

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.1.4 Service Provisioning Platform

Second Prototype
Activity N: 1 Fundamental and Integration Activities

Work Package: 2 SOA4All Studio

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: The Open University

Revision: 1.0

Author(s): Maria Maleshkova
Guillermo Álvaro Rey
Alex Simov
Bruno Renie
Dong Liu

OU
iSOCO
ONTO
OU
OU

Reviewers: Sven Abels
Reto Krummenacher

TIE
UIBK

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 2 of 33

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 21/06/2010 Document structure, table of contents Maria Maleshkova (OU)

0.2 24/07/2010 Initial version Maria Maleshkova (OU)

0.3 25/07/2010 Improved draft with screen-shots and
more detailed description

Maria Maleshkova (OU)

0.4 09/08/2010 Completed descriptions of the
Feedback Framework and the iServe

Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO)

0.5 10/08/2010 First version of user interface section Maria Maleshkova (OU)

0.6 11/08/2010 Complete initial draft Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov
(ONTO), Bruno Renie (OU),
Dong Liu (OU)

0.7 12/08/2010 Refined draft Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov (ONTO)

0.8 16/08/2010 Changes following the reviewers’
recommendations and comments

Maria Maleshkova (OU)

1.0 19/08/2010 Final draft Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov
(ONTO), Bruno Renie (OU),
Dong Liu (OU)

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 3 of 33

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION ___ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 SERVICE PROVISIONING PLATFORM PROTOTYPE ______________________ 7

