

Project Number: 215219
Project
Acronym:

SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.3.3B Distributed Semantic Spaces:

A Second Implementation
Activity N: Activity 1

Work Package: WP1

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Reto Krummenacher, Gerald Schrempf, Michael Fried
(UIBK), Fabrice Huet, Laurent Pellegrino (INRIA)

Reviewers: Guillermo Álvaro Rey (iSOCO), Mateusz Radzimski (ATOS)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 2 of 22

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2010-07-20 First TOC Reto Krummenacher (UIBK)

0.2 2010-07-29 Semantic Spaces 2.0 Section Gerald Schrempf (UIBK)

0.3 2010-08-04 Introduction/RDF2Go argumentation Reto Krummenacher

0.4 2010-08-04 Configuration and Installation draft Gerald Schrempf

0.5 2010-08-05 Distributed Space/P2P Overlay draft Fabrice Huet (INRIA)

0.6 2010-08-06 Update to Distributed Space parts Fabrice Huet

0.7 2010-08-10 Finalization Internal Draft All

0.8 2010-08-16 Incorporation Review Feedback 1 All, Mateusz Radzimski
(ATOS)

0.9 2010-08-18 Incorporation Review Feedback 2 All, Guillermo Alvaro Rey
(iSOCO)

1.0 2010-08-19 Final release Reto Krummenacher

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 3 of 22

Table of Contents
GLOSSARY OF ACRONYMS __ 5

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. SOFTWARE DESCRIPTION ___ 8

2.1 SEMANTIC SPACES 2.0 __ 8

2.1.1 Semantic Spaces 2.0 API __ 9

2.1.2 Semantic Spaces Core ___ 11

2.1.3 SpaceModel: Wrapping RepositoryModels ____________________________ 11

2.1.4 Exceptions __ 12

2.2 DISTRIBUTED SPACES AND P2P OVERLAY __________________________ 13

2.2.1 Semantic Space modular architecture _______________________________ 13

2.2.2 Performance improvement __ 14

3. INSTALLATION AND CONFIGURATION __________________________________ 15

3.1 INSTALLATION __ 15

3.1.1 Semantic Spaces 2.0 Core __ 15

3.1.2 Distributed Spaces and P2P Overlay ________________________________ 16

3.2 CONFIGURATION __ 17

3.2.1 Semantic Spaces 2.0 Core __ 17

3.2.2 Distributed Spaces and P2P Overlay ________________________________ 18

4. CONCLUSIONS __ 21

5. REFERENCES ___ 22

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 4 of 22

List of Figures
Figure 1: Architecture of Semantic Spaces .. 9

Figure 2: Semantic Spaces 2.0 API ..10

Figure 3: Semantic Spaces 2.0 Enumerations ..10

Figure 4: Important operations of the RDF2Go Model interface ..11

Figure 5: Exceptions of the Semantic Spaces 2.0 API ..12

Figure 6 : Interactions from the query initiator to the destination peer14

List of Tables
Table 1: Example property file ..18

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 5 of 22

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

CAN Content Addressable Network

GCM Grid Component Model

GCMA Grid Component Model Application

GCMD Grid Component Model Descriptor

LOD Linked Open Data

P2P Peer-To-Peer

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

SVN Apache Subversion

URI Uniform Resource Identifier

URL Uniform Resource Locator

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 6 of 22

Executive summary
This deliverable describes the second and final implementation of the distributed semantic
spaces infrastructure. The implementation provides the final realization of the concepts and
specifications that were released with deliverable “D1.3.3A A Distributed Semantic
Marketplace” [1]. The second implementation focused on offering a distributed semantic data
management infrastructure that serves at once as virtualization layer for different RDF
repositories and basic data management infrastructure and as RDF repository itself. For this
reason, the implementation exposes semantic spaces as RDF2Go models that mimic and
wrap various storage and RDF manipulation models such as the ones from OWLIM, Sesame
or the P2P overlay developed within the SOA4All project. To this end, the semantic spaces
core implementation including the space platform and the spaces models, as well as the
overlay implementation are subject to this deliverable.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 7 of 22

