

ALLOW

Adaptable Pervasive Flows

213339

Deliverable D4.3

Specification of adaptive algorithms for
distributed control of adaptive flow control

engine (Phase 2)

Contributor : USTUTT
Author : IPVS
Reference Number : ALLOW.USTUTT.D43.2011-07-04
Version : 1.0 - Final
Date : 2011-07-30
Classification : Public
Circulation : Project Team
Contract Start Date ... : 2008-02-01 - Duration: 42 Months
Project Coordinator ... : USTUTT
Project Partner : USTUTT (IPVS), USTUTT (IAAS), UNI PASSAU, FBK, Imperial, ULANC

FET - Future and Emerging Technologies
Project funded by the European Community

under the FP7-Programme (2007 - 2013)

D4.3

2011-07-30 i

Copyright

© Copyright 2011, the ALLOW Consortium:

• USTUTT Universität Stuttgart – IPVS
Universität Stuttgart – IAAS

• UNI PASSAU Universität Passau
• FBK Fondazione Bruno Kessler
• Imperial Imperial College of Science, Technology and Medicine
• ULANC Lancaster University

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the ALLOW Consortium. In
addition to such written permission to copy, reproduce, or modify this document in
whole or part, an acknowledgement of the authors of the document and all
applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

This document may change without any notice.

D4.3

2011-07-30 ii

Document History

Version Issue Date Author Content and Changes

0.1 04.07.11 Klaus Herrmann Coarse Structure

0.2 19.07.11 Klaus Herrmann First complete draft version

0.3 25.07.11 Stefan Föll, Hannes Wolf Second draft

1.0 30.07.11 Klaus Herrmann Final version

D4.3

2011-07-30 iii

Executive Summary

In this document, we describe the work conducted in WP4 over the final 18 months of the
project. This work was primarily concerned with three areas of research: (1) flow distribution,
(2) robust flow navigation, and (3) context prediction. It builds on the work described in Deli-
verables D4.1 and D4.2. D4.1 reported on architectural concerns with respect to flow control,
and D4.2 reported on fundamental modeling and algorithmic aspects. The work reported in this
document represents a considerable extension of the prior work. In the area of flow distribu-
tion, we present two algorithms that optimize a flow-based application with respect to user-
perceived latency and energy consumption. In addition to this, we have investigated two asso-
ciated fields.

Robust flow navigation is concerned with the question as how flows can be controlled robustly
in the face of uncertainty and noisiness of context data as it is commonly encountered in the
real world. We present mechanisms for dealing with this uncertainty and noisiness, both for
single events and for event sequences. We show that the robustness of flows can be improved
considerably over the case where no measures are taken. Note that in today’s workflow sys-
tems, input data is usually assumed to be correct, which is not the case with pervasive flows
that take their input data from sensors in their environment.

Context prediction is a fundamental enabling technology for proactive systems. We will show
that flows and flow-like models allow for more accurate context prediction by exploiting
knowledge about the temporal structure of an application. This temporal structure is inherent to
flows and can be accessed very easily, unlike in other programming paradigms. We demon-
strate that by associating context information with activity information taken from a flow, we
can increase the accuracy of context predictions. Furthermore, we present a new way of gene-
rating such predictions that is based on model-checking concepts. This has not been done be-
fore and represents a major advance in context prediction research as it allows for much more
expressive temporal queries. That is, a querying application or user gets information about
when a specific context change actually happens in real time. Previous systems where limited
to a time-discrete model and, thus, could only make predictions about the next context change
without any information as to when this change would happen.

We cover each of these three major areas in a chapter. In each of the chapters, we will present
in-depth evaluation studies and quantitative results that are based on the real-world case studies
conducted in the project in the final reporting period.

D4.3 CONTENTS

Contents

1 Introduction 1
1.1 Overview of the Work Conducted . 1

2 Flow Distribution 3
2.1 Workflow Model . 4
2.2 Related Work . 5
2.3 Minimizing Human Interaction Time . 6

2.3.1 Network Model . 6
2.3.2 Problem description . 7
2.3.3 Heuristic Placement Algorithm . 8
2.3.4 Evaluation . 12

2.4 Minimizing Energy Consumption . 13
2.4.1 Application Scenario . 13
2.4.2 Network Model . 15
2.4.3 Problem Description . 15
2.4.4 Distribution Algorithm . 17
2.4.5 Evaluation . 21

2.5 Summary and Conclusions . 22

3 Robust Flow Navigation 24
3.1 Real-World Scenario and Case Study . 25
3.2 Related Work . 25
3.3 Basic Definitions . 27

3.3.1 Context Model . 27
3.3.2 Flow Models . 28

3.4 The Basic Concept of FlowCon and FlexCon . 30
3.5 FlowCon - Robustness in Imperative Flows . 31

3.5.1 Scenario Specificities . 31
3.5.2 Algorithm . 32
3.5.3 Evaluation . 34

3.6 FlexCon - Robustness in Hybrid Flows . 36
3.6.1 Scenario Specificities . 36
3.6.2 Dynamic Bayesian Network - Structure and Learning 37
3.6.3 Clustered Particle Filtering . 39
3.6.4 Evaluation . 40

3.7 FeVA – Tolerating Event Assignment Errors . 42
3.7.1 Error Model . 42
3.7.2 Fuzzy Event Assignment . 43
3.7.3 Evaluation . 46
3.7.4 Simulation Setup . 46

2011-07-30 iv

D4.3 CONTENTS

3.7.5 Results . 47
3.8 Summary and Conclusions . 48

4 Context Prediction 49
4.1 Related Work . 50
4.2 Flow-based Context Prediction . 51

4.2.1 History-based Prediction . 51
4.2.2 Exploiting Flow-Knowledge . 52
4.2.3 A Flow-Based Predictor . 54
4.2.4 Evaluation . 58

4.3 PreCon – Expressive Prediction using Stochastic Model Checking 60
4.3.1 Stochastic User Model . 61
4.3.2 Prediction Query Language . 62
4.3.3 Query Processing . 64
4.3.4 Evaluation . 65

4.4 Summary and Conclusions . 68

5 Conclusions 70

2011-07-30 v

D4.3 LIST OF FIGURES

List of Figures

1.1 Flow control overview . 2

2.1 Human Interaction Pattern . 5
2.2 Merging of unassigned activities . 10
2.3 Hill-climbing . 11
2.4 Comparison with other placement approaches . 12
2.5 Performance analysis . 13
2.6 Example workflow with annotated energy costs . 14
2.7 Cost graph created from the example workflow shown in Figure 2.6 18
2.8 Two overlapping cuts . 20
2.9 CDF for Absolute Energy Costs . 21
2.10 CDF for Relative Energy Costs . 22

3.1 Architecture overview . 30
3.2 Blood Sample Flow . 32
3.3 Simulation Results . 34
3.4 Morning hygiene flow . 36
3.5 Simulation Results - Comparision between FlowCon and FlexCon 41
3.6 Activity State Machine . 44
3.7 Event Container Principle . 44
3.8 Simulation Results - FEvA performance: The graphs for “reference v=0.4”, “v=0.2”,

“v=0.4”, and “v=0.5” show the percentage of flows completed. The graphs “reference
v=0.4” depict the result of running the flows without FEvA 47

4.1 Representation of a Pervasive Flow attached to a Nurse 53
4.2 History- vs. Flow-based Transition Systems . 54
4.3 Short-Term Prediction Accuracies for Activity-Based Mobility Model with Parameter

Settings a) Zipf exponent s=2 b) Location Domain |L| = 7 58
4.4 a) Long-Term Prediction Accuracies b) Prediction Accuracy for History-Generated Mo-

bility Patterns . 59
4.5 Overview of the PreCon approach – Concepts specified by PerCon are shown in dark boxes 60
4.6 Evaluation results for the Next operator . 67
4.7 Evaluation results for the Until operator . 68

2011-07-30 vi

D4.3 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In this document, we will describe the work that was conducted in terms of adaptive distributed flow
control over the final year of the project. While the deliverables D4.1 and D4.2 mainly discussed flow
distribution, we have broadened our view on flow control considerable over the final year and included
a significant body of work in the areas of robust flow navigation and context prediction. These are two
important aspects of flow control that have emerged during the project and that we have tackled beyond
the work described in the Description of Work. In this deliverable, we will give an overview of this body
of work in the area of adaptive flow control before we give detailed insight in each of the three areas
including detailed evaluation results.

1.1 Overview of the Work Conducted

The area of flow distribution is concerned with the problem of finding and maintaining an effective and
efficient distribution of the activities contained within a flow over the available computing resources.
The basic idea of distributing flows is driven by the fact that flows need to maintain rich communication
with their human users and with diverse services in their environment. Since the human users we regard
are mobile, the available computing resources and the network connecting them it is not known a priori.
Moreover, network bandwidth, stability and quality may be very diverse. Hence, effective mechanisms
are required for placing different parts of a flow on those computing resources where they may be ex-
ecuted with the highest utility. We have investigated two possible utility metrics in this project. The
first one is user-perceived latency [38]. This is basically the accumulated time that a user has to wait
during the interaction with his flow. To allow users to operate unobstructed by any network effects (low
bandwidth, high delay, etc) the activities of his flow have to be placed accordingly such that high-volume
communication does not flow over low-quality network links. The second utility metric is energy [27].
In the common scenarios regarded in the project, mobile users are equipped with mobile devices (e.g.
off-the-shelf smart phones) that are part of the computing resources used for executing flows. The rest of
this computing infrastructure are backend infrastructure servers. The basic question that we investigated
is: In which way must a given flow be distributed in this computing infrastructure such that the lim-
ited battery capacity of the participating mobile devices is best preserved? What would be an adequate
algorithm for achieving such an energy-efficient distribution of flows? Preserving the energy of mobile
devices is of primary importance since more energy consumption leads to shorter re-charge cycles, which
in turn leads to more disturbances in the work process, e.g. requiring users to re-charge their mobile de-
vice in the middle of a shift. On the other hand, if the energy consumption is minimized to a known
average value, cheaper devices with adequate battery capacity can be used, avoiding over-provisioning
in terms of energy. Both effects lead to monetary benefits over the long run.

Flow navigation, i.e. algorithms for deciding how to navigate through the flow’s transitions based
on the available input data, is a central part of flow control. The flows in the ALLOW project navigate
mainly based on context data collected from the real world. Therefore, real-world effects that occur when

2011-07-30 1

D4.3 CHAPTER 1. INTRODUCTION

Robust Flow Flow
NavigationDistribution

Flow
Control

Improving flow
execution by assigning

to adequate
computing resources

Improving flow
execution by handling
uncertainty and errors

in context dataControlcomputing resources

Enabling proactive

Context
Prediction

ab g p oac e
flow control by

forecasting context
changes

Prediction

Figure 1.1: Flow control overview

context information is captured by sensing devices and categorized by context management and activity
recognition systems can become a serious problem. We investigated mechanisms for ensuring robust
flow navigation under such effects [79, 77]. Most of the context-aware systems proposed in literature
assume that the information provided by these systems is correct. However, noise, cheap sensors, and
classification errors produce data that can carry a high degree of uncertainty. Moreover, data can get lost
due to hardware and software malfunction or simply because the raw data was too noisy to be categorized
(false negative). The same software may find patterns of known events while such an event actually never
happened (false positives). Finally, the order of events may not be recognized correctly due to timing
problems and race conditions (order errors). All of these effects happen regularly in real systems, and a
flow that navigates based on context data will fail very quickly under these conditions.

With FlowCon [79], FlexCon and FeVA [77], we have developed a set of mechanisms that exploit the
knowledge encoded within a flow in order to correct these effects before the context data is actually given
to the flow. Flow knowledge is basically the knowledge about the temporal behavior of the flow that is
encoded in the order of activities and in the transition between these activities. In a normal (non-flow-
based) application, the temporal behavior is usually hidden in the program code, and it can be extremely
difficult to infer what the application will do at a specific moment in time, even if one has full access to
the code. In a flow-based application, this temporal behavior is explicitly defined in the transition system.
The individual activities, the transitions and the conditions under which the transitions are taken are open
and accessible. Therefore, it is much easier to infer the past, current and even the future behavior from
the flow. We exploit this knowledge to reduce the uncertainty of incoming context data and to repair
errors stemming from false positives, false negatives, and order errors.

Finally, navigating a flow based on current and past context information may be sufficient for many
applications. However, if the flow has to be adapted in real time (i.e. while the user is waiting) to
work around some problem (e.g. a missing resource), and if such problems may occur frequently (due
to the mobility and dynamic of the entire system) then having reliable information about future context
changes is vital for flow control. It enables the system to be proactive by recognizing and circumventing
possible problems before they actually take effect. Therefore, we have also investigated the area of
flow-based context prediction [28, 29]. The basic idea of flow-based context prediction is to exploit the
flow knowledge (see above) and associate it with context information to be able to foresee future context
changes more accurately. We have proposed the PreCon system [29] that takes activity information (from
a flow or some other source) and learns how these activities are connected with context changes. The
result is a system that can learn the behavior of context information more precisely than existing systems.

2011-07-30 2

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Chapter 2

Flow Distribution

In a classical business context, workflows are executed on some powerful back-end server, and there is
little need to think about distributing them. In a pervasive scenario where the users of the flows are mobile
and may access them from different locations and with different network connections, this changes. A
single back-end server may be hard to reach from some locations. For some parts of the flow, the data that
needs to be communicated may overwhelm the network resources. Users may have to wait for prolonged
periods of time for their data to arrive at their mobile devices. Finally, the mobile devices of users only
have a limited energy budget. Constant communication is a big factor in the energy consumption, such
that batteries may be drained quickly, lowering the usefulness of the entire system. These problems
can be solved through flow distribution. That is, by fragmenting a flow and placing the various parts
on specific computing nodes (infrastructure or mobile devices), certain key parameters concerning the
usability, the effectiveness and the efficiency of the flow-based application can be optimized.

We have looked at two main concerns that necessitate adequate distribution schemes: user-perceives
latency (human interaction time) and energy consumption on mobile devices. Both profoundly influence
the usability and the efficiency of pervasive applications in general.

Human Interaction Time

The interaction between a human and a flow can adhere to different patterns. In the simplest of cases,
a human is notified by the workflow system about currently available activities and provides some sort
of feedback when he has completed them. However, more complex interaction patterns may require a
human to query the workflow system for information throughout the execution of the activities. The time
needed to provide the desired information is experienced by the human as waiting time. An important
design principle from the area of Pervasive Computing is to support humans as unobtrusively as possible
[?, 67]. Therefore, applying workflows in this area requires that such waiting times are minimized.

The time is dependent on two factors: First, on the runtime of services that need to be executed
in order to provide a human with the desired information. Second, on the time required to transfer
data between workflow servers and service hosts participating in the execution of a workflow. New
technologies like Cloud Computing support organizations in focusing on their core business [7] and lead
to the necessity of using remote service providers within workflows. However, communicating data to
remote networks may create extensive waiting times due to limited bandwidth and significant propagation
delay.

In order to overcome this issue, we present an algorithm for distributing a workflow over a set of
workflow servers such that the interaction time experienced by humans is minimized. Existing ap-
proaches for workflow optimization do not take this factor into account [69, 13, 32]. Our algorithm
is based on a two-phase list-scheduling approach. In phase 1, an initial distribution is computed that is
based on estimated values for activity execution and data transfer times. In phase 2, the initial solution
is refined based on a hill-climbing algorithm. We show that our algorithm improves the interaction time

2011-07-30 3

D4.3 CHAPTER 2. FLOW DISTRIBUTION

between humans and workflows by up to 80% compared to an approach in which the complete workflow
is run on a single machine. Furthermore, we report an improvement of up to 10% compared to an exist-
ing greedy approach. We also show that our algorithm scales better with an increasing number of tasks
compared to this approach.

Energy-Consumption

Driven by the advances in the area of pervasive computing [?], humans are no longer tied to their desk.
They can use mobile devices to interact with workflows virtually anywhere. While this enables unobtru-
sive interactions with the workflow system, mobile devices have a constrained battery lifetime such that
the energy consumption is a critical point for their usability. High energy consumption causes batteries
to be drained fast, disrupting the business process and leaving users unable to continue their work. This
renders the process less efficient and, thus, incurs higher costs. Alternatively, devices could be fitted with
larger batteries to avoid such disruptions. However, this also incurs higher costs. Therefore, preserving
energy is an important goal with respect to seamless workflow execution and cost reduction.

Today’s workflow systems are usually deployed in a back-end infrastructure, such that the workflows
need to communicate with mobile humans over a wireless medium. Due to this deployment scenario,
extensive data transmission between user devices and workflows running in the infrastructure is required
for each interaction with a mobile user. Consequently, this results in high energy costs since sending and
receiving data are highly energy-intensive operations with current wireless communication technologies
such as GPRS, UMTS or WiFi [10].

As a response to these challenges of mobile worfklow technology, we present an algorithm for dis-
tributing fragments of workflows from the infrastructure to mobile user devices in order to reduce these
energy costs. Distributing workflows to mobile devices avoids transmissions of large volumes of data
since this data is processed locally. Our algorithm constructs a cost graph that is based on the work-
flow model and takes two sources of energy into account: the data communication costs and the costs
of service execution on the mobile device. We partition the cost graph using a minimum cut algorithm
such that the workflow execution causes minimum energy consumption. Each partition of the cost graph
contains the workflow activities to be executed either in the infrastructure or on the mobile devices. Our
evaluations show that this approach achieves average energy savings of 37% for GPRS and 32% for
UMTS communication compared to the centralized infrastructure-based approach. Existing work in the
area of workflow distribution [13, 69] only focuses on infrastructure nodes, but does not consider the
impact of workflow execution on the energy budget of mobile devices.

2.1 Workflow Model

A workflow is a directed acyclic graph W = (A, λ, F, ρ, θA, θD). A denotes the set of activities in the
workflow. The functionality of an activity is defined by means of the function λ : A → S . This function
binds an activity a ∈ A to a required service λ(a) ∈ S , where S denotes the set of all services used by
the workflow. The control flow of W is specified by means of the relation F ⊂ A × A. The control flow
defines the logical order of activities for the execution of the workflow. We refer to activities that model
conditional or parallel behavior as structural activities. A conditional and parallel split is modeled as
an activity with more than one outgoing control flow link. The set of outgoing control flow links of an
activity a ∈ A is denoted as Fa. For a given control flow link f = (ai, a j), ρ f is the probability that a j will
be executed after the completion of ai. This value can be derived from execution traces of the respective
workflow. For a conditional split, the workflow is executed following only a single alternative, i.e. the
conditions |Fa| > 1 and

∑
f∈Fa ρ(f) = 1.0 hold. For a parallel split, all outgoing branches are executed in

parallel, i.e. the conditions |Fa| > 1 and ∀ f ∈ Fa : ρ f = 1 hold. The latter also holds for all other links

2011-07-30 4

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Figure 2.1: Human Interaction Pattern

originating from a non-structural activity.

The data flow of W is described by the two relations LAA ⊂ A×A and LAS ⊂ A×S . Each (ai, a j) ∈ LAA
denotes a data link between two activities ai, a j ∈ A and each (a, s) ∈ LAS denotes a data link between
an activity a and its associated service s = λ(a). Over each of the data links a certain amount of data
is communicated. The amount of the data that needs to be transferred for a service call (a, s) ∈ LAS is
denoted as θS (a, s). We assume that θS (a, s) covers the input as well as the output of the respective service
call. Similarly, θA(ai, a j) specifies the amount of data that has to be exchanged between two activities
(ai, a j) ∈ LAA. We assume that both θA and θS are available to our workflow distribution algorithm and
can be either obtained by a workflow designer being an expert in the application domain or by analysis
from histories of past execution traces of workflow instances.

A Human Interaction Pattern (HIP) is a connected subgraph of a workflow. It starts with a single
entry activity which expects input data from a human and ends with a single exit activity which generates
output data for the same human. This is a natural assumption as we focus on interaction patterns that
resemble queries. An example for a HIP is given in Figure 2.1. Arrows show control flow links while
circles and rectangles represent activities and services, respectively. The single entry activity is a1 (a
conditional split). The single exit activity is a4. Note that there may be several HIPs in a single workflow.

2.2 Related Work

The task of workflow distribution is a hot topic of research within the workflow community. Each
of the existing approaches for decentralized workflow management is heavily influenced by the class of
performance gain to be achieved. In the following, we will compare our workflow distribution algorithms
with existing approaches from related work and point out our unique contributions. First, we concentrate
on algorithms that distribute workflows within a distributed network of wired workflow servers. Then,
we discuss approaches with focus on mobile workflows, where flow-based applications run on mobile
devices carried by human users.

Bauer and Dadam [13] propose an algorithm to reduce the network load produced by the workflow
system. For this purpose, they have defined a probabilistic model that reflects the communication costs
for workflow execution. By means of variable server assignments they create relations between activities
which are used to select a suitable server in the infrastructure and distribute the workflow. First, each
activity is greedily placed on a workflow server that minimizes the cost for its execution. Then, a hill-
climbing algorithm is used to eliminate data transfers between neighbouring activities which have been
placed on different servers. However, the initial distribution is calculated on a simple heuristics that
considers flow activities isolated from each other. In contrast, we make use of the data flow dependencies

2011-07-30 5

D4.3 CHAPTER 2. FLOW DISTRIBUTION

for the calculation of the initial placement. Due to his approach, we achieve better results for the network
delay resulting from workflow execution as our evaluation shows. Son et al. [69] propose an algorithm
for minimizing communication cost based on multi-level graph partitioning. A workflow is divided into
several fragments. However, their solution assumes homogeneous communication links which is not
valid in the Internet. In parallel computing, tasks have to be assigned to CPUs in order to optimize
their execution. Many solutions assume that activities are not depending on each other, which leads to
a Bin-Packing problem. Obviously, this assumption does not hold for our problem. More sophisticated
approaches apply list scheduling algorithms [45, 15]. We adopted the basic idea of these algorithms while
dropping their basic assumption of homogeneous communication links. In the area of grid computing,
list scheduling algorithms are employed under the assumption of heterogeneous network links among
loosely coupled computing systems [32, 63]. However, these algorithms assume variable task execution
times to have a major influence on the overall execution of the task graph. In our scenario, we assume
that tasks are services and that quality of service guarantees specify the time required for their execution.
Hence, in our case the overall execution time mainly depends on the communication links between
workflow servers, rendering respective algorithms like e.g. HEFT inappropriate.

For executing mobile workflows, Baresi et al. [11] propose graph partitioning rules to transform
a centralized workflow model into a set of distributed fragments that run on different devices. The
partitioning rules operate on an abstract graph representation of BPEL [40] to create a set of cooperating
workflows. However, while this enables the creation of valid workflow fragments, the selection of these
fragment has to be done manually by a workflow designer. Our approach supports a workflow designer
to find the best fragments to be executed on mobile devices in terms of energy consumption. The results
of our distribution algorithm can be used to apply the rules of Baresi et al. for cutting the workflow
into fragments. Therefore, both approaches complement each other for creating a decentralized energy-
efficient workflow executuion environment. MAUI [24] is a system for offloading code from a mobile
device to an infrastructure in order to save energy. This is sensible if the energy required for executing
the code exceeds the energy needed to transfer its state. However, MAUI works on a fine-grained level
of individual functions. A workflow is a coarse-grained orchestration of large pieces of code (services).
Thus, MAUI may be used orthogonally to our solution on the level of individual services. AIDE [54]
is a distributed platform to offload application code from mobile devices to nearby powerful computers.
For this purpose, the execution history of the application is monitored to create a fully connected graph
of the application’s interaction behaviour. The graph is then partitioned using a modified version of
a minimum-cut algorithm, which considers the resource limitations on the mobile device such as the
memory available for executing the application. For making distribution decisions it is assumed that
applications can be freely migrated among different devices. In contrast, workflows often depend on
services that are bound to a specific device, while other services are generally available on all devices.
We explicitly deal with these restrictions in our approach for the distribution of a workflow. Furthermore,
we have devised an approach for workflow distribution among an arbitrary number of devices, while
AIDE can only divide an application into exactly two partitions. We conclude that workflow distribution
in a heterogeneous environment for mobile and infrastructure-based devices is of major importance to
conserve scarce resources on mobile devices. Existing approaches deal with workflow distribution and
energy conservation under different assumptions and, thus, are not applicable to our problem.

2.3 Minimizing Human Interaction Time

2.3.1 Network Model

We assume a set of domains D, each representing a local network consisting of a set of hosts. A domain
d ∈ D provides a set of service types Sd. Services of the same type may be available (replicated)
in different domains and S =

⋃
∀d∈D Sd. Note that we model the functionality a human h provides

as a special service sh ∈ S. We assume a workflow server and a domain controller in each domain.

2011-07-30 6

D4.3 CHAPTER 2. FLOW DISTRIBUTION

The domain controller serves as an information service. It provides the link properties of all relevant
communication links and a service discovery mechanism. This can be achieved by means of an overlay
network between all domain controllers in the network. Services, workflow server and domain controller
may be replicated inside a domain to allow for provisioning of quality of service guarantees, but for
simplicity we treat each of them as being unique within the respective domain.

We assume that each domain is able to communicate to any other domain via the Internet. We denote
the bandwidth and propagation delay between two arbitrary domains d1, d2 ∈ D as β(d1, d2) and δ(d1, d2),
respectively. The bandwidth and propagation-delay between two hosts in the same domain is assumed
to be constant and denoted as β(d, d) and δ(d, d), respectively. We assume that ∀d ∈ D, ∀di, d j ∈ D,
di , d j : β(d, d) � β(di, d j) ∧ δ(d, d) � δ(di, d j), i.e. inter-domain delay dominates intra-domain-delay
which reflects typical communication properties found in interconnected LANs.

2.3.2 Problem description

Our goal is to find a mapping function µ : A → D of activities to domains that minimizes the average
required communication time for all HIPs in a workflow. We focus only on activities that are part of a
HIP. All other activities may be distributed according to other optimization goals (e.g. network load).
Each execution of the workflow takes only a single route through the workflow. A route is a connected
subgraph of a workflow that contains all activities visited in one execution. For example, a1, a2, a4 as
well as a1, a3, a4 are both valid routes in the HIP shown in Figure 2.1.

Because we do not know this route in advance, we cannot optimize our mappings for it. Therefore,
we solve the most general case and aim for minimizing the expected execution time of a HIP. Let R be the
set of all routes of a HIP. The probability for the execution of r ∈ R can be calculated as %r =

∏
∀c∈r ρ f .

Furthermore, let ϕµr be a function that defines the execution time for r under the mapping µ. Then, our
goal is to find a mapping µ such that the following sum is minimized:∑

∀r∈R

%r · ϕ
µ
r (2.1)

In the following, we describe how ϕ
µ
r is calculated. In a parallel split, only the branch which results in

the largest execution time is relevant for the overall execution time of the flow. We refer to the subgraph
of r that contains only this longest branch for every parallel split as the critical path of a route. The time
to execute a route of a HIP is influenced by three factors: The time κA required to transfer data between
the activities, the time κS required to transfer data between activities and their mapped services, and by
the time κX required to execute the corresponding services. Thus, we have ϕµr = κA + κS + κX .

For the computation of κA, we have to distinguish two cases. First, two activities that exchange data
may be mapped to the same domain and, thus, to the same workflow server according to our system
model. In this case, κA is negligible because no data has to be sent over the network. Second, two
activities may be mapped to different domains. In this case, the time required equals the sum of the
propagation delay of the communication link between the respective domains and the time required for
transmitting the data on the respective data flow link. Let Lcrit ⊆ LAA ∪ LAS be the set of data links on
the critical path of a route r, then

κA =
∑

∀(ai,a j)∈Lcrit

δ(µ(ai), µ(a j)) +
θA(ai, a j)

β(µ(ai), µ(a j))
. (2.2)

For the computation of κS , we proceed analogously. Given an activity a placed in domain d, let ξ(a) be a
function that returns the domain, among all domains that provide an instance of service type λ(a), which
can be accessed with lowest interaction time (ideally, µ(a) = ξ(a)). Then,

κS =
∑

∀(a,s)∈Lcrit

δ(µ(a), ξ(a)) +
θS (a, s)

β(µ(a), ξ(a))
. (2.3)

2011-07-30 7

D4.3 CHAPTER 2. FLOW DISTRIBUTION

We assume that service providers guarantee a certain execution time as part of a SLA. For the computa-
tion of κX , we accumulate the expected runtime required for the services mapped to the activities on the
critical path.

