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Abstract— The Peer-to-Peer (P2P) communication model has
demonstrated its benefits for building large scale distributed
applications such as file sharing or distributed storage. Data man-
agement, encompassing data storage and retrieval, is recognized
to be at the heart of any P2P data sharing application. As more
and more semantic data are generated at the Web scale, dis-
tributed solutions, especially P2P systems, have drawn attention
as well-fitted candidates for building large scale infrastructures.
We present in this paper the design and implementation of
a distributed Resource Description Framework (RDF) storage
infrastructure that combines the P2P paradigm with local repos-
itories. Using a three dimensional structured overlay (Content
Addressable Network, CAN), repositories are combined to give
the illusion of a single one. Compared to other approaches, the
data can be stored without hashing, preserving lexical proximity
of the triples. Our proposed approach also allows to process a
subset of the SPARQL query language.

We have architectured our implementation to isolate the struc-
turation of the data, the implementation of the local repositories
and the processing of queries into separate sub-components.
Hence, it is suitable for experimenting with other mechanisms
or implementations.

We perform extensive experiments on a cluster, deploying a stor-
age distributed over 100 peers on 20 machines. The experimental
results show a good scalability in terms of network size and
concurrent queries.

I. INTRODUCTION

The Peer-to-Peer (P2P) communication model has been
widely adopted as a key infrastructure to build large scale
distributed applications. It dictates a fully distributed, cooper-
ative network design, where nodes form together a distributed
environment without any centralized control. P2P systems are
often classified into unstructured and structured types. Un-
structured P2P systems, such as Gnutella [1], are not scalable
because they generally rely on flooding-based mechanisms for
information retrieval. Structured P2P networks, thanks to their
well-defined geometric structure (e.g., CAN [2], Chord [3],
Pastry [4], Tapestry [5]), on the other hand, have proved,
through many empirical studies, to be an efficient and scalable
network topology model for data storage and retrieval in a
large scale distributed environment. The main advantage of
structured overlays, offering a Distributed Hash Table (DHT)
abstraction, is that they provide deterministic routing with
varying complexity degrees (constant in the case of CAN,
logarithmic for Chord and Pastry, etc). Most of the structured
overlays use key-based routing (using consistent hashing to
map keys to values) in which a set of keys is associated

with addresses in the address space. The main advantage of
consistent hashing is that it gives, with high probability, a
uniform distribution of the key/value pairs in the address space.
However, lookup protocols based on consistent hashing can
not handle more advanced queries such as partial keywords,
wildcards, range queries, etc and are restricted mainly to exact
match queries. More advanced structured overlay introduced
the capability to do more complex queries such as range
queries or prefix queries (P-Grid [6], PHT [7]). In more
recent works, researchers have decided to take the approach
of eliminating the usage of the hash function in order to
ease the possibility to do complex queries while still keeping
deterministic routing ([8], [9]). Even if this last generation of
structured overlays proved to be a valuable approach towards
complex queries processing in large scale settings, their inner
architecture may not reflect accurately the structurally complex
data structures found on the Web and thus making advanced
querying harder to achieve.

The Semantic Web [10] as well as the Linked Data [11]
visions promise to deliver an enriched Web through the usage
of more structurally complex data at its core incarnated in
the Resource Description Framework (RDF) data model [12],
an Internet-geared flexible knowledge representation format.
Realizing these visions in large scale settings will be hardly
feasible without proper and scalable infrastructures such as the
ones proposed by the P2P community in the last decade. These
visions have thus triggered research on P2P networks that not
only focused on the overlay topology but also on the semantic
of the stored data, moving from simple keyword-based storage
to well-defined data model such as RDF.

