

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.5.3 Testbeds Validation

Activity N: 1

Work Package: 1

Due Date: 30/09/2010

Submission Date: 01/10/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: HANIVAL

Revision: 1.0

Author(s): Bernhard Schreder (Hanival), Juan Luis Prieto Martínez (ATOS),
Matteo Villa (TXT), Giovanni Di Matteo (TXT), Claudio Stella
(TXT), Fabrice Huet (INRIA), Elton Mathias (INRIA)

Reviewers: Alex Simov (Ontotext)

Project co -funded by the European Commission within the Sev enth Framework Programme (2007 -2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 2 of 33

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 15/07/10 ToC Bernhard Schreder (Hanival)

0.2 30/07/10 Section 2 added Bernhard Schreder (Hanival)

0.3 04/08/10 Updates to Section 2.2 Claudio Stella (TXT), Matteo
Villa (TXT)

0.4 05/08/10 Updates to all sections Bernhard Schreder (Hanival)

0.5 10/08/10 Section 3.2 Fabrice Huet (INRIA)

0.6 11/08/10 Updates to Section 2 and 3 Elton Mathias (INRIA)

0.7 27/09/10 Updates to Section 2 and 3 Juan Luis Prieto Martínez
(ATOS)

0.8 29/09/10 Conclusion and final updates, version
sent to reviewers

Bernhard Schreder (Hanival)

1.0 30/09/10 Final version

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 3 of 33

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

1.3 ALIGNMENT TO SOA4ALL EVALUATION ______________________________ 8

2. SOA4ALL TESTBED INFRASTRUCTURE ____________________ ______________ 9

2.1 OVERVIEW OF THE TESTBED INFRASTRUCTURE: SERVICE PARKS ______ 9

2.2 WEB SERVICE GENERATION ______________________________________ 11

2.2.1 Genesis ___ 11

2.2.2 REST Services Support for Genesis ________________________________ 11

2.2.3 Technical Implementation ___ 12

2.2.4 Installation ___ 16

2.2.5 An Example ___ 16

3. SOA4ALL RUNTIME EVALUATION ________________________ ______________ 19

3.1 EVALUATION SCENARIOS ___ 19

3.1.1 fDSB Evaluation __ 19

3.1.2 Cloud Bursting Scenario __ 21

3.1.3 Distributed Space ___ 23

3.2 RUNTIME EVALUATION RESULTS __________________________________ 24

3.2.1 fDSB Evaluation __ 24

3.2.2 Semantic Spaces evaluation ______________________________________ 24

3.3. COMPARISON WITH OTHER SOLUTIONS ____________________________ 29

4. CONCLUSIONS __ 31

5. REFERENCES ___ 32

ANNEX A. __ 33

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 4 of 33

List of Figures
Figure 1: GENESIS Architecture ..11

Figure 2: REST Service Generation with GENESIS ...12

Figure 3: Genesis for REST logical architecture ...13

Figure 4: Diagram of new classes for package at.ac.tuwien.vitalab.genesis.model14

Figure 5: Execution of .bat files ..18

Figure 6: Final deployment ...18

Figure 7: Testbed deployment ..20

Figure 8: fDSB Service Invocation Path ..21

Figure 9 Cloud Bursting ..22

Figure 10: Cloud Bursting deployment ..23

Figure 11:Individual time for sequential insertion of random statements on a single local peer
 ...25

Figure 12:Individual time for sequential insertion of random statements on a remote peer ...25

Figure 13: Insertion of 1000 statements for variable number of peers, 1 thread (left) and 32
threads (right) ...26

Figure 14: Evolution of the time for concurrent insertion on a 100 peers overlay26

Figure 15: Custom queries with BSBM dataset on various overlays, execution time (left) and
message overhead (right). ..29

Figure 16 Gateways Scenario ..30

List of Tables
Table 1: Experimental fDSB Deployment Resources ..19

Table 2: fDSB Average Invocation Times ...24

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 5 of 33

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

D Deliverable

DSB Distributed Service Bus

EC European Commission

EPR Endpoint Reference

ES Enterprise Service

ESB Enterprise Service Bus

EU European Union

fDSB Federated DSB

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OSS Operations Support System

REST Representational State Transfer

SLA Service Level Agreement

SOA Service Oriented Architecture

SUT System under Test

URI Uniform Resource Identifier

VM Virtual Machine

WADL Web Application Description Language

WAR Web Application Archive

WP Work Package

WS Web Service

WSDL Web Service Description Language

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 6 of 33

Executive summary
Task 1.5 is concerned with the technical evaluation of the project, and its results can be used
to validate the major technical objectives of SOA4All, including scalability and performance of
the developed solutions. In this deliverable, we continue with the development and
deployment of a testbed environment for SOA4All, which was first described in deliverable
D1.5.1. This deliverable describes the final setup of the testbed environment and contains an
evaluation of the results obtained through performing different sets of tests and comparing
the results to alternative solutions. The deliverable is divided into two main sections.

The first part of the deliverable describes the overall testbed infrastructure, which enables
testers and component owners to define configurable testbeds and services according to a
collection of service templates, and consists of a diverse deployment of fDSB nodes over
various domains.