Our problem is a generalization of the problem of task allocation in heterogeneous distributed sys-
tems (TAHDS) which is known to be NP-hard [45]. In TAHDS, we have a set of processors P and a
set of tasks T . Two arbitrary tasks i, j ∈ T have communication costs ci j, and eip represents the cost of
executing task i on processor p. The problem is to find a mapping of tasks to processors such that the
sum of communication and execution costs is minimized. Note that communication costs between two
tasks only occur if they are placed on different processors.

In the following, we reduce TAHDS to our problem in order to show that our problem is NP-hard as
well. We map T to A and P to D, i.e. each task corresponds to an activity and each processor to a domain.
We define a unique service for each activity and replicate it on every domain. We set the propagation
delay between and within domains to zero. Furthermore, we set the bandwidth within each domain to
∞, i.e. hosts within a domain can communicate instantly. The bandwidth between domains is set to a
constant βconst. The time to execute service replica s = λ(a) running on domain d is set to eip where a is
the activity corresponding to task i and d the domain corresponding to processor p. ΘA is chosen such
that ΘA(ai, a j)/βconst = ci j where tasks i and j correspond to activities ai and a j, respectively. Obviously,
an algorithm that is capable to solve our problem is also able to solve TAHDS and hence, our problem is
NP-hard. Therefore, we propose to use a heuristic algorithm to solve the problem because an extensive
search of an optimal placement for example by means of backtracking is not feasible.

2.3.3 Heuristic Placement Algorithm

We propose a 2-phase algorithm based on a list-scheduling approach in order to find a mapping µ that
minimizes the runtime of HIPs. Since HIPs are independent of each other, we map each HIP separately.

As soon as activity a is mapped to domain d, activities with a communication dependency to a have
to communicate with d. Thus, they should not be assigned to the best domains in a greedy fashion.
Instead, we have to take this dependency into account and map each activity depending on its influence
on the runtime of a HIP: The more influence it has on the runtime, the earlier it is mapped.

According to our system model, the bandwidth and propagation delay between domains vary and the
time required for communication depends on the network link used. Additionally, there may be services
which are available in many domains while other services are only available in few domains. Therefore,
it is not known which data link is the most expensive (in terms of communication time) until all activities
have been mapped. Therefore, we use a heuristic to estimate the cost of each data link before the actual
mapping. Since HIPs are independent of each other, we run the algorithm for each HIP in a workflow as
soon as it is known from which domain the human accesses the workflow.

In a first phase, we assign weights to the data links to reflect their estimated costs. Then, we sort the
links in descending order of their weights to ensure expensive activities are mapped to domains first. To
derive an initial mapping, we iterate over the sorted list and map the activities to domains such that their
execution time is minimized. The final mapping is created by optimizing the initial mapping through
hill-climbing. The overall algorithm (called Link Weight Activity Assignment (LWAA)) is depicted in
Listing 1.

2.3.3.1 Weighting and Ordering

The weight of a data link l for the initial mapping is calculated by virtually placing l on each of the
possible network links between any pair of domains and by calculating the average time consumed over
all these virtual mappings.

Let lAA = (ai, a j) be a data link between two activities and let lAS = (a, λ(a)) be a data link between
an activity and its required service. We distinguish between the average time weightW(lAA) required to
communicate between workflow servers and the average time weightS (lAS) required to access a service

2011-07-30 8

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Listing 1 LWAA Algorithm
1: // Let µ̂ be the associative array that represents µ
2: // At the beginning ∀a : µ̂(a) =⊥ holds
3: LDF = weightDataLinks(LAA ∪ LAS)
4: /* Initial mapping */
5: while LDF , {} do
6: l = Link with highest weight in LDF
7: if l ∈ LAA then
8: handleActivityToActivityDataLink(l, LDF, µ̂)
9: else if l ∈ LAS then

10: handleActivityToS erviceDataLink(l, LDF, µ̂)
11: end if
12: LDF = LDF \ {l}
13: end while
14: /* Optimize mapping */
15: hillClimbing()

from a workflow server that controls the corresponding activity. To compute weightW(lAA), we consider
every possible mapping of two activities ai and a j:

weightW(lAA) =
1
|D|2

∑
∀dk ,dl∈D:k,l

θA(ai, a j)
β(dk, dl)

+ δ(dk, dl) (2.4)

Note that if both activities are mapped to the same domain, no data needs to be transferred.
Similarly, we compute an estimate of the delay created by service data links. In this case, we consider

all possible mappings and calculate the average transmission time:

weightS (lAS) =
1
|D|

∑
∀d∈D

θS (a, s)
β(d, ξ(a))

+ δ(d, ξ(a)) (2.5)

The resulting list of data links is sorted in descending order.

2.3.3.2 Initial mapping

For the initial mapping of each activity to a domain, the algorithm proceeds through the list of data links,
in descending order of their weights and maps each activity that has not already been processed. Links
connecting two activities (LAA) and links connecting an activity to a service (LAS) are handled differently
(cf. Listing 1 lines 8 and 10).

Listing 2 shows the handler procedure for links (a, s) ∈ LAS . This handler finds the domain d that
exhibits the least cost for calling service s residing in d when placing activity a in d. Listing 3 shows
how to handle a data link (a, a) ∈ LAA. We aim at placing both activities in the same domain such that
no data has to be transferred over the network. However, we also do not want to reduce the degree of
freedom for the placement more than required. We have to distinguish three different cases: 1. None of
the activities is mapped 2. Only one of the activities is mapped 3. Both activities are mapped.

Listing 2 Handle activity to service data link
procedure handleActivityToS erviceDataLink(l, LDF , µ̂)

1: (a, s) := l //get corresponding service and activity
2: µ̂(a) := MinArgd∈D:s∈Sdδ(d, d) +

θS (a,s)
β(d,d))

2011-07-30 9

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Listing 3 Handle activity to activity data link
procedure handleActivityToActivityDataLink(l, LDF , µ̂)

1: (ai, a j) := l //get activities the data link connects
2: if (µ̂(ai) =⊥) ∧ (µ̂(a j) =⊥) // Both activities unmapped then
3: if ∃d ∈ D : λ(ai) ∈ Sd ∧ λ(a j) ∈ Sd then
4: a′ := Merge(ai, a j)
5: // Sorted insert of new service data link
6: LDF := LDF ∪ {(a′, λ(a′))}
7: // remove service links of ai and a j

8: LDF := LDF \ {(ai, λ(ai)), (a j, λ(a j))}
9: end if

10: else if (µ̂(ai) ,⊥) ∧ (µ̂(a j) =⊥) //First activity mapped then
11: if λ(a j) ∈ Sµ̂(ai) then
12: µ̂(a j) := µ̂(ai)
13: end if
14: else if µ̂(ai) =⊥) ∧ (µ̂(a j) ,⊥) //Second act. mapped then
15: if λ(ai) ∈ Sµ̂(a j) then
16: µ̂(ai) := µ̂(a j)
17: end if
18: end if
19: // If both activities are mapped nothing has to be done.

The first case is handled in lines 2 − 9 of Listing 3: we check if there exists a domain hosting both
service types required by the activities. If such a domain exists, we merge both activities.

The procedure of merging is depicted in Figure 2.2. The result of merging two activities ai, a j ∈ A is
a new activity a′ with a corresponding data link to a virtual service λ(a′) = s′ which serves as a container
for both λ(ai) and λ(a j). Each operation performed on s′ has to be performed for all services in s′. This
is illustrated in Figure 2.2. a2 and a3 are merged into a new activity a′ with a data link to service type
s′ = {s2, s3}. The weight of the newly created data link is the sum of the weights of the original links. All
other links remain unchanged. Note, that we do not map the merged activities to a domain right away as
it may be merged with further activities.

We only merge if there exists a domain hosting the services required by both activities because the
service access of a2 and a3 needs to be restricted to their own domain in order to save communication
time. Using the workflow in Figure 2.2 (left), we explain the rationale behind this idea. Assume that
D = {d1, d2} with S d1 = {s1, s2} and S d2 = {s3, s4} and none of the activities is currently assigned to any

5 4

θA

3 ‘ { } 4

θA

3
a2 a3a1

5 4

1 3

a4

4 3

3

s2 s3s1 s4

a‘ = {a2 , a3}a1
4

1

a4

4 + 3 = 7 3

3

s‘ = {s2 , s3}s1 s4

θS θS

Figure 2.2: Merging of unassigned activities

2011-07-30 10

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Figure 2.3: Hill-climbing

domain. According to the ranking of data links, the link between (a2, a3) has to be processed first. If
created a merger a′ = {a2, a3}, we would have to map a′ either to d1 or d2. Thus, either (a2, s2) or (a3, s3)
would be mapped to an inter-domain link because there exists no domain hosting s2 and s3. The data
transferred via the link (a2, a3) is either the output data of s2 or the input data for s3. Consequently, we
would omit the time required to transfer the data between both activities. However, we would have to
transmit the same amount of data via a communication link in the global network which would require
the same amount of time that has been saved. Furthermore, through merging in this case we would limit
the degree of freedom as, afterwards, we could not map a2 and a3 separately.

It may happen that only one of both activities is already mapped to a domain. This is covered in lines
10 to 18 of Listing 3. Analogously to the previous case, we map the unmapped activity to the domain of
the already mapped activity only if this domain hosts the required service. Finally, it is also possible that
both activities are already mapped to a domain. In this case, we do nothing since the currently handled
data link must have a lower priority than the data links that led to a mapping of the respective activities
to domains.

2.3.3.3 Optimized mapping

After the initial mapping is completed, we adjust it to the actual bandwidth/propagation delay in the
network using a hill climbing algorithm in oder to further reduce the time consumed by transferring data
via the global network. The principle of the algorithm is depicted in Figure 2.3.

First, we extract the clusters of the initial mapping. A cluster AF ⊂ A is the largest set of activities
that form a connected graph with ∀ai, a j ∈ AF : µ(ai) = µ(a j). In Figure 2.3, there exist three clusters in
the initial mapping, namely f1, f2 and f3. We calculate the time required for the HIP if all activities of a
cluster are mapped first to the domain of its preceding and then to the domain of its succeeding cluster.
The possible alternatives and the time required for each alternative are depicted in rows 2 to 4 of Figure
2.3. The best alternative is selected as new preliminary mapping. This procedure is repeated until no
mapping which requires less time can be found.

We only remap complete clusters because it is unlikely that remapping single activities results in a
performance gain. If this would be the case the initial mapping would have come to a different conclu-
sion.

2011-07-30 11

D4.3 CHAPTER 2. FLOW DISTRIBUTION

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 10 20 30 40 50 60

R
el

at
iv

e
co

m
m

. t
im

e

Number of activities

Static

Simple

LWAA w/ HC

(a) Non-partitioned placement

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10 20 30 40 50 60

R
el

at
iv

e
co

m
m

. t
im

e

Number of activities

Greedy

Greedy w/ HC

LWAA

LWAA w/ HC

(b) Partitioned placement

Figure 2.4: Comparison with other placement approaches

2.3.4 Evaluation

In this section, we describe our evaluation setup and results. We used a simulation approach and modelled
synthetic networks as well as workflows that follow our models discussed in Sections 2.1 and 2.3.1. As
the algorithm is executed for each HIP separately, we restrict the generation process to a workflow
consisting of a single HIP. The number of activities between the human activities varies between 0 and
60.

We simulate 50 different domains. The bandwidth for communication within each domain is set to 1
GBit/s assuming a Gigabit Ethernet. For the communication between humans and workflow servers, we
assume a 54 MBit/s WLAN connection. The bandwidth of communication links between domains is set
to be between 2 MBit/s (E1) and 34 MBit/s (E3) to reflect the SLAs between service providers.

We assumed a uniform delay to simplify our simulation. Since the delay between domains is only
influencing the ordering of the weighted data links, this does not change the qualitative results.

We have 200 service replicas drawn from 20 services according to a Zipf distribution. The services
are randomly assigned to the 50 domains. We use a Zipf distribution because there may be few very
popular services available in many domains, while there are many more specialized services which are
only provided in a few domains.

For the generation of workflows we use a grammar that is able to generate sequences, conditional and
parallel structures. The rules of the grammar are chosen randomly until the desired number of activities is
reached. The values for θS are generated randomly according to a uniform distribution with a maximum
of 100 MByte to allow for a wide variety of data flow links. The values for θA are implicitly defined by
θS to guarantee a consistent data flow meaning that all data received by an activity is sent via its outgoing
data flow links to other activities. The assignment of activities to (human) services is also chosen uniform
randomly.

We compare our algorithm with four other approaches:

• Static maps all all activities of a HIP to a random domain.

• Simple maps all activities of a HIP to the human’s current domain.

• Greedy proceeds through all activities, searches for the domain reachable with the highest band-
width hosting the next required service and maps the activity to this domain.

• Greedy w/ HC enhance Greedy with a subsequent hill-climbing (cf. Figure 2.3). This is an adapted
version of the algorithm proposed by Bauer et al. [13].

2011-07-30 12

D4.3 CHAPTER 2. FLOW DISTRIBUTION

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60

T
im

e
in

 m
s

Number of activities

Greedy w/ HC
LWAA w/ HC

(a) Time consumption

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60

M
B

yt
e

Number of activities

(b) Tolerable data amount per migr.

Figure 2.5: Performance analysis

In Figure 2.4(a), we compare our distribution algorithm (LWAA) with the non-partitioned approaches
(Static and Simple). We compared the relative gain of using our algorithm. The reference (at 1.0)
is the Static. Figure 2.4(a) shows that, for an increasing number of activities per HIP, our algorithm
quickly converges to around 20% of the time required for Static. This is because in the non-partitioned
approaches a lot of expensive service calls have to use low quality network links. Thus, they consume a
lot of time for communication as only the services that are located in the same domain can be accessed
in a performant way.

Figure 2.4(b) depicts the effectiveness of our algorithm compared to the greedy approaches. The
initial placement computed by our algorithm is between 12% and 16% better than the placement com-
puted by the Greedy approach. This is due to the fact that our algorithm takes the data flow between
activities into account and, thus, computes suitable clusters which is not done in the Greedy approach.
The Greedy w/ HC approach performs better than the LWAA algorithm without subsequent hill-climbing.
This is due to the fact that clusters are assigned to domains without taking the communication links of
the individual domain into account. The results show that our algorithm is better compared to the Greedy
w/ HC approach by 8% to 10% due to the better initial placement.

We compare our algorithm to the greedy approach in terms of the required computation time in Figure
2.5(a). Both algorithms show very similar execution times at first, until the effort for the subsequent hill-
climbing starts to dominate at around 35 activities. This is because of the fact that LWAA w/ HC builds
activity clusters, reducing the number of clusters left for the hill-climbing compared to Greedy w/ HC.

If the source activity of a data link is mapped to another domain than its target activity, data has to
be transferred between workflow servers during the execution of a workflow. This process is called mi-
gration. The amount of data that has to be transferred in a migration may differ, for example, depending
on whether the workflow management system has to transfer additional logging data for compensations.
This is not accounted for in our simulation and would impact the performance of our algorithm neg-
atively. Therefore, we measured the amount of data that can be sent additionally for each migration
before the Static or Simple approach outperform our distribution approach. Figure 2.5(b) shows that this
amount can be about three times the maximum amount of data that occurs in the data flow, indicating
that considerable migration overhead can be tolerated by our algorithm.

2.4 Minimizing Energy Consumption

2.4.1 Application Scenario

The application scenario depicted in Figure 2.6 models a quality assurance workflow for car shipment
management (logistics domain). In this scenario, we consider a big harbor where ships deliver large

2011-07-30 13

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Worker
Service

Diagnosis
Service 20J10J

150J 39J1J

Workflow fragment executed on user device

4MB≈150J

Take
Pictures

Determine
Worker

Notify
Worker

Diagnose
Pictures

Instruct
User

1J1J

1MB≈39J

150J
150J 39J 39J1J 1J 1J

4MB≈150J
1J

1MB≈39J

Human Service

Activity Service Control flow
Data flow (estimated
energy consumption)

1J

Figure 2.6: Example workflow with annotated energy costs

numbers of cars. The cars go through a series of treatments that involve e.g. fitting radios, maintenance,
and cleaning activities. Cars may be parked for certain periods of time and retrieved for additional treat-
ments or onward shipment. During this whole process, cars may be damaged. Therefore, the personnel
that is handling the cars (handling drivers) needs to check them regularly for damages. Based on the
results of these checks, cars may be sent back to the manufacturer, they may be sent to a repair station, or
insurance cases may have to be filed. Since the handling drivers are no experts in detecting and evaluat-
ing damages, this is done by taking photos of the car and sending these photos to some image recognition
service that is trained to detect specific kinds of damages.

First, an available worker is chosen by the workflow from a database using the Worker Service. The
chosen worker gets instructions (Notify Worker) and interacts with the workflow by taking pictures of a
car and submitting them to a diagnosis service. If the service detects a problem with the car, the worker is
instructed to take further steps to fix the problem. For example, this can be an instruction manual or video.

In our example, the mobile device has to transmit 4 MB of data and receives 1 MB. Assuming that the
workflow is executed in the infrastructure, this drains about 140J via UMTS and even 189J (150J+39J)
via GPRS (shown in the figure) [10] of energy from the mobile device. We can save a significant amount
of energy by executing the workflow (including the diagnosis service) on the users’ mobile device, since
data transmission dominates service execution in terms of energy usage. For the implementation of the
diagnosis service on a mobile device, several approaches such as Neuronal Networks or Markov models
are feasible. These models can be trained online and enable real-time recognition on mobile devices
[18]. Executing the shaded area of the workflow on the mobile device costs only 22J (20J for executing
the diagnosis service on the mobile device and 2J for small data transmissions) as opposed to the 189J
consumed with an infrastructure-based service. We save 167J. Saving this amount of energy for every
car the worker handles has a strong impact on the battery lifetime of his device.

Our assumption is that off-the-shelf smartphone technology will be used for applications like the one
investigated here. The performance and the form factor of these devices is adequate. Using off-the-shelf
phones has several advantages:

• They are generally cheaper than special-purpose devices that have been designed for a very small
market segment.

2011-07-30 14

D4.3 CHAPTER 2. FLOW DISTRIBUTION

• They are constantly improved, removing the necessity to explicitly invest in costly redesigns.

• They offer a very flexible hardware platform with different communication devices and sensors.

• They offer additional communication functionality and applications that can support the general
work process and enable integration.

• They are available in arbitrary numbers such that scaling the system up is not a problem in terms
of the hardware.

Of course, precautions in terms of security have to be taken. But these can be implemented in software.

Typical smartphones have a battery capacity of about 17000J and the typical energy consumption
of smartphone users is between 144J and 3600J per hour with a median of about 850J [26]. Hence,
centralized workflow execution would drain the overall energy of a mobile device heavily in our scenario.

2.4.2 Network Model

The network consists of a set of mobile devices D = {d1, d2, . . .}, where each device corresponds to a
human user who participates in the execution of the workflow. Furthermore, the network consist of an
abstraction of the back-end infrastructure in f . We abstract from the concrete implementation of this
infrastructure since it does not influence the energy consumption of mobile devices. For example, the
infrastructure may be a standalone server, a server cluster or even a distributed network of servers. The
set of all hosts is denoted as H = D ∪ {in f }. Thus, the term host may refer to both, infrastructure
or mobile device. We assume a communication system between hosts, e.g. cellular communication
(UMTS, GPRS) or WiFi via access points, such that each pair of hosts can communicate.

The set of services S accessible on the network hosts consists of 3 disjoint subsets S in f , S human and
S mov that represent different service classes. Each service s ∈ S in f is a computational task executed by
piece of software, which is only available in the infrastructure, e.g., due to a large database which needs
to be accessed. These kind of services are called infrastructure services. In contrast to this, each service
s ∈ S human represents a task that is to be performed by a human user (e.g., repairing a car). We refer
to these services as human service. A human service corresponds to a mobile device which is used by
the human to retrieve and send the information relevant for his task. Each services s ∈ S mov can be
either executed in the infrastructure or on the mobile device. An example of such a movable service is
the diagnosis service from our application scenario in Section 2.4.1. The decision where to execute a
movable service (on the mobile device or on the infrastructure) depends on the outcome of our workflow
distribution algorithm.

2.4.3 Problem Description

Our goal is to find a distribution of a workflow that minimizes the energy consumption for the workflow
execution on the mobile devices. More formally, a possible workflow distribution can be described by a
function µ1 : A → H that maps each activity in the workflow to a host that shall execute it. At the same
time, we have to decide for the host where to execute a movable service. Formally, this is expressed by
a second mapping function µ2 : S mov → H. Among all possible mappings, we are interested in the most
energy-efficient mappings µ∗1 and µ∗2, i.e., the mappings that minimize the sum of the drained energy of
all mobile devices d ∈ D.

The total energy cost for workflow execution under the given mappings µ1 and µ2 is denoted as
Etotal(µ1, µ2). The cost is the sum of the energy consumed for executing movable services on the mobile
devices as well as the energy spent for wireless communication. In the following, we refer to the energy

2011-07-30 15

D4.3 CHAPTER 2. FLOW DISTRIBUTION

required to transmit k bytes as ET (k). In our evaluation, we will use existing energy models to compute
ET (k) for specific wireless communication technologies, e.g., GPRS. The energy required for executing
a movable service s is given by EX(s). In the following, we describe the cost model to determine the total
energy cost for a workflow execution.

First, let us consider the energy cost E′X(s) for executing a movable service s ∈ S mov. E′X(s) is defined
as:

E′X(s) =

EX(s), if µ2(s) ∈ D
0, otherwise

Each movable service s ∈ S mov may be executed on a mobile device or in the infrastructure. If s resides on
a mobile device, energy has to be spent for its execution. Otherwise, if s is executed in the infrastructure,
no energy is consumed on the mobile devices.

Second, we have to consider the energy costs for remote service calls. For each data link (a, s) ∈ LAS

the consumed energy E′T (a, s) can be calculated as follows:

E′T (a, s) =



if (µ1(a) ∈ D ∧ (s ∈ S in f ∨

ET (θS (a, s)), s ∈ S mov ∧ µ2(s) = in f) ∨
µ1(a) = in f ∧ (s ∈ S human∨

s ∈ S mov ∧ µ2(s) ∈ D))
0, otherwise

We have to spend energy costs, whenever the activity a resides on a host which is different from
the host where its required service λ(a) is executed. As a consequence, data needs to be transferred
over the wireless medium. This may be true for different cases. If a workflow activity is assigned to a
mobile device and the service can be found in the infrastructure (because it is an infrastructure service
or a movable service running in the infrastructure), network communication is required. In the other
case, whenever the activity is assigned to the infrastructure and the service resides on the mobile device
(because it is an human service or a movable service executed on the mobile device), the data needs to
be transferred over the network. We have no transmission costs only if the activity a and the service s
are either running both on the same mobile device or both in the infrastructure.

Third, we have to consider the communication costs for the transmission of data among worfklow ac-
tivities. For each such data link (ai, a j) ∈ LAA the consumed energy E′T (ai, a j) is defined in the following
manner:

E′T (ai, a j) =

ET (θA(ai, a j)), if µ1(ai) , µ1(a j)
0, otherwise

We only have to pay the energy costs in case the communicating activities do not reside on the same host.
Then, the required data must be sent over the wireless medium from the preceding to the succeeding
activity. In contrast to this, activities which are assigned to the same host do not produce any energy
costs for communication.

The total energy required for the execution of a workflow under the given mappings µ1 and µ2 is then
defined as:

Etotal(µ1, µ2) =
∑

∀s∈S movable

E′X(s) +
∑

∀(a,s)∈LAS

E′T (a, s)

+
∑

∀(ai,a j)∈LAA

E′T (ai, a j)

All sources of energy consumption are covered in this equation. In the following, we present our algo-
rithm that minimizes this function by finding an optimal workflow distribution. In Section 2.4.4.3, we
show that this algorithm minimizes both, the sum of energy consumption over all devices and the energy
consumed individually on each device. Both optimization goals are equivalent in our case.

2011-07-30 16

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Algorithm 4 Cost Graph Construction
1: // Let G = (V, E) be the cost graph to be constructed
2: V := A ∪ H
3: for all (ai, a j) ∈ LAA do
4: E := E ∪ {(ai, a j, ET (ΘA(ai, a j)))}
5: end for
6: for all (a, s) ∈ LAS do
7: if s ∈ S human corresponding to device di then
8: E := E ∪ {(di, a, ET (ΘS (a, s)))}
9: else if s ∈ S in f then

10: E := E ∪ {(a, in f , ET (ΘS (a, s)))}
11: else if ET (ΘS (a, s)) > EX(s) then
12: //service communication costs dominate - call service locally
13: E := E ∪ {(a, in f , EX(s))}
14: else
15: //service execution costs dominate - call service remotely
16: E := E ∪ {(a, in f , ET (ΘS (a, s)))}
17: end if
18: end for

2.4.4 Distribution Algorithm

Our approach for energy-efficient workflow distribution is divided into two steps. First, based on the
network and workflow model we construct a cost graph, which models the energy costs for the workflow
execution on the network hosts. The nodes of the cost graph are the activities in A and the hosts in H.
Its edges are annotated with weights representing the energy costs resulting from data communication
or from the execution of services on the mobile devices. Second, we use this cost graph as input to a
minimum cut graph partitioning algorithm. The algorithm partitions the cost graph into |H| subgraphs,
where each subgraph contains exactly one host and zero or more activities. The set of activities contained
in the subgraph represents the fragment of the workflow that is to be executed on the particular host
contained in the subgraph. Since we apply a minimum cut approach to partition the workflow, we
guarantee that the energy costs for the resulting placement are minimized. In the following, we describe
each of the steps involved in more detail, and we prove the optimality of the approach.

2.4.4.1 Cost Graph Construction

The cost graph G = (V, E) consists of a set of nodes V and a set of weighted edges E. The graph is
constructed using Algorithm 4. Initially, we create a node in V for each host of the network and each
activity of the workflow, i.e. V = A∪H (line 2). Then, the set of weighted edges E is determined, where
an edge is created for each data link in the workflow (LAA and LAS). The weight w associated with an
edge (u, v,w) ∈ E represents the energy costs of a hypothetical placement, where the source node u and
target node v of the edge are assigned to different partitions (which represent different hosts).

Weighted edges are created in the following manner. First, we handle the case of activity-to-activity
communication and create an edge between any two different activities ai, a j ∈ A that share a data de-
pendency (lines 3-5). The edge (ai,a j) is weighted by the amount of energy required to transmit the
data ΘA(ai, a j) between the activities. Then, we distinguish between several cases for the invocation of
service s by activity a. If the service is provided by a human, we introduce an edge weighted by the
costs of transmitting the data ΘS (a, s) between the activity and the mobile device corresponding to the
human service s (lines 7-8). If the service runs in the infrastructure and is not available on the mobile

2011-07-30 17

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Take
Pictures

Determine
Worker

Notify
Worker

Diagnose
Pictures

Instruct
User

2J

39J 150J

1J

150J

20J

39J
1J 1J

1J

inf

 d1

Minimum Cut

Figure 2.7: Cost graph created from the example workflow shown in Figure 2.6

device, we add an edge weighted with the costs of transmitting the data ΘS (a, s) between the activity and
the service s (lines 9-10). Finally, in case of a movable service, we have to compare the energy required
to transmit the input/output data of the service to the infrastructure with the energy required for local
service execution (ET (ΘS (a, s)) > EX(s(a))). The rationale is that a necessary criterion for running the
service on the mobile device is that the service execution costs are lower than the communication costs.
In case the service communication costs dominate the execution costs, the service s should always be
executed where the corresponding activity a is placed (either infrastructure or mobile device). Hence,
we must only consider the service execution costs if a is placed on a mobile device. Thus, we create an
edge between a and the infrastructure node in f which is weighted by the service execution cost EX(s)
(line 13). However, in case the service communication costs dominate, we create an edge between the
activity and the infrastructure weighted by the communication costs (line 16).