The first generation for RDF data storage systems has spawned
centralized RDF repositories such as RDFStore [13], Jena [14],
RDFDB [15] and Sesame [16]. Although these RDF stores are
simple in their design, they suffer from the traditional limi-
tations of centralized systems such as single point of failure,
performance bottlenecks, etc. The Semantic Web community
can benefit from the research carried out in Peer-to-Peer
systems to overcome these issues. As a result, the combination
of concepts provided by the Semantic Web and Peer-to-Peer
together with efficient data management mechanisms seems
to be a good basis to build scalable distributed RDF storage
infrastructure.

To meet the storage and querying requirements of large scale
RDF stores, we revisit, in this paper, a distributed infras-



tructure that brings together RDF data processing and P2P
concepts. It exploits their strengths for building distributed
infrastructure for RDF data management including data stor-
age and retrieval. The proposed architecture is based on the
original idea of the CAN overlay [2] where peers are organized
into a d-dimensional Cartesian coordinate space, in which each
peer is responsible for managing data falling in its Cartesian
zone. Our infrastructure, however, does not follow the original
CAN protocol; we rather modified it so to better process
complex queries on RDF data. As such, instead of using a hash
function to map data items to nodes in the identifier space, we
decided to maintain the data in a lexicographical order of the
RDF triples in a three dimensional CAN, in which each axis
represents the parts of an RDF triple: subjects, predicates
and objects.

The contributions of this paper are:

e The design of a fully decentralized P2P infrastructure
for RDF data management, based on three dimensional
CAN overlay, written in Java with the ProActive [17]
middleware.

o The implementation of a flexible and modular RDF
distributed storage infrastructure with clear separations
between the basic sub-components of the whole API (e.g.,
storage component, query processing element, etc.). This
architecture can be easily adapted to work with other
components (e.g., another RDF store).

« Extensive experiments to evaluate the performance of the
proposed solution at large scale.

The remainder of the paper is organized as follows: In Sec-
tion we present the necessary background regarding the
CAN overlay and RDF data model as they are considered
as the main building blocks of the proposed RDF storage
infrastructure respectively at the architectural and the knowl-
edge representation levels. In Section we introduce the
proposed distributed infrastructure for RDF data storage and
retrieval and present our data indexation and query processing
mechanisms. The experimental evaluation of our approach is
reported in Section In Section [V] we give an overview of
the related work for RDF data management in P2P systems.
Finally, Section concludes the paper and points out future
work.

II. BACKGROUND

In this section, we introduce the basic idea behind the CAN
overlay [2] since it is used as a baseline overlay to build the
proposed RDF repository. We also give the basic concepts of
the RDF data representation model.

A. Content Addressable Network (CAN)

The Content Addressable Network (CAN) proposed by
Ratnasamy et al. in [2] is a structured overlay that pro-
vides a Distributed Hash Table (DHT) abstraction over a d-
dimensional Cartesian space D. This space is dynamically
partitioned among all peers in the system such that each node
“owns” a zone in D storing (key, value) pairs. For instance,
to insert the (k,v) pair, the key k is deterministically mapped

onto a point ¢ in D and then the value v is stored at the
owner of the zone comprising ¢. The retrieval of a stored pair
could be achieved in a similar manner, that is, to retrieve the
object associated to k, the same deterministic hash function
is applied to k in order to map it onto the target point i.
Figure [I] shows a two-dimensional CAN space: insert(k,v)
and retrieve(k) operations are routed using the CAN routing
mechanism.
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Fig. 1. A two dimensional CAN overlay

When a peer joins the CAN overlay, it picks a random
point p belonging to D and a JOIN_QUERY message will be
routed to the zone that contains that point. A zone will be then
allocated to the new peer by splitting the current owner’s zone
in half: keeping half for the original peer owner and allocate
the other one to the new peer.

In a CAN Cartesian space with d dimensions partitioned in
n equal zones, the average routing path length is (d/4) (n'/?),
and noticeably this constitutes the most valuable feature of
CAN: the routing complexity is independent of the number of
nodes present in the overlay. Nodes only have to maintain 2d
neighbors, meaning that an increasing number of nodes (and
thus zones) will not affect the node state.