The second major part of the deliverable defines the various evaluation scenarios used for
performance testing of the WP1 results. Each evaluation scenario consists of a set of test
cases which are performed on various testbeds. The results of these tests have been
collected and are evaluated according to the metrics defined previously in deliverable D1.5.2.
Related solutions for both the fDSB and the semantic spaces, which are the main technical
results of WP1, are briefly described and available performance measurements are
compared to the results obtained by the tests.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 7 of 33

1. Introduction
This deliverable describes the continuation of the work in the scope of Task 1.5, the SOA4All
Testbed infrastructure and evaluation of project results. According to the work done and
described in deliverable D1.5.1 [5] and D1.5.2 [6], the testbed infrastructure has been
developed. This deliverable now continues to describe the final set-up of the testbed
environment.

In addition, the deliverable describes the different evaluation scenarios and test cases
developed for the validation of the runtime environment, as well as the results of those tests.
This also includes a comparison to other available solutions, in order to properly evaluate the
results obtained by the performance experiments.

1.1 Purpose and Scope
As mentioned above, this deliverable describes the different activities to realise a testbed
environment and is separated in two main sections.

The evaluation of the SOA4All runtime is based on the deployment and management of
nodes of the Distributed Service Bus. The deliverable provides a detailed description of the
set-up of the testbed infrastructure, based on the deployment of DSB nodes, in order to
achieve the necessary scope to evaluate the scalability and performance of the SOA4All
runtime.

The testbed infrastructure also enables testers and component owners to define configurable
testbeds and services according to a collection of service templates, which are described in
this deliverable and are aligned to the SOA4All Use Case storyboards (as detailed in [3], [7]
and [2]).

The second major part describes the evaluation scenarios, specific test cases and other
information for the actual evaluation of the runtime environment. The section collects the
results of these tests and the evaluation of these results based on the metrics defined
previously and comparable technical solutions.

1.2 Structure of the document
This document is structured as follows: following this introductory section, Section 2 of this
document describes the overall testbed infrastructure, which enables testers and component
owners to define configurable testbeds and services according to a collection of service
templates, and consists of a diverse deployment of fDSB nodes over various domains.

Section 3 of the deliverable then defines the various evaluation scenarios used for
performance testing of the WP1 results. Each evaluation scenario consists of a set of test
cases which are performed on various testbeds. The results of these tests have been
collected and are evaluated according to the metrics defined previously in deliverable D1.5.2.
Related solutions for both the fDSB and the semantic spaces, which are the main technical
results of WP1, are briefly described and available performance measurements are
compared to the results obtained by the tests.

Finally, the deliverable concludes with a summary of the obtained results from the
experiments and an outlook on additional ongoing experiments on the SOA4All testbed
infrastructure. As, by the time of this writing, additional results are still collected, this
deliverable will be updated by M33 of the project, in order to reflect the gained insight into the
performance and scalability of the SOA4All runtime, specifically the fDSB and the Semantic
Spaces.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 8 of 33

1.3 Alignment to SOA4All Evaluation

The testbed infrastructure specified in this deliverable has been used to evaluate the main
objectives of the project from a technical perspective. The main roadmap for evaluation was
first summarised as part of deliverable D2.5.1 [4], and includes a set of metrics and
performance indicators for the technical evaluation. Results from the evaluation process
concerning these indicators are reported in this deliverable as well.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 9 of 33

2. SOA4All Testbed Infrastructure
In order to demonstrate the distributed nature of the SOA4All infrastructure, the project
established by month M18 a Distributed Service Bus implementation across three distinct
nodes at three different locations. There are currently bus nodes, with co-located semantic
space nodes, installed at eBM WebSourcing in Toulouse, France, at INRIA in Sophia
Antipolis, France, and at the University of Innsbruck in Austria. While this is sufficient for a
first implementation and to showcase the distributed nature of the SOA4All infrastructure, a
three-node deployment is not considered well enough for evaluation and future uses. In
particular, elements such as scalability and performance cannot adequately be measured,
analysed and evaluated.

In this section, we therefore present the different testbeds that were used for a multi-level
deployment plan for SOA4All that allows flexible scaling out in terms of machines that share
the Distributed Service Bus. We first present the overall approach that is envisaged, and in a
second subsection we present in more detail the various projects involved.

2.1 Overview of the Testbed Infrastructure: Service Parks
As presented in [10], one of the main goals of the fDSB is to offer a communication layer
connecting service parks in a transparent way, despite of network configurations that might
prevent direct connection of nodes hosting DSB nodes. Implementation details, installation
and configuration are detailed in [11].

In this section, we present more details about the testbed used in the evaluation of the
Federated DSB (fDSB). In order to asses the worthiness and performance of the fDSB, we
carried out a series of experiments involving service parks deployed in different
administrative domains, with different network configurations and access policies. This
environment is composed by three service parks, each one deployed in a different
administrative domain, including INRIA Sophia Antipolis, the Amazon EC2 cloud platform
and Grid5000, the French experimental Grid infrastructure.

INRIA – Sophia Antipolis cluster

The INRIA private cluster used in the testbed is composed by 20 nodes with 1Gb Ethernet
connectivity. Each node has 16GB of memory and two Intel E5335 processors, for a total of
8 cores on each node.

Because of INRIA network security, cluster nodes (and therefore the DSB which is running
on these nodes) cannot be accessed by nodes outside of the secured INRIA network. The
only available entrypoint is a gateway machine which only supports SSH connections. In
spite of that, cluster nodes can access the external network (i.e. the Internet).