1.2.1 Simple SWS Editing Framework ____________________________________ 9

1.2.2 iServe __ 12

1.2.3 Feedback Framework __ 14

1.2.4 Annotations Recommender _______________________________________ 16

1.3 CUSTOMISATION DONE FOR THIS DELIVERABLE_______________________ 18

1.4 ROADMAP FOR FUTURE PLANS _____________________________________ 18

2. PROTOTYPE DOCUMENTATION __ 19

2.1 INSTALLATION AND CONFIGURATION ________________________________ 19

2.2 HOW TO USE THE PROTOTYPE ______________________________________ 19

2.2.1 Simple SWS Editing Framework ___________________________________ 19

2.2.2 iServe __ 21

2.2.3 Feedback Framework __ 25

2.2.4 Annotations Recommender _______________________________________ 28

2.3 ADDITIONAL DOCUMENTATION ______________________________________ 30

3. CONCLUSIONS __ 31

ANNEX A. __ 32

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 4 of 33

List of Figures

Figure 1: Service Provisioning Platform Architecture ... 8

Figure 2: Lightweight MicroWSMO Editor .. 9

Figure 3: Dashboard MicroWSMO Editor ...10

Figure 4: iServe Architecture ..13

Figure 5: Linked User Feedback Internal Architecture ..15

Figure 6: Service Classifier Component ...17

Figure 7: Service Classifier Component Communication ..17

Figure 8: WSMO-Lite Editor – Local Resources Upload ...20

Figure 9: WSMO-Lite Editor – Removal of Resources ..20

Figure 10: WSMO-Lite Editor – iServe Integration ..21

Figure 11: Modifying User Profile ...22

Figure 12: Browsing Services by Category ...23

Figure 13: Keyword-based Search ...23

Figure 14: Viewing Service Details ...24

Figure 15: Detailed Service Description ..25

Figure 16: Browsing Service Descriptions ..25

Figure 17: Classification Workflow ..29

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 5 of 33

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CSS Cascading Style Sheets

D Deliverable

DSB Distributed Service Bus

EC European Commission

EXT GWT Extended GWT

FOAF Friend Of A Friend

FP Framework Program

FP7 The 7th Framework Program

GUI Graphical User Interface

GWT Google Web Toolkit

hRESTS HTML format for describing RESTful Services

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IT Information Technology

RDF Resource Description Framework

REST Representational State Transfer

SA-REST Semantic Annotations for RESTful Services

SOA4All Service-Oriented Architectures for All

SOAP Simple Object Access Protocol

SWS Semantic Web Service

UI User Interface

URI Uniform Resource Identifier

WP Work Package

WS Web Service

WSDL Web Service Description Language

XML eXtended Markup Language

XSLT XSL Transformations

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 6 of 33

Executive Summary
Web services have already achieved a solid level of acceptance and play a major role for the
rapid development of loosely-coupled component-based systems, within and between
enterprises. However, the wider adoption of web service technologies is hindered by the fact
that currently most service tasks require extensive manual effort and as a result, web
service-based applications suffer from a lack of automation. Research on semantic web
services (SWS) has been devoted to reduce the extensive manual effort required for
manipulating and using web services. The main idea behind this research is that tasks such
as discovery, negotiation, composition and invocation can have a higher level of automation,
when services are enhanced with semantic descriptions of their properties. These SWS are
amenable to automated reasoning, thus paving the way for the application of knowledge-
based algorithms to better support the automation of service-related tasks.

The SOA4All Provisioning Platform supports the creation of semantic web service
descriptions by leveraging users as the main source of information, using both direct user
input and automated information processing based on prior user-provided input. In addition, it
enables users to find relevant services and to put them together in order to compose new,
more complex services.

The here presented second Provisioning Platform Prototype focuses on describing the newly
implemented functionalities of iServe and the Annotations Recommender. iServe enables the
publishing, browsing and searching of semantic web services, while the Annotations
Recommender enables the semi-automatic creation of semantic descriptions by suggesting
suitable annotations to the user. In addition, we describe the improvements of the
implementations of the MicroWSMO and WSMO-Lite Editors, which support users in creating
semantic descriptions of RESTful and WSDL-based services. This deliverable also presents
the further development work done for the Feedback Framework, which enables users to
rate and recommend services based on their experience.

The purpose of this deliverable is twofold. First, it serves as a documentation of the second
Provisioning Platform Prototype, providing information about installation and configuration
guidelines as well as a description of the main functionalities of the components. Second, it
represents a user manual that gives instructions on how to use the different GUI elements
and how to complete simple and complex tasks by using the editors, the service browser and
the annotations recommender.

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 7 of 33

1. Introduction
This deliverable introduces the components and features of the second Provisioning Platform
Prototype. It describes improvements of existing component implementations, including the
MicroWSMO Editor, the WSMO-Lite Editor and the Feedback Framework, and focuses on
two new implementation contributions, not previously described in Deliverable 2.1.3: iServe
and the Annotations Recommender.

1.1 Purpose and Scope
The purpose of this deliverable is twofold. First, it serves as a documentation of the second
Provisioning Platform Prototype, providing information about installation and configuration
guidelines as well as a description of the main functionalities of the components. Second, it
represents a user manual that gives instructions on how to use the different GUI elements
and how to complete simple and complex tasks by using the editors, the service browser and
the annotations recommender. It guides the user through the process of creating semantic
service descriptions and describes the different tool functionalities.

This deliverable is structured as follows: This section provides a general overview of the
second Provisioning Platform Prototype, including a list of the functionalities implemented by
each of the prototype components. Section 2 includes installation and configuration
guidelines, followed by a detailed documentation of each of the components, including
descriptions of each of the GUI elements. Finally, Section 3 provides a short conclusion.

1.2 Service Provisioning Platform Prototype
The design of the Provisioning Platform foresees that it consists of six main components,
including:

1. The Simple SWS Editing Framework, which supports users in creating and
browsing semantic web service descriptions. This includes a service browser, as well
as two editors for the creation of MicroWSMO and WSMO-Lite semantic descriptions.

2. The Annotations Recommender, which reduces the manual effort required by
users, while annotating services, by automatically suggesting suitable annotations.

3. The Templates and Service Creation Wizards Management Framework, which
supports the reusing of service compositions in the form of templates.