As an example, Figure 2.7 shows the cost-graph constructed for the workflow in Figure 2.6. The
nodes of the graph are the set of the activities, the infrastructure (denoted as in f), and the single device
used by the human service (called d1). Data flow links are simply mapped to edges in the graph with
corresponding weights (Algorithm 4, lines 3-5), in the same way as the data flow links between activities
and the user (Algorithm 4, lines 9-10). Since the execution of the ’worker service’ on a mobile device
causes more energy costs (10J) than the costs for the required data transmission (2J), an edge between the
’determine worker’ activity and the infrastructure is created (Algorithm 4, lines 14-16). As the execution
costs for the diagnosis service are smaller than the cost of transmitting its input/output, both the diagnosis
service and the ’diagnose picture’ activity should be executed at the same host. If the ’diagnose picture’
activity is executed on the mobile device, we have to consider the execution costs of 20J. Hence, we have
to create an edge with weight 20J (Algorithm 4, lines 11-13).

2.4.4.2 Workflow Distribution

For the purpose of workflow distribution, we compute a partitioning of the cost graph that assigns each
activity to a host d and, thus, represents the desired mapping µ1. Based on the activity mapping, we can
also derive the assignment of movable services to hosts for the mapping µ2.

We use the minimum cut algorithm [42, 20] to determine the partitioning that minimizes the con-
sumed energy. A minimum cut creates exactly two partitions C and V \ C of the graph. Partition C
contains the host d and zero or more activities from the set C ∩ A assigned to it, and partition V \ C
contains all remaining hosts H \ {d} and activities (V \ C) ∩ A. The sum of the weights of all edges
between different partitions represents the energy consumed by the mapping. Consequently, our goal is
to determine the partitioning that minimizes the sum of the weights of all edges which are cut through
the partitioning.

2011-07-30 18

D4.3 CHAPTER 2. FLOW DISTRIBUTION

Algorithm 5 Workflow Distribution
1: // Let G = (V, E) be the contructed cost graph
2: Vtmp := V
3: for all di ∈ D do
4: t′ := merge(H \ {di})
5: (C,V \C) = calculateMinimumCut(di, t′)
6: for all a ∈ C ∩ A do
7: µ1(a) := di

8: Vtmp := Vtmp \ {a}
9: end for

10: end for
11: // assign remaining activities to infrastructure
12: for all a ∈ Vtmp ∩ A do
13: µ1(a) := in f
14: end for
15: for all (a, s) ∈ LAS with s ∈ S mov do
16: if µ1(a) ∈ D ∧ ET (ΘS (a, s)) > EX(s) then
17: µ2(s) := µ1(a)
18: else
19: µ2(s) := in f
20: end if
21: end for

The minimum cut is defined as follows: Given the cost graph G = (V, E), the minimum s− t cut of G
is a partition (C,V \C) such that s ∈ C, t ∈ V \C and∑

(u,v,w)∈E:u∈C∧v∈V\C

w

is minimal among all possible partitions C ⊆ V . Several approaches have been proposed to find the
minimum s − t cut with polynomial time complexity [42, 20].

To solve our problem, we have to extend this algorithm to produce |H| partitions instead of two. For
this purpose, we propose Algorithm 5 that takes an iterative approach to compute the partition C with the
activities for each mobile device di. In each iteration, we find what we call a minimum s−T cut for mobile
device di, i.e., a minimum cut that separates node di and all remaining hosts in the set T = H \ {di}. For
this purpose, we modify the cost graph and merge all t ∈ T into a new node t′ such that all (u, v,w) ∈ E
with v ∈ T are replaced by (u, t′,w) (line 4). The idea is to create a new virtual node in the graph that
represents all other hosts except for di. Thus, we can return to the two-partition cut problem and execute
the minimum s− t′ cut to find the solution to our extended minimum s−T cut problem (line 5). After this
partitioning step, we place all activities which are part of di’s partition on di (lines 6-9). We follow this
approach for each mobile device. Afterwards, there may remain activities which have not been assigned
to any mobile device. These activities are then assigned to the infrastructure (lines 12-14). Thus, we have
created H partitions of the cost graph and we have found the desired mapping function µ1 that creates
an optimal mapping as we prove below. Based on this mapping, we can determine the placement of the
movable services in S mov on the hosts in H (lines 15-20). A movable service is placed on a mobile de-
vice only if its calling activity is also placed on the same device and the service execution costs are lower
than the communication costs (lines 16-17). In all other cases, the service is executed in the infrastruc-
ture (line 19). Thus, we have found the required mapping for µ2 and completed the workflow distribution.

2011-07-30 19

D4.3 CHAPTER 2. FLOW DISTRIBUTION

For the cost graph in Figure 2.7, we execute the minimum-cut algorithm once, since only one mobile
device is part of the scenario. The resulting cut is indicated as a dashed line. Three activities and the
movable ’Diagnose Picture’ service are executed on the mobile device d1, resulting in (1+20+1)J = 22J
of consumed energy. Thus, we can achieve significant energy savings of (1 + 39 + 150)J − 22J = 168J
compared to the approach where the entire workflow is run in the infrastructure.

2.4.4.3 Optimality Discussion and Proof

In order to find the distribution of the workflow with minimal energy consumption, we calculate the
minimum cut for each mobile device separately as explained in Section 2.4.4.2. Since each single cut is
optimal, the overall system is also optimal if there are no conflicts, i.e. if there are no overlapping cuts.
An overlap of two (or more) cuts (shaded area in Figure 2.8) means that at least one activity (residing
in the overlapping region of both cuts) is claimed by two (di or d j) or more devices to render the energy
usage of each of those mobile devices minimal.

Ci2

Ci1

Cj2

Cj1 IS

 di dj

Figure 2.8: Two overlapping cuts

Of course, an optimal solution could still be found under these conditions simply by placing the
activity that is requested by di and d j on either one of the two such that it produces the lowest cost.
However, if the overlap becomes complex, i.e. if more activities fall into overlap regions, this simple
extension of the optimal cut algorithm would not suffice to create an optimal overall solution. Therefore,
it suffices to show that our algorithm never produces overlapping cuts to prove its optimality.

We show that there is no activity that is member of two cuts, i.e. ∀di, d j ∈ D, di , d j : C(di)∩C(d j) =

∅, where C(di) = {a ∈ A|µ1(a) = di} is the set of activities which are placed on device di ∈ D based on
our algorithm.

Assume there are two overlapping cuts C(di),C(d j) as shown in Figure 2.8 with C(di) ∩ C(d j) , ∅.
Let ci2 and c j2 denote the overlapping part and ci1 and c j1 the non-overlapping part of cuts C(di) and
C(d j), respectively. Let w(c) be the sum of weights (i.e. the cost) of a cut c. Then, w(ci1) + w(ci2) and
w(c j1) + w(c j2) are the costs of the minimum cuts for di and d j respectively. Note that there must be at
least one activity in the overlapping area (shaded).

Since the cut ci1ci2 was chosen as minimum cut between di and d j/IS , we must have w(ci1)+w(ci2) ≤
w(ci1) + w(c j2), i.e. in particular w(ci2) ≤ w(c j2). If w(ci2) = w(c j2), we can easily construct non-
overlapping cuts for both di and d j with minimum costs (actually w(ci2) = w(c j2) cannot happen if we
assume non-zero execution costs for services, since the overlapping cut contains at least one activity). If
w(ci2) < w(c j2), c j1ci2 would be a cut with less costs for d j which contradicts the premise. Hence, there
can be no overlapping cuts, which proves the optimality of our approach.

2011-07-30 20

D4.3 CHAPTER 2. FLOW DISTRIBUTION

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
ra

ct
io

n
of

 W
or

fk
lo

w
s

[%
]

Energy Costs [Joules]

UMTS-centralized
UMTS-distributed
GPRS-centralized
GPRS-distributed

Figure 2.9: CDF for Absolute Energy Costs

2.4.5 Evaluation

In this section, we present our evaluation methodology and discuss the evaluation results. The goal of
our evaluation is to give insight into the efficiency of our approach for a wide spectrum of different ap-
plication scenarios. As there are no openly available data sets for real workflows, we rely on simulation
and generate a large variety of different workflows for our evaluation.

The creation of the workflows is based on a grammar with rules to create sequential, conditional and
parallel workflow structures. We apply the grammar to compose random workflow models from these
partial structures, such that the number of activities per random workflow model ranges from 6 to 33.
The varying size of workflows allows us to evaluate business processes of different complexity. The data
flow defined by ΘS is generated randomly according to a uniform distribution with a maximum of 5 MB
per data link to allow for a variety of communication patterns. The values for ΘA are implicitly defined
by ΘS to guarantee a consistent data flow in the workflow. That is, all data received by an activity is sent
via its outgoing data flow links to other activities. Each activity is randomly assigned to either a human,
a movable service or an infrastructure service. This assignment follows a uniform distribution. In order
to assess the quality of our approach, we evaluate the energy savings per device and assume that a single
human is interacting with the workflow using a single device.

We leverage on existing energy models from the area of pervasive computing to determine the costs
related to data communication and service execution. We assume that the communication is done via a
wide area wireless network since such networks are globally available and provide a maximum degree
of mobility for users. Therefore, we studied the energy costs for wireless communication over GPRS
and UMTS based on the energy models proposed by Balasubramanian et al. [10]. We derive the drained
energy based on the size of the data to be transmitted. We also assume a maximum tail time in between
successive wireless connections due to the execution of time-consuming human services.

Cuervo et al. determined the energy cost for executing a given piece of code based on profiling [24].
We employ their model to derive the service execution costs. This allows a workflow designer to predict
the typical energy usage of services running on a mobile device. In our experiments, we assume that the
execution of a service on the mobile device consumes a random amount of energy that is drawn from a
uniform distribution with a minimum of 20J and maximum of 150J.

In our evaluation, we compare the energy consumption of two different deployment scenarios. The
distributed placement is determined according to our distribution algorithm presented in Section 2.4.4.
In contrast, the centralized placement refers to the classical deployment scenario where the entire work-
flow is executed in the infrastructure. We ran 10000 different simulation experiments and measured in

2011-07-30 21

D4.3 CHAPTER 2. FLOW DISTRIBUTION

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 W
or

fk
lo

w
s

[%
]

Relative Energy Costs [%]

UMTS
GPRS

Figure 2.10: CDF for Relative Energy Costs

each experiment the required energy to execute the workflow with our distributed approach and with
the centralized approach. Figure 2.9 shows the cumulative distribution function for the absolute energy
costs, i.e., the fraction of all workflows which fall below a given energy budget. For communication
over UMTS, 80% of all workflows consume less than 530J in case of our distributed approach. In con-
trast, only 29% of the workflows fall below this limit in case of a centralized deployment. The figures
also demonstrates that 95% of all workflows do not exceed energy costs of 640J for our distributed ap-
proach, while the centralized approach requires energy up to 990J for the same fraction of workflows.
We can also observe higher energy costs for both approaches when GPRS is used, since transmitting
larger chunks of data consumes more energy due to the more limited bandwidth. For communication
over GPRS, our approach guarantees that 80% of all workflows consume less or equal than 640J. How-
ever, only 23% of the workflows can meet the same energy constraints for the centralized execution.

Figure 2.10 shows the relative energy costs of our approach, measured as the fraction of energy con-
sumed by the centralized approach. The figure depicts the cumulative distribution function, showing the
fraction of workflows which remain below the given relative energy costs. While the performance for
both GPRS and UMTS is similar, we can again observe slightly higher energy savings for GPRS-based
scenarios due to the reasons explained above. In the best 10% of the cases, we have to spend less than
34% for GPRS and 40% for UMTS of the centralized energy consumption. Most of the workflows con-
sume between 40% and 70% of the centralized energy consumption, depending on the degree of human
interaction involved. On average, the workflow execution requires 63% of the centralized energy con-
sumption for GPRS and 68% for UMTS. This represents a large improvement in energy usage, extending
the lifetime of mobile devices significantly and reducing the costs of the underlying business processes.

2.5 Summary and Conclusions

In this chapter, we have discussed the problems of human interaction times and energy-efficiency in
pervasive flow-based systems. For each of the two challenges, we have presented an algorithm that
distributes flows such that the system maximizes its utility.

In Section 2.3, we introduced an algorithm that minimizes human interaction time in workflow sys-
tems based on a list-scheduling approach for mapping activities to network domains. We compared our
algorithm LWAA w/ HC to non-partitioned and greedy approaches and showed that it improves interac-
tion time by up to 80%. Hence, LWAA w/ HC reduces the interaction time of humans with workflows
significantly and, thus, increases the processing throughput considerably. This can result in competitive
advantages in a business environment. Additionally, it helps opening areas like pervasive computing for
workflow technologies since it renders workflow technology less obtrusive.

2011-07-30 22

D4.3 CHAPTER 2. FLOW DISTRIBUTION

In Section 2.4, we have presented an approach for distributing workflows among a set of mobile and
infrastructure-based hosts in order to minimize the energy drained on mobile devices. We have developed
a cost graph that represents the energy consumed by the execution of workflows. Based on this cost
graph, we have presented an optimal minimum-cut-based algorithm for the energy-efficient placement
of workflow activities. Our evaluation shows that our algorithm saves on average 37% of the energy for
GPRS and 32% for UMTS over a purely infrastructure-based approach. In application domains that are
heavily workflow-driven (like logistics and health care) this represents a significant energy saving that
allows for longer operation between two recharge cycles and thus for less distractions in the daily routine
of the involved personnel. In scenarios where the available battery capacities already ensure distraction-
free processes, our approach allows for downgrading to cheaper technology with less capacity. Both
routes lead to significant monetary savings in areas where mobile devices are indispensable tools.

Thus, our work represents an important step toward the cost-efficient and seamless integration of
business processes and pervasive computing, enabling much more flexible workflow-driven applications
that involve mobile users.

2011-07-30 23

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

Chapter 3

Robust Flow Navigation

As explained in Section 1.1 of the introduction, our concepts for achieving robust flow navigation are
twofold:

FlowCon and FlexCon We extract additional information about the likelihood for the occurrence of
specific context events from the flow knowledge (the temporal structure and the state of a flow that is
being executed). We employ Bayesian Network technology for building a model of this likelihood over
time and extract the additional information from this model. We have built two systems for achieving
that based on different flow models. FlowCon can handle imperative flows. These are flows that have a
rather rigid structure where the sequence of activities is mostly well-defined through transitions (directed
edges between the activities). This type of flows is easier to exploit for achieving robust navigation since
the rigid structure encodes a lot of information. However, it also limits the freedom of the user executing
the flow since it prescribes her actions. Therefore, we have investigated more flexible flow models in
the next phase of our research. FlexCon can handle what we call hybrid flow models. These are models
where activities may also be related through constraints that introduce a much loser coupling between
activities. For example, a constraint may define that the associated activities must not be executed in the
same flow, or it could specify that a certain activity must eventually be executed without specifying its
exact position in the flow. These hybrid flows offer much more flexibility to the user. However, they
also potentially offer less information for flow navigation. FlexCon deals with this problem by using
Dynamic Bayesian Networks to account for the changing execution of the flow.

An important metric for the evaluation of FlowCon and FlexCon is the completion ratio of flows.
This is the ratio of flows that is completed without getting stuck or ending in an error due to false
navigation decisions. Without any assistance, a flow system that is faced with realistic uncertainty levels
and noise only manages to complete up to 10% of all flows as our evaluations will show. With FlowCon,
we observe a completion ratio or up to 90%. FlexCon performs worse due to the increased flexibility and
dynamics in flow execution. But it still achieves between 20% and 80% flow completion.

FeVA Even if we manage to reduce the uncertainty of incoming events with FlowCon and FlexCon,
there could still be errors in the sequence of events. Events could be missing, they could be arbitrarily
added (both through recognition errors in the context management system), or they could simply arrive
in the wrong order (due to timing issues). We have developed FeVA, as system that exploits the flow
knowledge and uses fuzzy set theory to correct such errors as far as possible. On average FeVA assigns
91% of the context events correctly, and the number of successfully completed flows increases by 52%
over a reference system without FEvA.

Overview of the Chapter The rest of this chapter is structured as follows: In Section 3.1, we will
first present the real-world case study and experiments we conducted with our project partners in order
to gather the necessary data for the evaluation of our systems. In Section 3.2, we take a look on the

2011-07-30 24

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

related work in the area of flow navigation. Section 3.3 gives a number of basic definitions on which
the following chapters are built. In Section 3.4, we take a closer look at the basic concepts employed
in FlowCon and FlexCon before we present these systems in Sections 3.5 and 3.6. In Section 3.7, we
present FeVA before we finish this chapter with a summary and conclusions in Section 3.8.

3.1 Real-World Scenario and Case Study

The application scenario we use to evaluate our approach to robust flow navigation is from the health care
domain. We studied the processes conducted by nurses in a geriatric ward in Mainkofen, Germany over
a period of 14 days. The ward is an intensive care station for elderly people suffering from dementia and
similar old-age diseases. Each of the patients there needs help around-the-clock. There are well-defined
medical guidelines for accomplishing the daily work within the ward. This scenario provides a relatively
limited and basically fixed set of nurses and patients and the process structure is also quite stable. All
activities performed (e.g. treatment, medication) stringently have to follow the guidelines and the results
of some must be documented. But, there is rich human interaction between nurses and patients.

The traces we obtained from the nursing ward follow the daily morning routine of a single nurse.
Each nurse was given a mobile phone which she wears in her coat pocket for data collection. The sen-
sor readings available in the traces are (1) received WiFi signal strength, (2) measured magnetic field
strength, (3) measured acceleration and (4) recorded sound The WiFi readings were used to estimate the
indoor position of the nurse on a room-level granularity, the magnetic field sensor for facing direction.
The necessary WiFi infrastructure was already present in the hospital, so there was no need to deploy
further infrastructure. The acceleration data were used to do activity recognition like mode of locomo-
tion. The recorded sound snippets were also used to classify activities according to typical background
noises like the sound of a shower when a nurse is helping a patient taking a shower. For more complex
context information, multiple of the mentioned modalities were used for recognition. The collected data
has been manually labeled for a training set, but there is also an unlabeled test set.

Each trace covers about 2 and a half hours, where the nurse had to care for a total of three to five
patients. The basic support for every patient is very similar and consists of four distinct steps. The
(1) morning examination includes measuring the pulse and the blood pressure of the patient. Blood
samples are taken regularly once or twice a week per patient. During the (2) morning hygiene, the nurse
helps the patient with getting up, washing and dressing. Following that the nurses help the patients
having their (3) breakfast. Finally she supervises and assists the patient taking his (4) daily morning
medication according to the patients capabilities.

Through a mining process, we extracted workflows from the observations made at the ward. The
respective processes have not been defined as workflows before. However, in this highly structured
working environment, workflows are implicitly followed in order to fulfill a number of standards in
terms of patient care. In total we collected 32 datasets from 15 different nurses, where each dataset
covers the care of 3 to 5 patients, yielding a total of 130 observed workflow executions.

The purpose of applying a system of adaptable pervasive flows in this institution is twofold: First, the
activities shall be automatically documented for the records for quality control, process improvement,
and legal reasons. Second, the flow system shall give guidance in case the standard procedures are not
followed in order to avoid mistakes and help inexperienced personnel in learning the procedures.

3.2 Related Work

In the following, we will investigate the state-of-the-art in the relevant areas of research. We will first
discuss activity recognition systems and how they deal with context uncertainties. While our work is not
directly associated with this area, it does provide a new approach for handling the uncertainties perceived
in activity recognition systems on a higher layer by exploiting application knowledge. Subsequently, we

2011-07-30 25

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

will take a closer look at the field of context-aware workflows. As our approach is based on flows, we
investigate existing work on context-aware and mobile workflow management. Furthermore, we discuss
the relation of FlowCon to the area of workflow mining and the handling of fuzzy or uncertain (context)
information in workflow management systems.

There have been numerous studies on activity recognition in the health-care domain [12, 56, 16].
The major factors for decreasing the uncertainty in the recognition results are the selection of appro-
priate sensors and exploiting available application models. Biswas et al. [16] specifically remark that
the recognition process can benefit from the knowledge of domain experts. A flow is a very detailed
representation of expert application knowledge, that FlexCon uses to increase the accuracy of events.

Barger et al. [12] studied a health status monitoring application that learns behavioral patterns of
a user from his daily activities using a number of motion sensors. But their system lacks an applica-
tion model too, leading to missed events and false positives and a rather low recognition accuracy for
uncommon situations.

Najafi et al. [56] have built a monitoring system for elderly people using one acceleration sensor,
and detecting position transitions and mode of locomotion. While this approach performs very well for
single transitions in a specific test scenario, the sensing quality decreases over extended periods of time
due to the lack of an application model.

The presented approaches all use sophisticated activity recognition techniques, but do not consider
the kind of application knowledge a flow provides, thus, neglecting the huge potential.

The integration of context information into classic workflows used in enterprises has first been sug-
gested by Wieland et al. [76], who provide interfaces for accessing context information from within
a workflow. This approach was later extended to deal with Quality of Context [75]. Here, a policy
language is used to define the acceptable amount of uncertainty in context information and to filter out
information that does not match the specified criteria. This approach is based on the idea to simply pre-
vent the workflow from receiving uncertain information. However, if a workflow does not receive the
information at all, this can be just as detrimental as receiving false information. We go one important
step further by improving the information such that it becomes useful for the flow.

Mobile workflow execution is a key technology to enable the use of flows on mobile devices. A
feasible approach to execute workflows on mobile devices has been presented by Hackmann et al. [34,
33]. But the mobile workflows considered do not take context information into account and thus they are
suited for classical workflows only.

The PerFlows presented by Urbanski et al. [71] are context-aware, suitable for pervasive scenarios
and provide flexible activity scheduling and processing. However, they require heavy user interaction
to work properly. In our previous work [78], we presented an approach for dynamic context-awareness
suited for pervasive flow-based applications. Both approaches neglect the handling of uncertain context
information.

Workflow Mining comes in two different flavors. On the one hand, a new workflow is created from
event logs of different applications in order to visualize the actual flow of work and possibly automate
the created workflow using classical workflow management techniques. On the other hand existing
workflows can be used to extract knowledge. While we also extract knowledge from flows, there are
no approaches that improve context processing this way. Buffett and Geng[19] have proposed to label
the activities of workflows by learning from event logs. This approach is somewhat similar to ours. It
uses learning with Bayesian Networks, resolves the ordering of activities in the generated workflows and
analyzes the paths taken in workflow execution. However the algorithm is applied to collected event
logs and the workflows are mined in with an offline algorithm. Furthermore, it assumes that the log data
contains no uncertain information, e.g., no real-world context is taken into account. In contrast, we know
the flow structure and learn the event dependencies at runtime, taking uncertain context information into
account.

Fuzzy Workflows, have been presented by Adam et al. [2, 3] A Fuzzy Workflow is able to make deci-
sions based on fuzzy input information. The input from different sources is fed into a fuzzy logic operator

2011-07-30 26

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

within the flow and the result leads to a clear decision which is used to continue the workflow execution
accordingly. However, these approaches are extensions for classical workflows, which are usually not
flexible enough for execution in a mobile context-aware environments. But even more importantly, they
do not enable the workflow to contribute in decreasing uncertainty of context information.

There are plenty of workflow models based on petri-nets (e.g. [72]), and also fuzzy petri net variants
have been proposed [60] and applied to workflows [64]. Basically all elements of a petri net – places,
markers, and transitions – can be fuzzified and integrated into a fuzzy reasoning process. The fuzzified
markers bear a similarity with our weighted event instances. However, we avoid having a fuzzy execution
state, whose semantics are difficult to define, while we still allow soft decisions when navigating the flow
as more context events become available.

In summary, classical context-aware workflows and workflows tailored for pervasive computing pro-
vide little mechanisms to deal with uncertain context information. Furthermore no system discussed
here uses the knowledge encoded in the workflow to improve the accuracy of context recognition, thus
reducing the amount of uncertainty the flow actually has to deal with.

3.3 Basic Definitions

In the following, we provide basic definitions of how context and flows are represented in our system.
This is the foundation for the concepts introduced later in Sections 3.5, 3.6 and 3.7. We start by defining
the context model.

3.3.1 Context Model

As the flows should not obstruct users in their daily routine, they are solely driven by context events.
That is, a Context Management System (CMS) measures and detects events in the real world (e.g. the
nurse entering a specific room) and provides these context events to the flow system. Therefore, adequate
sensors and an activity recognition and context management system (CMS) must be available to gather
context information and provide these context events. However, state of the art activity recognition
systems have some drawbacks. Either, they require the precise deployment of (expensive) sensors, or the
setup and training of the system is tedious. Cheaper activity recognition systems, e.g. based on standard
smart phones, only provide moderate recognition rates, at best. While the former technology might be
applicable in high-cost environments such as an operating room, we have to rely on the latter kind in
most real-world situations.

In the scope of our scenarios, we assume that in practice the set of possible types of events is finite.

Definition 3.3.1 (Event Type) A type of situation that can be recognized in the real world is referred to
as an event type u ∈ U, where U denotes the universe of all event types that the CMS can measure.

An event type describes the abstract semantics of an context event. For example, nurse walking could
be an event type. Events of this type are created whenever a nurse changes her mode of locomotion to
walking. Event types that represent semantically similar context can belong to a common event type set,
and each event type belongs to at least one event type set.

Definition 3.3.2 (Event Type Set) An event type set E ⊂ U contains a number of event types E B
{u1, . . . , um},m > 0. A single event type can be a member of different event type sets.

The event type set containing all event types for a nurse’s locomotion modes could be, e.g. Eα =

{nurse walking, nurse sitting, nurse standing}. The purpose of an event type set is twofold: First, it
allows the flow modeler to simply select the most appropriate context the activity should respond to. As
seen below, a flow model defines a function that maps every activity to a number of distinct event type
sets. Second, the related semantics of all event types in an event type set allows for a more accurate

2011-07-30 27

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

recognition: Event types that are not contained in one of the expected event type sets of the current flow
activity are likely to be out of scope. When executed the flow registers the event type sets of a running
activity at the CMS and receives event instances.

Definition 3.3.3 (Event Instance) An event instance e ∈ Ue is an instance of a specific event type u ∈ U.
Ue is the universe of all event instances occurring in the system. e belongs to a specific event type u ∈ E,
and the uncertainty about which exact event type in E e belongs to is given by a probability distribution
Ie
E : E 7→ [0, 1], where

∑
u∈E Ie

E(u) = 1.

Ie
E is our basic model of uncertainty. Instead of saying that an event instance is of type u, the CMS

provides the distribution Ie
E , and Ie

E(u) is the probability that e is of type u ∈ E. For example if u =

nursewalking and u ∈ E then Ie
E(nursewalking) = 0.52 indicates that the probability of e being of type

nurse walking is 52%.

Definition 3.3.4 (Event Sequence) Let E B {E1, . . . , E j} be the set set of all event type sets used for a
flow model. An Event Sequence S = (e1, . . . , ek) is an ordered list of k event instances, where each ei ∈ E.

An event sequence S represents the context events and the temporal order in which they occur.

3.3.2 Flow Models

A flow model is a template for a specific type of flow. A runnable instance of such a model must be
created whenever a flow is to be executed. We call this a flow instance. In the following, we also refer
to such an instance simply as a flow. The flow instance is executed by a flow engine. In our work we
consider two types of flow models:

• Imperative flow models are directed acyclic graphs with activities as vertexes and transitions as
edges. The application programmer defines all the activities and their partial ordering using tran-
sitions. Conditions, that are annotated to the transitions, further influence the ordering.