At the federation level, the fDSB had to be configured to handle SSH message tunneling and
forwarding from the federation to cluster nodes, passing through the INRIA SSH gateway.

Amazon EC2

Rented Amazon EC2 instances also integrate SOA4All testbed. In order to simplify the
inclusion of Amazon EC2 instances, a special Amazon Machine Image (AMI) was prepared
including software and configuration required for the execution of Petals DSBs and the fDSB.

Amazon offers a range of instances with different amount of memory, CPU and I/O
performance and pricing. The amount of CPU that is allocated to a particular instance is

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 10 of 33

expressed in terms of these EC2 compute units (according to Amazon, one EC2 compute
unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. I/O only presents an indicator and can be moderate or high or very high.

Two of the most used Amazon EC2 instances were used in fDSB experiments:

- Small Instance has 1.7 GB memory, 1 EC2 Compute Unit (1 virtual core with
1 EC2 Compute Unit), 160 GB instance storage (150 GB plus 10 GB root
partition), as a moderate I/O performance and is a 32 bit platform

- High-CPU Extra Large Instance has 7 GB of memory, 20 EC2 Compute Units (8
virtual cores with 2.5 EC2 Compute Units each), 1690 GB of instance storage,
high I/O performance and is a 64 bit platform.

Amazon EC2 allows users to define custom network configuration, which may include firewall
and NAT configuration. Connection to Amazon EC2 domain is, therefore, straightforward
because there is no special restriction on the usage of resources. Since public IPs are
available under payment of a fee, we rented a public IP address and associated it to one of
the Amazon EC2 instances, which acts as an entrypoint to the Amazon EC2 service park.

An fDSB router, deployed in Amazon EC2, was configured to access other service parks. No
special configuration is required to access the Amazon EC2 service park. One of the
parameters that influence performance experiments on this testbed is the AWS region to be
used (e.g., Europe/Singapore/US). For benchmarking purposes, selecting a different region
will produce different results.

Grid’5000

The Grid'5000 is national French Grid platform. It gathers 9 sites geographically distributed in
France featuring a total of 5000 processors. To form our testbed, we selected three clusters
with different performances over two Grid5000 sites: two of them at INRIA Sophia Antipolis
and the other at INRIA Lille

- INRIA Sophia-Antipolis Suno cluster: composed by 45 nodes, interconnected
through a Gigabit Ethernet network. CPU of suno cluster is the quad-core Intel
Xeon E5520 (Xeon Nehalem) and 32 GB of memory.

- INRIA Sophia-Antipolis Azur cluster: composed by 49 nodes, interconnected
through a Gigabit Ethernet network. CPU of azur cluster is the AMD Opteron 246
(with 2 cores) and 2 GB of memory.

- INRIA Lille Chuque cluster: composed by 52 nodes, interconnected through a
Gigabit Ethernet network. CPU of chuque cluster is the AMD Opteron 248 (with 2
cores) and 4 GB of memory.

The different Grid5000 sites are connected through the Renater-4 dark fiber backbone,
connected to the same VLAN at 10Gbps speed.

Regarding fDSB configuration, Grid5000 is more complex than the other platforms, because
machines are completely isolated from the Internet. Therefore, DSB nodes running in
Grid5000 can only be accessed by the fDSB through SSH message tunneling and
forwarding. The same is required for nodes to contact the fDSB.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 11 of 33

2.2 Web Service Generation
2.2.1 Genesis

GENESIS1 has been developed to solve a major problem in the current state of the art of
software development for Service-oriented Architecture (SOA). So far, software testing in the
SOA domain has been mostly concentrated on checking individual Web services regarding
their performance, stability, fault tolerance, and other quality attributes. In our opinion not
enough effort has been invested into supporting the testing of complex SOA components,
which operate on (possibly large-scale) service-based environments

GENESIS [1] was introduced and described in detail in deliverable D1.5.1. Currently, a new
version is being developed by the Vitalab group, but it’s not available yet for download
(promised release date by end of 2010). For the new version of GENESIS high priority has
been assigned to a seamless extensibility of the framework in order to emulate arbitrarily
structured testbeds composed of diverse SOA components, and to program their behavior.

Figure 1: GENESIS Architecture

REST services support is still missing, so the need for an extension is still required. The
following sections describe the work performed by TXT to design and to develop an
extension to GENESIS in order to support REST services generation .

2.2.2 REST Services Support for Genesis

The main goal of the REST extension for GENESIS is to self generate/simulate new REST
services, based on a similar approach to the existing WSDL Services generation in
GENESIS

The activities performed in order to extend the platform are the following:

• Study of the existing Genesis architecture

1 http://www.infosys.tuwien.ac.at/prototype/Genesis

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 12 of 33

• Definition of new required features

• Definition of a new technical architecture

• Development of the required extensions

More in detail the work performed on the GENESIS platform is the following:

1. Modification of the Genesis configuration file, in order to let end-users specify desired
REST resources

2. Modification of the Genesis classes to parse and to process such new configuration file

3. Modification of the Genesis classes to self-generate WADL files out of the information
provided in the configuration file

4. Modification of the Genesis classes to self-generate REST services based on the WADL
file

5. Modification of the Genesis classes to self-deploy REST services based on the
information provided in the configuration file

Thanks to such extensions, Genesis can now support both WSDL and REST services.

