedies. A common theme in the references mentioned above is that it is 

often intractable to compute the optimal Bayesian policy, and that therefore approximations are 

necessary. Rothschild [158] points to a more fundamental problem of the Bayesian framework. He 

assumes that there are only two prices the firm can choose, with demand for each price Bernoulli 

distributed with unknown mean. The dynamic pricing problem is thus viewed as a two-armed bandit 

problem. The optimal Bayesian policy can be computed via the corresponding dynamic programming 

formulation. The key result of Rothschild [158] is that, under the optimal Bayesian strategy, with 

positive probability the price sequence converges to a price that (with hindsight) is not the optimal 

price. McLennan [159] derives a similar conclusion in a related setting: the set of admissible prices is 

continuous, and the relation between price and expected demand is one of two known linear 

demand curves. It turns out that, under an optimal Bayesian policy, the sequence of prices may 

converge with positive probability to a price different from the optimal price. This work is extended 

by Harrison et al. [160], who show that in several instances a myopic Bayesian policy may lead to 

such ‘‘incomplete learning’’. They propose two modifications of the myopic Bayesian policy that 

avoid incomplete learning, and prove bounds on their performance. 

Afèche and Ata [161] derive incomplete-learning results of similar flavor in the context of pricing 

different types of customers in an M/M/1 queue. Cheung et al. [162] extend Harrison et al. [160] to 

the case with k ∈ N unknown demand functions, and where in addition at most m price changes are 

allowed. They propose a pricing policy, show that it achieves Regret(T ) = O(log(m) T ) where log(m) 

denotes the m-times iterated logarithm, and prove that any policy has regret Ω(log(m) T ). Similar 

results are shown to hold in a continuous-time setting. Keskin [163] models the cumulative deviation 

from the expected demand at an incumbent price as the sum of a Wiener process and a drift-term 

proportional to the difference between selling price and incumbent price. The unknown drift-

coefficient is learned by Bayesian updating of the parameters of a Gaussian prior. The author 

explains why a myopic policy induces incomplete learning, and characterizes the optimal learning 

policy as the solution to a partial differential equation (PDE). Based on this policy, he proposes a 

simple pricing rule that deviates from the myopic price proportionally to the squared coefficient of 

variation of the posterior belief on the optimal price, and that does not require solving a PDE. 

Numerical illustrations suggest that the performance of this heuristic is close to optimal. 

Risk-averse pricing. All studies mentioned above assume that the firm is risk-neutral and optimizes 

the expected revenue. Sun and Abbas [164] depart from this assumption by studying the optimal 

price in a Bayesian dynamic-pricing-and-learning problem with a risk-averse seller. Choi et al. [165] 

study a family of simple pricing policies, in a Bayesian setting, based on separating the finite time 

horizon in an exploration and exploitation phase. They calculate the optimal risk-averse price with 

respect to a number of risk measures, and provide numerical examples. 

Economics and econometrics literature. The economics and econometrics literature also contains 

several studies on pricing and Bayesian learning. Prescott [166], Grossman et al. [167], Mirman et al. 

[168] consider two-period models and study the necessity and effects of price experimentation. 

Trefler [169] focuses on the direction of experimentation, and applies his results on several pricing 

problems. Rustichini and Wolinsky [170] and Keller and Rady [171] consider a setting where the 

market environment changes in a Markovian fashion between two known demand functions, and 

study properties of optimal experimentation. 



Balvers and Cosimano [172] consider a dynamic pricing model where the coefficients of a linear 

demand model change over time, and discuss the implications of active learning. Willems [173] aims 

to explain observed discreteness in price data. The author considers a model where the expected 

demand depends linearly on price via two time-varying parameters with known expectation. The 

author elaborates a Bayesian learning approach via dynamic programming, and discusses the 

differences between active and passive learning. Easley and Kiefer [174], Kiefer and Nyarko [175], 

Aghion et al. [176] are concerned with Bayesian learning in general stochastic control problems with 

uncertainty. They study the possible limits of Bayesian belief vectors, and show that in some cases 

these limits may differ from the true value. This implies that active experimentation is necessary to 

obtain strongly consistent control policies. 

Related studies on optimal market design. Finally, we mention the studies Manning [177] and 

Venezia [178] on optimal design of market research. Manning [177] considers a monopolist firm 

facing a finite number of customers. By doing market research, the firm can ask n potential 

customers about their demand at some price p. Such market research is not for free, and the main 

question of the paper is to determine the optimal amount of market research. This setting is closely 

related to pricing rules that split the selling season in two parts (e.g. the first pricing rule proposed by 

Witt [144]): in the first phase, price experimentation takes place in order to learn the unknown 

parameters, and in the second phase of the selling season, the myopic price is used. Venezia [178] 

considers a linear demand model with unknown parameters, one of which behaves like a random 

walk. The firm learns about these parameters using Bayes’ rule. In addition, the firm can learn the 

true current value of this random walk by performing market research (which costs money). The 

author shows how the optimal market-research policy can be obtained from a dynamic program. 

4.1.3. Non-Bayesian approaches 

Policies without performance bounds. Despite the disadvantages of the Bayesian framework outlined 

above (computational intractability of the optimal solution, the results by Rothschild [158] and 

McLennan [159] on incomplete learning), it has taken several decades before research on pricing 

policies in a non-Bayesian setting took off. An early exception is Aoki [146], who proposes a pricing 

scheme based on stochastic approximation in a non-Bayesian framework. He proves that the prices 

converge almost surely to the optimal price, and compares the policy with Bayesian pricing schemes 

introduced in [145]. More recently, Carvalho and Puterman [179,180] and Morales-Enciso and 

Branke [181] propose several pricing heuristics based on approximations of an underlying finite-

horizon dynamic program whose states contain historical price/demand observations (reminiscent of 

the dynamic-programming approximations developed by Aoki [145,146]). 