1. Introduction
This final software report about the distributed semantic spaces infrastructure describes the
public Semantic Space 2.0 release that is available as open-source project via
sourceforge.net and INRIA’s GForge server, respectively, and as maven project via the
public maven repositories for a facilitated integration and deployment. Moreover we are
happy to note that the work is listed as implementation of the RDF2Go API on
rdf2go.semweb4j.org. A priori the software release is the implementation of the conceptual
updates to semantic spaces that were presented in deliverable D1.3.3A [2]. With respect to
the alignment with the RDF models and operations provided through RDF2Go, the final
implementation went a step further as initially described in D1.3.3A. The conceptual ideas
presented at month M24 were considering making the Semantic Space API compatible to
RDF2Go. The actual release presented in this document, however, implements the
interfaces and makes semantic spaces particular types of RDF models. Further details about
the reasons for this change and how it is realized is subject to Section 2. In short, thanks to
this much closer alignment, the integration of the P2P overlay with RDF repositories and the
use of semantic spaces as repositories are now much easier.

1.1 Purpose and Scope
This deliverable accompanies the software release of Semantic Spaces 2.0. The software
release includes the semantic space logics, the RDF2Go models for spaces, the wrappers
for various RDF repositories and data management endpoints, and an updated and
evaluated implementation of the distributed semantic spaces layer, the P2P overlay.
Although, as stated above, there are some differences between the implementation and the
specification in deliverable D1.3.3A, the reader is still mostly referred to previous deliverables
about semantic spaces for conceptual argumentations. This deliverable focuses only on an
implementation overview, the updated API, installation and configuration information and
some evaluation of the Semantic Space 2.0 release of SOA4All.

1.2 Structure of the document
In a first part, the deliverable presents the Semantic Space 2.0 software release in Section 2.
There are two parts to the presentation: first, the Semantic Space Core implementation and
APIs in Section 2.1, and second, in Section 2.2 a description of the P2P Overlay that enables
distributed semantic spaces. Section 3 is dedicated to more information about the installation
and configuration of different semantic space realizations; while the default release of
Semantic Space 2.0 comes with a local Sesame store and a binding to public SPARQL
endpoints, it is possible to use spaces based on OWLIM or the overlay upon request. Finally,
with Section 4 we conclude the deliverable.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 8 of 22

2. Software Description
The aim of Semantic Space 2.0 was, as described in deliverable D1.3.3A [1], the offering of
more standardized RDF/SPARQL interfaces for the access to semantic spaces. While the
role of semantic spaces as shared data management and virtualization infrastructure still
remains the same, the interfaces were changed from mostly tuplespace-based to more RDF
repository-aware. The updated architecture plan has foreseen to use of the RDF2Go
framework as baseline for the interface specification. The semantic space operations, for
example for publishing RDF, were consequently changed from write(URI space, Statement

triple) to addStatement(URI space, Statement triple). The intention was to have the
semantic space API mimic the RDF2Go API.

While this idea facilitated the understanding of semantic spaces and now supported (all)
standard RDF manipulations such as adding knowledge, querying and removing data, the
new API still caused unnecessary difficulties when moving from a standard RDF repository
(e.g., Sesame or OWLIM) to semantic spaces within existing implementations. There was a
need to change the signatures of the methods applied.

Indeed, the big advantage of the RDF2Go framework is the abstraction layer over many
different repository implementations via the concept Model. The idea that is now followed
with this final release of Semantic Spaces 2.0 is to expose spaces as models, according to
RDF2Go, too. Accessing a semantic space is now equivalent to the manipulation of a model
instance, which makes the switching from an OWLIM repository to the more expressive
semantic space virtualization layer as simple as changing the model type – with no need for
updates to the operations and operation signatures in an existing implementation.

Consequently, the operation to add statements no longer requires the space identifier as
parameter, but the space is explicitly given as the object on which the operation is executed:
mySpace.addStatement(Statement triple).