• Hybrid flow models that contain transitions as well as constraints between activities and, thus, are
a mixture of classical imperative production workflows [50] and declarative flexible [61] work-
flows. Transitions are annotated with boolean conditions over the possible set of context events
while constraints consist of linear temporal logic expressions that describe the acceptable tempo-
ral relation of two or more tasks (e.g. a must be executed before b). If a flow modeler currently
wants to use a mixture of both modeling paradigms he is required to add this flexibility in a hier-
archical way [1]. He must decompose the application into a number of hierarchical layers, usually
representing a different level of abstraction and choose the best modeling paradigm for each layer.
Our hybrid flow model, allows the use of both paradigms directly on all abstraction levels and can
also be applied to applications where the hierarchical decomposition is not possible or introduces
further complexity.

We will define both types of models formally below.

Definition 3.3.5 (Imperative Flow Model) An imperative flow model F is a 4-tuple F B (A,T,C, µ),
consisting of a set of activities A, a set of transitions T , a set of conditions C and a transition marker
function µ.

An imperative flow f is instantiated from a flow model F created by a programmer. F consists of a
directed acyclic graph G = (A,T) with activities a ∈ A as nodes and directed transitions t ∈ T ⊂ A × A
as edges. Each transition t = (ax, ay) can be annotated with a logical condition c that depends on the
context events received by the source activity ax. If c evaluates to true, the flow makes the transition

2011-07-30 28

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

from ax to ay. Some activities are mandatory, and must be completed for a successful flow execution. F
acts as a template for an application (in our example documenting the work of a nurse). A flow instance
is created at runtime (e.g. for a specific nurse) and executed on a flow engine that receives context events
of a specific context event type from a CMS.

Definition 3.3.6 (Transition marker) The transition marker function µ B T → [true, f alse] assigns
markers to all transitions in an imperative flow, where µ(t) = true. If a transition has a marker, the
execution of this transition is not required to be active in order to start the target activity of the transition.

The transition markers allow joins of multiple flow branches where not all branches must or can be
executed during a single flow execution. This way the execution of the activity is possible, when at least
one of the previous activities has been completed. In flow diagrams, the markers are denoted as dots at
the origin of transitions.

Definition 3.3.7 (Hybrid Flow Model) A hybrid flow model F is a 4-tuple F B (A,T,C, L), consisting
of a set of activities A, a set of transitions T , a set of conditions C, and a set of constraints L.

Definition 3.3.8 (Activity) An activity a represents an atomic piece of work within a flow. This includes
invoking web services, internal computations, notifying a human about a task, or receiving context events
indicating changes in the real world. The set A B {a1, . . . , an} defines all activities of a flow. An arbitrary
number of event types can be added to each activity. Let εa : N 7→ P(U) be the event type assignment
function for a, where P(U) denotes the powerset over the universe of events types. Further, let k be the
number of event types associated with a, then εa(i) yields the i-th event type for i ≤ k, and ∅ for i > k.
We write εa for short when referring to the set of all event type sets assigned to a. Furthermore activities
may be marked as mandatory.

In a hybrid flow, activities may be executed arbitrary often and in any order. A flow can successfully
complete its execution when all mandatory activities have been executed at least once. Transitions and
constraints limit this flexibility and impose structural ordering on the flow activities.

Definition 3.3.9 (Transition) Given a set of activities A, the set of all transitions within a flow is T ⊆
A×A. A transition t = (ax, ay) represents a directed control flow dependency from ax to ay with ax, ay ∈ A.
A transition is annotated with exactly one transition condition, that is referred to as c(t). Further, we
define din(ai) B |{(ax, ay) ∈ T |ai = ay}| and dout(ai) B |{(ax, ay) ∈ T |ai = ax}| as degree of incoming and
outgoing transitions for an activity.

The transitions allow certain control flow variants: linear sequences, parallel branching, joins and
combinations of those. Conditional decisions can be made taking the context conditions into account.

Definition 3.3.10 (Context Condition) A context condition c is inductively defined as c → u|(c1 ∨

c2)|(c1 ∧ c2)|¬(c1) with u ∈ U and c1, c2 are already valid conditions and the common semantics for
the probabilistic logical operators.

The condition c(t) for t = (ax, ay) is evaluated when ax has received an event instance e for every εa.
We insert the received event instances and check c[u/Ie

E(u)] ≥ tn against the navigation threshold tn. If
the equation is fulfilled, the condition evaluates to true and the activity ay is executed.

Definition 3.3.11 (Constraint) A constraint l is an expression in linear temporal logic (LTL) that de-
fines the temporal ordering of one or more activities in the flow. l is inductively defined as l →
a|(l1 ∨ l2)(logical or)|(l1 ∧ l2) (logical and)|¬(l1) (logical negation)|(l1 → l2) (logical implication)| �
(l1) (eventually)| �(l1)(globally)| l1Ul2(strong until), where a ∈ A and l1, l2 are already valid constraints.
The literals given in the expression l denote the completion of the respective activity a in the flow.

2011-07-30 29

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

Constraints are only used in hybrid flows and can be grouped in different classes such as existence,
(negative) relation, (negative) order [61] and provided in a graphical representation (c.f. Figure 3.4). At
runtime they are converted to final state machines (FSM) [30] and can be checked online for violations.
If the FSM is in an accepting state the constraint is valid. When the FSM is not in an accepting state the
constraint is temporary violated. The subsequent execution of further activities can eventually lead to a
valid constraint. A constraint is permanently violated if the FSM reaches an error state and no sequence
of activities can fulfill the constraint anymore. A flow can successfully complete its execution iff all
constraints are valid.

The execution of the flow model yields a flow trace. When an activity is completed, this is recorded
in the flow trace along with the event instances it received.

Definition 3.3.12 (Flow Trace) A flow trace T is a sequence of completed activities T B (a1, . . . , a j)
in ascending order of completion times. The event instances each activity has received are also stored
within the trace. Let θ(T , a, u) 7→ e be a function that yields the event instance e ∈ u associated with
activity a in trace T .

From a single trace, it is possible to reconstruct the actual execution of a flow instance and which
context information, i.e. event instances, lead to this execution. All traces are stored in a flow history
documenting the executions for later analysis. We use the flow history of a flow model as the data set for
training probabilistic data structures in our algorithms.

3.4 The Basic Concept of FlowCon and FlexCon

Both, FlowCon and FlexCon, are based on the same principle. In the following, we will give an overview
of this principle where we do not discriminate between the two. We will simply refer to them as ∗Con.

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

Flow Engine

Events

Flow Engine

~
p = Ie

E(u)

p‘= I’e
E(u)

p‘‘= I’’e
E(u)

a) simple event usage b) flow-based event usage

p = Ie
E(u)

DBN Events

History Flow Structure

Figure 3.1: Architecture overview

The goal of ∗Con is to decrease the uncertainty of an event instance e. I.e. if e is of type u, then
∗Con shall collect additional evidence for this fact and increase the probability p = Ie

E(u) for the event
type u in the given distribution. To achieve this we use the flow as additional source of information. The
flow model provides information concerning the structure (activities, transitions, constraints) of the flow
and, thus, about the expected temporal relation of respective context events. The flow instance provides
information given by its execution state, i.e. the current state of the activities and the already received
context events.

Let us assume that the flow engine has started the execution of an activity a1, and receives the event
of the types associated with a1, including Eα (c.f. Section 3.3.2). In a system without ∗Con, the flow
engine would simply compare the probability p = Ie

Eα
(u) with the engine’s navigation threshold tn and

execute the respective transition if p > tn. This simple approach is depicted in Figure 3.1 on the left.

2011-07-30 30

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

∗Con, in the other hand, uses the information encoded in the flow model and the flow instance to infer
additional evidence for the fact that e is actually of type u. Thus, it improves the probability distribution
Ie
Eα

that is the basis for the threshold comparison, leading to more reliable decisions and, thus, a more
robust flow navigation.
∗Con uses Bayesian Networks (BN) to interpret context events depending on the current state of the

flow. A BN is a probabilistic data structure that is flexible enough to represent the current flow state, the
already received events, and the relation between the events according to the transitions and constraints
of the flow model. ∗Con builds the structure of the BN from the flow model and trains the BN using
traces of previously executed flows. This is shown in Figure 3.1 on the lower right. We explain the
details of the construction algorithm in the following sections.

When a flow instance is executed, every incoming context event e is sent to the BN. Any such
event is associated with a probability distribution Ie

E (cf. Definition 3.3.3). The BN infers an additional
conditional probability distribution I′eE for e over E. The distribution Ie

E given by the CMS and I′eE given
by the BN are combined, yielding an overall distribution I′′eEα

which is then used by the flow engine to
make its navigation decision. Our evaluations show that if e ∈ u then, on average, I′′eE (u) > Ie

E(u). Hence,
∗Con reduces the uncertainty contained in the original distribution such that the flow engine can make
more correct threshold decisions.

FlowCon was designed to operate on imperative flows where the ordering relations between activities
are given by transitions, leaving little room for flexible execution. In this case, we use a normal Bayesian
Network.

Flexcon, on the other hand, was built to handle hybrid flows that also contain constraints and, thus,
allow for much more freedom and flexibility in the flow execution. To deal with this flexibility, FlexCon
uses Dynamic Bayesian Networks (DBN) that can handle dynamically changing dependencies between
context events. Using exact inference to get I′eE from a complex DBN, is computationally infeasible.
Therefore, we use an approach based on particle filters [65] to increase the performance. We adapted the
standard particle filter approach to reduce the computational effort, which allows us to use more particles
on a more sparse DBN network and achieve more accurate inference results. We present a detailed
description of the inference algorithm in Section 3.6.3.

3.5 FlowCon - Robustness in Imperative Flows

3.5.1 Scenario Specificities

For the investigation of the FlowCon concepts, we use the case study described in Section 3.1 and regard
a process within that study that consists of a number of concrete tasks. While most of these tasks are
accomplished every day, each nurse flexibly alters the execution order. In order to limit these flexible
changes, we focus the process execution on the blood sample examination process. In the following, we
describe the process guideline in detail and point at the possible execution variations that may happen.
Those variations are important for our algorithm design because the knowledge we extract is influenced
by the habits of the nurse.

When a blood sample examination is scheduled for a patient—this is documented in the patient
record—the nurse takes it after the daily measurement of pulse and blood pressure. A reusable butterfly
needle is used, because there are taken up to four blood samples in a row. A formal representation of
the flow is depicted in Figure 3.2. To obtain a blood sample the nurse has to perform the following
activities. First, she (a1) fastens a cuff to the upper arm of the patient. She then starts (a2) searching a
vein for setting the butterfly. After that, she (a3) unpacks the butterfly and (a4) disinfects the elbow pit.
She punctures the patient (a5) setting the butterfly and (a6-a9) takes the samples. Finally, she (a10) labels
each sample with the patients credentials.

While getting the blood sample from the patient, the nurse basically has two variation options. She
can either disinfect the elbow pit first and then unpack the butterfly, or the other way around. However

2011-07-30 31

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

c1

c2

c3 c4

c4

c4

c4

a1 apply Cuff a3 unpack butterfly a5 set butterfly a7 sample 2 a9 sample 4

a2 search vein a4 disinfect elbow pit a6 sample 1 a8 sample 3 a10 labeling

a10

a6

a7

a8

a9

a5

a3

a4

a2a1

Figure 3.2: Blood Sample Flow

she must complete both activities before she can set the butterfly. Moreover, she is free to chose the order
in which the individual samples are taken when she has set the butterfly.

The mentioned variations lead to interesting questions. When the activity a2—search vein—has
been recognized, the context system cannot know which will be the next activity that the nurse exe-
cutes. Because of this, it is much harder to recognize the following activity compared to a scenario with
a predefined fixed sequence of activities. In this case FlowCon is able to increase context recognition
performance. Furthermore, when the flow execution waits for an activity a5—set butterfly—which de-
pends on more than one previous activity, the recognition of the preceding activities (a3, a4) increases
the probability that the next recognized activity will likely be a5.

The correct flow execution leverages automatic documentation of the blood sample taking and relives
the nurse of some of the paperwork. But this is a tough task, because it requires to recognize the activities
for every single step just using the uncertain activity recognition results to drive the workflow execution.

3.5.2 Algorithm

The general goal of FlowCon is to increase the accuracy of the events the flow execution relies on. More
specifically, we adjust the probability distribution of an event instance, so that the statistically most prob-
able event type will be favored. The probability of this event type is increased, while simultaneously the
probabilities of the possible other events types are decreased. This way the accuracy of the event types
expected by the application will be increased and their uncertainty is decreased. We train a Bayesian Net-
work (BN)[65] to extract the knowledge from the flow, which event type currently is the most probable.
BN training consists of two phases: structure learning and parameter learning. While parameter learn-
ing can be achieved efficiently from a set of given observations, learning the optimal structure of a BN
from such data is NP-hard. The FlowCon algorithm avoids the structure learning problem completely.
It basically works in three steps. First, it analyzes the flow structure and generates a BN structure from
that analysis. In the second step, it then uses the observed data from the flow history to do the parameter
learning. While both of these steps can happen offline before the actual instantiation of a certain flow, the
third step—the information combination—is executed at runtime. A comparison to the naive approach
is depicted in Figure 3.1. Usually the application has to deal with the provided probability of an event
type (e1, p), but FlowCon queries the BN for the current event type, using the actual execution state of
the flow and the already received event instances. It then combines the event type with its derived sta-

2011-07-30 32

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

tistical probability from the BN (e1, p′) and generates a new probability for the event type (e1, p′′). The
probability p′′ will be higher than p if e1 is statistically more probable for the application in the given
context.

3.5.2.1 Structure Learning

To build the structure of the BN from the flow structure we assume that there exists a dependency between
the events associated to two activities ax and ay if there exists a transition t = (ax, ay). For example,
in terms of our blood sample flow, the occurrence of the event type e1—apply cuff—necessitates the
occurrence of the event type e2—search vein—afterwards. While this dependency is simple, there are
more difficult cases. When we consider forks dout(a2) = 2, it is not clear if there is a dependency
between the event types of a2 and the event types of a3, a4. A single nurse could disinfect the arm first
every time and then unpack the butterfly. This does of course change the statistical dependency between
the respective event types. The one between e2—search vein—and e3—unpack butterfly— will be low,
while the other between e2 and e4—disinfect elbow pit— will be high. When we further consider the
activities with din(a) > 1 we see that the occurrence of an event type may depended on more than one
previous event. Some of the preceding events may have a strong statistical dependency, while others
have no effect at all. However, we create each of the possible dependencies in the beginning and adapt
their strength later in the parameter learning phase, e.g. to deal with changing behavior of nurses.

We use a Bayesian Network BN B (N,D) to represent the statistical dependencies from the flows,
where n ∈ N is a node and d ∈ D is a conditional dependency. The nodes of the BN represent discrete
random variables. The state space of a node n is equal to the event type set E adding a null class. For
every event type set of an activity we create a node n = a.E identified by the name of the activity and the
event type set. After that, we add the dependencies between those nodes where the activities also have a
directed dependency, or more formally:

((ax, ay) ∈ T) ∧ (∃i : εax(i) = E) ∧ (∃ j : εay(j)) = E ⇒

((ax.E), (ay.E) ∈ D)

The result is a structured BN. Please note that the learning has been very simple, because we have the
flow structure which provides us with a realistic assumption which event type sets are related to each
other. Furthermore, the structure is fixed for a specific flow model. Therefore, this step can be performed
offline right after the modeling phase. However, there may be multiple instances of the BN in use for
different locations where the flow is actually deployed and executed, or for different actors that are
associated with the flow. For example, there could be a single network trained for every nurse to take
personal habits into account when executing the flow and processing the context information.

3.5.2.2 Parameter Learning

The next step is to train the BN with the actual statistical dependencies that have occurred. At first the
conditional probability tables (CPT)s of each node are initialized with a uniform distribution. In order
to train a BN we need a training data set with observations for the value of each node. We use the flow
traces that are collected for each execution of a flow as data set for training. As the event instances are
stored together with the flow trace, it can be converted to an observation of the values.

As an example, we look at a trace T from our blood sample flow. For activity a1 there is an event
instance IEb = θa1(εa(1)) stored in the trace. The probability distribution of this event instance IEb

indicates that e1 is the most significant event, i.e. the one with the highest probability. So for training
from this trace we would set the observed value for the corresponding node a1.Eb to e1.

The event types associated to activities that have not been executed in a trace cannot provide event
instances, thus the corresponding nodes are set to the to the null state for this trace. In the mentioned
trace the activity a7 may not have been executed because the corresponding blood test was not scheduled.

2011-07-30 33

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

0

10

20

30

40

50

60

70

80

90

100

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7

#c
om

pl
et

ed
 fl

ow
s

Variance

t=0,40 bayesian

t=0,50 bayesian

t=0,60 bayesian

t=0,65 bayesian

t=0,40 unprocessed

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7

re
la

tiv
e

im
pr

ov
em

en
t

Variance

Figure 3.3: Simulation Results

So the value for the corresponding node a7.Eb would be null. The BN can be trained incrementally
with the traces, as they become available. This way the CPTs are adjusted until the dependencies are
appropriately represented. As we demonstrate in the evaluations a rather small training set of 25 to 50
traces is sufficient for training.

3.5.2.3 Information Combination

The third and final step is to retrieve the information from the BN and combine it with current context
information to increase accuracy. Querying a BN usually means to initialize some of the variables with
observed values and compute the conditional probabilities of the unknown variables. The observed
values for the instance of the flow that is currently executed, are the past events that have already been
recognized. We take all available events as evidence into account.

When the next event e arrives that only marginally denotes that the expected event type u has hap-
pened, we compute the conditional probability for this event type using the previous event instances as
current observations. The result from the BN is also a probability distribution function for the event
type set E. We combine this result with the probability distribution function IE of the actual event in-
stance. We compute the average probability for each event type in the distribution and normalize the
results afterwards to make the probability distribution valid again. This averaging adjusts the probability
of each event type by the amount of its statistical probability under the given context of the previously
occurred events. Here we actually adjust the context measurement. The probability of an event type that
statistically occurs more often is increased, while the other way around, the probability gets lowered.
Note that higher probability also means a higher accuracy for the measured event type. The resulting
probability distribution is stored in the event instance. The event instance is then sent to the flow instead
of the original one, and processed according to the flow execution semantics.

3.5.3 Evaluation

To evaluate our system, we used the blood sample examination flow we presented in Figure 3.2. The
scenario data and the flow were directly extracted from the collected real-world traces. Unfortunately,
some of the event data had to be simulated and we discuss this in the setup section, along with some
technical details. Following that, we present our evaluation results and analyze them.

3.5.3.1 Setup

Our simulation setup consists of three main components. First a basic flow engine that is able to execute
our flow models using the JUNG Framework [41]. The flow engine defines the navigation threshold
tn as described in Section 3.3.2. The navigation threshold is our first simulation parameter. The flow
engine also implements the evaluation semantics defined for the conditions based on Probability Theory.

2011-07-30 34

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

The second component is the Bayesian Network Event Processor that implements our algorithm and
processes the event instances. To represent the Bayesian Networks, we used the well-known Weka
framework [35].

The third component is the context system which is responsible for feeding the context events into
the flow engine. Based on the recognition results from the real traces, we generated artificial traces with
the same structure and probability distributions in order to produce statistically relevant results. We first
created lists of events that would allow the engine to complete the flow successfully. We did not consider
out of order events or completely missing ones, but just the uncertainty of false recognitions. The event
lists were then assigned with the results of the real recognition to keep the simulation as realistic as
possible. The average recognition probabilities were between 40% and 60% for the correct events. But
there have also been false recognitions with probabilities also up to 40%. We further added noise to those
single probabilities, which effectively introduces a variance v on the absolute recognition probabilities.
The resulting values were normalized to get a sound probability distribution. The variance value v is our
second simulation parameter.

An experiment we simulated, consisted of the subsequent execution of 100 blood sample flows. Each
experiment was repeated 25 times with the same parameter settings to achieve statistical relevance. We
started with a freshly initialized BN every time and had no training data available from flow histories
i.e. the parameter learning phase of our algorithm is performed online. The number of available traces
for training then increases with every completed flow instance. We chose navigation thresholds between
tn = 0.4 and tn = 0.65 with steps of 0.05 and accuracy variance values between v = 0.05 and v = 0.7 also
in steps of 0.05. Please note that a variance value of v = 0.4 basically introduces the same amount of
noise into the simulation as we have recognition probabilities from the traces. When we further increase
the variance up to v = 0.7 this can be interpreted as feeding significantly more noise into the flow
compared to the given recognition probabilities.

3.5.3.2 Results

We measured two properties of our system, the accuracy improvement of the events that should be
delivered to the flow engine in order to allow a correct execution of the flow and the overall number of
completed flows which can be interpreted as the robustness of the flow execution.

Event Improvement For the event improvement we measured the relative event improvement, which
is depicted in Figure 3.3 on the left. By relative event improvement we mean the probability of the
significant event of the event instance divided by its original probability before the processing with our
algorithm (p′′/p c.f. Figure 3.1). We left out some curves for better visibility. For the thresholds
tn = 0.4 and tn = 0.5 we observe a very good accuracy improvement performance between 49% and
39%, for variance values up to v = 0.4. This conditions indicate a system that has equal to higher
requirements for the recognition accuracies that could actually be provided. Furthermore we can deal
with a significant amount of noise quite well. However when we further increase the variance up to
v = 0.7 the average event improvement slowly degrades to only 7%. But we still manage to improve the
recognition probabilities a little. When we further increase the navigation threshold tn = 0.6 and tn = 0.65
the performance degrades much faster. While FlowCon is still able to achieve a good improvement
for small variance values up to v = 0.15, we quickly get counter productive results when we further
increase the variance. The break even point, where we actually make things worse using FlowCon, is
v = 0.45 for a threshold tn = 0.6 and v = 0.25 for a threshold tn = 0.65. This strong degradation can be
explained as we train the BN online during the experiments. The correct training gets more difficult and
finally impossible with higher variance, values because we have fewer correct traces and the navigation
threshold to achieve a correct trace is very high.

2011-07-30 35

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

E_2 Wash dry write fetch disinfect

E_3 Sit stand walk

E_1 Table, sink, bed, door

• Transition
• Not succession
• response

Mandatory
activity Activity Transition

Not succession
constraint

Response
constraint

a1 Note
results

a2 Wash at
sink

a4 Dress
patient

a3 Wash in
Bed

a6 Disinfect
hands

a5 Change
Bedding

… …

Figure 3.4: Morning hygiene flow

Flow Execution Robustness The second observed property is ratio of flows that were executed suc-
cessfully during an experiment. Those results are depicted in Figure 3.3 on the right. As a reference,
we have also shown here the performance of our flow engine under the same conditions, but without
the processing accomplished by FlowCon. Given this setting, the engine is only able to complete an
average between 10.6% and 0.8% of all flows, while the combination with the FlowCon algorithm yields
an average number of completed flows between 90.0% and 27.6% which is a significant improvement.
The same degradation behavior as in the event quality improvement can also be observed for the overall
system robustness. We perform quite well with slow degradation and a measurable drop at a variance
v = 0.45 for the lower thresholds (tn = 0.4 and tn = 0.5). For the upper thresholds, the performance
degrades much faster for the reasons we explained before.

3.6 FlexCon - Robustness in Hybrid Flows

3.6.1 Scenario Specificities

In order to evaluate FlexCon, we also used the data from our hospital case study. However, this time we
used hybrid flow models from the study. A typical flow, e.g. from the morning routine, consists of 30 to
50 activities of which about 20% have no strict order. The entire navigation in such a flow depends on
context events (i.e. the correct next activity is chosen based on the context events received). An example
fragment is depicted in Figure 3.4. Dashed boxes depict mandatory activities that need to be executed
unconditionally while solid boxes are optional. For example, a2 and a3 are optional. The execution of
a flow instance is valid if, one of them, both or non of them have been executed, while a1, a4, and a6
need to be executed for the flow to be successful. Solid arrows are transitions that imply a strict ordering
between the activities: a1 must be followed by either a2 or a3 and a4 must follow both a1 and a2. The
dashed lines are constraints that define certain restrictions on the execution order of the related activities.
The figure depicts two examples: the semantics of the not succession constraint between a3 and a5 is
that a valid flow execution must not contain both activities. It may contain either one or none of them,
and if one is executed, it can be executed arbitrarily often. As we explained in Section 3.3.2, constraints

2011-07-30 36

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

can be arbitrary linear temporal logic expressions. Some of them have been translated into a graphical
representation.

The flow shown in Figure 3.4 is a fragment of a larger flow that models the actual processes found
in the Mainkofen nursing ward. Its overall semantics is the following: When a nurse arrives at this
fragment, she must document the results (a1) of the preceding steps, which include some regular morn-
ing examinations, such as measuring blood pressure. As these examinations are carried out without
assistance of an electronic device, the flow ensures that the nurse will not forget the results during the
following steps. Then she has to take a decision: she may wash the patient at the sink (a2) or in his bed
(a3), depending on the patients condition and mood. In FlexCon actually both activities are entered as
soon as a1 has completed. Depending on the incoming context events, either one or both are executed.
If the nurse decides to wash the patient in his bed (a3), she cannot change the bedding (a5) since the
patient still never leaves his bed during the whole procedure (this is done in a different flow). After the
nurse has completed the washing activity, she needs to dress the patient (a4). When she dressed him, she
must disinfect her hands (a6) at some later point in time, possibly after a number of other intermediate
activities. But, she may disinfect her hands at any point in time, while the flow is being executed. This
is beneficial in two ways. First, the nurse can flexibly decide to disinfect her hands multiple times, e.g.
during washing the patient, also allowing the system to keep track of her personal hygiene as well as
the patients. Second, the flow can guide the nurse to disinfect her hands before she continues to care for
another patient, this way enforcing the hospitals hygiene rules.

3.6.2 Dynamic Bayesian Network - Structure and Learning

A Bayesian NetworkBN = (X̄,D) is a directed acyclic graph representing a joint probability distribution
over a number of random variables (RVs) {X1, ...Xn} = X̄. X̄ represents the nodes and the edges D ⊆ X̄×X̄
define a conditional dependency from the source RV to the target RV. In FlowCon, we used BNs as the
flows where based on imperative models that specify the complete execution order. Therefore, the simple
static BNs were sufficient. The hybrid model in FlexCon, however, introduces much more freedom for
the users to drive the flow forward in different ways and, thus, more dynamics. The static BN model does
not support such a dynamically changing probabilistic process. Therefore, FlexCon employs Dynamics
Bayesian Networks which are tailored for dynamically changing systems.

In a DBN [65, 55], the state of the RV changes over time and the observed values for the RV in the
current time slice X̄t depend on the observations of one or more previous time slices. This dependency is
expressed by the transition model TM = P(X̄t|X̄t−1). When we write X1,0, we refer to the RV X1 in the
time slice t = 0. Additionally, a DBN has a prior distribution PD = P(X̄0) for time t = 0, such that the
definition of a DBN is given as follows: DBN = (X̄,TM,PD)1.

3.6.2.1 DBN Construction

Let F1 = (A,T,C, L) be the flow model from our example in Section 3.6.1. For each a ∈ A and each
E ∈ εa, FlexCon creates a node in the DBN. More formally, the function χ : A × P(U) → X̄ maps an
activity a and an event type set E to a unique RV X of the DBN. Let further χ̄(a, εa) be the set of all
RVs associated with activity a. χ(a, E) = X with E ∈ εa is discrete and can assume the same values
present in the event type set E plus a null class, represented by ⊥. For example, let us consider a1 and
Eα ∈ εa1 . The respective random variable χ(a1, Eα) = Xα can assume any value from {wash, dry, write,
fetch, disinfect,⊥}. χ(a, E)t and χ̄(a, εa)t refer to the respective RVs in time slice t.

The time slices in our DBN are defined with respect to the execution state of the flow: Every time
an activity completes its execution and the flow state is changed accordingly, we enter the next time
slice in the DBN. FlexCon creates the transition model (the time dependencies) from the transitions and
constraints in the flow model. Both of them enforce an execution order on the set of activities. We map

1Since FlexCon has no hidden variables, there is no need for a sensor model as it is usually found in the DBN definition

2011-07-30 37

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

these order relations to the transition model, introducing directed edges (dependencies) from one time
slice to the next. The strength of these dependencies in learned from flow traces (past flow executions) in
a subsequent step. In the following, we describe the construction and learning phases first for transitions
and then for constraints.