Seminal paper with performance bounds. A disadvantage of the many pricing heuristics that have 

been proposed in the literature, both in a Bayesian and a non-Bayesian setting, is that a qualitative 

statement of their performance is often missing. In many studies the performance of pricing policies 

is only evaluated numerically, without any analytical results. This changes with the groundbreaking 

work of Kleinberg and Leighton [182], who quantify the performance of a pricing policy by Regret(T ): 

the expected loss in T time periods incurred by not choosing optimal prices. They consider a setting 

where buyers arrive sequentially to the firm, and buy only if their willingness-to-pay (WtP) exceeds 

the posted price. Under some additional assumptions, they show that if the WtP of the individual 

buyers is an i.i.d. sample of a common distribution, then there is no pricing policy that achieves 

Regret(T ) = o(√T); in addition, there is a pricing policy that achieves Regret(T ) = O(√T log T ). In an 

adversarial or worst-case setting, where the WtP of individual buyers is not assumed to be i.i.d., they 

show that no pricing policy can achieve Regret(T ) = o(T^2/3), and that there is a pricing policy with 

Regret(T ) = O(T^2/3 (log T)^1/3). 



Parametric approaches. Le Guen [183], Broder and Rusmevichientong [184], den Boer and Zwart 

[185], den Boer [186], and Keskin and Zeevi [187] take a parametric approach, using classical 

maximum (quasi)likelihood or least-squares estimators to estimate unknown parameters of the 

demand function. Le Guen [183] considers a multi-product setting with linear demand, assuming a 

particular structure on the unknown parameter matrices. He shows that certainty equivalent pricing 

augmented with price experimentation at predetermined time intervals leads to prices converging to 

the true optimal price, and proposes a pricing heuristic for non-linear demand functions. Assuming a 

single product setting with Bernoulli distributed demand, Broder and Rusmevichientong [184] show a 

√T lower bound on the regret, using information-theoretic inequalities and techniques found in 

[188], and show that a pricing policy that strictly separates exploration from exploitation achieves 

O(√T) regret. This rate can be improved to O(log T) if the demand-function is such that there are no 

‘‘uninformative prices’’: prices at which the expected demand given a (erroneous) parameter 

estimate is equal to the true expected demand (the existence of such prices plays an important role 

in the best achievable growth rate of the regret; cf. [160]). Den Boer and Zwart [185] consider an 

extended class of generalized linear single-product demand models, and show in an example that 

certainty equivalent pricing is not strongly consistent. They propose a pricing policy that always 

chooses the price closest to the certainty equivalent price that guarantees a minimum amount of 

price dispersion. This price dispersion, measured by the sample variance of the selling prices, 

guarantees convergence of the prices to the optimal price, and leads to Regret(T ) = O(T 1/2+δ), for 

arbitrary small δ > 0. Den Boer [186] extends this policy to multiple products, attaining Regret(T ) = 

O(√T log T) for so-called canonical link functions and Regret(T ) = O(T^2/3) for general link functions. 

Keskin and Zeevi [187] assume a linear demand function, show a √T lower bound on the regret using 

proof techniques different from [184], and generalize Broder and Rusmevichientong [184] and den 

Boer and Zwart [185] by providing sufficient conditions for any pricing policy to achieve Regret(T) = 

O(√T log T). Assuming that the mean demand is exactly known at a certain price, they show that 

Regret(T ) = O(log T) is attainable. Both these results are extended to the multiple-product setting, 

focusing on a class of so-called orthogonal pricing policies. 

Robust optimization. Eren and Maglaras [189] study dynamic pricing in a robust optimization setting. 

They show that if an infinite number of goods can be sold during a finite time interval, it is optimal to 

use a price-skimming strategy. They also study settings where learning of the demand function 

occurs, but under the rather strong assumption that observed demand realizations are without 

noise. Bergemann and Schlag [190,191] and Handel et al. [192] also consider pricing in a robust 

framework, but their setting is static instead of dynamic. Handel and Misra [193] consider a two-

period model where a monopolist sets prices based on a set of demand curves feasible with acquired 

sales data. The authors describe and analyze the optimal two-period pricing policy that minimizes a 

dynamic version of the minimax regret, and investigate how customer preferences influence the 

difference between dynamic and static prices. 

Finite action set. If the demand model is assumed to lie in a finite set of known demand functions, 

the dynamic-pricing-and-learning problem can be regarded as a multi-armed bandit problem with 

dependent arms. This viewpoint is taken by Tehrani et al. [194], who develop a pricing policy based 

on the likelihood-ratio test, and show that its regret is bounded assuming that there are no 

uninformative prices. Their work can be viewed as a non-Bayesian counterpart to Harrison et al. 

[160] and Cheung et al. [162].  

Variants. Pricing without demand information in a queueing model is studied by Haviv and Randhawa 

[195]. They consider the problem of pricing delay-sensitive customers in an unobservable M/M/1 

queue. The purpose of the paper is to study the impact of ignoring arrival-rate information on the 



optimal pricing strategy. The authors find that a policy that ignores this information performs 

surprisingly well, and in some cases can still capture 99% of the optimal revenue. 

Finally, we mention Jia et al. [196], who consider dynamic pricing and learning in an electricity 

market, where the goal is to steer the expected demand to a desired level. This particular objective is 

reminiscent of the multi-period control problem discussed in [197,198]. A stochastic-approximation 

type policy inspired by Lai and Robbins [199] is shown to achieve O(log T ) regret, and in addition it is 

shown that no policy can achieve sub-logarithmic regret. The fact that logarithmic instead of √T 

regret can be achieved is caused by subtle differences between dynamic pricing and this multi-period 

control problem, which are further discussed in [185, Remark 1]. 