B. RDF data model

The Resource Description Framework is a W3C standard
aiming to improve the World Wide Web with machine pro-
cessable semantic data. RDF provides a powerful abstract data
model for structured knowledge representation. It has emerged
as the prevalent data model for the Semantic Web [10] and is
used to describe semantic relationship among data. Statements
about resources, presented using RDF, are in the form of
<subject, predicate, object> expressions which are known as
triples in the RDF terminology. The subject of a triple denotes
the resource that the statement is about, the predicate denotes
a property or a characteristic of the subject, and the object
presents the value of the property. The subject can be a Blank
Node, an IRI [18] (Internationalized Resource Identifier) or a
variable; the predicate is an IRI or a variable; and the object
is an IRI, a literal or a variable. These triples, if connected
together, form a directed graph where arcs are always directed
from resources (subjects) to values (objects).

C. RDF data processing

Efficient data lookup is at the heart of P2P systems.
Many systems such as Chord use consistent hashing to store



(key,value) pair using a DHT abstraction. Even if the hashing
uniformly distributes keys over the key space, consistent
hashing is designed to support key-based data retrieval and is
not a good candidate to support range queries since adjacent
keys are spread over all nodes as stated earlier. Therefore,
efficient lookup mechanisms are needed to support not only
simple atomic queries but also conjunctive and disjunctive
range queries.

« Atomic queries are triples where the subject, the pred-
icate and the object can either be variables or constant
values. They are processed by first looking at the constant
part(s) of the triple pattern. For instance, the query ¢ =
(si, ?p, 70) looks, for a given subject s;, for all possible
objects and predicates linked to s;.

« Conjunctive queries are expressed as a conjunction of a
set of atomic triple patterns (sub-queries), atomic triples
will be processed first. The results will be merged as a
final step.

« Range queries have specified ranges on variables. As an
example, we consider the following query g=(<s><p>
?0 FILTER (v1 <70 < v9)) with a given subject s and
a predicate p. It looks for a set of objects, given by the
variable 7o, such as v; < o < vs.

III. CAN-BASED DISTRIBUTED RDF REPOSITORY

As we have already mentioned, the proposed architecture of
a distributed RDF storage is based on the original idea of the
CAN overlay. The goal of this work is to provide a scalable
distributed infrastructure for RDF data storage and retrieval.
The remainder of this section reviews the key issues that have
to be taken into account while building a scalable distributed
infrastructure. Then, the basic algorithms, used for RDF data
organization and retrieval, are presented.

A. System requirements

o Distribution and scalability
Centralized solutions for massive RDF data management
raise several kinds of issues such as single point of
failure and poor scalability. Thus, we argue that the use
of a structured P2P overlay, at the architectural level,
ensures the system’s scalability. It also offers location
transparency, that is, queries can be issued by any peer
without any knowledge regarding the location of the
stored data. Scalability needs to be achieved not only
at the level of the number of participant users and
the amount of managed data but also when processing
possibly concurrent complex queries.
o Query expressiveness

Given a knowledge representation standard such as RDF,
it is compulsory to have standard mechanisms for query-
ing data expressed in that representation. SPARQL, an-
other W3C recommendation [19], is an RDF query lan-
guage. Using the SPARQL query language, queries can
be expressed as conjunctions and disjunctions of atomic
triple patterns. More specifically, SPARQL allows users
to specify a graph pattern containing variables, which will

be matched against a given data source. Matching data
set will then be returned to the user.
« Data availability

A main requirement for a distributed storage system is its
resilience against peer failure. From the P2P perspective,
in most of P2P overlays such as Chord or CAN, peers
automatically adjust their responsibilities (e.g., adjust the
routing table in Chord, the zone size in CAN) to reflect
newly joined nodes as well as node failures (e.g., take
over the zone of a failed peer by its neighbor). This issue
can also be addressed by data replication so to increase
data availability in case of peer failures.