A transition t = (ax, ay) ∈ T between two activities represents a very strong dependency as ay can
only be executed when ax has been completed. Therefore, we create a dependency in the network for a
pair of RVs if a transition exists between the respective activities as follows.

(χ(ax, Ex)t, χ(ay, Ey)t+1) ∈ P(X̄t+1|X̄t) ⇐⇒ ((ax, ay) ∈ T) ∧ (Ex ∈ εax) ∧ (Ey ∈ εay).

For example, consider the activities a1 and a2 in Figure 3.4: They have a transition and, therefore, each
X ∈ χ̄(a2, εa2)t+1 would have χ(a1, Eα)t as parent node, because Eα ∈ εa1 .

As constraints usually provide a less strict ordering of activities it is more difficult to derive the correct
dependencies for the transition model. These dependencies can be different for each execution trace of
the same flow. Let l1 = �(a3 → ¬(�(a5))) represent the not-succession constraint in the example in
Figure 3.4. First, FlexCon assumes that there is a bidirectional dependency between all the activities that
are contained as literals in the expression (a3 and a5 in the example). Hence, FlexCon adds (X3,t, X5,t+1)
and (X5,t, X3,t+1), with X3 ∈ χ̄(a3, εa3) and X5 ∈ χ̄(a5, εa5) as dependencies in the DBN. In a second
step, FlexCon determines the type of dependency that has to be included in the transition model TM.
If the sequential execution of the originating activity a3 and the the target activity a5 of the dependency
permanently violates the constraint (as is the case in the example), FlexCon marks this dependency as
negative. Negative dependencies are handled differently in the learning process as described below.
If the sequential execution leads to a valid or temporarily violated constraint (c.f. Section 3.3.2), the
dependency is handled like a transition. If the subsequent execution of the two activities has no influence
on the constraint, we do not add a dependency at all. The latter is the case for the response constraint
between a4 and a6 in Figure 3.4, where the execution of a6 has absolutely no dependency on the execution
of a4.

3.6.2.2 DBN Learning

In order to learn the strength of dependencies in the DBN, we use the flow history as training data,
counting the occurrences of all event pairs and learning their joint probability distribution. The portion
of the flow history that is relevant for the learning is controlled by a sliding window algorithm taking
only a number of recent traces into account. This helps in controlling the effectiveness of the learning
procedure in the face of a changing behavior of the flow system.

For dependencies originating from flow transitions, the simple counting algorithm as explained above
is sufficient. For constraints, we have to apply a different mechanism: In order to learn the strength of
negative relations, we increase the count of the null-class for every trace where no such event sequence
could be observed. This leads to a reduced probability of any other event type of the respective event
type set. As an example, consider the not succession constraint of a3 and a5 again. The execution of
a3 will indicate that a5 is never going to happen in any valid execution of this flow instance. Therefore,
we reduce the belief of the DBN that any of the events associated with a5 is likely to be recognized.
An inexperienced nurse may execute the activity sequence a3, a5 nonetheless, but the flow can provide
guidance for this case, preventing the nurse from violating the constraint l1.

3.6.2.3 DBN Initialization

Finally, we need to initialize the DBN for t = 0, and provide the prior distribution PD = P(X̄0). This
distribution is also extracted from the flow history: We search for traces of the respective flow model and
create individual distributions for all the activities the flow has been started with at least once. For F1, this
includes a1, a5 and a6, and the distribution for Eα ∈ εa1 could have the following values: P(wash) = 0.01,

2011-07-30 38

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

P(dry) = 0.01, P(write) = 0.85, P(fetch) = 0.05, P(disinfect) = 0.01 and P(⊥) = 0.07. In most of the
cases the correct writing activity has been recorded. In some cases, fetch has been misinterpreted, while
sometimes there was no meaningful evidence at all (⊥). The rates for the uncommon activities (wash,
dry, disinfect) are even lower.

3.6.3 Clustered Particle Filtering

In order to exploit the knowledge encoded in the DBN for a specific flow model, a process called infer-
ence has to be executed. That is, the posteriori distribution of the variables (nodes) has to be calculated
given real evidence. In our case, the evidence are the real context events received from the CMS in time
slice t, and the inference is done by computing all the conditional probabilities for the variables in time
slice t+1. Exact inference is infeasible for complex DBNs like the ones generated from flows. Even more
so, as this process is running in parallel to the flow execution: Whenever new evidence is available, the
inference has to be done to get the probability distributions for the upcoming context events. Therefore,
FlexCon uses a heuristic approach that is based on particle filters [65]. That is, we use a large number of
random samples (the particles) from the distribution of the DBN at a certain time slice t and propagate
them through the DBN to approximate the individual distributions associated with each node in the fol-
lowing time slice of the DBN. A particle filter approximates the exact distribution by generating a set of
particles N(X̄) for all random variables. The higher the number of particles the better the approximation
of the real distribution. But the computation time grows linearly with the number of particles.

To propagate and calculate probabilities in the DBN the filter executes the following four steps.
To initialize the filter, it first generates an initial particle set N(X̄0) sampled from the prior distribution
PD = P(X̄0) given by the DBN. In a second step each particle is propagated to the next time slice (t = 1
in this case) according to the distribution given by the conditional probability table. In the third step, the
particles are weighted with the evidence available at the current time slice. Each particle is multiplied
with the probability of the current observation. In the final step, the set of particles is resampled according
to the weight of the individual particles. A detailed description of the basic principles has been published
by Russel and Norvig [65].

We modified this standard algorithm as explained in the following, to accommodate it to the needs
of FlexCon. The result is a clustered particle filter that is similar to the F3 filter presented by Ng et al.
[57]. First of all, a single particle in FlexCon does not represent a full sample of X̄ but only a sample of a
subset of the variables

⋃
E∈εa χ(a, E), i.e. all variables of a single activity. Therefore, we call it clustered

particle filtering, where each cluster can also be identified by N(χ̄(a, εa)). This is an useful abstraction
for a number of reasons. Each time slice in the DBN covers the completion of a single activity in the
flow. Therefore, it is enough to process particles of that activity. All other particles are only propagated
as they may be needed later on. This allows us to increase the total number of particles as the average
processing load per particle is decreased. The unprocessed particles can be directly transferred to the
same node in the next time slice, without the need for a dependency between these nodes.

For example, consider the trace T1 = (a1, a6, a3, a4, a6). After executing a1, the particles from
χ̄(a1, εa1)0 are propagated to χ̄(a3, εa3)1 since there is a transition (a1, a3), while χ̄(a6, εa6)0 are just passed
to χ̄(a6, εa6)1, without further processing.

The second modification changes the propagation and weighting steps. Usually the full set of evi-
dence, i.e. P(χ̄(a′, εa′)t+1|X̄t), is available for propagating the particles in time slice t. As we only process
the particles for a single activity a and only observe the received events for this activity as evidence, we
can only rely on the conditional probability P(χ̄(a′, εa′)t+1|χ̄(a, εa)t), instead. This means that we cannot
use the evidence of events that have been observed ”outside” of the current cluster N(χ̄(a, εa)t). As a
consequence we introduce an small error in the inference. However, the majority of X ∈ X̄ will be inde-
pendent from the variables in χ̄(a′, εa′), because there is no dependency defined by the flow. Therefore
the introduced error is rather low and we actually discuss in Section 3.7.3 that not using this evidence
makes FlexCon a bit more robust. Alternatively, it would also be possible to sample the evidence from

2011-07-30 39

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

the current distribution N(X̄ \ χ̄(a, εa)) of the other activities, but this also introduces inference errors.
After the propagation phase, the actual observations (i.e. the received event instances) become avail-

able to the DBN. We can then weight the particles multiplying the number of particles |N(χ(a, E) = u)|
for a specific event type u with the actual probability of the event type given by Ie

E(u). Based on the com-
puted weights all the particles for χ̄(a, εa) are resampled according to the distribution of the weighted
particles.

The third modification is the actual processing of the received event instance e in order to decrease
its uncertainty. This step is accomplished after the propagation of the particles and before the weighting.
We compute the conditional probability weights for I′eE from the particles in χ(a, E), where the weight

p′ =
|N(χ(a, E) = u)|
|N(χ(a, E))|

for I′eE (u) is just the relative particle frequency, as the distribution in the sample N(χ̄(a, εa)) represents a
sufficient approximation of the correct conditional probability distribution. All probabilities p = Ie

E(u)
are added to the respective p′ and the resulting distribution is normalized again, yielding I′′eE (u)

Algorithm 6 Clustered Particle Filter Algorithm

Input: DBN = (X̄,TM,PD), a, e[]
if N(X̄) = ∅ then

N(χ̄(a, εa))← createInitialParticleS et(PD)
end if

5: for all e ∈ e[] do
weightEvent(e, Ie

E , χ(a, E))
weightParticles(N(χ(a, E)), Ie

E)
N(χ(a, E))← resampleParticles(N(χ(a, E)))

end for
10: propagateParticles(N(χ̄(a, εa)),TM)

Algorithm 6 depicts the standard particle filter algorithm including the changes introduced by Flex-
Con. The input to the algorithm includes the DBN , the currently completed activity a and the set of
event instances e[], a has received.

3.6.4 Evaluation

For our evaluation, we have generated flows according to a probabilistic pattern-based model [22] that
has the same properties as the flows observed in the real-world hospital scenario. We do this to get a
number of flows that is large enough to achieve statistical relevance. The flows we generate have the
same average number of activities and the same structural properties. I.e. they have the same ratio
between activities that have normal transitions and activities that are connected to other activities by
constraints.

Use of flow patterns [48] allows us to generate imperative flows based on structures commonly found
in human-centric flows. We generate these flows and randomly add a respective portion of unconnected
constraint-based activities (CBAs) to the flow. Next, we randomly generate constraints and use these
to connect the CBAs to the imperative parts of a flow. Finally, the resulting flows are validated by
generating traces from them. Flows that produce deadlocks (two or more activities blocking each other
due to conflicting constraints) are discarded.

Overall, we generated 165 structurally different flows and 200 traces per flow for our evaluations.
The simulation has three important independent parameters. The first one is the navigation threshold

tn of the flow engine as defined in Section 3.3.2. For a higher navigation threshold the flow engine accepts
less uncertainty in the context events it receives. We tested tn from 0.4 to 0.6 in steps of 0.05.

2011-07-30 40

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

R
e
l
a
t
i
v
e

e
v
e
n
t

i
m
p
r
o
v
e
m
e
n
t

Variance on individual event probability

(a) Comparision of event improvement

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

F
r
a
c
t
i
o
n

o
f

c
o
m
p
l
e
t
e
d

f
l
o
w
s

Variance on individual event probability

FlexCon - DBN-Engine t=0.4
FlexCon - Basic-Engine t=0.4

FlowCon - Bayesian Engine t=0.4
FlowCon - Basic Engine t=0.4

(b) Comparision of flow completion

Figure 3.5: Simulation Results - Comparision between FlowCon and FlexCon

The second parameter is the average recognition rate arr of the CMS. When a context event e is
created in the CMS, arr is the average probability assigned to the correct event type in the distribution
Ie
E by the CMS. The remaining probability 1− arr is geometrically distributed to the other event types of

the respective event type set E.
The variance v is the third simulation parameter. It represents the noise added to the distribution Ie

E
created by the CMS. The probability of each event type u ∈ E is varied by ±v/2, and Ie

E is normalized
again. We evaluated the system for variance values between 0.05 and 0.6 in steps of 0.05.

To assess the performance of FlexCon we use the relative event improvement and the number of
completed flows as our two metrics. The relative event improvement r is defined as r = I′′eE (u)/Ie

E(u)
for the correct event type u. If r > 1.0, then FlexCon was able to provide additional evidence for the
occurrence of the correct event type u, and the flow engine has a higher chance of making the correct
navigation decision.

The number of completed flows is simply the percentage of all traces that did complete their execu-
tion successfully. We did include the learning of the model in the simulations and the execution starts
without a flow history. To put our system further into perspective, we directly compare the results with
our previous measurement of the same metrics in FlowCon. Note that the flows in FlowCon are purely
imperative. That is, activities are connected by transitions and there are no constraints that leave the
decision about the ordering of the activities to the user. Thus, the task of FlowCon is much easier than
that of FlexCon due to the additional flexibility of the flows.

3.6.4.1 Results and Discussion

The evaluation results are depicted in Figure 3.8. We only show the results for tn = 0.4 and arr = 0.45
for clarity. Furthermore, these conditions closely resemble the situation in the hospital and they can be
compared best to our previous work.

Figure 3.8(a) depicts the comparison of the relative event improvement rates for FlowCon and Flex-
Con. The average event improvement is better for almost all variance values. Even for the higher
variances of v ≥ 0.4, where the improvement of FlowCon declines, FlexCon is able to maintain a good
improvement, mainly due to the changed method of accuracy improvement: While FlowCon uses all
the observed event instances as evidence for calculating the probability of the current event, FlexCon
only applies the evidence for the current particle for particle propagation, i.e. independently from other
particles. When we misinterpret an event instance from a preceding node this has less impact on the
particle filter, as only the propagated particles from this node are influenced, but not the particles from
other preceding nodes. Where in FlowCon the whole conditional probability for the current event can be
distorted, in FlexCon only a partial result suffers from the misinterpretation. However, if only one parent

2011-07-30 41

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

exists for a given node in the DBN, FlexCon is also sensitive to this kind of misinterpretation, leading to
r < 1.0 making the result worse.

The high standard deviation for the event improvement on the flows can be explained by the flows’
flexible structure. If two subsequently executed activities are not connected by a constraint or transition,
we cannot improve the event in any way as there will be no connection in the DBN between the respective
nodes. So according to the flow structure, we have a very high improvement for the dependent events but
none for the independent ones.

Figure 3.8(b) shows the comparison of the flow completion rates, between FlowCon, FlexCon and the
respective basic flow engines which do not take any action to decrease the event uncertainty. FlowCon
- Basic and FlexCon - Basic simply execute the same flows without uncertainty reduction. Both basic
systems fail at very low variance values. For v ≥ 0.15 less than 6% of the flows can be completed
successfully for both basic flow engines. The high values for the basic FlexCon flow engine compared
to the basic FlowCon flow engine for v = 0.05 and v = 0.1 result from a changed method of generating
the event instance distribution.

The FlexCon DBN-Engine manages to complete 45% of the flows at v = 0.15 and this performance
decreases slowly for higher v ≥ 0.2. It is still able to complete 20% of the flows at v = 0.6.

Again, the standard deviation on the number of completed flows is rather high, for the same reason as
above. Some of the flows allow a very good event improvement leading to a reliable execution, after the
training phase of the DBN is complete. Those flows (about 5% of the tested flows) exhibit an completion
rate of well over 80% and are the main reason for the high standard deviation. Most of the flows are
close to the average, and can complete their execution in about 30% of the cases.

3.7 FeVA – Tolerating Event Assignment Errors

In this section, we present the Fuzzy Event Assignment (FEvA) algorithm that enables flows to robustly
interpret incoming context events and assign them to the correct activities. FEvA exploits the structural
and contextual relation of flow activities and the current execution state of flows as additional information
for dealing with false positive, out-of-order, and missing events. This leads to a notable improvement
of the robustness of context-aware applications. On average 91% of the context events are correctly
assigned, and the number of successfully completed flows increases by 52% over a reference system
without FEvA.

Current CMS’ provide methods for dealing with the uncertainty of primary context (e.g. location
information [47]) and for composing high-level context information (e.g. recognizing tasks of a nurse
for documentation). In the latter case, uncertain context reasoning or event correlation can be applied
[44],[23]. However, no general method has been found to avoid arbitrary errors in context information
including false positives, out-of-order events and missing events – errors that can easily happen due to
timing issues, software mistakes, and especially misinterpretation. FeVA is the first system that tackles
this problem.

3.7.1 Error Model

In order to execute a flow successfully, it has to be ensured that (1) the uncertainty of the events is so low,
that the flow can correctly interpret them and (2) the received events are are complete and in the correct
order. While FlowCon and FlexCon tackled the problem of reducing the uncertainty (see Sections 3.5
and 3.6), FeVA focuses on the difficulties that arise, when the sequence of events is influenced by the
uncertain recognition process. We call S a valid event sequence (cf. Definition 3.3.4 on page 28) if it
leads to a successful execution of a given flow. This successful flow execution can be disrupted by three
types of errors in the event sequence that we model as follows:

The first error type are false positives that occur when the CMS notifies the application about an
event that did not happen in the real world. We define α as the fraction of false positive events added

2011-07-30 42

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

to a sequence S . We assume that added event instances are uniformly distributed over the sequence.
Their type is randomly picked from E, and their probability distribution is similar to that of the other
event instances in S , i.e. they cannot be distinguished from correct events in S when inspecting the
distribution.

The second error type are out-of-order events. Due to network transmission delay in a distributed
CMS, temporary sensor failures or a delay in the low-level detection logic, the order of events in a valid
sequence may be altered. We define γ as the fraction of events that have not been affected by a sequence
shift. The affected events are shifted according to a normal distribution N(0, σ).

Finally, there are missed events that happened in the real world but were missed by the CMS. This
might happen due to sensor unavailability or a bad reading. Let δ denote the fraction of events in a valid
event sequence that have been missed. A single event sequence can be subject to all three error types and
we write S α,γ,δ to express its error properties.

3.7.2 Fuzzy Event Assignment

The goal of FEvA is to interpret an incoming, erroneous event sequence S α′,γ′,δ′ with α′ > 0, γ′ < 1, δ′ >
0 for a flow f into the error-free original valid sequence S 0,1,0 . FEvA operates inside the flow engine and
monitors the flow execution closely, exploiting the knowledge about preceding and succeeding activities
to detect the described errors for the current activities, flexibly correcting the event assignment.

First, we explain the so-called activity state space and how it is extended to catch out-of-order events
correctly. Then, we describe the assignment of context events to the correct activities. An event instance
e can become a candidate for any activity that is currently subscribed to an event type set E with e ∈ E.
Of course, multiple activities may subscribe for E, and we will describe the mechanism for resolving the
resulting competition for e. The candidate selection algorithm fuzzifies the incoming context events and
provides them as possible candidates to the activities. An activity then decides if the event becomes a
candidate and waits for further events. As the execution of a single activity progresses it will eventually
have candidates for all the event type sets it registered for. Then it can complete its execution and
the event assignment algorithm finalizes the assignment of the candidate events and resolves possible
conflicts with other activities.

3.7.2.1 Flow Activity State Space

The state machine for an activity is depicted in Figure 3.6. During flow execution, an activity a can be
in six different states that indicate its completion progress. These states are in their order of execution
Z = {inactive, prepare, ready, active, can-complete, complete}. Let ω : A → Z be the function that
retrieves the current state of an activity a. When a flow instance is created, all activities are in the
inactive state. An activity a that meets all prerequisites for being executed switches to the ready state.
The flow engine then registers a’s event type sets at the CMS. After a has been informed of the arrival
of the first event instance with an appropriate event type set, a reaches the active state. When a has
been informed that for all registered event type sets, event instances have arrived, the conditions of the
outgoing transitions (a, ax) ∈ T are evaluated and a reaches the complete state. The target activities ax

of the outgoing transitions, whose conditions have been evaluated to true, are set to the ready state. The
execution of the whole flow instance is considered successful if no activity is currently running (i.e. in the
active state) and all activities that are mandatory for the successful execution have reached the complete
state. The prepare and can-complete states have been added during the development of FEvA.

First, if the state ω(ay) of each preceding activity ay with (ay, a) ∈ T is < {inactive, prepare}, then a
switches from the inactive to the prepare state. The event type sets of an activity in the prepare state are
also registered at the CMS. Therefore, the risk of missing an out-of-order event that arrives earlier than
expected are reduced, because the activities also register early for their event type sets.

Second, before switching from active to complete, an activity a reaches the can-complete state first.
This state indicates that a has found candidates for all its event type sets but the preceding activities

2011-07-30 43

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

can-complete

readyinactive

complete active

prepare

Figure 3.6: Activity State Machine

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

Event ContainerEvent Instance e
a1

a2

E ∈ εሺܽ1ሻ

E ∈ εሺܽ2ሻ

Figure 3.7: Event Container Principle

have not yet reached the complete state. This can happen when events have been missed or arrived
out-of-order. Waiting for the completion of the preceding activities, we avoid that a consumes events
that are possibly more suitable candidates for the predecessors while a better event for a might still
arrive. However, the conflict resolution mechanisms, which we will introduce along with the event
assignment algorithm, will occasionally bypass this rule to handle missed events (cf. Section 3.7.2.2).
For more details on the formal flow model, the execution semantics and condition evaluation we refer to
our previous work [79].

3.7.2.2 Candidate Selection and Assignment

FEvA consists of two algorithms, one for event candidate selection and one for event assignment. Both
algorithms are plugged into the event container (cf. Figure 3.7), the component of the flow engine
responsible for event caching and dispatching. The event container is notified whenever an activity a
registers its event type sets ε(a) at the CMS. The event container also updates the the set of competing
activities CE = {a ∈ A | (ω(a) < {inactive, complete} ∧ E ∈ ε(a)} for each event of type
set E. Furthermore, the event container stores a list of candidate events for each a and E denoted as
candidates(a, E). All new event instances, the flow engine is notified about, are cached in the event
container.

3.7.2.3 Candidate Selection

The candidate selection algorithm, depicted in algorithm 7, computes which event instances are added
to the list of candidates of an activity. Since we only get the probability distribution Ie

E for every event e,
there is no hard criterion for deciding which type e has, but only probabilities. Therefore, we use fuzzy
set theory (cf. [81]) to value every event, assign them to event types, and finally to activities. First, the
algorithm computes a fuzzified representation of e. We use fuzzy sets, each representing a linguistic
value, defining the fitting quality of e for a single event type u ∈ E. The individual fuzzy membership
functions are defined as µx : [0, 1] → [0, 1] where x ∈ {VL, L,M,H,VH} is one of the linguistic values
”very low”, ”low”, ”medium”, ”high”, ”very high”. Each function µx maps the probability Ie

E(u) for e
being of a single event type u to a fuzzy membership value for the respective linguistic value. We use the
same membership functions µx based on the standard triangular fuzzy functions [59] for all combinations
of activities and event type sets. For example, u ∈ E is the event type representing that the nurse has
measured the pulse of the patient and Ie

E(u) = 0.375 then µM(Ie
E(u)) = 0.75 and µH(Ie

E(u)) = 0.25.

2011-07-30 44

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

As each event is weighted by every membership function, we further introduce the fuzzy event type
weighting function λ : [0, 1]→ [0, 1]5 as a concise version including all the membership function results.
Given u ∈ E , λ(Ie

E(u)) yields (µVL(Ie
E(u)), µL(Ie

E(u)), µM(Ie
E(u)), µH(Ie

E(u)), µVH(Ie
E(u))), i.e. the mapping

of the individual probability of the event type to the fuzzified membership in all five fuzzy sets. The
maximum membership values for each variable are given as follows: µVL(0.15) = 1.0, µL(0.25) = 1.0,
µM(0.35) = 1.0, µH(0.45) = 1.0, µVH(0.55) = 1.0. For p < 0.15, µVL = 1.0 and for p > 0.55, µVH = 1.0.

For all u ∈ E, the candidate selection algorithm weights u with the fuzzy event type weighting function
λ(Ie

E(u)) and notifies the activities in CE , i.e those that have subscribed for E, about the result. Using
the fuzzy activity weighting function κa : [0, 1]5 → [true, f alse] of the activity a, the decision is made
whether e becomes a candidate for a or not. κ is derived from the structure of the conditions of a applying
fuzzy logic. It might be modified per activity by the flow modeler, but we only use the automatically
defined κ for a.

To explain how the result of κa is computed, let u ∈ E denote the pulse measuring event type again.
Further, a has a condition that requires u ∈ E to have happened, so that the respective transition can
evaluate to true. The result of κa becomes true if and only if the lowest non-zero linguistic membership
in λ(Ie

E(u)) is ”high” or ”very high”. Thus, µH((Ie
E(u)) ≥ 0.0 ∨ µVH(Ie

E(u)) ≥ 0.0). This also represents
the minimum candidate threshold for an event to be accepted as a candidate for any activity. Given this
equation is fulfilled, the result of κa(λ(Ie

E(u))) yields true and e is stored as a possible candidate for the
activity a and the event type set E in candidate(a, E).

If e becomes a candidate for an activity a, FEvA further checks if e has the best overall fitting of the
candidates available in candidates(a, E). Let u ∈ E be the event type that a is interested in. We denote
the event instance with the highest fitting as emax where ∀e ∈ candidates(a, E) : µx(Iemax

E (u)) ≥ µx(Ie
E(u))

for the highest non-zero linguistic membership value of emax. Given that the new event instance e is the
new best fitting one (e = emax), the algorithm issues an assignment request for e that is later handled by
the event assignment algorithm.

Algorithm 7 Candidate Selection Algorithm
Input: CE , e
for u ∈ E do

f uzzyWeights(u)← λ(Ie
E(u))

end for
5: for a ∈ CE do

for u ∈ E do
if κa(f uzzyWeights(u)) then

candidates(a, E)← candidates(a, E) ∪ {e}
end if

10: end for
emax ← max(candidates(a, E))
issue assignment request(a, emax)

end for

3.7.2.4 Event Assignment

When an activity a is eventually notified that for all registered event type sets suitable candidates have
been found, its state changes to can-complete. Now the activity must consume a single candidate for
each event type set from the event container, before it can commit its execution and reach the final
complete state. The event assignment algorithm is responsible for processing the issued event assignment
requests of the activity. However, in the assignment of an event instance e to a, conflicts might occur

2011-07-30 45

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

because it could also have been requested by another activity ao. The event assignment algorithm2 is
also responsible for resolving such conflicts:

If there is an ao ∈ CE that has also issued an assignment request for e ∈ E, we search for an
alternative candidate in candidates(ao, E). If this alternative is available, i.e (candidates(ao, E) \ e) , ∅,
then a consumes e and the algorithm computes emax again for ao and its changed set of candidates.
When there is no other candidate available in candidates(ao, E), we check if only one of the activities
is mandatory, and prefer to assign the event to the mandatory activity. If a cannot assign an event using
these two mechanisms, then we try to re-evaluate candidates that have been rejected earlier. In order to
do so, we relax the candidate threshold for the missing event, if at least one of the other event type sets
have a very good candidate assigned. This is the case if there is an assignment request for one event type
set of ε(a) \ E, that exceeds the candidate threshold, having a nonzero ”very high” fuzzy weight, or more
formally for E′ ∈ (ε(a) \ E) : ∃u ∈ E′,∃e′ ∈ candidates(a, E′) : µVH(Ie

′

E (u)) ≥ 0.0. Given this equation
is fulfilled, then the threshold for the missing event type set E is reduced to ”medium” and events, which
are still cached, could now become also candidates for a.

If this also does not yield a suitable candidate, the activity may be completed without having been
assigned an event for E, under the assumption that the event instance for E was missed. But in order to
do this, a number of strict criteria have to be fulfilled. First, there is a fixed maximum number of allowed
missing events per activity. As the average number of event type sets per activity in our flows is ≈ 3,
we accept only one missing event, so that the number of missing events is always below or equal to the
number of received events per activity.

Second, the preceding activities of a must be complete and the succeeding activities must be in can-
complete, because this indicates that all other events before and after the activity in questions have been
identified or already assigned. Third, the succeeding activities must have at least one candidate with
a very high fitting value. These rules contribute enough evidence to decide, that the activity can be
completed without the missing event. In this case, we violate the transition rule for the can-complete
state given in Section 3.7.2.1.

3.7.3 Evaluation

To evaluate FEvA with respect to the error model we introduced in Section 3.7.1, we extended our
existing simulation environment, developed in previous work[79]. In the following, we present the setup
of the individual experiments and the simulation parameters and then discuss the results.