The remainder of this section describes the semantic spaces software package. In order to
provide a well-structured approach to the software, we divide the overall software package
into three parts:

• API specification and semantic spaces core implementation,

• Space models and RDF2Go extensions,

• Peer-to-peer distribution and indexing infrastructure.

2.1 Semantic Spaces 2.0
The Semantic Spaces 2.0 conceptual architecture (Figure 1, details to all parts are given in
subsequent sections of this report) shows the API at the top-level with the two interfaces
ISemanticSpace and ISpaceModel. The ISemanticSpace interface describes space-
management-operations. The ISpaceModel interface describes the possible operations on a
single space, and extends the RDF2Go Model interface accordingly.

The semantic spaces core implements the ISemanticSpace interface and holds references to
the underlying spaces (models). The SpaceModel layer encapsulates all the individual
spaces that are represented in a separate SpaceModel, each implementing the ISpaceModel
interface.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 9 of 22

Figure 1: Architecture of Semantic Spaces

In comparison to Section 3.1 of D1.3.3A [1], the current architecture has been decomposed
into a core implementation of the space infrastructure and the SpaceModel layer, so that, as
described earlier in this section, the spaces can be maintained as separate models and are
fully compatible to the RDF2Go model interface.1 The semantic space core stores handles to
space models and matches specific space identifiers (URIs) to SpaceModel; i.e., the core
implementation can be queried for SpaceModel instances. The operations for publishing and
retrieving semantic data such as addStatement or sparqlConstruct are then called without an
additional space parameter directly on the corresponding SpaceModel instance.

The final SOA4All release of Semantic Spaces 2.0 currently allows the usage of different
local repositories such as OWLIM and Sesame that are wrapped as space models, or
distributed spaces that leverage the P2P overlays developed within the project (Section 2.2).
Additionally, semantic spaces wrap public SPARQL endpoints as so-called LODModels in
order to query linked data sources as spaces. A LODModel takes the URL of a public
SPARQL endpoint and wraps the endpoint as semantic space. SPARQL queries are then
forwarded to the URL, where they are resolved. Further information about the wrapping of
SPARQL endpoints as spaces in LODModels can be found in Section 2.1.3.

2.1.1 Semantic Spaces 2.0 API

The Semantic Spaces API layer is discussed more concretely in this section; a component
map is depicted on Figure 2 and Figure 3.

1 http://rdf2go.semweb4j.org

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 10 of 22

Figure 2: Semantic Spaces 2.0 API

The ISemanticSpace interface shows the public accessible methods of a Semantic Spaces
Core. When creating a new space, the enumeration SpaceModelType defines the type of the
space. Possible values are LocalRepository, DistributedSpace and Linked Open Data (LOD).
The enumeration SpaceRelation is used to create or remove relations between spaces and
has the possible values hasSubspace, isSubspaceOf, isSimilarTo, isRelatedTo and
seeAlsoSpace. These space relations can also be found in Section 3.2 of Deliverable
D1.3.2A [1].

Figure 3: Semantic Spaces 2.0 Enumerations

The ISpaceModel interface extends the RDF2Go Model interface and the
ISemanticSpaceNotification. The ISemanticSpaceNotification interface is used in
combination with the ISemanticSpaceListener interface for enabling the notification-
mechanism on spaces. Further information for subscriptions can be found in Section 3.5 of
Deliverable D1.3.3A [1].

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 11 of 22

Figure 4: Important operations of the RDF2Go Model interface

Figure 4 shows the most important operations of the RDF2Go Model interface. There are
also some convenience methods specified by the RDF2Go Model interface for operations
like addStatement, removeStatement, readFrom and writeTo with different parameters which
can be seen in the RDF2Go online javadoc.2

2.1.2 Semantic Spaces Core

The Semantic Spaces Core implements the ISemanticSpace interface (Figure 2), which
provides operations to create semantic spaces, get spaces by their identifying URI, get the
subspaces of a specific space, list all spaces, create federations of a set of spaces, delete
such federations and create relations like “hasSubspace” and “isSubspaceOf” between
spaces, as initially defined in D1.3.2A [1] and D1.3.3A [1].