The following sequence diagram shows how Genesis can generate REST services (RS):

Figure 2: REST Service Generation with GENESIS

2.2.3 Technical Implementation

Genesis New Architecture:

The following picture shows the modified logical architecture of GENESIS:

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 13 of 33

Figure 3: Genesis for REST logical architecture

Genesis Configuration File:

The Genesis configuration file is the starting point to build REST services. For the definition
of SOAP services, the existing configuration file uses the XML element “service” as child of
“host” element; to configure a REST service the new XML element to use is:
“<application> ”.

Once that a host element has been created and its address has been defined, it is possible
to build the REST service. In contrast to SOAP services, there is no one endpoint per
service, so each host can contain a maximum of one REST service. Furthermore, each
REST service (or application) can have unlimited resources, so inside the “application”
element we can define several <resource> elements corresponding to all the resources we
need using a different path for each one of them.

Complex types can be defined in two ways: in an external “.XSD” file to import or inline,
inside the “<schema> ” element.

To define a new method, it’s necessary to add the XML element “<method> ” as child of the
element “<resource> ”; it’s mandatory to specify the HTTP name of the method in the
attribute “name” which can be POST / GET / PUT / DELETE and it is necessary to define an
“id ” for the method.

To set the input parameters of a method just add the child element “<input> ” inside the
element “<method>” then add parameters inside “input”, using the attribute “type ” to set the
input type of your parameter.

In case of GET methods, it is necessary to set the output result by adding the child element
“<output> ” inside the element “<method>”. As for input parameter, use attribute “type ” to set
the return type of the method.

The attribute “param-type ” specifies the type of the input parameter: possible values are:
path, query, matrix, header, cookie, form. All of these values denote differnet possibilities to
provide input data to the REST service.
Finally, the attribute “path ” is used to define a sub-resource

By default, the configuration file that Genesis automatically reads is configuration.xml

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 14 of 33

located in directory: /conf.

When we define a new host in the configuration file, by default only 8060, 8070 or 8080 ports
are allowed.

Classes:

New classes have been created inside Genesis, while other existing have been modified.
The most relevant changes are in package: at.ac.tuwien.vitalab.genesis.model. They are
represented in the following class diagram:

Figure 4: Diagram of new classes for package at.ac.tuwien.vitalab.genesis.model

Package: at.ac.tuwien.vitalab.genesis.model

Added Classes:

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 15 of 33

• Application : Is the model Class that contains the information about an Application
(REST Service), starting from the definition in the configuration file.

• Resource : Is the model Class that contains the information about a Resource.

• Method: Is the model Class that contains the information about a resource’s Method.

Updated Classes:

• Host: Is the model Class that contains the information about an Host. This class has
been modified to include not only SOAP Web Services (Service) but also REST Web
Services (Application)

• MessageType: Is the model Class that maps XML Schema types to Java types. This
class has been modified to provide the XML response of a GET method.

Package: at.ac.tuwien.vitalab.genesis.server

Added Classes:

• AWebApplication: it is responsible of deployment and undeployment of a REST
Service (Web Application). Here is where the REST endpoint is created.

• AWebApplicationGenerator: generate and compile the java source code of the REST
Service (Web Application)

Updated Classes:

• GeneratorService: this class has been modified to include the generation of a REST
Service (Web Application)

• AWebServiceGenerator: this is the old “Generator” class, it has only been renamed to
remark the contrast with AWebApplicationGenerator

• GeneratorConfig: added the logic to work with REST service

Package: at.ac.tuwien.vitalab.genesis.server.jaxws

Added Classes:

• DeployApplication: added to enable the deploying of REST services

• DeployApplicationResponse: added to provide the Response for DeployApplication
invocation

• UndeployApplication: added to enable the undeploying of REST services

• UndeployApplicationResponse: added to provide the Response for
UndeployApplication invocation

• ListApplications: added to enable the listing of REST services

• ListApplicationsResponse: added to provide the Response for ListApplications
invocation

Package: at.ac.tuwien.vitalab.genesis.client.jaxws

Updated Classes:

• Genesis: added 3 Web Method to enable Genesis to work with REST services

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 16 of 33

2.2.4 Installation

The modified GENESIS code is located here:

https://svn.sti2.at/soa4all/trunk/etc/GenesisREST.zip

To install it, just unzip the file.

• Pre-requisite: Apache ANT, JRE 1.6 or higher.

2.2.5 An Example

The first step is to create the configuration file: we start by defining a new “application” called
“DemoApplication” with two resources, as shown:

<configuration>

 <environment>

 <host address="http://localhost:8070/WebServices/GeneratorService">

 <application name="DemoApplication">

 <resource name="CustomerResource" path="customer">

 </resource>

 <resource name="ItemResource" path="item">

 </resource>

 </application>

 </host>

 </environment>

</configuration>

We then create two complex types, defining them inline:

<schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:complexType name="person">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 <xs:element name="zip” type="xs:long" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="item">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="cost" type="xs:double"/>

 </xs:sequence>

 </xs:complexType>

</schema>

These complex types, can be used as input parameter or output result of our methods.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 17 of 33

We create a POST method called “addCustomer”, with “person” as input parameter:

 <method name="POST" id="addCustomer">

 <input>

 <data type="person"/>

 </input>

 </method>

We also define a GET method called “getCustomer”

 <method path="id" name="GET" id="getCustomer">

 <input>

 <id type="xs:string" param-type="path"/>

 </input>

 <output type="person"/>

 </method>

Next step is to launch the appropriate “GeneratorService”. There are three “.bat” files to start
three different Generators; you have to start only the ones described in your configuration
file.