4.2. Finite inventory 

We here discuss the literature on dynamic pricing and learning in the presence of finite inventory 

that cannot be replenished. Most of the studies assume a finite selling season, corresponding to the 

models discussed in Section 3.2.1. Some studies assume an infinite time horizon, and consider the 

objective of maximizing total discounted reward. 

4.2.1. Early work 

Lazear [200] considers a simple model where a firm sells one item during at most two periods. In the 

first period a number of customers visit the store; if none of them buys the item, the firm adapts its 

prior belief on the value of the product, updates the selling price, and tries to sell the item in the 

second period. The author shows that the expected profit increases by having two selling periods 

instead of one. He extends his model in several directions, notably by allowing strategic behavior of 

customers who may postpone their purchase decision if they anticipate a price decrease. Sass [201] 

extends the model of Lazear and studies the relation between the optimal price strategy and the 

number of potential buyers. 

4.2.2. Bayesian approaches  

Unknown arrival rate, known willingness-to-pay. Aviv and Pazgal [202] start a research stream on 

Bayesian learning in dynamic pricing with finite inventory. Customers arrive according to a Poisson 

process with unknown arrival rate, and purchase a product with (known) probability exp(−p), where 

p is the current selling price. The unknown arrival rate is learned via Bayesian updates of a Gamma 

prior. The authors characterize the optimal continuous-time pricing policy by means of a differential 

equation. Because this equation does not always admit an explicit solution, three pricing heuristics 

are proposed: certainty equivalent pricing (CEP), a fixed price policy, and a naive pricing policy that 

ignores uncertainty on the market. Numerical experiments suggest that CEP performs quite well. Lin 

[203] considers a similar setting, allowing for general willingness-to-pay distributions. He proposes a 

pricing policy where the seller sets the price based on repeatedly updated estimates of the demand 

distribution, and evaluates its performance via simulations. 

Araman and Caldentey [204], Farias and van Roy [205] and Mason and Välimäki [206] study the 

infinite-horizon discounted-reward case. Araman and Caldentey [204] assume a known willingness-

to-pay distribution and a two-point prior distribution on the unknown arrival rate, propose a pricing 

heuristic based on an asymptotic approximation of the value function of the underlying optimal-

control problem, and compare its performance numerically with CEP, static pricing, and a two-price 

policy. In a similar setting Farias and van Roy [205] take a finite mixture of gamma distributions as 

prior, propose a pricing heuristic called decay balancing, and show numerically that it frequently 

outperforms CEP and the heuristics of Araman and Caldentey [204]. They further show that the 



expected discounted reward obtained from decay balancing is at least one third of the optimal 

reward, and discuss an extension to multiple stores. Mason and Välimäki [206] assume that only a 

single item is sold, with either high or low customer arrival-rate which is learned in a Bayesian 

fashion. The authors study structural properties of the optimal price policy and compare it to policies 

that neglect learning. 

Avramidis [207] observes that the number of arrivals or the number of sales is sufficient to compute 

the posterior arrival-rate distribution, given any prior. This means that the setting considered by Aviv 

and Pazgal [202], Lin [203], Araman and Caldentey [204] and Farias and van Roy [205] can be 

resolved without imposing a specific family of priors (Gamma, two-point discrete, finite mixture of 

Gammas). 

Unknown arrival rate and unknown willingness-to-pay. Chen and Wang [208] consider pricing of a 

single asset in an infinite horizon with discounted rewards, and assume that the willingness-to-pay 

distribution is unknown but equal to one of two known distributions. The authors formulate a 

Bayesian dynamic program and prove that the optimal prices decline over time if the hazard rates of 

these distributions can be ranked uniformly; a counterexample shows that this condition cannot be 

relaxed to first-order stochastic dominance. Sen and Zhang [209] extend the model of Aviv and 

Pazgal [202] by assuming that the purchase probabilities of arriving customers are not known to the 

firm. They assume that the demand distribution is an element of a finite known set, and consider a 

discrete-time setting with Bayesian learning and a gamma prior on the arrival rate. The optimal 

pricing policy can be explicitly calculated, and, in an extensive computational study, its performance 

is compared with both a full information setting and a setting where no learning occurs. 

Partially observable Markov decision processes. Aviv and Pazgal [210] consider a Markov-modulated 

demand environment, modeled by a Markov chain where each of the finite states corresponds to a 

different known demand function, and where the state of the system is learned in a Bayesian 

fashion. The optimal pricing problem is formulated as a Partially Observable Markov Decision 

Process, that turns out to be computationally intractable. Various approximate solutions are 

proposed that rely on modifying the information structure of the problem, and their performance is 

evaluated in a numerical study. Chen [211] considers a similar partially observable Markov decision 

process. In his setting, the seller estimates the willingness-to-pay distribution of customers based on 

two-sided censored observations. Three near-optimal price heuristics are proposed and their 

performance is assessed by numerical experiments. For exponentially or Weibull distributed demand, 

more refined results on the behavior of the heuristics are obtained. 

4.2.3. Non-Bayesian approaches 

Asymptotic regime where inventory grows large. The optimal pricing problem studied by Gallego and 

van Ryzin [94] does often not admit an explicit solution, and the authors therefore consider an 

asymptotic regime where both the demand and the level of inventory grow large. They prove that 

the optimal revenue obtained in this asymptotic regime serves as an upper bound for the optimal 

expected revenue of the original problem, and show that the optimal asymptotic pricing policy is to 

use a static price throughout the sales horizon. This static price is the maximum of the unconstrained 

optimal price (the revenue-maximizing price in the case of infinite inventory) and of the clearance 

price (the price that induces a stock-out precisely at the end of the sales horizon). 