B. Overview

The intrinsic goal behind a distributed RDF storage is to
search for data provided by various sources. As a first step
towards this direction, we would like to guarantee that the
data can be found as long as the source node responsible for
that data is alive in the network. This can be guaranteed by
adopting a structured overlay model for distributed RDF data
management. Therefore, the distributed RDF storage reposi-
tory proposed in this work builds three dimensional coordinate
space where each node is responsible for a contiguous zone of
the data space and handle its local data store. In the following,
we detail the data storage and retrieval process.

RDF Data organization and processing

The RDF storage repository is implemented using a three
dimensional CAN overlay with lexicographic order. The three
dimensions of the CAN coordinate space represent respec-
tively the subject, the predicate and the object of the stored
RDF triple. Thus, a triple represents a point in the CAN space
without the use of hash functions. This indexation approach
has several advantages. First, it enables to process not only
simple queries but also range queries. Using hashing functions
in DHT approach make the management of such kind of
queries expensive or even impossible. Moreover, in contrast
to hashing that destroys the natural ordering information, the
lexicographic order preserves the semantic information of the
data so that it gives a form of clustering of triples sharing
a common prefix. In other words, this approach allows that
items with close” values will be located in contiguous peers.
As a result, range queries, for instance, can be resolved with
a minimum number of hops. Routing add operations simply
consists in finding the peer managing the zone where the triple
falls. Routing queries is slightly more complex and will be
explained later in this section.

Figure 2] depicts a CAN overlay where each RDF element is
associated with a distinct dimension. It shows the indexation of
triple t=(CAN,creator,ratnasamy). The peer managing the zone
where the point with coordinates (CAN,creatorratnasamy)
falls is responsible for the storage of that triple.

One downside with our approach is that we are sensitive
to the data distribution. RDF triples with common prefixes
might be stored on the same peer, i.e., a node can become a hot
zone. In the case where an element is common to many triples,
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Fig. 2. Example of three dimensional CAN space. CAN axes represent
subjects, predicates, objects of RDF triples.

such as a frequently occurring predicate (e.g., <rdf:type>), the
triples can still be dispatched on to different peers, depending
on the values of the other elements. However, when some
elements share the same namespace or prefix, the probability
that they end-up on a very small subset of all available peers is
very high. To avoid this potential issue, we try to automatically
remove namespaces or prefixes and only use the remaining
part for indexing and routing. Some care has to be taken
when doing this because if done too aggressively, we might
lose the clustering mentioned earlier. Note that this issue also
appears in other P2P implementations which rely on prefix-
based indexing with order-preserving hash functions [20].

In the general case, there are other solutions that can be used
to mitigate the impact of skewed data. First, one can limit the
CAN space if some specific information is known about the
data distribution. For instance, if it is known that all subjects
will have a prefix falling in a small interval, then it is possible
to instantiate the overlay with the specified interval, avoiding
empty zones. Second, if at runtime some peers are overloaded,
it is possible to force new peers to join zones managing the
highest number of triples, hence lowering the load. Some
more advanced techniques exist to deal with imbalance such
as duplicating data to underloaded neighbors or having peers
manage different zones [2].

Hereafter, we detail how the queries are supported in the
routing process.

o Atomic queries are routed on the subject-axis of the

CAN overlay looking for a match on the subject value
s;. Once a peer responsible for the specified value s; is
found, it forwards the query through its neighbors in the
dimension where peers are most likely to store corre-
sponding triples based on the peers’ zone’s coordinates.

« Conjunctive queries are decomposed into atomic queries
and propagated accordingly.

« Range queries are routed by first identifying the constant
part(s) in the query. Then the lowest and the highest
values are located by going over the corresponding axis.
If all results are found locally, they are returned to the
initiator. Otherwise, the query is forwarded to neighbors
that may contain other potential results.