• If you have an host with the address:

o http://localhost:8060/WebServices/GeneratorService

you have to run: ant8060.bat

• If you have an host with the address:

o http://localhost:8070/WebServices/GeneratorService

you have to run: ant8070.bat

• If you have an host with the address:

o http://localhost:8080/WebServices/GeneratorService

you have to run: ant8080.bat

For each of the “.bat” files that you have launched, wait until the shell shows something like
this:

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 18 of 33

Figure 5: Execution of .bat files

Now you can launch deployment.bat , to deploy your described services. If there’s no error
in your configuration file the generator service will start to generate then compile and finally
deploy your services. If no errors occur, you will get something like this:

Figure 6: Final deployment

The last lines will show you the URL of the REST Service (Application) and the URL of the
WADL related to your REST Service.

The REST service is now ready to be used (by any REST client) for testing.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 19 of 33

3. SOA4All Runtime Evaluation
This section is divided into two parts. In the first part we describe the different evaluation
scenarios that were defined for the SOA4All runtime. The second part then summarises the
various results collected during the execution of these scenarios.

3.1 Evaluation Scenarios
The scenarios utilize the SOA4All testbed infrastructure that was described in the previous
section. This section contains both scenarios concentrating on performance experiments of
the fDSB itself, in particular its scalability regarding the number of deployed DSB nodes and
services, and finally experiments for the Semantic Spaces solution developed within WP1.

3.1.1 fDSB Evaluation

In order to evaluate the performance/scalability of the fDSB, we have performed a series of
experiments involving the testbed describes in Section 2.1. Initially, we performed
deployment experiments to verify DSB and fDSB integration. Then, we performed
experiments to verify performance (and quantify overhead) of fDSB invocations in relation to
local DSB invocations. In the next subsection, we present each of these experiments.

3.1.1.1 fDSB Deployment and Integration

For testing the fDSB deployment and integration, we carried out a large deployment of more
than 700 DSB nodes over the testbed resources. The federation deployment consisted of
three service parks integrated by the fDSB infrastructure, deployed over Amazon EC2
resources, Grid5000 and an INRIA private cluster.

The following table shows the number of nodes involved:

 Physical nodes (cores) DSB nodes / node Total DSB Nodes

INRIA eon cluster 20 4 80

Grid5000 146 4 584

Amazon EC2 2 (instances) 2 4

TOTAL 168 - 668

Table 1: Experimental fDSB Deployment Resources

Deployment and connection times remained constant, despite the number of nodes involved.
Simple invocations were already performed and performance also remained constant.
Stress tests on large multidomain platforms are still to be done, but depend on the
completion of SOA4All integration tasks and use cases. As stated in the introduction of this
deliverable, the results of these additional stress tests will be reported in an update of this
document.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 20 of 33

3.1.1.2 fDSB Communication

Figure 7 shows the organization of deployments on the testbed infrastructure. This multi-
domain deployment presents well-defined gateway nodes in each of the Service Parks.
Thanks to the fDSB infrastructure and multi-protocol communication, every DSB node is
logically connected to other federation nodes. For performance reasons, internal
communication is done using Java RMI, and external communication using RMISSH (RMI
tunneled through SSH connections). However, the transport protocol could be HTTP, SOAP,
etc. as well. More information about the federation multiprotocol communication is available
in [10].

Figure 7: Testbed deployment

The service invocation experiments make use of a popular service benchmarking tool called
SOAPUI [12]. SOAPUI was configured to perform service invocations over a local DSB and
according to the test to be performed (local DSB communication or fDSB communication),
services were either deployed locally or remotely.

Local service invocations and fDSB invocations follow different paths in the fDSB. While local
services are invoked directly through the Petals transport layer, fDSB invocations travel
through the fDSB transport layer. Figure 8 shows the path of invocations where the client is
located in the same administrative domain as the INRIA DSB and the invoked Web Service
is located on (i.e. bound to) an Amazon EC2 instance. Initially, a message is sent to the
SOAP Binding Component of one of the INRIA DSB nodes and then it performs a lookup
locally. If the service is not available in local DSB, a lookup process happens in the context of
the federation by using the fDSB; the reply to this lookup is an endpoint which is not available
locally; so, when sending a message to this endpoint, it will be forwarded to the federation,
(the lookup query result is cached) and then sent through the fDSB transport to the Petals
transporter of the other federated DSB; the last step consist in delivering the message to the
real Web Service.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 21 of 33

Figure 8: fDSB Service Invocation Path

In section 3.2.1, we present performance results of such invocations and analyze the result
to verify the expected overhead of the fDSB layer.

3.1.2 Cloud Bursting Scenario

This scenario is a pure based scenario that involves different cloud infrastructures (at least
2). One is a private cloud within the company and an external cloud provider where our
services can run and remain connected to the private cloud in a transparent way to the user.