Besbes and Zeevi [212] initiate a stream of literature that attempts to learn this optimal static price in 

an incomplete-information setting. For both a parametric and non-parametric setting they develop 

pricing policies, based on the idea of dividing the sales horizon into an ‘‘exploration’’ phase during 

which the demand function is learned and an ‘‘exploration’’ phase during which the perceived 



optimal price is used. To establish performance bounds, they consider a sequence of problems 

indexed by n ∈ N, where the n-th problem has initial inventory nx and demand function nλ, for some 

x > 0 and some function λ. They prove an O(n^−1/4(log n)^1/2) upper bound on the relative regret of 

this policy in the non-parametric setting, an O(n^−1/3(log n)^1/2) bound in the parametric setting, 

and an O(n^−1/2(log log n)(log n)^1/2) bound in case the demand function is known up to a single 

unknown parameter. 

These upper bounds are complemented by results showing that all policies have relative regret 

Ω(n^−1/2). In a non-parametric setting, Wang et al. [213] improve these upper bounds by developing 

a policy with relative regret O(n^−1/2(log n)^4.5); apart from the logarithmic term, this policy thus 

achieves the asymptotically optimal regret rate. The pricing policy is based on the idea of iterative 

price experimentation in a shrinking series of intervals that with high probability contain the optimal 

price. Lei et al. [214] provide a further improvement by even removing the logarithmic terms in the 

upper bound: they propose and analyze three pricing algorithms based on ideas from bisection 

search and stochastic approximation, and show that one of these algorithms achieves O(n^−1/2) 

relative regret. 

Besbes and Zeevi [215] extend Besbes and Zeevi [212] to a setting where multiple products share the 

same finite resources. They show that a policy which separates ‘‘exploration’’ and ‘‘exploitation’’ 

achieves relative regret O(n^−1/(3+d)(log n)^1/2), where d is the number of products. This is 

improved to O(n^−1/(3+d/s) (log n)^1/2) if one assumes additional smoothness conditions on the 

demand function, including s-times differentiability, and to O(n^−1/3(log n)^1/2) if the set of feasible 

prices is discrete and finite; this last setting is accompanied by an Ω(n^−1/2) lower bound on the 

relative regret of any policy. Another variant of the problem is studied by Besbes and Maglaras [216], 

who study the situation where certain financial milestone constraints in terms of sales and revenues 

targets are imposed. They formulate a pricing policy that periodically updates its pricing decisions in 

order to the most stringent financial constraint, and show an O(n^−1/2(log n)^1/2) bound on the 

relative regret. Avramidis [207] modifies the type of policy proposed by Besbes and Zeevi [212] by 

estimating both arrival rate and purchase probabilities, and by using the solution of the finite-time 

Markov decision problem in the exploitation phase instead of the solution that corresponds to the 

asymptotic regime. Numerical experiments suggest that these modifications lead to lower regret. 

Alternative asymptotic regimes. The high-volume regime of the studies mentioned above is not 

applicable for settings with relatively low inventory. This motivates den Boer and Zwart [217] to 

study a setting with multiple, consecutive, finite selling seasons and finite inventories. They show in a 

parametric framework that this setting satisfies a certain endogenous-learning property, which 

implies that price experimentation is hardly necessary to eventually learn the optimal prices. The 

authors prove that the (cumulative) regret of a small modification of certainty equivalent pricing is 

O(log^2 T) after T selling seasons, and that any policy has regret Ω(log T). 

In [218], a firm tries to sell k items to n potential customers. The authors propose an online pricing-

and-learning policy that does not require parametric assumptions on the demand distribution, and 

that exploits the fact that the problem is closely related to multi-armed bandit problems (despite the 

finite inventory, which means that the optimal price depends on the current inventory level). They 

show a regret bound of O((k log n)^2/3), and provide a matching lower bound on the regret. If the 

ratio k/n is sufficiently small this bound is improved to O(√k log n). 

Bertsimas and Perakis [219] consider pricing in a least-squares-learning setting with a single selling 

season. They formulate a dynamic program that describes the optimal pricing policy but is 

computationally intractable, and propose approximate solutions based on state-space reductions. 



For an extended model with competitors and slowly varying parameters, estimation methods and 

price policies are discussed. No performance bounds on pricing policies are provided. 

Robust optimization. A number of studies take a robust approach, where the demand function is not 

learned over time but assumed to lie in some known uncertainty set. Lim and Shanthikumar [220] 

and Thiele [221] study this in a single-product setting, and Lim et al. [222], Thiele [223] in a multi-

product setting. With these robust approaches no learning takes place, despite the accumulation of 

sales data. Cohen et al. [224] develop an approach to dynamic pricing and learning that attempts to 

bridge this gap between robust and data-driven approaches, by sampling different scenarios from 

historical sales data. A robust extension of Araman and Caldentey [204] and Farias and van Roy [205], 

where finite inventory is sold during an infinite time horizon, is studied by Li et al. [225]. Another 

approach that does not rely on historical demand data is Xiong et al. [226] (see also [227–229]). They 

model demand uncertainty using fuzzy set theory, propose different fuzzy programming models, and 

present an algorithm based on fuzzy simulation and a genetic algorithm to solve these problems. 

Dziecichowicz et al. [230] do not focus on determining optimal prices, but instead study the optimal 

timing of markdowns. The authors derive a robust optimization problem to determine the optimal 

markdown policy, which in some special cases can be solved exactly and in other cases can be 

approximated by a mixed-integer problem. The results are also extended to multiple products. 