4. The Feedback Management Framework, which supports users in deciding, which
services to use based on ratings, comments and tags.

5. The Import Facilities, for importing existing semantic services and compositions.

6. The Process Editor, which enables the user interface-based design of compositions
and is developed within Task 2.6. This component is not subject to this deliverable
but is rather described in D 2.6.3.

The second Provisioning Platform Prototype is enhanced by two main component
implementations, focusing on iServe and the Annotations Recommender. iServe comprises
the functionalities of a service browser (1.) and import facilities (5.) and at the same time
enables the publishing, search and retrieval of SWS thus representing a fully-fledged
semantic web service repository. The Annotations Recommender (2.) assists users in
creating semantic annotations by suggesting a classification of the service to the user. The
second prototype also includes improvements to the MicroWSMO and WSMO-Lite Editor (1.)
as well as further developments of the Feedback Management Framework (4.). The
Templates and Service Creation Wizards Management Framework (3.) is realized through

 SOA4All –FP7 –

© SOA4All consortium

the definition of an application interface and is completed in Task 2.6.

Figure 1 provides an overview of the architecture of the Provisioning Platform
comprising the visualized Service Browser and Import Facilities,
Recommender implementations are described in more detail in the following sections,
focusing on the provided functionalities and user support.
improvement of the MicroWSMO Editor, the WSMO
development done for the Feedback Framework.

Figure 1: Service Provisioning Platform Architecture

– 215219 – D2.1.4 Service Provisioning Platform Second Prototype

the definition of an application interface and is completed in Task 2.6.

Figure 1 provides an overview of the architecture of the Provisioning Platform
comprising the visualized Service Browser and Import Facilities, and

implementations are described in more detail in the following sections,
focusing on the provided functionalities and user support. In addition, we describe th
improvement of the MicroWSMO Editor, the WSMO-Lite Editor as well as the additional

ment done for the Feedback Framework.

: Service Provisioning Platform Architecture

D2.1.4 Service Provisioning Platform Second Prototype

Page 8 of 33

Figure 1 provides an overview of the architecture of the Provisioning Platform. iServe,
and the Annotations

implementations are described in more detail in the following sections,
In addition, we describe the

ditor as well as the additional

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 9 of 33

1.2.1 Simple SWS Editing Framework

The main goal of the Simple Semantic Web Services Editing Framework is to support users
in providing semantic annotations of existing web services, in order to enable the automation
of service discovery and composition. Therefore, the created semantic web services are the
basis for further activities and they are discovered, composed and executed by other
components provided by the SOA4All dashboard. The first prototype implementation of the
Simple SWS Editing Framework focused on providing functionalities of the MicroWSMO and
WSMO-Lite editors, while this second prototype implementation includes some extensions
and improvements to the editors and describes the newly developed Service Browser, which
is part of iServe.

The Simple Semantic Web Services Editing Framework supports two main tasks, including
the semantic annotation of web services and the browsing of existing semantic service
descriptions. We differentiate between WSDL-based services, whose annotation is
supported through the WSMO-Lite editor, and RESTful services, which use the MicroWSMO
editor. WSDL service descriptions have a predefined structure and are given in XML,
therefore the editor provides main functionalities for XML visualization and Drag&Drop-based
XML editing. In contrast, RESTful services are described in plain HTML and as a result, this
editor provides functions for marking service properties within the HTML and associating
semantic content.

SWEET

Figure 2: Lightweight MicroWSMO Editor

The first prototype of the MicroWSMO editor, which we decided to call SWEET (Semantic
Web sErvice Editing Tool), was implemented in two main versions. The first version takes the
form of a vertical widget displayed within a web browser (Figure 2). It is very lightweight and

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 10 of 33

can be used to directly annotate RESTful service descriptions visualized in the browser
window. The second implementation is integrated in the SOA4All dashboard and uses the
same layout and technologies as the other components, which are part of the dashboard
(Figure 3).