In this scenario the DSB is deployed inside the private cloud of the company and, when the
escalation of the VMs is taking place, this will not only be within the infrastructure of the cloud
provider but also the service tested will spill over in a different cloud provider. This is called
Cloud Bursting [13].

Originally the bursting technique was applied to keep a good bandwidth of a service, but it
also can be applied to other parameters once we use it on the cloud. By playing with the SLA
and the Cloud Bursting the private cloud would be an unlimited resource cloud in ideal
conditions as you would rent resources from external cloud providers, saving money in
infrastructure to the company. But there are some rules defined to perform the escalation
and being able to define which services deploy on the external cloud provider and which
don’t regardless the external cloud policies or SLAs. Once we deploy our services in a
different cloud, the interconnection can be defined also in our policies. For this the fDSB
comes into the scene as we won’t let any message going from the internal cloud to the
external where the new service is deployed without going via the fDSB, whereas as said
before within the private cloud infrastructure a normal DSB is used to perform the
communication between the services.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 22 of 33

Figure 9 Cloud Bursting

3.1.2.1 Example scenario

When a company has its own cloud, this normally can handle with a certain amount of VMs
running simultaneously with the efficiency that the company is expecting. Then, the cloud
bursting is a good technique to get more resources.

Saying that for a specific service we have an SLA like this.

1. Performance < 0.5 sec.

2. Internal VMs <= 10.

These two rules would make our service scale horizontally. If we set the performance, like in
rule 1 and we run stress test as the ones run in SOA4All this rule will trigger a new instance
that would let us continue respect this SLA.

Also, in a period where our customers are using our service or our test have increased.
Based on our own business rules or cost rules the company would not like to host more than
a certain VMs for a single service and reached the limit imposed in the rule 2, the next
escalation would take place in an external cloud provider making the use of the cloud
bursting.

Therefore, as the fact of this intercommunication between the internal infrastructure within
the company and an external infrastructure. The communication between the external VMs
and the internal ones offering the service has to be done using the fDSB in order to preserve
the privacy of the data sent by our customers.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 23 of 33

Figure 10: Cloud Bursting deployment

3.1.3 Distributed Space

In order to validate the distributed space architecture, we have performed extensive
experiments. The goal was twofold. First, we wanted to evaluate the overhead induced by
the distribution and the various software layers lying between the repository and a user.
Second, we wanted to evaluate the benefits of our approach, namely the scalability in terms
of concurrent access and overlay size.

• Insertion of random data: the first set of experiments inserts 1000 randomly
generated statements in an overlay made of 1 to 100 peers.

• Queries using BSBM data: to evaluate distributed queries, we have used a subset of
the BSBM benchmark to generate meaningful data and queries. These experiments
have been performed with 100 peers.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 24 of 33

3.2 Runtime Evaluation Results
This section summarises the results from the evaluation process of the different parts of the
SOA4All runtime – more specifically the fDSB, as well as the Semantic Spaces. A variety of
experiments have been conducted on the different testbeds, the results of which are reported
below. A comparison to an alternative solution, similar in scope to the functionalities offered
by the fDSB is included as well, in order to provide a context to the evaluation data. Finally,
the results for the experiments of the Semantic Spaces solution developed in WP1 have
been published as a paper, with parts of the findings reported in this section. The complete
paper has been attached to this deliverable.

3.2.1 fDSB Evaluation

As explained in section 3.1.1.2, we developed and executed various experiments in the
SOA4All testbed, presented in section 2.1. The main goal of this evaluation is to compare
performance of service invocations between different service parks and local service
invocations.

Table 2 summarizes the average invocation times in the different configurations. The first
column indicates the origin of the service invocations and the other columns the destination.
Cells intersecting the same domains (e.g. INRIA-INRIA) present the times for local
invocations without and with the fDSB, respectively.

Comparing local invocations with and without the federation, we notice the overhead is about
14% in average. Invocations between distant DSBs are naturally slower than invocations
between local DSBs because they go through the Internet, passing through gateway nodes.
In the best case (between INRIA and Grid 5000, due to the fact that they are in the same
Internet backbone) the average overhead was 7.3%, while in the worst case the overhead
was 107.5% in relation to local fDSB calls. These invocation have been between Grid5000
and Amazon EC2, which goes through Internet between France and US. While these
numbers are not negligible, they are still unavoidable, considering that the service
invocations happen across the Internet.

Origin Dest. INRIA Grid5000 Amazon EC2

INRIA 45.2 / 51.5 55.3 106.95

Grid5000 57.4 27.9 / 31.5 108.4

Amazon EC2 113.03 104.4 54.21 / 62.3

Table 2: fDSB Average Invocation Times

3.2.2 Semantic Spaces evaluation

3.2.2.1 Insertion of random data, single peer

The first experiment performs 1000 statements insertion and measure the individual time for
each of them, on a CAN made of a single peer. The two entities of this experiment, the caller
and the peer, are located on the same host. The commit interval was set to 500ms (TODO:
explain) and 1000 random statements were added. Figure 11 shows the duration of each

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 25 of 33

individual call. On average, adding a statement took 1.853ms with slightly higher values for
the first insertions, due to cold start.

In a second experiment, the caller and the peer were put on separate hosts to measure the
impact of a local network link on the performance. As shown in Figure 12, almost all add
operations took less than 5ms while less than 2% took more than 10ms. The average
duration for an add operation was 5.035ms.