Finally, Ferrer et al. [231] assume that demand is a non-random function of price, and lies in an 

uncertainty set of demand functions known to the decision maker. The authors introduce a measure 

of risk aversion, and study the relation between risk-aversion and properties of the optimal pricing 

policy, both theoretically and by numerical simulations. 

Variants. Gallego and Talebian [232] consider a setting where a finite number of products is offered 

in multiple versions during a finite sales horizon. Demand is modeled by a customer choice model. 

The different product-versions share an unknown ‘‘core value’’, which is estimated by maximum 

likelihood estimation. The possible time-varying arrival rate of customers is learned in Bayesian 

fashion. The authors develop a pricing rule in a rolling horizon framework, and illustrate its behavior 

by a computational study. Somewhat related to this is Berg and Ehtamo [233], where a firm sells 

different versions of a product to different customer segments. The utility functions of each segment 

are partly unknown, and learned by the firm using stochastic gradient methods or variants thereof. 

 

4.3. Machine-learning approaches 

A considerable stream of literature on dynamic pricing and learning has emerged from the computer 

science community. In general, the focus of these papers is not to provide a mathematical analysis of 

the performance of pricing policies, but rather to design a realistic model for electronic markets and 

subsequently apply machine learning techniques. An advantage of this approach is that one can 

model many phenomena that influence the demand, such as competition, fluctuating demand, and 

strategic buyer behavior. A drawback is that these models are often too complex to analyze 

analytically, and insights on the behavior of various pricing strategies can only be obtained by 

performing numerical experiments. 

Machine-learning techniques that have been applied to dynamic pricing problems include 

evolutionary algorithms [234, 235], particle swarm optimization [236], reinforcement learning and Q-

learning [237–252], simulated annealing [253], Markov chain Monte Carlo methods [254], the 

aggregating algorithm [255] by Vovk [256], goal-directed and derivative-following strategies in 

simulation [257,258], neural networks [259–263], and direct search methods [259,264–266].  



These papers all use very different models, methods, assumptions and performance metrics. This 

makes it hard to compare different papers with each other, which we therefore do not attempt. 

4.4. Joint pricing and inventory problems 

A few studies consider the problem of simultaneously determining an optimal pricing and inventory 

replenishment policy while learning about the demand. 

Parametric approaches. Most of them consider learning in a Bayesian framework. Subrahmanyan 

and Shoemaker [267] assume that the unknown demand function lies in a finite known set of 

demand functions, and is learned in a Bayesian fashion. The optimal policy is determined by solving a 

dynamic program. Several numerical experiments are provided to offer insight in the properties of 

the pricing policy. Bitran and Wadhwa [268] and Bisi and Dada [269] study a similar type of problem, 

where an unknown parameter is learned in a Bayesian manner, and where the optimal decisions are 

determined by solving a dynamic program. Bitran and Wadhwa [268] perform extensive 

computational experiments, and Bisi and Dada [269] derive several structural properties of the 

optimal policy. Zhang and Chen [270] consider Bayesian learning of a component of the demand 

distribution that does not depend on the selling price, and show that the finite-horizon expected 

discounted profit is maximized by a so-called base stock list price policy [271,124]. Motivated by 

industrial practice of fashion retailers, Choi [272] considers a scenario where the seller can order 

inventory and change selling prices at two distinct stages in the selling season. Information obtained 

from the first stage is used in a Bayesian manner to determine optimal decisions in the second stage. 

The author formulates a dynamic program, proves several structural properties, and carries out 

numerical experiments to illustrate his results. Gao et al. [273] formulate and solve a two-period 

two-products pricing and inventory problem with Bayesian learning of unknown demand 

parameters. Forghani et al. [274] allow for a single price change, formulate the optimal control 

problem, and show numerical examples. In [275], a manufacturer estimates the optimal capacity 

decision from advance sales information obtained prior to the regular selling season. Formal learning 

of demand parameters is not considered, but the electronic companion to the paper elaborates upon 

an extension to Bayesian learning. 

Non-parametric and robust approaches. Burnetas and Smith [276] consider a joint pricing and 

inventory problem in a non-parametric setting. They propose an adaptive stochastic-approximation 

policy, and show that the expected profit per period converges to the optimal profit under complete 

information. A robust approach to the dynamic pricing and inventory control problem with multiple 

products is studied by Adida and Perakis [277]. The focus of that paper is the formulation of the 

robust optimization problem, and to study its complexity properties. Related is the work of Petruzzi 

and Dada [278]. These authors assume that there is no demand noise, which means that the 

unknown parameters that determine the demand function are completely known once a demand 

realization is observed that does not lead to stock-out.  

Adida and Perakis [279] discuss several robust and stochastic optimization approaches to joint pricing 

and procurement under demand uncertainty, and compare these approaches with each other in a 

numerical study. Mahmoudzadeh et al. [280] formulate a robust control problem for joint pricing and 

production in a hybrid manufacturing/remanufacturing system, where the coefficients of a linear 

demand function are unknown. Arasteh et al. [281] consider a similar setting for a joint pricing-and-

inventory problem. 

Variants. Lariviere and Porteus [282] consider the situation of a manufacturer that sells to a retailer. 

The manufacturer decides on a wholesale price offered to the retailer, and the retailer has to choose 

an optimal inventory replenishment policy. Both learn about a parameterized demand function in a 



Bayesian fashion. Properties of the optimal policy, both for the manufacturer and the retailer, are 

studied. Gaul and Azizi [283] assume that a product is sold in different stores. The problem is to 

determine optimal prices in a finite number of periods, as well as to decide if and how inventory 

should be reallocated between stores. Parameters of the demand function are learned by Bayesian 

updating, and numerical experiments are provided to illustrate the method. 