Figure 3: Dashboard MicroWSMO Editor

Both MicroWSMO editor implementations share common main functionalities:

• Insertion of hRESTS (D3.4.3) microformat tags in the HTML service descriptions in
order to mark service properties (service, operation, address, HTTP method, input,
output and label).

• Integrated ontology search for linking semantic information to service properties.

• Insertion of MicroWSMO (D3.4.3) model reference tags, pointing to the associated
semantic meaning of the service properties.

• Saving of semantically annotated HTML RESTful service description.

• Automatic extraction of RDF MicroWSMO service descriptions, based on the
annotated HTML, and saving of the resulting RDF.

The second prototype of SWEET is focused on improving and extending the SOA4All
dashboard version of the editor. In particular, the main effort was on creating a stable
implementation, including a number of useful additional features, such as the direct
annotation of service properties or the loading of an ontology by a given URL.

Following the new approach of the SOA4All dashboard for providing a set of decoupled
components, which are integrated via APIs but can be used independently (see D2.4.3), the
editor component has been decoupled and now can be used as a standalone web
application1. In addition, following this approach, the editor has been successfully connected

1 http://sweetdemo.kmi.open.ac.uk/war/MicroWSMOeditor.html

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 11 of 33

to iServe, enabling the user to publish annotated MicroWSMO files directly in the service
repository.

SWEET was presented in a number of conferences and used in hands-on sessions in two
summer schools (The Summer School on Service and Software Architectures,
Infrastructures and Engineering 2010 SSAIE Summer School2, Karlsruhe Service Summer
School 20103) and as a result, a lot of useful user feedback was gathered. In the process of
using the tool, we discovered a few functionalities that were not always performing properly
but we also identified some features that would be necessary in order to improve the use of
SWEET. We gathered this feedback by directly questioning the users but also by
implementing a simple RDF-based events logging, as part of SWEET, which records basic
user actions. Every time a user creates a service property or adds a semantic annotation, the
events are recorded in RDF and stored in a triple store. The information is completely
anonymous, containing no records of the user ID or the IP address, but it provides very
valuable insights about the most frequently performed actions, the duration of an annotation
process and the places where the annotation fails.

Based on the logged data and the feedback information, we identified that there was a
problem with inserting hRESTS tags within the HTML of some Web APIs. This occurred in
the cases where the annotated elements were surrounded by <code> or HTML
elements. As a result we were able to identify the malfunctioning cases and fix the
corresponding SWEET operation. We also improved some further features, such a providing
support for customizable style-sheets for highlighting the service annotations, and produced
a more stable and reliable version of SWEET.

One of the main improvements of SWEET was focused on enabling the better search and
use of ontologies. In order to be able to use further sources for domain ontologies, besides
Watson, we defined an API for searching for suitable ontologies for service annotation.
Based on this API, we are able to use Watson or switch to Cupboard4 or any other repository
for ontologies. In addition, we implemented a new functionality, which enables users to load
their own ontology into the tool and use it for the semantic annotation. By providing the URL
of the ontology, users can view its classes, properties and instances and use them in the
same way, in which ontologies retrieved by searching Watson, were used.

Finally, we extended SWEET with functionality for adding SAWSDL model reference
annotations directly to the different service elements. Until now, it was only possible to
annotate input and output properties with semantic entities from ontologies. The new
prototype allows users also to add model reference to any URL, for example, pointing to a
classification ontology.

SOUR

The WSMO-Lite Editor, which we decided to call SOUR, is a visual component of the
SOA4All dashboard. The primary task of the editor is to facilitate the manual annotation of
WSDL service descriptions with semantic information, following the WSMO-Lite service
ontology specification and using the SAWSDL annotation mechanism. The first prototype of
the tool provided the main functionalities required for creating annotations, namely the user is
able to create new annotations on existing description and also modify or remove already
created annotations. Informative tooltip balloons and auxiliary windows provide additional

2 http://www.ssaie.eu
3 http://www.service-summer.org
4 http://cupboard.open.ac.uk

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 12 of 33

detailed information on demand.