Figure 11: Individual time for sequential insertion of random statements on a single local peer

Figure 12: Individual time for sequential insertion of random statements on a remote peer

3.2.2.2 Insertion of random data, multiple peers

We have measured the time taken to insert 1000 random statements in an overlay with
different number of peers, ranging from 1 to 100. Figure 13 shows the overall time when the
calls are performed using a single (left) or 32 threads (right). As expected, the more peers,
the longer it takes to add statements since more peers are likely to be visited before finding

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 26 of 33

the correct one. However, when performing the insertion concurrently, the total time is less
dependent on the number of peers. Depending on the zones various sizes and the first peer
randomly chosen for the insertion, the performance can vary, as can be seen with the 50
peers experiments.

To measure the benefits of concurrent access, we have measured the time to add 1000
statements on a 100 peers overlay, varying the number of threads from 1 to 30. Results in
Figure 14 show a sharp drop of the total time, clearly highlighting the benefits of concurrent
access.

Figure 13: Insertion of 1000 statements for variable number of peers, 1 thread (left) and 32
threads (right)

Figure 14: Evolution of the time for concurrent insertion on a 100 peers overlay

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 27 of 33

3.2.2.3 Queries using BSBM data

The Berlin SPARQL Benchmark (BSBM) [9] defines a suite of benchmarks for comparing the
performance of storage systems across architectures. The benchmark is built around an e-
commerce use case in which a set of products is offered by different vendors, and
consumers have posted reviews about products. The following experiment uses BSBM data
with custom queries detailed below. The dataset is generated using the BSBM data
generator for 10 products. It provides 4971 triples which are organized following several
categories:

• 289 Product Features

• 1 Producer and 10 Products

• 1 Vendor and 200 Offers

• 1 Rating Site with 5 Persons and 100 Reviews.

The queries use the following prefixes:

PREFIX bsbm: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/

PREFIX bsbm-ins: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iso: http://downlode.org/rdf/iso-3166/countries#

PREFIX purl: <http://purl.org/stuff/rev#>

During these experiments, we have used the following queries:

Q1 : Returns a graph where producers are from Deutschland

CONSTRUCT {

 iso:DE <http://www.ecommerce.com/Producers> ?producer

} WHERE {

 ?producer rdf:type bsbm:Producer.

 ?producer bsbm:country iso:DE

}

Q2: Returns a graph with triples containing instances of Review

CONSTRUCT {

 ?review rdf:type purl:Review

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 28 of 33

} WHERE {

 ?review rdf:type purl:Review

}

Q3 Returns a graph where triples imply a rdf:type relation as predicate

CONSTRUCT {

 ?s rdf:type ?o

} WHERE {

 ?s rdf:type ?o

}

Q4] Returns a graph where bsbm-ins:ProductType1 instance appears

CONSTRUCT {

 bsbm-ins:ProductType1 ?a ?b.

 ?c ?d bsbm-ins:ProductType1

} WHERE {

 bsbm-ins:ProductType1 ?a ?b.

 ?c ?d bsbm-ins:ProductType1

}

Queries Q1 and Q4 are complex and will be decomposed into two sub-queries. Hence, we
expect a longer processing time for them. The number of matching triples is the following:

 Q1 Q2 Q3 Q4

1 100 623 7

Figure 15 shows the execution time and the number of visited peers when processing Q1,
Q2, Q3 and Q4. Note that when a query reaches an already visited peer, we count it
although it will not be further forwarded. Q1 is divided into two sub-queries with only a
variable subject. Hence, it can efficiently be routed and is forwarded to a small number of
peers. Q2 also has one variable and thus exhibits similar performance. Q3 has two variables
so it will be routed along two dimensions on the CAN overlay, reaching a high number of
peers. Since it returns 623 statements, the messages will carry a bigger payload than for the
other queries. Finally, Q4 generates two sub-queries with two variables each, making it the

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 29 of 33

request with the highest number of visited peers. On the 100 peer network, the two sub-
queries have visited more than 170 peers.

Figure 15: Custom queries with BSBM dataset on various overlays, execution time (left) and
message overhead (right).

3.3. Comparison with other solutions
In this section we will described a comparison of the SOA4All solution, based on the fDSB
and Semantic Space, with a new one based on different products than the ones used for the
development and implementation of the SOA4All runtime. The architecture suggested with
this new solution will remain the same as we can see in Figure 7 with different organizations
interconnected via a federated channel between them and with a DSB deployed within the
organization infrastructure.

This solution can be applied to a cloud based service parks infrastructure based on VMs or
over physical service parks as before and there is no need for them to be directly connected
to internet as for the federation between the different infrastructures there will be a gateway
to generate the trust circle through internet.

Let’s focus on the infrastructure inside the companies. A set of service parks will be
interconnected via a Service Bus that will be able to talk to all of them and the services
deployed on them. There is the possibility of using the WSO2 ESB2 that is an open source
ESB. This ESB lets you to create internal enpoint refernces (EPRs) within the bus that can
be used to balance the calls among different service parks. By running the different tests
done above with the DSB used in SOA4All there won’t be many differences in terms of
speed as within one domain the speed is practically the same. However, this value can easily
be affected by the different rules and policies that can be applied in the ESB, as this can be
used to enforce the security or route a message based on its content extracting parameters
or changing them once the message is inside the ESB.