5. Methodologically related areas 

Dynamic pricing under uncertainty is closely related to multi-armed bandit problems. This is a class of 

problems that capture many essential features of optimization problems under uncertainty, including 

the well-known exploration–exploitation trade-off: the decision maker should properly balance the 

two objectives of maximizing instant reward (exploitation of current knowledge) and learning the 

unknown properties of the system (exploration). This trade-off between learning and instant 

optimization is also frequently observed in dynamic pricing problems. 

The literature on multi-armed bandit problems is large; some key references are Thompson [284], 

Robbins [285], Lai and Robbins [286], Gittins [287], Auer et al. [288]; see further Vermorel and Mohri 

[289], Cesa-Bianchi and Lugosi [290], and Powell [291]. If in a dynamic pricing problem the number of 

admissible selling prices is finite, the problem can be modeled as a classical multi-armed bandit 

problem. This approach is e.g. taken by Rothschild [158], Xia and Dube [253], and Cope [157]. If the 

set of admissible selling prices is a continuum, then the dynamic pricing problem is closely related to 

the continuum-armed bandit problem. This problem has recently been studied, among others, by 

Kleinberg [292], Auer et al. [293], Cope [294], Wang et al. [295], Goldenshluger and Zeevi [296], 

Rusmevichientong and Tsitsiklis [297], Filippi et al. [298], Abbasi-Yadkori et al. [299], Yu and Mannor 

[300], Slivkins [301], Perchet and Rigollet [302], Combes and Proutiere [303]. Pricing and learning in a 

time-varying market, as discussed in Section 6.3, is related to the non-stationary multi-armed bandit 

problem [304,305]. 

Another important area related to dynamic pricing and learning is the study of convergence rates of 

statistical estimates. Lai and Wei [306] study how the speed of convergence of least-squares linear 

regression estimates depend on the amount of dispersion in the explanatory variables. Their results 

are applied in several dynamic pricing problems with linear demand functions, such as Le Guen [183] 

and Cooper et al. [307]. Similarly, results on the convergence rate of maximum-likelihood estimators, 

as in [308,309], are crucial in the analysis of pricing policies by Besbes and Zeevi [188], Broder and 

Rusmevichientong [184] and den Boer and Zwart [185]. 

Dynamic pricing and learning can also be put in a general framework of stochastic control problems 

with parametric uncertainty. For various dynamic economic models, such problems have been 

considered by Easley and Kiefer [174], Kiefer and Nyarko [175], Marcet and Sargent [310], Wieland 

[311,312], Beck and Wieland [313], Han et al. [314], amongst many others. Kendrick et al. [315] 

review some of this literature, focusing on continuous-time optimal control problems with linear 

system equations, quadratic cost functions, and Gaussian additive noise terms. 

Clearly, many sequential optimization problems in operations research that are studied in an online-

learning setting have methodological similarities with dynamic pricing and learning: inventory control 

([316–318], is just a small sample of the vast literature), online advertisement (e.g. [319]), resource 

allocation (e.g. [320]), assortment planning (e.g. [321–323]), product launch and product exit 

optimization (e.g. [324]), et cetera. These problems can also be studied in conjunction with optimal 

pricing. For example, Talebian et al. [325] study simultaneous pricing and assortment optimization 

with Bayesian demand learning, and Section 4.4 lists a number of studies that combine pricing and 

inventory control in an incomplete-information setting. 



6. Extensions and new directions 

Most of the literature discussed above studies dynamic pricing and learning for a monopolist firm 

that sells a single product to nonstrategic customers in a stationary market environment. Here we 

review literature on a number of extensions to this setting: strategic customer behavior, competition, 

time-varying markets, and model misspecification. Note that the first three of these extensions can in 

some sense be regarded as extending the literature of Section 3.1, on dynamic pricing with dynamic 

demand, to an incomplete-information framework. 

6.1. Strategic consumer behavior 

The importance of incorporating the effect of strategically behaving customers on the dynamic 

pricing policy has repeatedly been recognized; cf. the papers on dynamic pricing with strategic 

customer behavior mentioned in Section 3.2.1. The study of dynamic pricing with both strategic 

customer behavior and demand learning, however, is not that well developed. 

Learning of the willingness-to-pay distribution. Studies in which the demand distribution is not 

assumed to be known are Loginova and Taylor [326], Levina et al. [255], Weaver and Moon [327] and 

Caldentey et al. [328], and Lazear [200] which is discussed in Section 4.2.1. In [326], the seller learns 

the willingness-to-pay in a stylized model with a single customer whose product valuation is either 

‘‘high’’ or ‘‘low’’. The authors characterize game-theoretic equilibria and study the effect of strategic 

behavior of the buyer. Levina et al. [255] consider a seller who learns about a complicated demand 

process that incorporates, among other things, strategic customer behavior. This behavior is 

described using a game-theoretic consumer choice model. The focus of the paper is on properties 

and numerical performance of an online-learning algorithm proposed by the authors. Weaver and 

Moon [327] and Caldentey et al. [328] take a robust-optimization approach. Inspired by sales of food 

and agriculture products, Weaver and Moon [327] formulate a robust pricing model with multiple 

products, multiple customer segments, and linear demand function, and numerically compare its 

performance with two ‘‘price-assurance policies’’: a policy that offers refund to consumers if the 

price falls below their purchase price, and a policy that ensures that price will not decline sufficiently 

to induce refunds. Caldentey et al. [328] consider a robust formulation of the seller’s pricing problem 

for a discrete-time infinite-inventory setting with unknown valuations and arrival times of customers, 

and characterize the pricing policies that minimize the worst-case regret, both in case of myopic or 

strategic customers. The authors also analyze the limit of the regret and optimal pricing strategies as 

the length of the discrete time periods goes to zero. 