The core manages a metadata-space to store information about relations between spaces
like the subspace hierarchy or the underlying storage-type of a specific space. It also stores
federations and holds references to a local repository and an overlay (optional).

Every underlying storage part like OWLIM, Sesame or the Overlay has to provide a model
factory, which implements the RDF2Go ModelFactory interface. This factory is loaded by the
“RDF2Go.register” method and then used to create new spaces (models). The type of a
space is defined by the used model factory. This provides better flexibility of the used storage
parts, because the dependencies are checked at runtime and do not have to be available at
compile time if they are not needed.

To use specific settings for the Semantic Spaces, properties or the filename of a properties-
file can be passed when creating a new Semantic Spaces Core. Possible settings are the
storage-path of the local repository, the type of the local repository via its ModelFactory (e.g.,
BigOWLIM, Sesame) and the usage of an overlay. Further information about the properties
and how to configure those can be found in Section 3.

2.1.3 SpaceModel: Wrapping RepositoryModels

Every different underlying model that implements the RDF2Go Model interface can be
wrapped by a SpaceModel. The SpaceModel also implements the RDF2Go Model interface

2 http://mavenrepo.fzi.de/semweb4j.org/site/rdf2go.api/apidocs/org/ontoware/rdf2go/model/Model.html

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 12 of 22

and extends the RDF2Go AbstractModel class. On the one hand, the semantic spaces
model virtualizes the underlying repository models – possibly a public SPARQL endpoint too
via LODModel – and, more importantly, adds an additional abstraction layer that is used to
implement various semantic space specific features and functionalities like executing
SPARQL queries or findStatement methods recursively also on subspaces or across
federations.

As the underlying models all implement the RDF2Go Model interface, recursive calls to
spaces and their subspaces are independent of their type.

The notification mechanism that is exposed by the SpaceModel class is currently only
applicable if the corresponding space is implemented on top of a BigOWLIM repository. No
other currently available storage infrastructure allows for subscriptions to RDF patterns.
Further information about the SOA4All notification services that are now shipped with
BigOWLIM can be found in Section 3.5 of deliverable D1.3.3A.

2.1.4 Exceptions

There are different exceptions in the Semantic Spaces 2.0 API:

• An OperationNotSupportedException is thrown if operations are called which are not
possible. Examples are the not supported subscription mechanism on a Sesame
repository or the addStatement methods when working with a LOD model.

• The SpaceAlreadyExistsException is thrown if a space URI already exists.

• The SpaceNotExistsException is thrown if a space does not exist.

• The SpaceTypeNotSupportedException is thrown if a space with a not allowed type
should be created, e.g. if the distributed spaces part is disabled in the properties
when creating a Semantic Spaces Core.

• The NoSparqlEndpointException is thrown if a given space URI does not map to a
valid SPARQL endpoint when trying to create a LODModel space.

Figure 5 shows the exceptions hierarchy of the presented Semantic Spaces 2.0 release:

Figure 5: Exceptions of the Semantic Spaces 2.0 API

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 13 of 22

2.2 Distributed Spaces and P2P Overlay
The distributed space implementation has been re-factored to implement the new Semantic
Spaces 2.0 API and improve the overall performance. The overlay implementation leverages
the RDF2Go API and is exposed to the Semantic Space Core as RDF2Go model. Internally,
it can now support any storage framework with an RDF2Go interface. A global description of
the architecture can be found in D1.3.3A [2], and in the sections above. This part of the
report focuses on the distributed implementation, depicted in Figure 1 as OverlayModel.

2.2.1 Semantic Space modular architecture

One of the goals when designing this distributed storage was to be able to easily change or
modify some parts. A modular architecture is at the heart of the design, clearly separating the
infrastructure (a CAN overlay), the query engine (e.g., OWLIM, Sesame) and the storage
system (a BigOWLIM repository). However, these elements do not work in isolation, rather
they require frequent interactions. In this section, we will outline the different parts of our
architecture, explaining their functions and showing their relations.