The editor supports the following set of annotation functionalities:

• Insertion of reference annotations in XML Schema elements to classes from the
information model ontology.

• Insertion of transformation annotations in XML Schema elements, providing the
proper mapping (lifting and lowering) between service specific XML data and
semantic model data.

• Insertion of functional annotations (capabilities and categories) for WSDL interfaces,
services and operations to appropriate functional and behavioural descriptions.

• Insertion of non-functional description annotations, specifying any details related to
the service implementation or the running environment.

• Removal of all kinds of annotations.

The second prototype of the WSMO-Lite Editor emphasizes on improved graphical interface
usability, namely completely new layout style aligned with the SOA4All Studio, progress
indicators for longer lasting processes, more informative tooltips.

The editor component has been decoupled from the Studio’s dashboard and can now be
used as a standalone web application5. The flexible decoupling mechanism allows for
maintaining a single component both, as part of the SOA4All dashboard and independently.

From integration point of view, the editor has been successfully integrated with iServe,
enabling the user to publish annotated (SA)WSDL files directly in the service repository. The
management of the Storage Services (D.2.4.2) data has been improved as well.

SWEET and SOUR provide support for annotating both WSDL-based and RESTful services.
However, in order to be able to support the automation of web service execution, in addition
to these two annotation editors, there is also an editor for the creation of lifting and lowering
schemas for WSDL services6 (D.3.4.4 v2). In this way, users do not have to define the
transformation between the implementation level and the semantic level manually, but can
rather use the graphical tool.

The final component of the Simple Semantic Web Services Editing Framework is the Service
Browser that was developed as part of iServe, described in detail in the next section.

1.2.2 iServe7

The Service Browser and the Importing Facilities, as described by the initial architecture
design of the Provisioning Platform (Figure 1), were implemented as part of iServe, a
platform for the seamless publication and discovery of semantic web services. iServe
addresses the publication of services from a novel perspective based on lessons learned
from the evolution of the Web of Data8. iServe transforms service annotations expressed in a
variety of formats into what we refer to as Linked Services– linked data describing service–
that can directly be interpreted by state of the art semantic web technologies for their

5 http://stronghold.ontotext.com:8080/wsmoliteeditor/
6 http://www.soa4all.eu/docs/D3.4.4_DATA_GROUNDING_COMPONENT_V2.PDF
7 http://iserve.kmi.open.ac.uk
8 Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on
Semantic Web and Information Systems (IJSWIS) (2009).

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 13 of 33

discovery and further processing. The iServe is integrated with SWEET and SOUR, so that
users can create semantic annotations over services and directly publish them to iServe,
where they can be search and retrieved.

iServe enables the importing of a variety of semantic web service formats, including
SAWSDL annotations, WSMO-Lite annotations, MicroWSMO annotations of Web APIs and
OWL-S Semantic Web Services descriptions and converts them into RDF, which abstracts
away from the original approach used for annotating the services. As a result, both WSDL
services and RESTful services are published in the same repository, enabling unified search
and discovery. Taking the original descriptions, iServe automatically generates the
appropriate RDF statements according to the Minimal Service Model9 and expose them as
linked data, thus providing simple means for publishing semantic web services in a manner
that is suitable for the description and interlinking of services, people and data.

Figure 4: iServe Architecture

Figure 4 shows iServe, its connection to SWEET and SOUR, and the different ways of
accessing it. In order to facilitate the consumption and manipulation of the published
semantic service descriptions, iServe provides three interfaces:

• A Web-based application, called iServe Browser10, allowing users to browse, query
and upload services to iServe. This application realizes the functionalities foreseen
for the Service Browser component in the Simple Semantic Web Services Editing
Framework.