No learning of the willingness-to-pay distribution. In [329–331], the unknown quality of the product is 

learned. This introduces a game with strategic behavior of customers, who may postpone their 

purchase in order to retrieve more information, induce a markdown, or influence the belief of the 

seller about the quality of product. In [332] consumers learn about the capacity of the seller in 

repeated two-period selling season, and in [333] consumers learn their valuations while the firm 

learns the market size. Mersereau and Zhang [334] considers a firm that learns the relative amount 

of strategic customers. None of these studies involve learning the demand or willingness-to-pay 

distribution (given the quality of the product). 

6.2. Competition 

Several studies address the issue of incorporating competition in dynamic pricing and learning. This is 

challenging, because one generally does not know how competitors behave, and their behavior 

influences a firm’s own optimal pricing policy. The literature references in this section are not 

comprehensive, but meant to give a flavor of available approaches and results. 



Parametric approaches. The already mentioned paper by Bertsimas and Perakis [219] considers a 

least-squares learning setting with finite inventories, multiple competitors, and linear demand 

functions with slowly varying parameters. The authors propose an estimation and price-optimization 

scheme, and illustrate the method by numerical examples. The related study Kachani et al. [335] 

considers multiple quantity-setting firms selling the same type of products with finite inventories. 

The price–demand relation is linear, with unknown parameters that may slowly vary over time. The 

authors formulate the optimization problem as a mathematical program with equilibrium 

constraints, provide some computational results, and derive a closed-form expression of a limiting 

Nash equilibrium in case of two firms and a selling horizon of two time periods. Kwon et al. [336] 

formulate a finite-time finite-capacity oligopolistic pricing problem in the language of differential 

variational inequalities. They consider a demand model where the time-derivative of demand is 

proportional to the difference between a firm’s price and a moving average of prices used in the 

past. Unknown model parameters are estimated with a Kalman filter, which is recalculated at several 

moments in the sales horizon. The authors propose an algorithm to solve the resulting differential 

variational inequalities, and illustrate their method by a numerical example. A similar setting is 

considered by Li et al. [337] and Chung et al. [254], who incorporate a non-parametric functional-

coefficient autoregressive time series in their demand model. Duopoly models are studied, among 

many others, by Coughlan and Mantrala [338] in a Bayesian framework and by Choi and Jagpal [339] 

in a setting with risk-averse firms. 

Robust approaches. A robust optimization approach to dynamic pricing in an oligopolistic 

environment with demand uncertainty is taken by Perakis and Sood [340] (see also the closely 

related study Friesz et al. [341]). They consider a multi-period setting with fixed, finite inventory 

levels, and study Nash equilibrium price policies. Adida and Perakis [342] consider a joint pricing-and-

inventory control problem with duopolistic competition and demand uncertainty, and formulate it as 

a robust optimization problem. The authors discuss existence and uniqueness of a Nash equilibrium 

and address various computational aspects of the problem. 

Economics and econometrics literature. A large stream of economics literature is concerned with the 

long-term behavior of price adjustment processes in oligopolistic settings, cf. [343–357]. One usually 

assumes that firms are using a certain specific learning scheme, and then studies whether the selling 

prices converge to a Nash equilibrium. While these papers are interesting from the perspective of 

understanding price formation, application in business practice is hampered by the fact that one 

generally does not know which learning scheme competing firms are using. A remarkable early study 

on pricing and learning in a competitive environment is Barta and Varaiva [358], who study 

convergence properties of various stochastic-approximation based price-adjustment rules. 

Computer science literature. Contributions from the computer science community to dynamic pricing 

with demand uncertainty in a competitive environment include Greenwald and Kephart [359], 

Dasgupta and Das [360], Tesauro and Kephart [361], Kutschinski et al. [237], Könönen [239], 

Jumadinova and Dasgupta [362,363]. 

6.3. Time-varying market parameters 

Recently several studies have appeared that depart from the strong assumption of unchanging 

market conditions. We here only list papers that include mathematical performance analysis of the 

proposed pricing rules. 

Besbes and Sauré [364] study the classical finite-inventory finite selling-season pricing problem in a 

setting with deterministic demand functions. The seller anticipates that the initial demand function d 

may at some moment τ change to d^θ ∈ {d^1, . . . , d^K }, where (τ , θ) are random variables with 



known distributions and where d^1, . . . , d^K are known functions. The authors formulate the 

optimal pricing problem and derive conditions that induce monotonicity properties of the optimal 

pricing strategy. Chen and Farias [365] also study pricing in a finite-inventory setting where the 

market process is fluctuating over time. They propose a pricing heuristic which is based on the idea 

of frequently re-calculating the estimated optimal fixed price. The authors prove bounds on the 

performance loss relative to an optimal clairvoyant pricing strategy in an asymptotic regime where 

inventory and demand grows large. 

In an infinite-inventory setting, Besbes and Zeevi [188] study a pricing problem where customers’ 

willingness-to-pay (WtP) distribution changes at some unknown point in time. The WtP distribution 

before and after the change is assumed to be known, only the time of change is unknown to the 

seller. Lower bounds on the worst-case regret are derived, and pricing strategies are developed that 

achieve the order of these bounds. Keskin and Zeevi [366] consider a linear demand function with 

time-varying parameters, which are estimated with weighted least squares. They measure the 

amount of change in the parameter process by the quadratic variation over T periods, and assume it 

is bounded by BT^ν , for some known ν ∈ [0, 1] and unknown B ≥ 0. An Ω(T^(2+ν)/3) lower bound on 

the regret attainable by any policy is proven, and a pricing policy that separates the time horizon into 

pure exploration and exploitation periods is shown to have regret O(T^(2+ν)/3). More refined 

expressions are derived in case B is known. If only ‘‘bursty’’ changes occur, the authors show that a 

regret of O(T^1/2 log T) can be achieved. Den Boer [367] considers a similar set-up with linear 

demand and weighted least-squares estimation, but assumes that only the size of the market (the 

intercept) is unknown. A myopic pricing policy is considered, and upper bounds on the long-term 

average regret are provided. The methodology is illustrated by applying it to pricing in the Bass 

model, and to pricing in a competitive environment. 