2.2.1.1 Peer Architecture

A peer is the entity responsible for maintaining the CAN infrastructure, routing messages and
accessing the local repository.

The 3D CAN overlay is managed through an Overlay object which is responsible for
maintaining a description of the zone managed by the current peer and an up-to-date list of
neighbours. Changing the number of dimensions of the CAN, e.g., to handle meta-data,
requires providing a modified implementation of the Overlay object.

To route a query, it is first analyzed in order to determine the constant parts, if any, which will
be used to direct it to the target peer. When there is not enough information to make a
decision, it is broadcasted to the neighbouring peers, which will perform the same process.

2.2.1.2 Query Analysis and Manipulation

Although the routing of the query is a peer's responsibility, part of the process requires the
query analysis to extract atomic queries and their constant parts. We have delegated this
part to specific libraries, which offer dedicated operations for SPARQL query manipulation.
When a query returns data sets from multiple peers, the merge/join operation is also
delegated. In order to experiment with the modularity aspect of our implementation, we have
used both Sesame and Jena without impacting the other parts of the architecture.

2.2.1.3 Storage Abstraction

The storage is ultimately responsible for storing data and locally processing queries. It is
important for the peer-to-peer infrastructure to be independent from the storage
implementation. All references are isolated through an RDF2Go abstraction layer whose role
is to manage the differences between data-structures and API between the peer-to-peer and
the storage implementations. Some requests require accessing the local repository to read
or write some information. Although this is rather straightforward, some care has to be taken
regarding the commit of data to the storage. With some implementations like BigOWLIM,
committing can take some time and thus should not be done after each write operation. The

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 14 of 22

peer can implement a policy to only perform them when a threshold is reached (e.g., time
since last commit aka commit interval, number of write done, etc.) or when a read query has
to be processed.

The overall interaction between the subcomponents of the architecture can be seen in Figure
6. A request is transmitted through Peer 1, which performs some analysis, and propagates it
through various overlays object, before finally reaching the target local storage.

Figure 6 : Interactions from the query initiator to the destination peer

2.2.2 Performance improvement

A lot of work has been dedicated to improving the performance of the implementation and to
significantly reduce the time to perform operations such as adding statements to the space or
performing queries.

The following is a list of some of the optimisations performed:

• Refactoring of messages: now, responses do not contain the initial query but only the
required information to route back the matching statements. For example, the size of
messages to insert a statement in the network has been reduced by 80%, from 6.5KB
to 1.3KB.

• Responses associated to messages are no more merged at each synchronization
point but only when the response is received by the initiator of the request. Moreover,
data retrieved for response are serialized once and stored as byte array in order to
avoid multiple serializations.

• All the classes generated by the ProActive middleware [6] at runtime are created at
compile time with a custom Maven plugin (open source project available at
http://code.google.com/p/proactive-maven-plugin/).

• Querying the data store is done in parallel to the forwarding of the request to the
neighbours, to overlap computation and communication.

Extensive experiments have been conducted and results are presented in D1.5.3.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 15 of 22

3. Installation and Configuration

3.1 Installation

3.1.1 Semantic Spaces 2.0 Core

The Semantic Spaces are released as maven project and deployed on the STI Innsbruck
maven repository. It can be included by adding the following repositories to a maven pom
file:

<repositories>
 <repository>
 <id>sti2-archiva-external</id>
 <url>http://maven.sti2.at/archiva/repository/ex ternal</url>
 </repository>
 <repository>
 <id>sti2-archiva-snapshots</id>
 <url>http://maven.sti2.at/archiva/repository/sn apshots</url>
 </repository>
</repositories>

The current release version is 0.0.2, the current development version is 0.0.3-SNAPSHOT.