• A SPARQL endpoint, where all the data hosted in iServe can be accessed and

9 Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.: iServe:
a Linked Services Publishing Platform, Workshop: Ontology Repositories and Editors for the
Semantic Web at 7th Extended Semantic Web Conference (2010).
10 http://iserve.kmi.open.ac.uk/browser.html

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 14 of 33

queried.
• A RESTful API that enables creating, retrieving and querying for services directly

from applications.

These three main access points provide the direct use of iServe’s main functionalities:

• Importing service annotations in a range of formalisms (e.g., SAWSDL, WSMO-Lite,
MicroWSMO) that cover both WSDL services and Web APIs. This provides the
functionalities of the Importing Facilities, as foreseen by the Provisioning Platform
Architecture.

• Providing means for publishing semantic annotations of services, which are
automatically assigned a resolvable HTTP URI.

• Supporting content negotiation so that service annotations can be returned in HTML
for human users, or in RDF for machine interpretation.

• Providing a SPARQL endpoint allowing advanced querying over the service
annotations.

• Offers a read/write REST API so that services can easily be retrieved and published
from remote applications.

• Automatically generates links between the published service annotations and
additional documents on the Web such as the original service description or
documentation so that users and machines can easily discover more information.

In summary, iServe is a novel and open platform for publishing semantic annotations of
services based on a direct application of linked data principles to publish service annotations
expressed in terms of a simple vocabulary for describing services of different kinds (e.g.,
WSDL and Web APIs) with annotations in diverse formalisms (e.g., OWL-S, WSMO-Lite). It
directly contributes to achieving the SOA4All goal of making services on the Web more
accessible and usable for everyone.

1.2.3 Feedback Framework

Following the decoupled approach for the whole SOA4All Studio, the Feedback Framework
component, which deals with user-generated feedback in the form of ratings, comments and
tags, and which used to be included as a server-side module within the dashboard, has been
enabled as a separated RESTful service itself. This way, the service can be easily integrated
within different platforms and third-party applications.

Additionally, and also following the approach of iServe, the new version of the Feedback
Framework places a special emphasis on the Linked Data paradigm, exposing the semantic
user-generated data about ratings, comments and tags as Linked Data. In this line, the
service has been rebranded as Linked User Feedback (LUF) in the public website11 where
general information about the service is given.

The LUF RESTful service exposes an API that can be accessed by third-party applications in
order to store new feedback information, as well as to retrieve the available data. The API is
described in the same website, and general information is also given in Section 3.2.2 of this
document.

11 http://soa4all.isoco.net/luf/about

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 15 of 33

Figure 5: Linked User Feedback Internal Architecture

In addition to the API (developed with Jersey12, Jersey OAuth13 and RDF2Go14) and the
Linked Data access (enabled on top of the Sesame15 semantic repository making use of
Pubby16), a SPARQL endpoint for querying is available, and also a direct Web access (by
making use of SNORQL17). Figure 5 depicts the different methods for accessing the service.

The vocabularies used to semantically represent the feedback of the users on services has
already been described in the previous deliverable D2.1.3: the Review Schema18 and the Tag
Ontology19. In, addition, the Provenance vocabulary20 is being considered as a way to
efficiently deal with the different origins of the feedback information. An example of a rating, a
comment and a tagging is illustrated below:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rev: <http://purl.org/stuff/rev#> .
@prefix tags: <http://www.holygoat.co.uk/owl/redwood/0.1/tags/> .

<http://iserve.kmi.open.ac.uk/resource/services/123456789#example>

12 https://jersey.dev.java.net
13 http://wikis.sun.com/display/Jersey/OAuth
14 http://rdf2go.semweb4j.org
15 http://www.openrdf.org
16 http://www4.wiwiss.fu-berlin.de/pubby/
17 http://github.com/kurtjx/SNORQL
18 http://purl.org/stuff/rev#
19 http://www.holygoat.co.uk/owl/redwood/0.1/tags/
20 http://purl.org/net/provenance/

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 16 of 33

 rev:hasReview <http://soa4all.isoco.net/luf/ratings/xxx> ;
 rev:hasReview <http://soa4all.isoco.net/luf/comments/yyy> ;
 tags:tag <http://soa4all.isoco.net/luf/taggings/zzz> .