3.7.4 Simulation Setup

We need a suitable set of realistic flow models to evaluate FEvA in a wide range of cases. However, there
is no sufficiently large set of different real-world flow models publicly available for us to use in this work.
Therefore, we created the flows from so-called workflow patterns. These patterns are common building
blocks that have been identified in a number of real-world workflows, which include a high number
of human tasks [22]. Furthermore, it has been shown that these patterns adhere to a co-occurrence
distribution, indicating that some patterns follow others more regularly [48]. We used this co-occurrence
distribution to generate the structure of the workflows used in our evaluations. The flows had sizes of
20, 30, 40, and 50 activities. For each size, we simulated 25 different flows and fed 100 different event
sequences into each flow. Therefore, every data point in the evaluation results is created from 10,000
flows executions.

The simulation is set up using two sets of parameters. The first set consists of the two values: the
ground truth GT and the variance V , which are used to generate Ie

E . GT is the probability that the
CMS detects the correct situation that happened in the real world. The remaining probability 1 −GT is
geometrically distributed to the other events types of the event type set. We have estimated the lower

2We omit a listing of the algorithm due to space restrictions.

2011-07-30 46

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
flo

w
s

co
m

pl
et

ed
/

 %
co

rr
ec

tly
 a

ss
ig

en
d

ev
en

ts

avg. of correctly assigned events
reference v=0.4

v=0.2
v=0.4
v=0.5

(a) fraction of added events α

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

%
flo

w
s

co
m

pl
et

ed
/

 %
co

rr
ec

tly
 a

ss
ig

en
d

ev
en

ts

(b) fraction of in-order events γ

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

%
flo

w
s

co
m

pl
et

ed
/

 %
co

rr
ec

tly
 a

ss
ig

en
d

ev
en

ts

(c) fraction of deleted events δ

Figure 3.8: Simulation Results - FEvA performance: The graphs for “reference v=0.4”, “v=0.2”,
“v=0.4”, and “v=0.5” show the percentage of flows completed. The graphs “reference v=0.4” depict
the result of running the flows without FEvA

range of GT = 0.4 based on real-world context recognition experiments conducted in a real hospital
scenario [5]. We varied GT between the measured 0.4 and 1.0 in steps of 0.1, where GT = 1.0 yields
always the correct recognition. V adds noise to the resulting distribution, i.e. the probability of each
event type is altered by V , and the final PDF is normalized again. We chose V between 0.05 and 1.0 in
steps of 0.05. To enhance readability, the figures only show the graphs for GT = 0.5 which is FEvA’s
threshold for accepting an event (cf. Section 3.7.2.2) and variances of 0.2, 0.4, 0.5 representing a low,
medium high, and high amount of noise. The second parameter set consists of α, γ and δ according to
our error model in Section 3.7.1. For α we chose values between 0.0 and 1.0, for γ between 1.0 and 0.65
and for δ between 0.0 and 0.3. The weighting functions remain as introduced in Section 3.7.2.2

3.7.5 Results

We evaluated each of the parameters independently and the results of the simulation for each parameter
α, γ, and δ are depicted in Figure 3.8. On the y-axis of each graph, we denote the fraction of flows that
could successfully complete their execution and also the fraction of total events that have been assigned
to the correct activity during the execution. Each graph also shows the performance of our system for
V = 0.4 without using FEvA, but a naive assignment approach as reference.

The results for the added false positives are the most surprising (cf. Figure 3.8(a)). While the number
of correct events assigned to the activities decreases slowly from about 94% to 78%, the actual number
of successfully completed flows increases. This is due to the fact, that the added false positives also
take part in the assignment process and, especially in conflict situations, may be mapped to an activity

2011-07-30 47

D4.3 CHAPTER 3. ROBUST FLOW NAVIGATION

too early and falsely. This effect becomes stronger the higher the variance. If V is lower and events
are recognized accurately, the flow is able to deal with more false positives, without a strong impact
on performance. However, the higher the variance the more counter-intuitive the result is and the more
flows complete because they have assigned false positives. Compared to the reference without FEvA we
perform at least 10% better and the other system basically fails even at low rates of false positives.

When we confront FEvA with out-of-order events (cf. Figure 3.8(b)), the algorithm performs very
well and tolerates the deviation. Most of the events are correctly assigned, i.e. well over 97% and the
impact of the few falsely assigned events on the flow completion is low compared to the variance. Again
compared to the reference we are up to 52% better.

Considering the missed events (cf. Figure 3.8(c)), FEvA is still able to assign the remaining events
accurately, again with well over 97%, but the missing events have a very strong impact on the flow exe-
cution. While a low number of missing events is somewhat tolerable, the amount of correctly completed
flows drops rapidly to a mere 7% when more than a quarter of all events is missing. The mechanism we
introduced to tolerate missed events performs better in up to 40% of all cases compared to the reference.
However, there is still a lot of room for improvement, e.g. by also using information from the assigned
events.

3.8 Summary and Conclusions

In this chapter, we have presented three systems that we designed in the project for the purpose of making
flow navigation more robust. FlowCon and FlexCon are novel approaches that increases the accuracy
of context information in flow-based pervasive applications. Both use Bayesian Network technology to
learn the correlation between context events. Using this learned knowledge, both systems provide addi-
tional evidence for the occurrence of events, and this facilitates the threshold-based navigation decisions
in a flow engine.

While FlowCon handles classical imperative flows, FlexCon is able to deal with the more flexible
and user-friendly hybrid flows. Both show big improvements in flow robustness over a system that
does not handle context information uncertainty. Based on real-world traces gathered in a geriatric
nursing home, we have shown that FlowCon achieves a significant decrease of event uncertainty of up
to 49%. Furthermore, it makes the execution of flow-based mobile applications more robust. The ratio
of flows that could complete their execution successfully was increased significantly to up to 90%. Our
evaluations for FlexCon show that the uncertainty of an event received by a flow is reduced by 54% on
average and the percentage of successfully completed flows is increased by 23-40%.

Furthermore, we have presented FEvA, a system that exploits the knowledge encoded in a workflow
in order to assign noisy and erroneous incoming context events to the correct activities in the workflow.
We have demonstrated the effectiveness of FEvA under a well-defined error model and showed that it
achieves a high robustness when faced with a large number of false positive events. It also works very
well in the presence of out-of-order events, and it limits the impact of missing events.

This work is an important step towards applying flow technology as a part of pervasive systems. In
real-world scenarios, found e.g. in the health care domain, users need to be supported in their activities
without obstructing them. Thus, the flows need to automatically synchronize with their activities based
on collected data such that users are not required to communicate with the flow explicitly. Especially in
the health care domain, any explicit interaction (using touch screens etc.) may have severe implications
in terms of hygiene.

The sensor data that is used to infer the current activity of a user is characterized by a high level of
noise and inaccuracy. FlowCon and FlexCon offer a way to infer more reliable information from this
data and, thus, render the respective flows more robust.

2011-07-30 48

D4.3 CHAPTER 4. CONTEXT PREDICTION

Chapter 4

Context Prediction

Even though the initial vision of pervasive computing already dates back over a decade ago, the demand
for intelligent and user-centric technology is still a major challenge in the focus of current research. Key
for the development of pervasive technology which operates unnoticed from, but on behalf of the user,
is seen in the principle of context awareness. While advances in recognition and processing of context
have spawned a variety of new context-aware applications, these applications are often characterized by
reactive behavior and respond to changes in the current context after their actual occurrence in the real
world.

As a consequence, the level of intelligence found in these environments is restricted to what the user
already can observe in his current situation. In order to render these environments more intelligent, appli-
cations should anticipate the future needs of users even before they physically appear [58]. This enables
the provision of proactive pervasive services that improve the experience of a user when interacting with
his environment.

Examples can be found in many relevant fields of pervasive computing such as for instance home
automation, information recommendation services as well as human guidance in working environments.
As the human needs in pervasive scenarios are tightly coupled to their future context, sophisticated
methods for context prediction are required to extend the temporal horizon of context awareness into
the future. The most common approach for context prediction is to rely on context histories to deduce
probable future behaviour from the sequences of past context changes [52]. However, without any insight
into the application domain, the history analysis might result in ambiguous context predictions. The
reason is that the context transitions recorded in the histories are decoupled from the semantics of human
behaviour. The prediction may then result from history patterns that are not relevant to the current user
situation. In contrast, many application domains of pervasive computing such as pervasive healthcare are
characterized by human models of structured behaviour. Higher-level knowledge about the activities of
a human provides the possibility to filter context histories more accurately.

In this chapter, we show how to exploit flows as source of information to provide history-based
predictors with domain knowledge for accurate context predictions. For this purpose, we first introduce
a novel flow-based predictor in Section 4.2 that relates context changes to states in human behaviour.
Our predictor is based on a probabilistic state transition system that is learnt from the execution of flows
and defines the search space for future context occurrences. For a prediction, we determine the most
likely sequence of future context states reachable from the current user situation. As these search paths
depend on the activities performed by humans, we are able to derive accurate context predictions that
remain hidden for history-only approaches.

In Section 4.3, we present PreCon, an approach to context prediction that allows time-dependent
multi-dimensional context prediction queries. PreCon is based on the system introduced in Section 4.2
and applies well-known methods of stochastic model checking [9] (used e.g. for the verification of
distributed communication protocols) to the analysis and prediction of human behaviour. While classical
model checking relies on fixed hand-crafted models of computer systems, our models (called stochastic

2011-07-30 49

D4.3 CHAPTER 4. CONTEXT PREDICTION

user models (SUM) in the following) are representations of human behaviour that are learned from traces
of past context changes. We represent SUMs as Semi-Markov Chains such that the changes in context
are regarded as a stochastic process. We use temporal logics as a query language, enabling applications
to specify expressive temporal properties on future context. For a prediction, our system verifies with
which probability these properties hold on a given SUMs. The result is a comprehensive framework
to provide accurate knowledge about future context changes to flow-based systems in order to trigger
proactive actions and support processes of efficient context-aware decision-making.

4.1 Related Work

The most comprehensive approach to context prediction has been presented by Mayrhofer [53], who
proposes a multi-layer system architecture for domain-independent context recognition and prediction.
This work targets the prediction of high-level user context (context classes such as ”in a meeting”) which
is derived from low-level context data (e.g. location, noise, etc.) in a preceding classification step.
In order to improve the achieved prediction results, the author concludes that the inclusion of domain-
specific knowledge would represent a promising approach, as addressed by our work. Sigg [68] directly
predicts low-level context before deriving future high-level context in order to avoid information loss
resulting from the aggregation of low-level context. However, this approach does not consider possible
correlations among low-level context and deduces future context based on matched sequences from the
past without taking advantage of domain-specific knowledge about human behaviour.

Furthermore, different algorithms have been proposed to allow for the prediction of specific cate-
gories of context. Most of the work in this area focuses on the prediction of user mobility from location
histories [14], [70] [43], [6]. Beyond a history of location sequences, these approaches do not consider
any further information for prediction. However, location predictors for wireless cellular networks can
exploit the structure of geographic areas and direction information to anticipate future location changes
more accurately [21]. In contrast to these approaches, we argue that the behaviour of humans is the most
valuable information for prediction. Moreover, the prediction of low-level user activities such as key
pressings to improve the interaction with user interfaces has been studied [36], [25], [31]. Similar to
location prediction, future user activities are derived from histories of past sequences. In our approach,
activities are the constituent parts of context-aware workflows that synchronize with the behaviour of
humans in the real world. The difference is that we use the knowledge provided by the workflows to
predict additional context that evolves with the activities performed by users. The idea to take advantage
of domain knowledge in order to improve the recognition of hidden patterns from data is inherent to
the field of syntactic pattern recognition [66]. Based on a statistical model that describes the generation
of the data, patterns such as handwriting symbols or actions [17] can be discovered more accurately.
Following this line of argumentation, we argue that also context prediction can benefit from a structural
model of human behaviour that can be found in relevant fields of pervasive computing such as pervasive
healthcare.

Current approaches to context prediction [70], [6], [43], [36], [31], [25] only allow for very simple
queries for the most probable next user context (e.g. the user’s next location). Hence, their expressiveness
is severely limited since applications are not able to extract any information on the expected time of such
a context change. We argue that intelligent ubiquitous applications need therefore the ability to submit
time-dependent queries (e.g. “Will user A be at location x within the next 10 minutes?”). Likewise,
queries for multi-dimensional context (e.g. “Will the user be executing activity Y at location X within
the next 10 minutes?”) must be possible. PreCon can answer such expressive queries accurately, and
thus, provides applications with more flexibility and allows them to act in a more goal-oriented way for
their user. However, they also did not consider a sophisticated query language that supports temporal
relations. PreCon is the first system to investigate the application of temporal logics as a powerful and
expressive query language for context predictions.

For the calculation of the predictions, we adopt the techniques from the field of stochastic model

2011-07-30 50

D4.3 CHAPTER 4. CONTEXT PREDICTION

checking [46], which has been thoroughly studied by Baier et al. for Continuous Time Markov Chains
[8]. Lopez et. al have worked on the extension of the model checking algorithms for Semi Markov
Chains [51]. In our approach, we leverage on their results. However, we extend their original model
checking algorithms by including the running dwell time of the states, allowing for accurate real-time
predictions.Semi-Markov Chains as we use them have also been employed by Lee and Hou for an analy-
sis of transient and stationary features of user mobility on the Dartmouth campus network [49]. However,
the predictions supported by these approaches only compute the most probable next context in a single-
dimensional context space. They do not allow queries for temporal relations in a multi-dimensional
context space. In contrast to classical model checking approaches, PreCon does not rely on a design-
time specification of a state transition system. Instead, we apply a learning algorithm for building an
SMC in an online fashion. This allows us to incorporate newly available data at any time, making the
predictions more accurate. The combination of SMCs, a query language based on temporal logic, and
the online learning approach represents an important new step in the area of context prediction.

4.2 Flow-based Context Prediction

4.2.1 History-based Prediction

In the following section, we focus on history-based methods for context prediction. First, we will present
the common procedure of history-based predictors. Then, we will analyse their shortcomings for predic-
tion in flow-oriented environments.

4.2.1.1 Context Prediction

The rationale of context prediction is to extract characteristic patterns in human behaviour from histories
of observed context data. As human behaviour cannot be captured exactly, the most common approach
is to apply stochastic principles to describe the expected changes in user context. For this purpose, the
occurrence of context (e.g. location) is regarded as a random variable X, which can be assigned values
from a discrete set of context elements C = {id1, id2, .., idn}. We assume that each context c ∈ C can be
associated with a unique symbolic identifier. For example, in terms of geographic positioning, symbolic
location names such as ”office” or ”kitchen” provide a meaningful attribute of the user’s location. Let the
context history H = c1, c2, ..., cn be defined as a sequence of context elements ci ∈ C ordered according
to their time of occurrence. Sequential changes in context can thus be considered as a stochastic process
χ that describes the evolution in user behaviour with distribution P(X1 = c1, X2 = c2, ..., Xn = cn).

The most widely employed history-based predictors from related work [14, 31, 70] are based on
discrete Markov processes. The Markov assumption is inherent to two different classes of predictors
- the fixed order 0(k) Markov predictors and the predictors based on varying order Markov models.
0(k) Markov predictors consider a fixed window of past context observations for prediction. The order
k of the Markov predictor determines the length of the window that influences the predicted context.
Consequently, the part of the history relevant for prediction is given by the k last observations H(k) =

cn−k+1, ..., cn. Assuming a stationary stochastic process, the conditional probability distribution can be
estimated from the occurrence of context changes in the history. The prediction is then determined by
the context cn+1 which has most frequently followed the sub-sequence H(k) in the entire history H. The
restriction of a fixed order is relaxed by so-called Markov Models of varying orders. The most popular
varying order Markov predictors are based on the data compression algorithm of Ziv and Lempel [82].

In order to incorporate domain knowledge, our prediction scheme is based on a generic model of
history-based predictors. We extend this generic model in Section 4.2.3 to combine it with knowledge
about user activities. A very important consequence of this technique is that it allows us to apply our
approach to several variants of state-of-the-art context predictors. In our generic model, we define a
history-based predictor as a probabilistic state transitions system. The definition captures the common

2011-07-30 51

D4.3 CHAPTER 4. CONTEXT PREDICTION

nature of Markov predictors: A state is a sequence of one or more past context elements upon which
predictions are derived from the analysis of context histories.

Definition 1 (History-based context predictor): A history-based context predictor P̂ is specified by a
probabilistic state transition system (S ,C, δ, p), where

• C is the set of discrete context elements

• S denotes the set of history states

• δ : S ×C → S denotes the transition function that describes possible context changes

• p : S ×C → [0, 1] indicates the probability for a specific context change

Each s ∈ S corresponds to a history state. When observing a context c ∈ C during state s, the history
state changes to s′ = δ(s, c). Thus, the history state evolves with new context observations. However, the
transition function is partial as not necessarily each context can be observed during a history state. The
predictor encodes the probability of future context occurrences in transition probabilities. The probability
P(c|s) to expect a context c ∈ C depends on the history state s and is indicated by p(s, c). The sum of
all probabilities over all outgoing transition has to be one, i.e., ∀s ∈ S :

∑
∀c∈C:δ(s,c),∅ p(s, c) = 1. Initial

states, as known from classical automaton theory, are defined by the current history state at time of
prediction.

4.2.1.2 Analysis of History Restrictions

The limiting factor of history-based predictors is implied by their nature – their dependency on past ob-
servations as the only indicator to what can follow next. Due to the Markov assumption, the sequence of
past context occurrences must carry enough information to make accurate predictions. However, histori-
cal information may not be sufficient for enabling accurate predictions in every case. This observation is
especially relevant in cases where the situation of a user is defined in terms of higher-level behaviour that
more precisely implies the next context to occur. The accuracy of predictions is low if the next context
has a semantic association with the user’s behaviour that cannot be learnt from the history. If we imagine
for example a worker leaving his office, then there are many equally likely options for his future location
according to the information from the location history. If we could access the knowledge that the worker
decided to visit a customer, we could use the domain insight to forecast his next location more accurately.
Here, the capabilities of a history predictor are very limited, because the knowledge from the history is
not able to capture this form of hidden information.

Taking the user behaviour into account, we are able to provide history predictors with the necessary
knowledge to reduce ambiguities. As a consequence, we require a model of human behaviour that allows
us to interpret situations, based on a human’s past and future activities and the context under which the
activities are taking place. For this purpose, we will leverage on Adaptable Pervasive Flows as a context-
aware model of human behaviour as described in the next section.

4.2.2 Exploiting Flow-Knowledge

In this work, we exploit flows as providers of domain-specific knowledge for context prediction. The
knowledge stems from the fact that a) a flow provides insight in the current state of its associated entity,
and b) a flow models paths of future activities. This enables us to develop a generic flow-based context
prediction scheme.

For the purpose of context prediction, we do not rely on a specific technology and focus on the
generic model of flows. A flow model describes the activities of a human under changing contextual con-
ditions. As an example consider the flow attached to a nurse in a hospital shown in Figure 4.1. During
her work day, a nurse carries out regular activities such as ”give medication” or ”serve lunch”. After the

2011-07-30 52

D4.3 CHAPTER 4. CONTEXT PREDICTION

Transition

Wake
Up

Patient

Take
Patient

To Dining
Room

Start
Shift

Serve
Lunch

In Patient
Room

Store
Blood

Sample

Give
Medicati

-on

Flow
Activity

Running
Flow

Activity

Figure 4.1: Representation of a Pervasive Flow attached to a Nurse

start of her shift she progresses in her workflow and executes activities that are associated with contextual
conditions. For example, the concrete activities of a nurse depend on the health conditions of the patient
she is caring for. For the specific purposes of this chapter, we define what a flow model is. This definition
is similar to Definition 3.3.5 on page 28 but differs in some details that are relevant for the design of our
prediction scheme.

Definition 2 (Flow Model): A Flow Model f is specified by a directed graph (A, E, P(C), t), where

• A denotes the set of activities

• E ⊆ A × A defines a control flow

• P(C) is the set of predicates over the entity context C

• t : E → P(C) associates each control link with a transition condition

The flow model defines a control flow over the set of flow activities based on a directed graph. Each
flow contains a start activity from which there is a path to any other activity in the flow. The control flow
constraints the possible paths of activity executions. An activity path a1 → a2, ..., an−1 → an in the flow
consists of pairs of connected activities, i.e., (ai, ai+1) ∈ E. An activity can only be executed, if one of its
predecessor has been completed. The completion of activities is triggered by conditions that are checked
at run-time. These conditions are related to the context of a human (also more generally called entity)
in its current situation. For this purpose, context recognition techniques such activity sensing or other
sources of information (e.g. patient data) are used. Through the integration of context information, the
flow is synchronized with the real-world behaviour of humans.

The run-time representation of a flow is referred to as flow instance. Flow instances are created in
a context-aware manner based on contextual triggers. For example, as soon as a nurse starts her shift, a
flow instance is created and attached to her. A flow instance exposes the state of a flow, which dynami-
cally evolves during its lifetime.

Definition 3 (Flow State): The state of a flow f is specified by its currently running activity, which
is given by the function state : f 7→ a ∈ A.

The state of a flow instance is controlled by a flow engine. A flow engine runs flows and accesses

2011-07-30 53

D4.3 CHAPTER 4. CONTEXT PREDICTION

a) History-Based Transition System b) Flow-Based Transition System

History =
Room 2.45

History =
Room 1.46

History =
Room 2.42

Room 1.46
p=0.3

History =
Room 2.23

….

….

….

(Activity =
Give

Medication,
History =
Room 2.42)

(Activity =
Store Blood

Sample,
History =
Room 1.46)

(Activity =
Give

Medication,
History =
Room 2.23)

….

….

p=1.0

Room 2.45
(Activity =

Wake Up
Patient,

History =
Room 2.42)

(Activity =
Serve Lunch,
History =
Room 2.45)

….

Figure 4.2: History- vs. Flow-based Transition Systems

the context information that influences their states. The state of a flow is always well defined, i.e., there
is no state in between two activities. If a successor activity starts, the preceding activity is terminated.
Thus, a flow state is active for a certain period of time.

4.2.3 A Flow-Based Predictor

In this section, we introduce a new Flow Predictor that combines both sources of knowledge – context
histories and flows – to leverage the additional information present in flows. The relationship of flows
and context is encoded as a probabilistic state transition system that includes activity information. To
express this relationship, we need to extend the history-based model for context prediction.

Definition 4 (Flow Predictor): A flow predictor P̂ f is associated with a flow f and is based on a his-
tory predictor P̂. P̂ f is formally defined as probabilistic state transition system (Ŝ ,C, τ, p, f), where

• the states Ŝ = (S × A) are the Cartesian product of the states of the history-based predictor P̂ and
activities of flow f

• C is the set of discrete context elements

• τ ⊆ Ŝ ×C × Ŝ denotes the transition relation

• p : τ→ [0, 1] indicates the transition probability with ∀s ∈ Ŝ :
∑
∀c∈C,s′∈Ŝ :(s,c,s′)∈τ p(s, c, s′) = 1

States are now defined as tuples of flow activities and history states. Thus, we establish a relation
among both. The flow activities in the flow predictor introduce a new differentiating criterion for history
states. We can now find the same history state in different states of the flow predictor. Each of these
history states may be associated with distinct transition probabilities. This enables accurate predictions
tailored to the current user activity. In contrast, a history-based predictor represents each history state
only once.

Figure 4.2 illustrates this difference for the prediction of the nurse’s location. The history-based
predictor (left side) contains three possibilities for changing from ”Room2.42” to other locations. All
of these locations are almost equally probable. In contrast to this, the flow predictor (right side) links
locations to activities. Note that the state relating to ”Room2.42” has been split in two states, each being
associated with a different activity (”GiveMedication”) and (”WakeU pPatient”). Using this activity
information, the flow predictor can make a much more reliable prediction: When the nurse is executing
the activity ”GiveMedication” in ”Room2.42”, only two out of the three locations are likely to be visited,

2011-07-30 54

D4.3 CHAPTER 4. CONTEXT PREDICTION

Algorithm 8 Online Learning

Require: Flow f
1: τ← {}, bu f f er ← {}
2: h← ε, an ← state(f)
3: while true do
4: e← nextElementFromHistory(H f)
5: if e ∈ A then
6: bu f f er ← bu f f er ∪ {an}

7: an ← e
8: if h , ε then
9: Ŝ = Ŝ ∪ {(h, an)}

10: end if
11: end if
12: if e ∈ C then
13: h′ ← δ(h, e)
14: if h , ε then
15: Ŝ = Ŝ ∪ {(h′, an)}
16: τ← τ ∪ {((h, an), e, (h′, an))}
17: increment count((h, an), e, (h′, an))
18: for all apast ∈ bu f f er do
19: τ← τ ∪ {((h, apast), e, (h′, an))}
20: increment count((h, apast), e, (h′, an))
21: end for
22: end if
23: h← h′

24: bu f f er ← {}
25: end if
26: end while

and the highest probability associated with an outgoing transition has increased over the history-based
predictor. Moreover, if the nurse is executing ”WakeU pPatient” in the same location ”Room2.42”, then
only one possibility remains for the next location (”Room2.45”). Thus, a combination with activity
information extracted from flows splits a single history state into multiple states such that for each of the
following states the probability may increase.

4.2.3.1 Online Learning from Flow-Enhanced Context Histories

The flow predictor provides the formal framework for incorporating user activity information into con-
text predictions. However, the transition system underlying the flow predictor has to be learnt from the
execution history of flows. The goal of learning is to obtain the state transitions and associated probabil-
ities that accurately describe the evolution of the entity’s context in the target domain.

The information used for learning is a sequence of changes in either the flow state or the context. This
information is stored in the so-called flow-enhanced history, denoted by H f . The changes in flow activi-
ties and context appearing in the real world (and thus also in H f) can be arbitrarily interleaved. Thus, the
flow-enhanced history is defined as H f = c0, a1, c1, a2, ..., cn with ci ∈ C ∪ {ε}, a j ∈ A ∪ {ε} where ε de-
notes the empty symbol. H f is a sequential stream of events to which each new observation is appended
at run-time. This is necessary, since our predictor is run in an on-line manner, i.e., the training phase is
executed simultaneously to the execution of the flow-based system at runtime. The probability for future
context occurrences are estimated from the observed frequencies in H f . For this purpose, we associate a

2011-07-30 55

D4.3 CHAPTER 4. CONTEXT PREDICTION

counter with each transition t = ((h, a), c, (h′, a′)) ∈ τ, denoted as count(t), which stores the frequency of
past transitions.

Algorithm 8 shows the procedure executed for online learning: Each new element of H f can be
either a new activity or a new context. We insert new transitions in the predictor only if a context
change happens. If the last added state is (h, an) and a new context c is observed, we insert a transition
((h, an), c, (h′, an)) (line 16). The representation of h and h′ depends on the underlying Markov model.
For example, in case of a 0(1) Markov model, the new history state is defined only by the observed
context c, i.e., h′ = c. In contrast, for higher order or varying order Markov models further past context
observations contribute to the new history state h′. Since an arbitrary series of activity changes may
happen in H f before the next context change to c occurs, we buffer these activities (line 6). Once,
the new context c occurs, we also add a transition ((h, apast), c, (h′, an)) for each of these buffered past
activities (lines 18-21) since for each state (h, apast) the next context is c. Suppose, for example, that
the current predictor state is s1 = (history = ”Room2.42”, activity = ”GiveMedication”) and the next
elements in H f are ”S toreBloodS ample” (activity change) and ”Room2.43” (context change). Then s1
and the state s2 = (history = ”Room2.42”, activity = ”S toreBloodS ample”) should be related to the next
context and we insert a transition to state s3 = (history = ”Room2.43”, activity = ”S toreBloodS ample”)
from both s1 and s2. After this step, the buffer is emptied and we wait for next observed event.