2 Fast, open-source ESB, based on Apache Synapse, available at http://wso2.com/products/enterprise-service-bus/

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 30 of 33

Figure 16 Gateways Scenario

In order to generate and maintain the federation between domains, a XML gateway will be in
both sides of the domains, i.e. it will be the outbound gateway for the messages sent to other
domains and it will be the inbound gateway where the messages will get through in order to
pass to the internal EBS. In the XML Gateways there are private vendors that provide this
solution such as (Vordel3, Layer74, Cisco5, Forum6).

The given solution here is formed for at least 2 subsystems. The XML Gateway that will
intercept the message, analyze it and perform some changes over it such as changing the
destination or encrypting the message in order to enforce the security, and a SAML
mechanism in order to sign the message before sending it to the other domain. By the
combination of these 2 elements we can ensure the transport of the data between 2 domains
and get a similar behavior as with the fDSB.

However even being this a possible solution to implement in the scenario, this will penalize
the time of the operations, as the message has to go through many steps and call other
services before it is sent to the destination domain. And it will make the communication
slower than with the fDSB solution implemented in SOA4All.

3 http://www.vordel.com

4 http://www.layer7tech.com

5 http://www.cisco.com/en/US/products/ps6906/

6 http://www.forumsys.com/products/xmlgateway.php

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 31 of 33

4. Conclusions

In this deliverable, we have described the final setup of the testbed infrastructure
environment for SOA4All. This infrastructure was used as part of the overall efforts to
evaluate SOA4All project results. While the testbed infrastructure can be used by component
owners, use case partners and dedicated testers to generate testbeds, create test cases and
execute those test cases on the testbed, the main results of the evaluation efforts described
in these deliverable focus on the performance and scalability testing of the technical artefacts
developed in WP1 – i.e. the runtime environment.

We have described several evaluation scenarios which were implemented on the SOA4All
testbeds, and have reported the results of conducting the experiments based on these
scenarios. Finally, we investigated the possibility of using different technology than the one
developed in SOA4All, which achieves similar functionalities, albeit at the cost of
performance overheads.

While the experiments of the Semantic Spaces were concluded by M30 of the projects, the
performance measurements for the fDSB are still ongoing, since we have created additional
tests and experiments to be used on the complete integrated SOA4All platform. This includes
services and tools from all technical work packages. A follow-up deliverable will therefore be
made available by the end of the project, which collects the final results of the different
evaluation efforts in the project and updates the relevant sections of this deliverable
accordingly.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 32 of 33

5. References

1. L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a framework for automatic
generation and steering of testbeds of complex web services,” in Proc. 13th IEEE
International Conference on Engineering of Complex Computer Systems ICECCS
2008, March 31 2008–April 3 2008, pp. 131–140.

2. Schreder, B., Villa, M., Abels, S., Zaremba, M., Sheikhhasan, H., Puram, S.;
Deliverable D9.2.1: eCommerce Framework Infrastructure Design, SOA4All: Service
Oriented Architectures for All - 215219.

3. Vogel, J., Schnabel, F., Mehandjiev, N.; Deliverable D7.2 Scenario Definition,
SOA4All: Service Oriented Architectures for All - 215219.

4. Lecue, F., Mehandjiev, N., Wajid, U., Namoune, A., Macaulay, L.; Deliverable D2.5.1:
SOA4All Evaluation, SOA4All: Service Oriented Architectures for All - 215219.

5. Schreder, B., Cruz, S., Abels, S., Pariente, T., Richardson, M.: D1.5.1 SOA4All
Testbeds Specification and Methodology, SOA4All: Service Oriented Architectures for
All - 215219.

6. Schreder, B., Krummenacher, R., Abels, S., Pariente, T., Richardson, M., Villa, M., Di
Matteo, G.: D1.5.2 Setup SOA4All Testbeds, SOA4All: Service Oriented Architectures
for All - 215219.

7. Richardson, M., Davies, J., Stincic, S., Mehandjiev, N., Wajid, U., Lecue, F., Álvaro
Rey, G.; Deliverable D8.3 Web21c Futures Design, SOA4All: Service Oriented
Architectures for All - 215219.

8. Stinčić, S., Davies, J., Richardson, Álvaro Rey, G. , Lecue, F., M., Mehandjiev, N.,
Maleshkova, M.; Deliverable D8.4 Web 21c Prototype v1, SOA4All: Service Oriented
Architectures for All - 215219.

9. Christian Bizer and Andreas Schultz, The Berlin SPARQL Benchmark, 2009.

10. Hamerling, C., Legrand, V., Baude, F., et al. D1.4.1B SOA4All Runtime, 2009,
SOA4All: Service Oriented Architectures for All - 215219.

11. Hamerling, C. Baude, F., Mathias E., et al. D1.4.2B SOA4All Runtime v2, 2010 (to
appear), SOA4All: Service Oriented Architectures for All - 215219.

12. SOAPUI Web Service Testing. http://www.soapui.org, 2010.

13. Cloud Burst http://en.wikipedia.org/wiki/Cloudburst

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 33 of 33

Annex A.

The paper “CAN-Based Approach for RDF Data Management in Structured P2P Systems” by
I. Filali, L. Pellegrino, F. Bongiovanni and F. Huet has been attached to this deliverable.