In Figure 3] a description of the routing scheme we use is

shown. A client (not necessarily part of the overlay) sends a
query to a peer inside the overlay. Once received, this query

will be transformed, i.e. the peer will create a message with
additional information used for routing purposes (notably a key
corresponding to the coordinates the message must be routed
to). The next step consists of decomposing a complex query,
a conjunctive query for instance, into atomic queries. Once
we have these atomic queries, the peer sends messages, in
parallel, to its neighbors accordingly, that is, if through them
it can reach peers responsible for potential matches. Whenever
a peer has to propagate the message in different dimensions, it
will de facto become a synchronization point for future results,
that is, it waits for the results to come back and will merge the
results before sending them to the client node. In parallel of
sending messages to its neighbor, the initiator will also check
its local datastore in case it has potential matches for the query.
Once neighbors receive a routing message, they will check
their local datastore in case they can match the query and
return possible results otherwise they propagate the message
to their neighbors accordingly. In order to ease the routing of
the results, each message will embed the list of visited peers.
This technique ensures that the forward path is the same as
the backward path, avoiding potential issues related to NAT
traversal, IP filtering,...that may happen in case we want to
establish a direct connection to the initiator peer.

to peer in

AtomicQuery;

Query (Q)
(P - Query initiatog B
1. Transform the received query into one used for routing
2. If necessary, decompose the query into atomic queries
(AtomicQuery)
Response(R)
3. For each atomic query, propagate through neighbors
in the correct dimension
4. Check local datastore in case the searched triples fall
into my ranges
1. Wait to collect responses from Neighbors (Neigh)
2. Merge responses and send the final response to the query
originator
J
AtomicQuery; Response(AQuery;)
Response(AQuery;)
Neighao,
1.a Check if datastore contains
matches for the atomic query
1.b Otherwise propagate the atomic
query through neighbors in the s node on the
correct dimension
1. Send results to Query initiator
Fig. 3. High level routing algorithm for SPARQL queries routing.

In Figure 4} we can see various routing scenarios depending
on the parts of the triple pattern. If subject, predicate and
object are consent, e.g. when performing an add, then the
only peer which potentially holds matching results will be
summoned [a). In case subject and predicate are fixed, the
routing will have to traverse the object dimension in order
to collect matching triples @(b). When only the subject is
fixed, the routing message will have to traverse the object



and predicate dimensions [fc). Note that whenever a query
with only variables is processed, our approach naively use
message flooding through the neighbors of a peer. So, it
may happen that a peer receives a message multiple times
from different dimensions as pictured in Figure [{d). These
duplicate messages are ignored.

Thanks to the way data are indexed and stored, queries are
restricted to a specific subspace where candidate results are
more likely to be found.

C. Modular Architecture

One of the goals when designing this distributed storage was
to be able to easily change or modify some parts. A modular
architecture is at the heart of the design, clearly separating
the infrastructure (a CAN overlay), the query engine (using
Jena) and the storage system (a BigOWLIM [21] repository).
Howeyver, these elements do not work in isolation, rather
they require frequent interactions. In this section, we will
outline the different parts of our architecture, explaining their
functions and showing their relations.

Peer architecture: A peer is the entity responsible for
maintaining the CAN infrastructure, routing messages and
accessing the local repository. The 3D CAN overlay is man-
aged through an Overlay object which is responsible for
maintaining a description of the zone managed by the current
peer and an up-to-date list of neighbors. Changing the number
of dimensions of the CAN, e.g., to handle meta-data, requires
providing a modified implementation of the Overlay object.
To route a query, we first analyze it to determine the constant
parts, if any, which will be used to direct it to the target peer.
When there is not enough information to make a decision, it is
broadcasted to the neighboring peers which will perform the
same process.