The probability of a transition t = ((h, a), c, (h′, a′)) ∈ τ can be derived as a relative frequency
measure from the transition counters:

p((h, a), c, (h′, a′)) =
count((h,a),c,(h′,a′))∑

c′∈C
∑

a′′∈A count((h,a),c′,(δ(h,c′),a′′))

For the calculation of p((h, a), c, (h′, a′)), we take all outgoing transitions from the state (h, a) into ac-
count. The probability is derived from the transition counters whenever a prediction has to be made.
Due to the representation of activity information, there is an increased cost in storage associated with the
flow predictor. The state space is now of size O(|S | · |A|), since activities are combined with the context
from histories. Consequently, also the encoding of transitions requires more space and has complexity
O(|S | · |C| · |A|2). In the scenarios addressed by this work, the cost will be affordable, as we assume a lim-
ited set of activities to be of interest and the real cost to be significantly below the worst case estimation,
as activities are not observable at each context.

4.2.3.2 Calculation of Predictions

For predicting future context we distinguish between two classes of prediction - short-term and long-
term prediction. In both cases we are interested in future context occurrences, that follow the current
context history H. Let cn denote the last context observed from H. For short-term prediction the goal is
to determine the context cn+1 that will most probably occur next. Long-term prediction extends the time
horizon to more distant points in the future. For this purpose, we define the number of future occurrences
as prediction horizon. Formally, for a prediction horizon of h, the goal is to identify the most probable
sequence of future context elements cn+1, cn+2, ..., cn+h. In the following, we describe the algorithmic
approach to calculate these predictions based on the flow predictor.

Short-term prediction The starting point for short-term prediction is given by the current predictor
state (h, a), from which the transition system is traversed. Algorithm 9 shows the steps involved in the
calculation of the most probable next context.

For short-time prediction, we have to take into account that the same context c may be reached
via different transitions from (h, a). Therefore, we have to sum the probabilities associated with each
transition that is labelled with context c (line 2). Finally, the context returned as the prediction is the
one with maximum probability, i.e., cn+1 = arg maxc∈C P(Xn+1 = c|(h, a)) (line 4). The worst case time
complexity is O(|A| · |C|) since the next context may potentially occur in each of the flow activities.
However, we stress that, in practice, the search space is much more restricted by the flow structure. This
structure only allows for a small subset of all activity-context combinations.

2011-07-30 56

D4.3 CHAPTER 4. CONTEXT PREDICTION

Algorithm 9 Short-Term Context Prediction
Require: current history state h
Require: current flow state a = state(f)
Ensure: cn+1 = arg maxc∈C P(Xn+1 = c|(h, a))

1: for all c ∈ C do
2: Prob(c)←

∑
(h′,a′)∈Ŝ p((h, a), c, (h′, a′))

3: end for
4: return arg maxc∈C Prob(c)

Long-term prediction The calculation of most likely paths is known from Hidden Markov Models
(HMMs) [62] where the Viterbi algorithm is used to discover paths of so-called hidden states for given
observations. However, HMMs are based on predefined sets of states and constant transition probabili-
ties. In our case, transition probabilities vary for each prediction horizon, and future paths depend on the
initial state at the time of prediction and need to be explored. We address these issues in Algorithm 10.

The algorithm is based on an iterative approach that calculates the most likely path (sequence of
context occurrences) of length h (prediction horizon). It starts with path length 1 and determines the
most likely path of length i (1 < i ≤ h) based on paths of length i − 1 (line 2-9). For this purpose,
we compute Probi(c), which denotes the probability of the most likely path of length i that ends in the
occurrence of context element c. Initially, we set Prob0(c) = 1 and, for all i > 0, Probi(c) is calculated
by adding the transition probabilities that reach c from paths of length i − 1 (line 4).

Based on Probi(c), the sequence of context elements that define the most likely path is built incre-
mentally. For this purpose, we associate with pathi(c) the most likely sequence of context occurrences
that ends in c for a path of length i. We then append to pathi(c) the context that maximizes the path
probability in each iteration (line 6), starting from a path length of i = 1.

For these calculations, we first define reachablek(h, a) as being the set of all predictor states reachable
from state (h, a) through an arbitrary path of length k. That is, we initially have reachable0(h, a) = {(h, a)}
and for all k > 1, reachablek(h, a) can be explored by following the outgoing transitions. Based on
this, we define Rk(c) as being the set of predictor states reachable through context c from any state in
reachablek−1(h, a). More formally, we write

Algorithm 10 Long-Term Context Prediction

Require: current history state h
Require: current flow state a = state(f)
Require: prediction horizon h
Ensure: cn+1, cn+2, ..., cn+h most likely path

1: i← 1
2: while i <= h do
3: for all c ∈ C do
4: Probi(c) = maxc′∈C{Probi−1(c′) ·

∑
(h,a)∈Ri−1(c′),(h′,a′)∈Ŝ p((h, a), c, (h′, a′)}

5: if (i > 1) then
6: pathi(c)← append arg maxc′∈C{Probi−1(c′) ·

∑
(h,a)∈Ri−1(c′),(h′,a′)∈Ŝ p((h, a), c, (h′, a′)}

7: end if
8: end for
9: i← i + 1

10: end while
11: c∗ = arg maxc∈C Probh(c)
12: pathh(c∗)← append c∗

13: return pathh(c∗)

2011-07-30 57

D4.3 CHAPTER 4. CONTEXT PREDICTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 4 5 6 7 8 9 10

P
re

di
ct

io
n

A
cc

ur
ac

y

Size of Location Domain

 a)

Markov 0(1)
Markov 0(2)
Markov 0(3)

Flow Enhanced Markov 0(1)
Flow Enhanced Markov 0(2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

P
re

di
ct

io
n

A
cc

ur
ac

y

Zipf Exponent

 b)

Markov 0(1)
Markov 0(2)
Markov 0(3)

Flow Enhanced Markov 0(1)
Flow Enhanced Markov 0(2)

Figure 4.3: Short-Term Prediction Accuracies for Activity-Based Mobility Model with Parameter Set-
tings a) Zipf exponent s=2 b) Location Domain |L| = 7

Rk(c) = {(h′, a′) ∈ Ŝ |∃(h′′, a′′) ∈ reachablek−1(h, a) : ((h′′, a′′), c, (h′, a′)) ∈ τ}

with (h, a) being the current state at which the prediction starts. Rk(c) is used in the algorithm (line
4 and 6) to identify the context occurrences that lie on the most likely paths to c for each step of the
iteration.

After the termination of the iteration, the most likely path for horizon h is the path that maximizes
the path probability for a context c∗ ∈ C. Consequently, we can return the stored path associated with
the context c∗ = maxc∈C Probh(c) (line 9). As the path ends with c∗, we have to append this context to
the complete path up to horizon h. The iterative approach guarantees that the time complexity is bound
by O(h ∗ (|A| · |C|)2) in the worst case. However, the search space will in reality be often restricted by the
fact that not all context and activities are reachable from the current state.

4.2.4 Evaluation

We have implemented a simulation environment in order to evaluate the suitability of Adaptable Perva-
sive Flows for context prediction. We compare history-only predictors with their flow-enhanced counter-
parts based on synthetic context histories. This allows us to analyse the accuracies of the predictors for
a spectrum of possible scenarios. We have implemented the 0(k) family of Markov predictors as well as
the flow enhanced-version of these. Although our approach is applicable to any form of discrete context,
we study the accuracy of location prediction based on an activity-based mobility model that associates
activities with locations as explained in the following.

First, we randomly generate flow models of different structure and size. Flow models are cre-
ated from two different workflow patterns, i.e., sequences and branches, and form directed acyclic
graphs. Second, we probabilistically associate each flow activity with locations from the domain L =

{l1, l2, ..., ln}. For each activity, we independently derive location visit probabilities based on a Zipf distri-
bution, so that the probability to visit the i-th location during an activity is given by P(X = i) = i−s∑|L|

n=1 n−s
.

The exponent s allows us to vary the density of the visit probabilities. Based on the activity-based model
of user mobility, we generate n flow-enhanced context histories H f1 ,H f2 , ...,H fn as sequential input for
the predictors. We compare the different predictors based on an accuracy metrics, that is defined as the
ratio of number of correct predictions to all predictions made. If a prediction is not possible due to the
fact that the current context has not been learnt before, we count it as incorrect prediction. Predictions
are determined simultaneously to the learning phase, i.e., after each predictor update we compute a pre-
diction and validate it. A simulation run consists of a generated flow for which we create 100 context
histories that describe possible executions of the flow. The results discussed in the following represent

2011-07-30 58

D4.3 CHAPTER 4. CONTEXT PREDICTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

P
re

di
ct

io
n

A
cc

ur
ac

y

Prediction Horizon

 a)

Markov 0(1)
Markov 0(2)
Markov 0(3)

Flow Enhanced Markov 0(1)
Flow Enhanced Markov 0(2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

di
ct

io
n

A
cc

ur
ac

y

alpha

 b)

Markov 0(1)
Markov 0(2)
Markov 0(3)

Flow Enhanced Markov 0(1)
Flow Enhanced Markov 0(2)

Figure 4.4: a) Long-Term Prediction Accuracies b) Prediction Accuracy for History-Generated Mobility
Patterns

the average of 500 simulation runs for each measurement.
Figure 4.3 a) shows the short-term prediction accuracies for an increasing size of the location domain

and Zipf exponent s = 2. Due to the higher uncertainty associated with a larger location domain, the
prediction accuracy is negatively affected for all predictors. However, the flow-enhanced predictors
outperform the history-based predictors for all of the evaluated sizes of L. Particularly, the relative
improvement rises from 19% to 56% compared to the best history-based predictor for an increasing size
of L. This illustrates the capability to resolve ambiguities from the history due to the available flow
knowledge. Since we associate a single location visit with an activity in the simulation, higher-order
Markov models do not improve the accuracy of the flow-enhanced predictors. As more states have to be
learnt in this case, additional prediction misses are caused.

In Figure 4.3 b) we compare the predictors for a location domain of |L| = 7 and varying Zipf ex-
ponents. For increasing exponents the locations visit probabilities exhibit a highly skewed distribution,
so that the predictors are able to deduce a higher fraction of correct predictions. However, the flow-
enhanced predictors are able to capture patterns that remain hidden for the history-based predictors. The
flow-enhanced predictors achieve a relative improvement of 25% in prediction accuracy compared to
the best history-based predictor. Moreover, the results show that history-based Markov models can ben-
efit from a larger memory for prediction if activities are more restricted to specific locations. In this
case, longer sequences of past locations more accurately imply the next location. Nevertheless, still a
substantial fraction of patterns can only be distinguished with flow knowledge.

Figure 4.4 a) depicts the results of long-term prediction for parameters of |L| = 7 and Zipf exponent
2. The absolute prediction accuracies for all predictors naturally decrease for higher prediction horizons.
Particularly, for horizon 5 the absolute accuracy has reached a degree, where no sensible predictions can
be made any more. However, the relative improvement in accuracy of flow-based prediction compared
to the best history predictor monotonically increases from 57 % for horizon 1 to considerable 331 % for
horizon 5. Consequently, especially long-term predictions can benefit from our enhanced context predic-
tion. In the next step, we extend the simulation model with the possibility to include history-generated
patterns in the context histories. The history patterns are generated based on a 0(2) Markov source that
is trained from the location traces of the activity-based model. This model naturally favours history-
based predictors due to the underlying Markov assumption. We introduce the parameter α that allows to
vary between both models, i.e., α indicates the portion of the context history which is generated by the
Markov source and the portion (1 − α) which adheres to the activity-based model. Figure 4.4 b) shows
a monotonic decrease of the prediction accuracies of the flow-based predictors for increasing values for
α, while the history-based predictors remain constant. For α ≥ 0.8 the best flow-based predictor even
performs worse than the 0(1) Markov predictor. The reason is that, due to the correlation with flow activ-

2011-07-30 59

D4.3 CHAPTER 4. CONTEXT PREDICTION

ities, history-based patterns are scattered over many states of the flow predictor. The consequence is that
the patterns cannot be learnt as fast as in the case of a classical history predictor, and more training data
is necessary to achieve the same accuracy. We will address this issue in future work by the design of a
hybrid prediction scheme, that involves components of both predictors and only utilizes flow knowledge
for patterns that cannot be discovered by history-based predictors.

4.3 PreCon – Expressive Prediction using Stochastic Model Checking

Figure 4.5 gives a high-level overview of the PreCon approach. We assume that a context recognition
system monitors the context of the user and records context traces (time-stamped series of consecutive
context changes) in user histories. For instance, a context trace may contain information about which
activities have been executed at what time and location. The context traces are given as input to our
learning algorithm, which processes them to obtain an SUM. Our framework allows context traces to
be processed either in a batch-like fashion or in real-time. For the batch-like approach, the learning
algorithm processes one or more context trace and creates a new SUM, while for the real-time approach,
the algorithm updates the existing SUM each time a relevant context change has been observed. In both
cases, the information about sequential changes in user context is used to build a Semi-Markov Chain
(SMC) – a well-known stochastic process model that we use to represent SUMs. A SMC is a probabilistic
state transition system that maintains the discrete states of the user behaviour and the associated state
transition probabilities. Furthermore, the temporal characteristics of context changes (the so-called dwell
times) are modelled by the SMC. This is the key to PreCon’s concept of time-dependent queries.

Applications can specify context prediction queries using different temporal operators that are part of
a temporal stochastic logic. This query language provides well-defined semantics to express reachability
properties (e.g. will the user arrive at a certain location) and invariant properties (e.g. will the user stay
at a certain location). A context prediction query is evaluated on an SMC to calculate the probability
with which the specified properties hold. A querying application can specify a probability threshold with
which the resulting probability is compared, and a true or false is returned depending on the outcome.
Finally, the querying application may use this result to take proactive decisions in terms of, e.g. user
interaction and context-aware services, to enhance the user’s experience. In the following sections, we
will investigate each element of PreCon in turn.

C t t

Stochastic
User Model

Context
Traces

Learning
Al ith

stores

historic
data

creates
User Model

(Semi-Markov Chain) Stochastic
Model

CheckingContext Prediction

input

Algorithm
Context

Recognition
System gContext Prediction

Queries
(Temporal Stochastic

Logics)
generates

y
monitors Application

specifies

Prediction
Results

User
is used by

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 4

Figure 4.5: Overview of the PreCon approach – Concepts specified by PerCon are shown in dark boxes

2011-07-30 60

D4.3 CHAPTER 4. CONTEXT PREDICTION

4.3.1 Stochastic User Model

People follow varying behavioural patterns in their daily lives, such that real world user behaviour can
not be described in a deterministic way. Consequently, we require a user model that is able to deal with
this probabilistic nature of human behaviour. In the following, we give a precise formal definition of the
SUM. Subsequently, we present our approach for learning such a SUM from observations recorded in
real-world context traces.

4.3.1.1 Semi-Markov Chain

We represent an SUM as a Semi-Markov Chain (SMC) [39]. In general, Markov Chains are a popular
means for describing stochastic processes with discrete state spaces. In addition to that, SMCs specify
a so-called state dwell time – an arbitrary probability distribution that is associated with every state
transition specifying the amount of time spent in a given state. Formally, a SMC M is a 3-tuple defined
as:

M = (S , p, q)

where S is the state space, p : S ×S → [0, 1] with ∀s ∈ S :
∑

s′∈S p (s, s′) = 1 is the transition probability
function, and h : (s, s′, t) 7→ [0, 1] with t ∈ R+ represents the distribution of dwell times associated with
a state transition (s, s′) ∈ S × S . For h : (s, s′, t), we will also write hs,s′ (t) for brevity reasons. The SMC
allows us to describe a user’s behaviour in the following manner: At each point in time, a user is in a
state s ∈ S that is identified by his current context (cf. Section 4.3.1.2). While the user acts in the real
world, his context changes and his SMC moves to a new state s′ ∈ S representing the new context. s′

is called the successor state of s, and s′ is visited with a certain probability p(s, s′). Before leaving the
current state s, s is active for a limited amount of time (the dwell time represented by hs,s′ (t)). During
this time period the user’s context does not change.

4.3.1.2 Learning a SMC

In contrast to classical model checking, we do not expect a designer of the system to define the SMC
underlying the real world behaviour. Instead, we apply a learning approach and derive the SMC from
the observations of a context recognition system. In the following, we describe the basic elements of an
SMC as well as the procedure of how to process context observations in order to learn an SMC.

User States A user state s = (c1, ..., cn) is an n-dimensional vector of context information. Each
component ci of s is of a specific context type Ci, and C1, ...,Cn are the context types known to the system
with domains Dom(C1), ...,Dom(Cn). E.g. ci may be an integer value from Dom(Ci) = N+, and Ci may be
the ambient temperature type. Other types could be location and activity, and the corresponding domains
could be enumerations of possible activities and symbolic location identifiers respectively. For example,
the state s = (”meeting room”, ”give presentation”) ∈ Dom(Location) ×Dom(Activity) describes the fact
that the user executes the activity give presentation in a location referred to as meeting room. Whenever
a combination of context information (c1, ..., cn) is detected that has not already been encountered for the
specific user, a new user state s = (c1, ..., cn) is added to the SMC.

Transition Probabilities A concrete series of consecutive user states is represented as a stochastic
process of random variables X1, X2, X3, ..., where Xi refers to the state occupied after the i-th state transi-
tion. In order to learn the state transition probabilities, we assume the Markov property: The probability
p(s, s′) for the state s′ to be visited next only depends on the current state s, and is independent of all
previous state changes. This assumption can be extended such that p(s, s′) depends on the k last vis-
ited states (k-order Markov models [70]) if needed, and PreCon operates on these more general k-order
models. However, for simplicity, we assume k = 1 here. The math is essentially the same.

2011-07-30 61

D4.3 CHAPTER 4. CONTEXT PREDICTION

Assuming a stationary probability distribution, the probabilities p(s, s′) can be estimated from the
history of past state transitions: Let ws,s′ be the transition weight, which denotes the number of transitions
from s to s′ as observed in the history. The transition probability p(s, s′) is defined as p(s, s′) = P(Xn+1 =

s′|Xn = s) =
ws,s′∑

s′′∈S ws,s′′
. Thus, the probability is the ratio of the number of observed state transitions from

s to s′ to the number of all observed transitions from s.

Dwell Time Distribution The dwell time in state s is modelled as a random variable Ds. We learn
the probability distribution of Ds conditioned on each transition such that hs,s′ (t) = P(Ds = t|Xn+1 =

s′, Xn = s). For this purpose, we observe the time periods that pass between consecutive changes in user
state. In order to limit the storage and computation overhead, we apply a discretization and divide time
into intervals of equal size ∆t, such that the i-th time interval is defined as Ii = [i · ∆t, (i + 1) · ∆t) . The
distribution hs,s′ can then be derived as follows: Let wi

s,s′ be the number of transitions (s, s′) that occurred
in the interval Ii such that ws,s′ =

∑
i wi

s,s′ is the total number of observed transitions (s, s′). Then the
probability for spending exactly time t in state s before leaving to successor state s′ is calculated as

hs,s′ : t 7→
wb

t
∆t c

s,s′

∆t · ws,s′
. (4.1)

In equation 4.1, we use ∆t as a normalization factor to ensure that
∫ ∞

0 hs,s′ (t) dt = 1 for the cumulative
distribution. As we deal with a discrete representation of the dwell time distribution, the cumulative
distribution function

∫ b
a hs,s′ (t) dt is computed as a sum of intervals over the probability mass function.

More precisely, the cumulative probability is determined by the sum over the intervals which are enclosed
by the integral ranges between a and b. As a and b may fall into discretization intervals, we interpolate
the probability associated with the fraction of the corresponding intervals based on a linear function.
The cumulative distribution is later used in Section 4.3.3 to determine the probability resulting from
time-bounded queries.

4.3.2 Prediction Query Language

PreCon’s prediction query language is based on Continuous Stochastic Logic (CSL) [8], a probabilistic
derivative of branching-time temporal logics (applied in classical model checking). CSL provides oper-
ators for verifying temporal properties of probabilistic state transition systems. Applications construct
queries from these temporal operators and submit them to PreCon. The operators are then evaluated on
the learnt SMC to verify the specified properties.

The state space S can be traversed by going from one state to the next as the transitions among the
states permit. The resulting series of visited states (called a path) models one possible temporal behaviour
of the user. For a context prediction, PreCom starts at the state s ∈ S the user currently occupies in the
real world and evaluates the given query from there, possibly considering all possible paths starting at s
(depending on the temporal operators in the query). The query language is defined as follows:

Let p ∈ [0, 1] be a probability threshold, let / ∈ {≤,≥} be a comparison operator, let t ∈ R+ be a time
bound, and let (Ci, c ∈ Dom(Ci)) be a contextual value c of type Ci. Queries can be composed from CSL
using the following grammar:

A query is a temporal-logic formula Φ with

Φ = true | (Ci, c) | Φ ∧ Φ | ¬Φ | P/p(ϕ),

where ϕ is a path formula defined as

ϕ = X≤tΦ | F≤tΦ | G≤tΦ | Φ1U≤tΦ2

2011-07-30 62

D4.3 CHAPTER 4. CONTEXT PREDICTION

Using CSL, we can investigate reachability properties (using operators X and F) and invariant properties
(using operators G and U) of future user behaviour. X is the Next operator. It evaluates a condition Φ

on all immediate successor states of the current user state s. Φ is expressed as a name-value pair (Ci, c)
consisting of the name of a context type Ci (e.g. location) and a specific context value c (e.g. office).
The query “Will the next location be the office?” can be expressed by applying the Next operator to
Φ = (location, o f f ice), resulting in X(location, o f f ice). F is the Eventually operator and can be used to
verify if a condition Φ holds in any state reachable from s through paths in the SMC. G is the Globally
operator and can be used to check if the condition Φ holds in every state on all paths starting in s. U is
the Until operator and expresses that eventually Φ2 must hold and Φ1 must hold on all paths starting at
the current state until Φ2 holds.

Time is a first order construct of the prediction query language. All operators are associated with
a time constraint t, defining an upper bound on the time, which may pass until the desired property
holds. Having such a time bound and using the dwell time distributions to evaluate time-bounded queries
enables us to formulate time-dependent queries.

The raw predictions are always probabilistic in nature when a query is evaluated. So the answer
of the model checking algorithm is of the form “The user enters his office within the next 10 minutes
with probability 0.74”. A querying application, however, usually expects a true or false as an answer.
Therefore, the calculated probabilities are compared to a probability threshold p, which is expressed in
the subscript of a query formula (P/p(ϕ)). The querying application specifies this probability and gets a
boolean result depending on whether the outcome of the query evaluation exceeds the threshold or not1.

In Table 4.1, we give some examples for behavioural properties which can be expressed as CSL
formulas. The examples demonstrate the range of different use cases for context predictions, including
queries with different semantics and context types.

Query Explanation
P≥0.8(X≤10min(location, o f f ice)) Will the office be the uer’s next location within the

next 10 minutes with a probability of ≥ 0.8?
P≥1.0 (location, home) ∧

P≥0.8F≤30min(¬(location, home))
Is the user currently at home and will he eventually
leave with a probability ≥ 0.8 within the next 30
minutes ?

P≥0.6 G≤30min (activity,walking) Will the user be walking within the next 30 min-
utes with a probability ≥ 0.6?

P≥0.2 ((location, stuttgart) U≤60min

(location, home))
Will the user be in Stuttgart with a probability ≥
0.2 until he eventually reaches his home within the
next hour ?

P≥1.0(activity, biking) ∧

P≥0.8(F≤60min (location, home) ∧
(activity, sitting))

Is the user currently biking (anywhere) and will
eventually relax (activity = sitting) at his home
with a probability ≥ 0.2 within the next hour?

Table 4.1: Examples of context prediction queries

The probability threshold p is an application-dependent value to influence the trade-off between false
positives (queries that evaluate to true but prove to be false later on) and false negatives (queries that eval-
uate to false but actually become true in reality): A higher threshold reduces the number of false positives
and increases the number of false negatives. A lower threshold has the opposite effect. Consequently,
the concrete threshold defines the ratio of false negative and false positives that the application is will-
ing to accept. The choice for the threshold is dependent on the application semantics. For example, in
security critical applications it is usually beneficial to prepare for exceptional cases even if they might
not occur. Hence, such applications may tolerate a higher number of false positives rather than false
negatives. On the contrary, a large number of false positives may negatively impact the satisfaction of
a user in an application that delivers advertisements based on his predicted future location. In this case

1Applications can also access the raw prediction result in case they require more complex threshold comparisons.

2011-07-30 63

D4.3 CHAPTER 4. CONTEXT PREDICTION

a higher probability threshold is beneficial to prevent the user from being overwhelmed by irrelevant
advertisements.

4.3.3 Query Processing

Classical model checking algorithms assume static state transition systems, where the system is analysed
at design-time and behavioural properties are only studied at state entry times. In our case, the system
that is subject to the verification is dynamic. In particular, the probability resulting from the evaluation
of a query is depending on the time ∆d, that has passed since the current state s was entered. Therefore,
we have to extend the standard model checking approach to account for ∆d (referred to as the running
dwell time in the following) by devising new ways of evaluating the temporal operators X and U. This
is sufficient since it can be shown that, F and G can be expressed using the X and U operators [9]. For
example, the reachability property F≤tΦ can be transformed to the equivalent expression (trueU≤tΦ). We
refer to X and U as the basic operators in the following. Arbitrarily complex temporal-logic formula can
be evaluated in a bottom-up manner based on a tree representation [9] using only the basic operators.
Thus, evaluating a query requires two things:

1. We need to be able to determine whether a given state s satisfies a basic context constraint Φ =

(C j, c). The basic satisfaction relation is defined as (s = (c1, ...c j, ..., cn) |= Φ)⇔ c j = c.

2. We need the ability to calculate the probability of X≤tΦ1 and Φ2U≤tΦ1 for some basic context
constraints Φ1,Φ2. Intuitively speaking, this involves calculating the probabilities of reaching a
state s with s |= Φ1 and of traveling a path where si |= Φ2 holds for every state si.

Our model checking problem can be solved by evaluating a satisfaction relation |= for the path for-
mula ϕ enclosed by the probabilistic operator P/p(ϕ) as follows:

(s,∆d) |= P/p(ϕ)⇔ P(s,∆d |= ϕ) / p

In other words, the path formula ϕ is satisfied after ∆d time units have passed in state s iff the probability
P(s,∆d |= ϕ) for the occurrence of ϕ satisfies the threshold condition /p.

In the following, we will present the evaluation approach for the two basic operators in detail. Let i
be the index of the last state transition that was observed, such that Xi = s denotes the current state and
Ds = ∆d is the current dwell time that has passed in this state. As a common basis for the computations,
we define the probability for moving from the state s to a successor state s′ within time t using the
information present in the SMC as follows:

P
(
Xi+1 = s′,Ds ≤ ∆d + t|Xi = s,Ds > ∆d

)
(4.2)

=
P (Xi+1 = s′,∆d < Ds ≤ ∆d + t|Xi = s)∑

s′∈S P (Xi+1 = s′,Ds > ∆d|Xi = s)
(4.3)

=

p(s, s′) ·
∫ ∆d+t

∆d
hs,s′ (x) dx

∑
s′∈S p(s, s′) ·

∫ ∞

∆d
hs,s′ (x) dx

(4.4)

We use Baye’s rule to transform formula (4.2) into (4.3), which is free of the dwell time distribution in
the conditional probability. Thus it can be computed using the state transition probabilities and the dwell
time distribution present in the SMC (Equation 4.4).

2011-07-30 64

D4.3 CHAPTER 4. CONTEXT PREDICTION

4.3.3.1 Next Operator X

The next operator limits the search space for the satisfaction of property ϕ to the immediate successor
states of the current state s. Due to the running dwell time, we have to consider the dwell time distribution
only from the time ∆d onwards and express this using a subscript in X≤t

∆d. We extend the model checking
approach given by Lopez et al. [51] accordingly, as follows:

P(X≤t
∆d (ϕ)) (4.5)

=
∑

s′∈S∧s′ |=ϕ

P
(
Xi+1 = s′,Ds ≤ ∆d + t|Xi = s,Ds > ∆d

)
(4.6)

=

∑
s′∈S∧s′ |=ϕ p(s, s′) ·

∫ ∆d+t

∆d
hs,s′ (x) dx

∑
s′∈S p(s, s′) ·

∫ ∞

∆d
hs,s′ (x) dx

(4.7)

We can calculate P(X≤t
∆d (ϕ)) directly, using Equation 4.4. The denominator is the probability of reaching

arbitrary next states in greater than ∆d time units, whereas the nominator reduces this probability to states
where the ϕ holds. This ratio represents the desired probability considering the running dwell time ∆d.