Adding the semanticspaces-impl artifact to the maven dependencies provides the semantic
spaces entry point implementation (the core):

<dependencies>
 <dependency>
 <groupId>eu.soa4all.semanticspaces</groupId>
 <artifactId>semanticspaces-impl</artifactId>
 <version>0.0.2</version>
 </dependency>
</dependencies>

The latest development releases can be used by adding the unstable SNAPSHOT version:

<dependencies>
 <dependency>
 <groupId>eu.soa4all.semanticspaces</groupId>
 <artifactId>semanticspaces-impl</artifactId>
 <version>0.0.3-SNAPSHOT</version>
 </dependency>
</dependencies>

To use the implementation together with a local OWLIM repository the artifact owlim-rdf2go
has to be included as well - it offers an RDF2Go adapter for OWLIM. To use the
implementation together with the SOA4All P2P Overlay for distributed spaces, the artifact
semanticspaces-overlay has to be included. The source code of the working version 0.0.2
including the OWLIM RDF2Go adapters is now also available publicly on sourceforge.net:

http://semanticspaces.svn.sourceforge.net/viewvc/semanticspaces/trunk/

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 16 of 22

The Semantic Spaces API consists of the following packages and classes:
1. at.sti2.semanticspaces.api

• IFederationModel, ISemanticSpace, ISemanticSpaceListener,
ISemanticSpaceNotification, ISpaceModel

2. at.sti2.semanticspaces.api.enums
• SpaceModelType, SpaceRelation

3. at.sti2.semanticspaces.api.exceptions
• OperationNotSupportedException, NoSparqlEndpointException,

SemanticSpaceException, SpaceAlreadyExistsException,
SpaceModelRuntimeException, SpaceNotExistsException,
SpaceTypeNotSupportedException

4. at.sti2.semanticspaces.api.spaceOntology
• SpaceOntology

The core implementation of the semantic space platform consists of the following packages
and classes:

1. at.sti2.semanticspaces.impl
• PropertyReader, SemanticSpace

2. at.sti2.semanticspaces.impl.model
• FederationModel, LODModel, ModelHelper, SpaceModel

3. at.sti2.semanticspaces.impl.queries
• AskQuery, ConstructQuery, DescribeQuery, SelectQuery, SparqlQuery

3.1.2 Distributed Spaces and P2P Overlay

The source code has been moved from the previously private SVN server of the SOA4All
project to a new public one hosted by INRIA. The public SVN is available through
anonymous access:

https://gforge.inria.fr/scm/viewvc.php/?root=dspace

The following modules compose the source tree:

- proactive-structuredp2p: CAN and Chord implementation, based on the ProActive
middleware.

- dspace-overlay: overlay implementation for semantic data.

- dspace-overlay-performance: simple tests used by the continuous integration server
to measure the performance of the overlay implementation on a local machine when
a commit is performed.

- dspace-overlay-benchmarks: full scale experiments based on random data or a
subset of the Berlin SPARQL Benchmark [5].

- dspace-overlay-samples: scripts and utility classes for deploying a distributed
semantic space.

- dspace-rdf2go: OverlayModel and OverlayModelFactory compatible RDF2Go.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 17 of 22

The compilation process is managed by Maven and each module has a pom.xml file which
specify dependencies. Running the mvn install command from the trunk directory will compile
all modules, generate the required classes and perform the unit tests.

To make the deployment process easier, the distributed spaces artifacts are released as
maven project and deployed on the dspace gforge maven repository. Artifacts can be
included in another maven projects by adding the following section to the maven pom file
wished:

<repositories>
 <repository>
 <id>dspace-releases</id>
 <url>http://dspace.gforge.inria.fr/maven2/repos itory/releases</url>
 </repository>
 <repository>
 <id>dspace-snapshots</id>
 <url>http://dspace.gforge.inria.fr/maven2/repos itory/snapshots</url>
 </repository>
</repositories>

The current release version is 0.0.1, the current development version is 0.0.2-SNAPSHOT.