Query Analysis and Manipulation: Although the routing
of the query is a peer’s responsibility, part of the process
requires the query’s analysis to extract atomic queries and their
constant parts. We have delegated this part to Jena [14] which
offers dedicated operations. When a query returns data sets
from multiple peers, the merge/join operation is also delegated.
In order to experiment with the modularity aspect of our
implementation, we have switched the query engine to Sesame
without impacting the other parts of the architecture.

Storage abstraction: The storage is ultimately responsible
for storing data and locally processing queries. It is important
for the peer-to-peer infrastructure to be independent from the
storage implementation. All references are isolated through
an abstraction layer whose role is to manage the differences
between data-structures and API between the peer-to-peer and
the storage implementations. Some requests require access-
ing the local repository to read or write some information.
Although this is rather straightforward, some care has to be
taken regarding the commit of data to the storage. With some
implementations like BigOWLIM, committing can take some
time and thus should not be done after each write operation.
The peer can implement a policy to only perform them when a
threshold is reached (e.g., time since last commit aka commit

interval, number of write done, etc.) or when a read query has
to be processed.

The overall interaction between the subcomponents of the
architecture can be seen in Figure 5] A request is transmitted
through Peer I which performs some analysis, and propagates
it through various overlays object, before finally reaching the
target local storage.

Query?

Analysis &
Manipulation

Local
( Overlay ) ( Storage

Overlay Overlay

./

Fig. 5. Interaction of a request with the various components, from the query
initiator to the destination peer.

IV. EXPERIMENTAL EVALUATION

In order to validate our framework, we have performed
extensive experiments. The goal was twofold. First, we wanted
to evaluate the overhead induced by the distribution and
the various software layers lying between the repository and
a user. Second, we wanted to evaluate the benefits of our
approach, namely the scalability in terms of concurrent access
and overlay size. All the experiments presented in this section
have been performed on a 20-node cluster with 1Gb Ethernet
connectivity. Each node has 16GB of memory and two Intel
E5335 processors for a total of 8 cores. For the 100 peers
experiments, there were 5 peers and 5 BigOWLIM repositories
per machine, each of them running in a different Java Virtual
Machine.

A. Insertion of random data

Single peer insertion: The first experiment performs 1000
statements insertion and measure the individual time for each
of them, on a CAN made of a single peer. The two entities
of this experiment, the caller and the peer, are located on the
same host. The commit interval was set to 500ms and 1000
random statements were added. Figure [6] shows the duration
of each individual call. On average, adding a statement took
1.853ms with slightly higher values for the first insertions,
due to cold start.

In a second experiment, the caller and the peer were put
on separate hosts to measure the impact of a local network
link on the performance. As shown in Figure [/] almost all
add operations took less than 5ms while less than 2% took
more than 10ms. The average duration for an add operation
was 5.035ms.
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Multi-peer insertion: We have measured the time taken to
insert 1000 random statements in an overlay with different
number of peers, ranging from 1 to 100. Figure [§] shows
the overall time when the calls are performed using a single
(Figure or 32 threads (Figure [B(D)). As expected, the
more peers, the longer it takes to add statements since more
peers are likely to be visited before finding the correct one.
However, when performing the insertion concurrently, the total
time is less dependent on the number of peers. Depending on
the zones various sizes and the first peer randomly chosen for
the insertion, the performance can vary, as can be seen with the
50 peers experiments. To measure the benefits of concurrent
access, we have measured the time to add 1000 statements on
a 100 peers overlay, varying the number of threads from 1 to
30. Results in Figure 9] show a sharp drop of the total time,
clearly highlighting the benefits of concurrent access.

Example of message scope depending on constant parts in query. First queried zone is indicated by black arrow
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remote peer

B. Queries using BSBM data

The Berlin SPARQL Benchmark (BSBM) [22] defines a
suite of benchmarks for comparing the performance of storage
systems across architectures. The benchmark is built around an
e-commerce use case in which a set of products is offered by
different vendors and consumers have posted reviews about
products. The following experiment uses BSBM data with
custom queries detailed below. The dataset is generated using
the BSBM data generator for 10 products. It provides 4971
triples which are organized following several categories:

o 289 Product Features

e 1 Producer and 10 Products

e 1 Vendor and 200 Offers

« 1 Rating Site with 5 Persons and 100 Reviews.