A particular structural form of the evolution of the market process is assumed by Wang et al. [368] 

and Chakravarty et al. [369]. Wang et al. [368] assume that the demand intensity over the life-cycle 

of an information good behaves as the density function of a Weibull distribution, whose unknown 

parameters are learned in a Bayesian fashion using Monte-Carlo simulation techniques. Chakravarty 

et al. [369] propose a simulation-based algorithm to calculate the optimal price path for a product-

diffusion model introduced by Robinson and Lakhani [86]. 

6.4. Model misspecification  

Studies that assume a parametric form of the demand functions face the risk of model 

misspecification. Besbes and Zeevi [370] show in a single-product setting that the loss incurred by 

such misspecification may in some settings be not that significant. Another form of misspecification is 

incorrectly assuming that there are no competitors present. Schinkel et al. [354], Tuinstra [357], 

Bischi et al. [371,372], Isler and Imhof [373], Cooper et al. [307], Anufriev et al. [374] study the effect 

of this error on the resulting equilibria in various (linear) models, elaborating on earlier work by 

Kirman [344,375–377]. In an airline revenue-management setting, Cooper et al. [378] show that 

incorrectly assuming high-fare and low-fare class passengers behave independently can be 

detrimental for the firm’s revenue. 

7. Conclusion 

Dynamic pricing with incomplete demand information is a topic that has received considerable 

research attention in recent years. Different scientific communities have studied characteristics of 

pricing policies, usually with different aims in mind: the operations research/management science 

literature typically focuses on finding an optimal pricing policy from the perspective of a seller, and 

on proving optimality properties in tractable models; the economics literature is generally more 



concerned with explaining price behavior and price formation observed in markets; and the 

computer science literature is typically not afraid to consider complicated demand models that are 

not tractable for mathematical analysis, but that can be handled using appropriate machine learning 

techniques. In spite of these different aims, there is much in overlap in the studied demand models, 

proposed pricing policies, and the techniques deployed to analyze the behavior of these policies. 

With this survey we aim to provide a comprehensive overview of these studies, and facilitate further 

research on this broad and lively research topic. 
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Appendix 2: Review of the demand price elasticity for water – experience from 

Greek cities 
 

Price elasticity of demand measures the responsiveness of demand to a change in price. This 

principal is based on consumers’ attempt to optimize their utility function. 

The investigation of the researches conducted for the estimation of demand price elasticity for water 

in Greece indicated few projects with reliable estimation of mentioned indicator. The research differ 

by size of the agglomeration, sample of the investigated inhabitants and research period. The review 

was made with the differentiation of the calculation starting from average prices and marginal prices 

(the average price is defined as the water bill paid by the consumer divided by the amount of water 

consumed. The marginal price is the price that a consumer should pay, according to the water price 

structure, for the next m3 of water).  Review of identified projects is summarised below. 



1. Value -0,55: -0,24 – data estimated from 4 regional cities: Xanthi, Komotini, Ioannina, 

Alexandroupolis. Different tariffs’ across the cities (flat rate/block tariffs’) . Research in period 

2003-2005. Daily water consumption pc 115-130l. Source: Gratziou M., Andreadaki M., 

Tsalkatidou M.,  Water demand and rates policy in provincial cities in Greece in: European Water 

15/16 pg 33-44, 2006. www.ewra.net/ew/pdf/EW_2006_15-16_04.pdf 

2. Value: -0,42; -0,433.  data for one city: Kozani. Research in period 2005-2012. Increasing block 

tariffs (8 blocks). Source: Kanakoudis V., Gonelas K., Forecasting the Residential Water Demand, 

Ballancing Full Water Cost Pricing and Non-RevenueWater Reduction Polices. Procedia 

Engineering 89 ( 2014 ) 958 – 966. 

http://www.sciencedirect.com/science/article/pii/S1877705814026459 

3. Value: -0,1. Data for Athens Metropolitan Area. Research in period 2000-2010. Source: Bithas 

Kostas, Stoforos Chrysostomos, Estimating Urban Residential Water Demand Determinants and 

Forecasting Water Demand for Athens Metropolitan Area, 2000-2010 South-Eastern Europe 

Journal of Economics 1 (2006) 47-59. 

4. Value: -0,19;-0,72. Thessaloniki. Research in period 1994-2000. Source: Mylopoulos Y., Kolokytha 

E., Mentes A., Vagiona D., Urban water demand management – The city of Thessaloniki-Greece 

case study. In: Advances in Water Supply Management. Butler D., Menon F.,Maksimovic C., 

Sweets&Zeitlinger, Lisse 2003. 

https://books.google.pl/books?id=SCUT4QDVkJEC&pg=PA721&lpg=PA721&dq=demand+price+el

asticity+water+greece&source=bl&ots=gGA9IbOPwG&sig=oFGZJ0yr_UbkXv8zcEEpW6a24mw&hl

=pl&sa=X&ved=0CFwQ6AEwB2oVChMI0Zmby7vwxgIVQlcUCh3xagIh#v=onepage&q=demand%20

price%20elasticity%20water%20greece&f=false 

Taking into account that the projects no 3 and 4 are related to very big agglomeration the results 

from the first two are much more applicable to the case of Skiathos. The preliminary assumption that 

the most appropriate value ranges at -0,4 can be applied for the model, however the elasticity of the 

output on the other values will be verified.  
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