To have access to the OverlayModel and OverlayModelFactory classes, only the
fr.inria.gforge.dspace:dspace-rdf2go artifact has to be added to the maven dependencies
section. All others dependencies are included by transitivity.

<dependencies>
 <dependency>
 <groupId>fr.inria.gforge.dspace</groupId>
 <artifactId>dspace-rdf2go</artifactId>
 <version>0.0.1</version>
 </dependency>
</dependencies>

3.2 Configuration

3.2.1 Semantic Spaces 2.0 Core

To configure the Semantic Space implementation, a properties object or a path string can be
passed to the constructor of the Semantic Spaces Core.

The configuration file allows the following properties:

Property Possible values

Storage path for storage of local repository

Reasoning “OWL”

repository “org.openrdf.rdf2go.RepositoryModelFactory”
“com.ontotext.trree.rdf2go.OwlimModelFactory”

overlay (optional) “eu.soa4all.dsb.space.overlay.OverlayModelFactory”

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 18 of 22

An example properties file can be seen in Table 1.

Table 1: Example property file

Configuration-File for using BigOWLIM or Sesame as Repository.
Author: Gerald Schrempf, gerald.schrempf@sti2.a t
STI Innsbruck, 2010

Storage-parameter can be variated by the user.
Storage = /tmp/space-repository

Reasoning has to be supported by the used RDF2G O-ModelFactory.
Reasoning = OWL

Choose between BigOWLIM or Sesame. (only one re pository allowed)
Make sure that the needed JAR-Files are locally available.
repository = org.openrdf.rdf2go.RepositoryModelFactory
#repository = com.ontotext.trree.rdf2go.OwlimModelF actory

Enable distributed spaces (overlay).
Make sure that the needed JAR-Files are locally available.

#overlay = eu.soa4all.dsb.space.overlay.OverlayMode lFactory

A Semantic Spaces Core can be instantiated with:

SemanticSpace semSpaceImpl = new SemanticSpace(“con fig.properties”);

If no properties-parameter is passed to the core, the SemanticSpace class will use an
internal default config with a local Sesame repository, the SPARQL endpoint functionality
and no overlay. Some examples for the usage can be found in different test classes on
sourceforge.net in the semanticspaces-integration-test module.

The default configuration of the Semantic Spaces 2.0 release has a fixed dependency on
Sesame. This allows the default usage of a local Sesame repository and the binding of
SPARQL endpoints to query online linked data sources.

3.2.2 Distributed Spaces and P2P Overlay

The distributed space implementation can use one or several BigOWLIM repositories as
local storage. The location of the repositories can be changed on each machine by defining a
property in a properties file.

Property Default Value

repositories.path $INSTALLATION_DIR/owlim/repositories

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 19 of 22

By default, the property is searched in the $HOME_DIR/.dspace/space.properties file. The
location of the properties file can be changed by running the distributed space application
with the ‘-Ddspace.configuration=path/to/properties/file’ Java property.

All the necessary scripts for running the distributed space are located in the dspace-overlay-
samples module. The infrastructure (list of machines, path to JVM…) is described in specific
XML files called GCM deployment files:

• GCMA.xml: contains all the requirements of the application, such as the path to
configuration files, to the Java Virtual Machine and a reference to node providers.

• GCMD.xml: describe the nodes providers for the application, i.e. the mechanisms
used to acquire machine where to run the semantic space peers.

An example of a GCMA.xml file is given bellow. It indicates that the application will be given
a virtual node called trackersVN which will correspond to hosts described in the file GCMD-
Trackers.xml.

<environment>

 <javaPropertyVariable name=" dspace.bundle.home " />

 <javaPropertyVariable name=" java.home " />

 <javaPropertyVariable name=" user.home " />

</environment>

<application>

 <proactive base=" root " relpath="${dspace.bundle.home}">

 <virtualNode id=" trackersVN " capacity=" 1">

 <nodeProvider refid=" trackersNP " />

 </virtualNode>

 </proactive>

</application>

<resources>

 <nodeProvider id=" trackersNP ">

 <file path=" GCMD-Trackers.xml " />

 </nodeProvider>

</resources>

The GCMD-Trackers.xml indicates that the resources we are looking for will be created by
doing an ssh (sshLan) to the machine eon1.inria.fr.