The queries use the following prefixes:

PREFIX bsbm: <http://wwwé4.wiwiss.fu-berlin.de/
bizer/bsbm/v0l/vocabulary/>
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Q3 Returns a graph where triples imply a rdf:type relation
as predicate:

CONSTRUCT {
?s rdf:type 2o
} WHERE {
?s rdf:type 20
}
Q4 Returns a graph where bsbm-ins:ProductTypel instance
appears:

CONSTRUCT {
bsbm-ins:ProductTypel ?a ?b.

?c ?d bsbm-ins:ProductTypel
} WHERE {

bsbm-ins:ProductTypel ?a ?b.

?c ?d bsbm-ins:ProductTypel
}

Queries Q1 and Q4 are complex and will be decomposed
into two subqueries. Hence, we expect a longer processing
time for them. The number of matching triples is the following:

PREFIX rdf:

<http://www.w3.0rg/1999/02/22-rdf-

syntax-ns#>

PREFIX iso:
countries#>

PREFIX purl: <http://purl.org/stuf

f/rev#>

<http://downlode.org/rdf/iso-3166/

Returns a graph where producers are from Deutschland:

CONSTRUCT {

iso:DE <http://www.ecommerce.com/Producers> ?

producer
} WHERE {

?producer rdf:type bsbm:Producer.

?producer bsbm:country iso:DE

}

Returns a graph with triples containing instances of

purl:Review:

CONSTRUCT {

?review rdf:type purl:Review
} WHERE {

?review rdf:type purl:Review

}

Query

Q1

Q2

Q3

Q4

# of results

1

100

623

7

Figure [I0] shows the execution time and the number of
visited peers when processing QI, Q2, Q3 and Q4. Note
that when a query reaches an already visited peer, we count
it although it will not be further forwarded. QI is divided
into two subqueries with only a variable subject. Hence, it
can efficiently be routed and is forwarded to a small number
of peers. Q2 also has one variable and thus exhibits similar
performance. Q3 has two variables so it will be routed along
two dimensions on the CAN overlay, reaching a high number
of peers. Since it returns 623 statements, the messages will
carry a bigger payload than for the other queries. Finally, Q4
generates two subqueries with two variables each, making it
the request with the highest number of visited peers. On the
100 peer network, the two subqueries have visited more than
170 peers.

Conclusion: Regarding statement insertion into the dis-
tributed storage, although a single insertion has a low perfor-
mance, it is possible to perform them concurrently, leading to



a higher throughput. The performance of queries is more com-
plex to predict since it depends on the number of subqueries,
the payload carried between peers and the number of visited
peers. The payload depends on the request itself whereas the
number of peers depends both on the structure of the overlay
and the randomly chosen peer for the initial request.

V. RELATED WORK

Many P2P solutions have been proposed to build distributed

RDF repositories. Some of them are built on top of super-peer-
based infrastructure as in Edutella [23]. In this approach, a set
of nodes are selected to form the super-peer network. Each
super peer is connected to a number of leaf nodes. Super-
peers nodes manage local RDF repositories and are responsible
for queries processing. This approach is not scalable for two
main reasons. First, the super peers nodes are a single point
of failure. Second, it uses the flooding-like search mechanism
to route queries between super-peers.
By using DHTs (Distributed Hash Tables), other systems, such
as RDFPeers [24], address the scalability issue in the previous
approach. RDFPeers is distributed repository built on top
of Multi-Attribute Addressable Network (MAAN) [25]. Each
triple is indexed three times by hashing its subject, its predicate
and its object. This approach supports the processing of atomic
triple patterns as well as conjunctive patterns limited to the
same variable in the subject (e.g., (7s,p1,01) A (75, p2,02)).
The query processing algorithm intersects the candidate sets
for the subject variable by routing them through the peers that
holds the matching triples for each pattern.