4.3.3.2 Until Operator U

For the until operator, the satisfaction of the property ϕ must be evaluated along all paths which can be
reached from the current state within the given time bound. The exploration of the state space is therefore
not necessarily bound by the immediate successor states. Again, we extend the approach of Lopez et al.
[51] by additionally considering the running dwell time ∆d. This is expressed using a subscript in U≤t

∆d.
The probability for the satisfaction of U≤t

∆d can then be calculated as follows:

P(Φ1U≤t
∆dΦ2) = Fa(s, s′, t,∆d) (4.8)

Fa(s, s′, t,∆d) =


1, if s |= Φ2

1∑
s′∈S p(s,s′)·

∫ ∞
∆d hs,s′ (t)dt

·
∑

s′∈S

∫ ∆d+t
∆d p(s, s′)

·hs,s′ (x) · Fb(s, s′, t − x)dx, if s |= Φ1 ∧ ¬Φ2
0, otherwise

(4.9)

Fb(s, s′, t) =


1, if s |= Φ2∑

s′∈S

∫ t

0
p(s, s′) · hs,s′ (x) · Fb(s, s′, t − x)dx

, if s |= Φ1 ∧ ¬Φ2
0, otherwise

(4.10)

The extension of the standard algorithm results in two functions Fa (4.9) and Fb (4.10). Function Fa is
used in the first step of the verification, starting from the current user state s taking the running dwell
time in s into account. Function Fa uses Fb for calculating the probability over all the possible paths
starting at s. Fb calculates the probabilities recursively using convolution of dwell time distributions,
taking into account that a state may be left at each point in time within the remaining time horizon.

4.3.4 Evaluation

We have evaluated PreCon using real-world context traces from a case study in a German geriatric
nursing home. The nursing home is an intensive care station for elderly people suffering from dementia

2011-07-30 65

D4.3 CHAPTER 4. CONTEXT PREDICTION

and other old-age diseases. The patients are accommodated in rooms on a nursing ward, where they
receive care from nurses throughout the day. Each nurse visits patients in different rooms and performs
treatment activities (e.g., the patient morning hygiene). PreCon predicts the future context of the nurses,
in order to optimize the tasks scheduled by an intelligent workflow management system. The integration
of context prediction into the scheduling decisions is part of the European research project ALLOW
[37]. In order to obtain context traces, the nurses were accompanied over the course of 25 days during
3-5 hours in the morning shift. The traces consist of time-stamped entries of (1) the activities performed
by nurses (2) the locations of their visits and (3) the ids of the patients they took care of. Thus, the records
define a time series of multi-dimensional context, where each entry denotes a discrete change of context
associated with a nurse. Given the context traces, PreCon learns a SMC to represent the behaviour of
each nurse. In order to evaluate the impact of different context types on the prediction outcome, we
varied the types of context used to learn the SMCs. We investigated three different state spaces, i.e.,
s ∈ Dom(Location), s ∈ Dom(Location) × Dom(Activity) and s ∈ Dom(Location) × Dom(Activity) ×
Dom(Patient).

It is important to note that comparisons with existing context prediction systems are not possible at
this time as they cannot produce the type of temporal predictions generated by PreCon. Since PreCon
is the first system to venture into this area, we use metrics from the area of information retrieval (as
explained in the following) to asses the general performance of PreCon.

4.3.4.1 Metrics

We performed the evaluations using the metrics precision, recall and F-score known from the area of
information retrieval. If a query result exceeds the probability threshold, we count it as either true
positive (T P) or false positive (FP), depending on whether the prediction matches the real-world context.
Otherwise, in case the prediction remains below the probability threshold, we distinguish between true
negatives (T N) or false negatives (FN). We count the occurrences of (T P), (FP), (T N), and (FN) in
order to calculate the metrics. This way, we can evaluate the influence of a varying probability threshold
p on the precision defined as T Ps

T Ps+FPs as well as on recall defined as T Ps
T Ps+FNs . While precision is a

measure of the exactness of the predictions, recall is used to quantify the completeness of the predictions.
Additionally, we evaluate the F-score which gives a combined measure of both and is defined as 2 ·
precision·recall
recision+recall . The performance of these metrics gives important insight in how proactive applications are
affected by a choice of the probability threshold as will be discussed in the next subsection for different
queries.

4.3.4.2 Basic Queries

We evaluated our approach for two exemplary queries P/p(X≤t
f (ϕ)) and P/p(F≤tΦ2) = P/p(trueU≤tΦ2).

We generated queries for the future location of a user. The time constraint associated with these queries
is set to t = 10 minutes. We evaluated the queries repeatedly, i.e, predictions were computed upon a
state change and periodically after ∆E = 10 seconds have passed in a state. The results discussed in the
following show the average of 2000 query evaluations.

Figures 4.6(a)-(c) illustrate the results for the Next operator X≤t
f (ϕ). Figure 4.6(a) shows the impact

of a varying probability threshold on the precision metrics. As expected, the precision gains from an in-
crease of the probability threshold. The reason is that the number of FP decreases because an increasing
portion of the predictions with a low probability is discarded. At the same time, we can observe the high-
est precision if states are composed of the multi-dimensional context ”concrete activities”, ”location”
and ”patient”. In contrast, the precision remains lowest when states only contain location information
(single-dimensional). Hence, the evaluation results show that additional context is relevant to discrimi-
nate user states such that more accurate predictions can be expected. Figure 4.6(b) shows the recall as a
function of the probability threshold. The results are reciprocal to the precision results: For an increas-
ing probability threshold the number of FN increases, as more and more predictions are discarded that

2011-07-30 66

D4.3 CHAPTER 4. CONTEXT PREDICTION

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

probability threshold

location,activity
location

location,activity,patient

(a) precision

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

probability threshold

location,activity
location

location,activity,patient

(b) recall

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

co
re

probability threshold

location,activity
location

location,activity,patient

(c) F-score

Figure 4.6: Evaluation results for the Next operator

actually match the future behaviour. This result illustrates the trade-off between precision and recall for
different values of the probability threshold: If the threshold is increased to guarantee more reliable pre-
dictions, the risk of discarding correct predictions with a low probability rises. Figure 4.6(c) shows the
F-score and reveals the characteristics of this trade-off: The F-score rises as the threshold increases from
0 to 0.4. Up to this threshold, the gain from a higher precision outweighs the loss in recall. However, for
a threshold higher than 0.4, the loss due to the loss in recall becomes more significant, so that the score
is negatively affected. For applications that are interested in a good trade-off, we therefore recommend
p = 0.4 as a probability threshold. In this case, we achieve a F-score of 0.86, which indicates a very
good performance.

Figures 4.7(a)-(c) depict the evaluation results for the until operator. Figure 4.7(a) shows that the
precision significantly gains already for lower thresholds p > 0. The reason is that Φ2 can be fulfilled
in all states reachable within the time constraint. Thus, the chance to encounter the expected context is
increased. In contrast, the same chance is limited to the state successors in case of the next operator. At
the same time, the recall is highly reduced by an increasing threshold as shown in Figure 4.7(b). Since the
evaluated queries also address future context, which appears in states reachable over multiple transitions
that are uncertain to occur, a significant amount of predictions has only a minor probability. This large
number causes a lot of FNs in total, so that a significant amount of correct predictions is discarded. This
observation is also reflected in Figure 4.7(c), which shows the F-score. For a threshold p > 0.2 the high
loss in recall dominates the gain in precision. Compared to the next operator, the until operator is more

2011-07-30 67

D4.3 CHAPTER 4. CONTEXT PREDICTION

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pr
ec

is
io

n

probability threshold

location,activity
location

location,activity,patient

(a) precision

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

re
ca

ll

probability threshold

location,activity
location

location,activity,patient

(b) recall

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
-s

co
re

probability threshold

location,activity
location

location,activity,patient

(c) F-score

Figure 4.7: Evaluation results for the Until operator

sensitive to the choice of the probability threshold. We therefore recommend p = 0.2 as a threshold for
applications to deal with the inherent trade-off for the until operator. In this case, a good result with an
F-score of 0.87 can be achieved.

4.4 Summary and Conclusions

In Section 4.2, we have presented a new context prediction scheme that is able to provide history pre-
dictors with domain-specific knowledge inherent to flow. Our context predictor learns the relationship
of flow activities with context changes observed in the real world. We represent this relationship as a
probabilistic state transition system which is incrementally refined from the execution of flows at run-
time. For context prediction, we traverse the state space of possible context changes to determine the
most likely paths of future context occurrences.

In our evaluation, we have shown that the inclusion of knowledge about user activities in the pre-
diction model significantly improves the prediction accuracy, as classical predictors are limited by their
agnostic view on the application domain.

In Section 4.3, we presented PreCon, a novel approach to rendering flow-based context prediction
more expressive than existing systems. In PreCon, user behaviour is represented by Semi-Markov Chains
(SMC), and temporal-logics is used as a query language. We extended well-known model-checking

2011-07-30 68

D4.3 CHAPTER 4. CONTEXT PREDICTION

techniques to deal with the online character of context predictions and to allow for continuous learning of
SMCs. PreCon’s query language provides a powerful means for applications to pose temporal queries for
reachability and invariant properties of future context. Thus, PreCon goes far beyond existing approaches
and represents a new class of context prediction systems that enable intelligent ubiquitous applications
to take much more educated decisions.

We evaluated PreCon based on a real-world case study in the area of healthcare using metrics from
information retrieval and showed that it exhibits a good performance. Moreover, our evaluations yielded
indications for choosing sensible parameters for different classes of applications.

Overall, this represents a notable step forward from existing context prediction systems. We have
shows that flow knowledge can be used to improve prediction capabilities. This means that flow-based
applications have a great potential to be proactive and run in the background, unnoticed by the user. The
feature of time-based queries provides applications and the flow system itself with a powerful means to
pose meaningful queries.

2011-07-30 69

D4.3 CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

In this document, we have discussed three important elements of flow control in pervasive adaptable
flows: (1) flow distribution, (2) robust flow navigation and (3) context prediction. We have developed
these concepts over the last 18 months of the project.

The area of flow distribution is specifically tailored to deal with changing performance and quality of
service in flow-based applications. These are new issues that arise from the fact that we consider flows
in dynamic mobile environments, and the concepts we developed represent an important step towards a
cost-efficient and seamless integration of business processes and pervasive computing, an area that has
been gaining momentum as the project was running.

The area of robust flow navigation cannot merely be seen as a tool for enabling flows as we envi-
sioned them in the project. This research goes beyond the original goals of the project by demonstrating
how context-aware systems as such can benefit from the concept of flow-based applications. In order to
achieve robustness in context-aware systems, application knowledge is required to deal with the uncer-
tainties involved with real-world context data and the means for measuring this data. Flows have turned
out to readily provide this knowledge. They represent a temporal model of activities and the conditions
under which transitions occur between them.

In the area of context prediction, we have been able to go way beyond the current state-of-the-art,
basically by exploiting the same type of flow knowledge. Before the work described in this document,
context prediction systems where very simplistic, allowing only for discrete projections of the next con-
text state. Our work was the first to introduce application knowledge in order to improve the accuracy
of predictions. Moreover, we were the first to apply model checking mechanisms in order to allow for
much more powerful prediction queries. This new type of queries is directly usable and meaningful for
applications and the end user since it incorporates real-time semantics.

We conclude that overall, the achieved robustness and proactivity represents a major step beyond the
current state of the art in pervasive applications.

2011-07-30 70

D4.3 BIBLIOGRAPHY

Bibliography

[1] W. M. Aalst, M. Adams, A. H. Hofstede, M. Pesic, and H. Schonenberg. Flexibility as a Service,
pages 319–333. Springer-Verlag, Berlin, Heidelberg, 2009.

[2] O. Adam, O. Thomas, and G. Martin. Fuzzy WorkflowsEnhancing Workflow Management with
Vagueness. In EURO/INFORMS Istanbul 2003 Joint International Meeting, pages 6–10, 2003.

[3] Otmar Adam and Oliver Thomas. A fuzzy based approach to the improvement of business pro-
cesses. In First International Workshop on Business Process Intelligence (BPI05), pages 25–35,
September 2005.

[4] Otmar Adam, Oliver Thomas, and Dominik Vanderhaeghen. Fuzzy-set-based modeling of business
process cases. In ICCBR Workshops, pages 251–260, 2005.

[5] B. Altakouri, G. Kortuem, A. Grunerbl, K. Kunze, and P. Lukowicz. The benefit of activity recogni-
tion for mobile phone based nursing documentation: A wizard-of-oz study. In Wearable Computers
(ISWC), 2010 International Symposium on, 2010.

[6] Theodoros Anagnostopoulos, Christos Anagnostopoulos, Stathes Hadjiefthymiades, Miltos Kyri-
akakos, and Alexandros Kalousis. Predicting the location of mobile users: a machine learning
approach. In Proc. of the 6th Intl. Conf. on Pervasive Services, 2009.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwin-
ski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical report, University of California at Berkeley, February
2009.

[8] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model-checking
algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering,
29:524–541, 2003.

[9] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.

[10] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy consump-
tion in mobile phones: a measurement study and implications for network applications. In Proc. of
the 9th ACM SIGCOMM conference on Internet measurement conference (IMC), 2009.

[11] Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Workflow partitioning in mobile infor-
mation systems. In Proc. of the IFIP TC8 working conference on Mobile Information Systems
(MOBIS), 2004.

[12] T.S. Barger, D.E. Brown, and M. Alwan. Health-status monitoring through analysis of behavioral
patterns. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
35(1):22 – 27, 2005.

2011-07-30 71

D4.3 BIBLIOGRAPHY

[13] Thomas Bauer and Peter Dadam. Efficient distributed workflow management based on variable
server assignments. Lecture Notes in Computer Science, 1789/2000:94–109, 2000.

[14] Amiya Bhattacharya and Sajal K. Das. Lezi-update: An information-theoretic approach to track
mobile users in pcs networks. In Proc. of the 5th Annual ACM/IEEE Intl. Conf. on Mobile Com-
puting and Networking, 1999.

[15] A. Billionnet, M. C. Costa, and A. Sutter. An efficient algorithm for a task allocation problem. J.
ACM, 39(3):502–518, 1992.

[16] Jit Biswas, Andrei Tolstikov, Maniyeri Jayachandran, Victor Foo Siang Fook, Aung Aung Phyo
Wai, Clifton Phua, Weimin Huang, Louis Shue, Kavitha Gopalakrishnan, and Jer-En Lee. Health
and wellness monitoring through wearable and ambient sensors: exemplars from home-based care
of elderly with mild dementia. Annales des Télécommunications, 65(9-10):505–521, 2010.

[17] A. F. Bobick and Y. A. Ivanov. Action recognition using probabilistic parsing. In Proc. of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 1998.

[18] Erich Bruns, Benjamnin Brombach, Thomas Zeidler, and Oliver Bimber. Enabling mobile phones
to support large-scale museum guidance. IEEE Multimedia, 14:16–25, 2007.

[19] Scott Buffett and Liqiang Geng. Bayesian classification of events for task labeling using workflow
models. In Business Process Management Workshops, pages 97–108, Milano, Italy, September
2009.

[20] Chandra S. Chekuri, Andrew V. Goldberg, David R. Karger, Matthew S. Levine, and Cliff Stein.
Experimental study of minimum cut algorithms. In Proc. of the 8th annual ACM-SIAM symposium
on Discrete algorithms, SODA ’97, pages 324–333, Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics.

[21] C. Cheng, Ravi Jain, and Eric van den Berg. Handbook of Wireless Internet, chapter Location
prediction algorithms for mobile wireless systems. CRC Press, 2003.

[22] Carolina Chiao, Cirano Iochpe, Lucinéia Heloisa Thom, and Manfred Reichert. Verifying existence,
completeness and sequences of semantic process patterns in real workflow processes. In Proc. of the
Simpsio Brasileiro de Sistemas de Informao. Rio de Janeiro: UNIRIO, pages p. 164–175., Brazil,
2008.

[23] Tanzeem Choudhury, Matthai Philipose, Danny Wyatt, and Jonathan Lester. Towards activity
databases: Using sensors and statistical models to summarize people’s lives. IEEE Data Eng.
Bull., 29(1):49–58, 2006.

[24] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui:
Making smartphones last longer with code offload. In Proc. of the 8th International Conference on
Mobile systems, Applications, and Services (MobiSys), 2010.

[25] Brian D. Davison and Haym Hirsh. Predicting sequences of user actions. In Workshop on Predicting
the Future: AI Approaches to Time Series Analysis, 1998.

[26] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Diversity in
smartphone usage. In Proc. of the 8th international conference on Mobile systems, applications,
and services (MobiSys), pages 179–194. ACM, 2010.

[27] Daniel Fischer, Stefan Föll, Klaus Herrmann, and Kurt Rothermel. Energy-efficient Workflow
Distribution. In Proceedings of The Fifth International Conference on COMmunication System
softWAre and middlewaRE, 2011. (accepted for publication).

2011-07-30 72

D4.3 BIBLIOGRAPHY

[28] Stefan Föll, Klaus Herrmann, and Christian Hiesinger. Flow-Based Context Prediction. In Pro-
ceedings of the 7th International Conference on Pervasive Services (ICPS 2010), Berlin, Germany,
July 13-15, 2010. ACM, Juli 2010.

[29] Stefan Föll, Klaus Herrmann, and Kurt Rothermel. Precon expressive context prediction using
stochastic model checking. In Proceedings of the 8th International Conference on Ubiquitous
Intelligence and Computing (UIC-2011), 2011. (accepted for publication).

[30] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of temporal proper-
ties on running programs. In In Proceedings, International Conference on Automated Software
Engineering (ASE01), pages 412–416. IEEE Computer Society, 2001.

[31] Karthik Gopalratnam and Diane J. Cook. Online sequential prediction via incremental parsing: The
active lezi algorithm. IEEE Intelligent Systems, 22:52–58, 2007.

[32] S. Hariri H. Topcuoglu and W. Min You. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel Distributed Systems, 13:260–274,
2002.

[33] Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman. Extending bpel for interoperable
pervasive computing. In IEEE International Conference on Pervasive Services, pages 204 – 213,
Istanbul, 15-20 July 2007.

[34] Gregory Hackmann, Mart Haitjema, Christopher D. Gill, and Gruia-Catalin Roman. Sliver: A
BPEL Workflow Process Execution Engine for Mobile Devices. In Proceedings of 4th Interna-
tional Conference on Service Oriented Computing (ICSOC, volume 4294 of LNCS, pages 503–508.
Springer, 2006.

[35] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18, 2009.

[36] M. Hartmann and D. Schreiber. Prediction algorithms for user actions. In In Proc. of Intl. Conf. on
Adaptive Business Information Systems, 2007.

[37] Klaus Herrmann, Kurt Rothermel, Gerd Kortuem, and Naranker Dulay. Adaptable Pervasive
Flows–An Emerging Technology for Pervasive Adaptation. In Proceedings of the 2008 Second
IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, pages
108–113. IEEE Computer Society, 2008.

[38] Christian Hiesinger, Daniel Fischer, Stefan Foell, Klaus Herrmann, and Kurt Rothermel. Minimiz-
ing Human Interaction Time in Workflows. In Proceedings of the Sixth International Conference
on Internet and Web Applications and Services (ICIW 2011), pages 22–28, March 2011.

[39] Ronald A. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Processes. John
Wiley & Sons, 1971.

[40] IBM. Web services business process execution language version 2.0.

[41] Java Universal Network/Graph. http://jung.sourceforge.net, 2010.

[42] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM,
43:601–640, July 1996.

[43] Dimitrios Katsaros and Yannis Manolopoulos. Prediction in wireless networks by markov chains.
IEEE Wireless Communications, 16:56–63, 2009.

2011-07-30 73

D4.3 BIBLIOGRAPHY

[44] Gerald G. Koch, Boris Koldehofe, and Kurt Rothermel. Higher confidence in event correlation
using uncertainty restrictions. In 28th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW’08); 2008, pages 417–422, 2008.

[45] Y. Kopidakis. On the task assignment problem: two new efficient heuristic algorithms. Journal of
Parallel and Distributed Computing, 42(2):21, 1997.

[46] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. Formal Methods for the
Design of Computer, Communication and Software Systems: Performance Evaluation, 4486:220–
270, 2007.

[47] Ralph Lange, Harald Weinschrott, Lars Geiger, Andre Blessing, Frank Dürr, Kurt Rothermel, and
Hinrich Schütze. On a generic uncertainty model for position information. In Kurt Rothermel, Di-
eter Fritsch, Wolfgang Blochinger, and Frank Dürr, editors, First Internationa Workshop on Quality
of Context, QuaCon 2009, number 5786 in LNCS, pages 76–87, Stuttgart, June 2009. Springer.

[48] Jean Michel Lau, Cirano Iochpe, Lucinéia Heloisa Thom, and Manfred Reichert. Discovery and
analysis of activity pattern co-occurrences in business process models. In ICEIS (3), pages 83–88,
2009.

[49] Jong-Known Lee and Jennifer C. Hou. Modeling steady-state and transient behaviours of user
mobility: Formulation, analysis, and application. In Proc. of the 7th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, 2006.

[50] Frank Leymann and Dieter Roller. Production workflow: concepts and techniques. Prentice Hall
PTR, 2000.

[51] Gabriel G. Infante Lopez, Holger Hermanns, and Joost-Pieter Katoen. Beyond memoryless dis-
tributions: Model checking semi-markov chains. In Process Algebra and Probabilistic Methods.
Performance Modeling and Verification, 2001.

[52] Rene Mayrhofer. Context prediction based on context histories: Expected benefits, issues and
current state-of-the-art. In Proc. of the 1st Intl. Workshop on Exploiting Context Histories in Smart
Environments, 2005.

[53] Rene Michael Mayrhofer. An Architecture for Context Prediction. PhD thesis, Johannes Kepler
University of Linz, 2004.

[54] Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic, Deqing Chen, T. J. Giuli, and
Xiaohui Gu. Towards a distributed platform for resource-constrained devices. In Proc. of the 22nd
International Conference on Distributed Computing Systems (ICDS), 2002.

[55] Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, UNIVERSITY OF CALIFORNIA, BERKELEY, 2002.

[56] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C.J. Bula, and P. Robert. Ambulatory system
for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the
elderly. Biomedical Engineering, IEEE Transactions on, 50(6):711 –723, 2003.

[57] Brenda Ng, Leonid Peshkin, and Avi Pfeffer. Factored particles for scalable monitoring. In In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 370–377.
Morgan Kaufmann, 2002.

[58] M. Martin P. Nurmi and J. A. Flanagan. Enabling proactiveness through context prediction. In In
Proc. of the 2nd Workshop on Context Awareness for Proactive Systems, 2005.

2011-07-30 74

D4.3 BIBLIOGRAPHY

[59] Witold Pedrycz. Why triangular membership functions? Fuzzy Sets and Systems, 64:21 – 30, 1994.

[60] Witold Pedrycz and Fernando Gomide. A generalized fuzzy petri net model. IEEE Transactions
on Fuzzy Systems, 2(4):295 –301, November 1994.

[61] Maja Pesic, Helen Schonenberg, and Wil M.P. van der Aalst. Declare: Full support for loosely-
structured processes. Enterprise Distributed Object Computing Conference, IEEE International,
0:287, 2007.

[62] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77:257–286, 1989.

[63] Andrei Radulescu and Arjan J. C. Van Gemund. Fast and effective task scheduling in heterogeneous
systems. In HCW ’00: Proceedings of the 9th Heterogeneous Computing Workshop, page 229,
Washington, DC, USA, 2000. IEEE Computer Society.

[64] A.B. Raposo, A.L.V. Coelho, L.P. Magalhaes, and I.L.M. Ricarte. Using fuzzy petri nets to coordi-
nate collaborative activities. In IFSA World Congress and 20th NAFIPS International Conference,
2001. Joint 9th, volume 3, pages 1494 –1499 vol.3, 2001.

[65] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition edition, 2002.

[66] Robert Schalkoff. Pattern Recognition. Statistical, Structural and Neural Approaches. John Wiley
& Sons, Inc, 1992.

[67] Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. A Framework for Adapting the Dis-
tribution of Automatic Application Configuration. In Proceedings of the 2008 ACM International
Conference on Pervasive Services (ICPS 2008), Sorrento, Italy, July 6-10, 2008, pages 163–172.
ACM, Juli 2008.

[68] Stephan Sigg. Development of a novel context prediction algorithm and analysis of context predic-
tion schemes. PhD thesis, University of Kassel, 2008.

[69] Jin Hyun Son, Seok Kyun Oh, Kyung Hoon Choi, Yoon Joon Lee, and Myoung Ho Kim. GM-
WTA: an efficient workflow task allocation method in a distributed execution environment. Journal
of Systems and Software, 67(3):165–179, 2003.

[70] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating next-cell predictors with extensive
wi-fi mobility data. IEEE Transactions on Mobile Computing, 5:1633–1649, 2004.

[71] Stephan. Urbanski, Eduard. Huber, Matthias. Wieland, Frank. Leymann, and Daniela. Nicklas.
Perflows for the computers of the 21st century. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference on, pages 1 –6, March 2009.

[72] Wil M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling and analysing workflow using
a petri-net based approach. In Proc. 2nd Workshop on Computer-Supported Cooperative Work Petri
nets and related formalisms, pages pp 31–50, 1994.

[73] Mark Weiser. The computer for the 21st century. In Scientific American 265(3): 94-104, 1991.

[74] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev.,
3(3):3–11, 1999.

2011-07-30 75

D4.3 BIBLIOGRAPHY

[75] Matthias Wieland, Uwe-Philipp Käppeler, Paul Levi, Frank Leymann, and Daniela Nicklas. To-
wards Integration of Uncertain Sensor Data into Context-aware Workflows. In GI-Edition Lec-
ture Notes in Informatics (LNI), editor, Tagungsband INFORMATIK 2009 Im Focus das Leben, 39.
Jahrestagung der Gesellschaft für Informatik e.V. (GI), Lübeck, September 2009. Lecture Notes in
Informatics (LNI).

[76] Matthias Wieland, Oliver Kopp, Daniela Nicklas, and Frank Leymann. Towards context-aware
workflows. In Barbara Pernici and Jon Atle Gulla, editors, CAiSE07 Proceedings of the Workshops
and Doctoral Consortium, volume 2, Trondheim Norway, Juni 2007. Tapir Acasemic Press.

[77] Hannes Wolf, Klaus Herrmann, and Jonas Palauro. Fuzzy Event Assignment for Robust Context-
Aware Workflows. In Proceedings of the Fourth International Conference on Dependability (DE-
PEND 2011), 2011. (accepted for publication).

[78] Hannes Wolf, Klaus Herrmann, and Kurt Rothermel. Modeling dynamic context awareness for
situated workflows. In P. Herrero R. Meersman and T. Dillon (Eds.), editors, OTM 2009 Work-
shops, volume 5872 of LNCS, pages 98–107, Vilamoura, November 2009. Springer-Verlag Berlin
Heidelberg.

[79] Hannes Wolf, Klaus Herrmann, and Kurt Rothermel. Robustness in Context-Aware mobile com-
puting. In IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob’2010). IEEE Communications Society, 10 2010.

[80] Hannes Wolf, Klaus Herrmann, and Kurt Rothermel. Robustness in Context-Aware mobile com-
puting. In IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob’2010), Niagara Falls, Canada, 10 2010.

[81] LA Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[82] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24:530–536, 1978.

2011-07-30 76