<infrastructure>

 <hosts>

 <host id="ComputeNode" os=" unix " hostCapacity=" 1" vmCapacity=" 1">

 <homeDirectory base=" root " relpath="${user.home}" />

 </host>

 </hosts>

 <groups>

 <sshGroup id=" sshLan " hostList=" eon1.inria.fr " />

 </groups>

</infrastructure>

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 20 of 22

It is beyond the scope of this deliverable to fully describe the ProActive deployment
mechanism. Interested readers should refer to [7].

The distributed semantic space distribution comes with a script which can be used to easily
deploy a semantic space on a local machine or on a cluster (i.e. a set of machines
accessible through an ssh connexion): benchmarks-launcher.sh.

Some examples of preconfigured GCMA and GCMD files are given in the deployment
directory from dspace-overlay-samples module:

GCMD-CAN-Peers.xml

GCMD-Chord-Peers.xml

GCMD-NodeProvider.xml

GCMD-Trackers.xml

Default GCM files for deploying a space on a
cluster using ssh connexions.

GCMA-Local.xml

GCMD-Local.xml

Default GCM files for deploying a space on
the local machine. This is useful for testing
and debugging.

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 21 of 22

4. Conclusions
This report was an adjunct to the final software release of the SOA4All distributed semantic
spaces infrastructure. The deliverable described the Semantic Spaces 2.0 open-source
project. The report explains where to access the code and binaries, and how to install and
configure Semantic Spaces 2.0 with different application settings in mind.

Although conformant to the specification published with D1.3.3A [2], the presented release
reflects some further design decisions that were taken in order to improve the applicability
and usability of the SOA4All semantic spaces.3 The spaces now fully mimic repository
models as they are defined by the RDF2Go abstraction framework. To this end, the
integration of the P2P overlay with RDF repositories and the use of semantic spaces as
repositories are now much easier and faster. Moreover, this much closer alignment with
RDF2Go resulted in Semantic Spaces 2.0, and in particular the OWLIM adapter, being listed
as official RDF2Go implementations at rdf2go.semweb4j.org.

3 The added simplicity of adoption was effectively proven by an updated implementation of
the service composition example over semantic spaces as presented in [1] that is being done
for the presentation and demonstration of Linked Open Services at FIS2010 [3],[4].

 SOA4All –FP7 – 215219 – D1.3.3B Distributed Semantic Spaces: A Second Implementation

© SOA4All consortium Page 22 of 22

5. References
1. Reto Krummenacher, Imen Filali, Fabrice Huet and Francoise Baude: Distributed

Semantic Spaces: A Scalable Approach To Coordination, SOA4All Project Deliverable
D1.3.2A v1.1, August 2009.

2. Reto Krummenacher, Fabrice Huet, Michael Fried, Laurent Pellegrino, Ivan Peikov,
and Alex Simov: A Distributed Semantic Marketplace. SOA4All project deliverable
D1.3.3A, March 2010.

3. Reto Krummenacher, Barry Norton, and Adrian Marte: Towards Linked Open Services
and Processes. 3rd Future Internet Symposium, September 2010.

4. Reto Krummenacher, Barry Norton, and Adrian Marte: Linked Open Services: Update
on Implementations and Approaches to Service Composition. 3rd Future Internet
Symposium (Poster & Demo), September 2010.

5. Chris Bizer und Andreas Schultz: Berlin SPARQL Benchmark (BSBM) Specification –
V2.0, December 2008 at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/.

6. ActiveEon, INRIA : ProActive, http://proactive.inria.fr

7. ActiveEon, INRIA : The ProActive GCM Deployment,
http://proactive.inria.fr/4.3/Programming/ReferenceManual/multiple_html/GCMDeploym
ent.html