The structure that comes closet to our approach is RD-
FCube [26], as it is also built three dimensional space of
subject, predicate and object. However, RDFCube does not
store RDF triples. It is an indexation scheme of RDFPeers.
RDFCube coordinate space is made of a set of cubes, having
the same size, called cells. Each cell contains an existence-
flag, labeled e-flag, indicating the presence (e-flag=1) or the
absence (e-flag=0) of a triple in that cell. It is primarily
used to reduce the network traffic for processing join queries
over RDFPeers repository by narrowing down the number of
candidate triples so that reduce the amount of data that has to
be transferred among nodes.

P-Grid [27] is a virtual search binary tree where each p € P
is associated with a leaf node of the binary tree. Each leaf
corresponds to a binary string m € II such as II is the entire
key partition. Keys are generated using an order preserving
hash function. Each peer is responsible for storing keys that
fall under its current key space (key € w(p)). Every peer’s
position is determined by its path. Peer’s path indicates the
subset of the tree’s overall information that it is responsible
for. Peers also maintain references to others peers in the binary
tree. Queries are resolved by prefix matching. Thus, if a peer
receives a query on key k that can not be locally resolved,
it forwards the query to a peer, among its references, that
prefixes k£ at most. Regarding the fault tolerance and query
load balancing, multiple peers can be associated with the same
key partition. GridVine [20] is built on top of P-Grid and uses

a semantic overlay for managing and mapping data and meta-
data schemas on top of the physical layer. GridVine reuses two
primitives of P-Grid: insert(key,value) and retrieve(key) for
respectively data storage and retrieval. Triples are associated
with three keys based on their subjects, objects and predicates.
A lookup operation is performed by hashing the constant
term(s) of the triple pattern. Once the key space is discovered,
the query will be forwarded to peers responsible for that key
space.

VI. CONCLUSION

In this paper we have presented a distributed RDF storage
based on a structured peer-to-peer infrastructure. Based on
a Content Addressable Network (CAN), an RDF triple is
mapped to a three dimensional point, based on the value of its
elements. The global space is partitioned into zones and each
peer is responsible for all the triples falling into it. We do not
use hash functions, thus preserving the locality of data. By
removing constant parts such as prefixes from when indexing
elements, we can lessen bias naturally present in some data.

The implementation has been designed with flexibility in
mind. It relies on standard tools and libraries for storing
triples and manipulating SPARQL queries. The modular de-
sign makes it independant from the local storage implementa-
tion and more complex query analysis can be implemented to
replace the default one.

We have validated our implemention with extensive experi-
ments. Although basic operations like adding statements suffer
from an overhead, the distributed nature of the infrastructure
allows concurrent access. In essence, we trade performance
for throughput. On a 20 nodes cluster, we have deployed an
overlay of 100 peers. The time taken for query processing
is dependent on the number of variable parts in the query
and the size of the result set. When queries have to be
multicasted along different dimensions, the number of visited
peers increases significantly, lowering the global performance.
We believe this could be enhanced by using a better routing
algorithm. In this regard, we are currently working on an
optimal broadcast algorithm, such as the one proposed in [28],
which we adapt to CAN. This will allow us to decrease
the number of redundant messages in case no constant parts
are specified within the triple patterns of the query. The
experimental results have also highlighted the sensitivity of the
implementation to the division of the CAN space. Depending
on the join process, some peers might end up with zones
significantly bigger than other which will increase their load.

As a future work, we want to study the possibility to build
a CAN overlay using repositories already containing data.
An efficient indexing scheme is required to avoid moving
data from on host to another when building the peer-to-peer
network.
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