<http://soa4all.isoco.net/luf/ratings/xxx>
 rdf:Type rev:Review ;
 rev:rating "3" ;
 rev:minRating "1" ;
 rev:maxRating "5" ;
 rev:reviewer <http://example.com/users#user1> ;
 rev:createdOn "2010-06-22T12:29:28+0200"^^xsd:dateTime .

<http://soa4all.isoco.net/luf/comments/yyy>
 rdf:Type rev:Review ;
 rev:text "This is a comment" ;
 rev:reviewer <http://example.com/users#user1> ;
 rev:createdOn "2010-06-22T10:59:01+0200"^^xsd:dateTime .

<http://soa4all.isoco.net/luf/taggings/zzz>
 rdf:Type tags:Tagging ;
 tags:associatedTag "one tag" , "other tag" ;
 tags:taggedBy <http://example.com/users#user1> ;
 tags:taggedOn "2010-06-22T13:03:05+0200"^^xsd:dateTime .

As stated before, the LUF service can easily be integrated within external applications. This
can be demonstrated by the fact that both the iServe browser and SPICES (the service
consumption platform described in D2.2.3) already integrate the LUF service through its API.
Also, the LUF website retrieves the latest generated feedback by accessing the SPARQL
endpoint.

1.2.4 Annotations Recommender

Currently, using the annotation editors involves some amount of manual work. In addition to
marking service properties, users are also required to choose the appropriate semantic
annotation from the list of available ontologies, as provided by the ontology search engine
(Watson). The results returned by the search engine are base on some very specific API
attributes and parameters, not on the context of the whole web page.

The purpose of the Annotations Recommender is to assist the user in the process of adding
semantic annotations to web services. By analyzing the textual content of the web pages
describing WSDL-based and RESTful services, it is able to suggest a category by using
instance-based learning techniques. Recent experiments based on test data collected from
ProgrammableWeb21 and training data from the Open Directory Project22 show that the
service classifier component is able to determine the correct category among three different
classes with a 70% accuracy.

21 http://www.programmableweb.com
22 http://www.dmoz.org/about.html

 SOA4All –FP7 –

© SOA4All consortium

Figure

Determining the type of functionality of the service and its domain are one of the main
that need to be completed, when doing annotations recommendation. Knowing the type of
service enables easier discovery but also eases the search for suitable dom
Therefore, the main component of the Annotations Recommender is devoted to classifying
the type of service. The Service Classifier architecture
starts with the downloader component, its sequence dia
task is to fetch a web page given its URL, return the content and report encountered fetch
errors. The fetched pages are processed and cached for better performance to avoid
fetching the same page multiple times.

Figure 7: Service Classifier Component Communication

When the main page describing the

– 215219 – D2.1.4 Service Provisioning Platform Second Prototype

Figure 6: Service Classifier Component

etermining the type of functionality of the service and its domain are one of the main
that need to be completed, when doing annotations recommendation. Knowing the type of
service enables easier discovery but also eases the search for suitable dom
Therefore, the main component of the Annotations Recommender is devoted to classifying
the type of service. The Service Classifier architecture is shown on Figure
starts with the downloader component, its sequence diagram can be found on Figure 7
task is to fetch a web page given its URL, return the content and report encountered fetch
errors. The fetched pages are processed and cached for better performance to avoid
fetching the same page multiple times.

: Service Classifier Component Communication

When the main page describing the service is fetched and cached, it is sent to the parser

D2.1.4 Service Provisioning Platform Second Prototype

Page 17 of 33

etermining the type of functionality of the service and its domain are one of the main tasks
that need to be completed, when doing annotations recommendation. Knowing the type of a
service enables easier discovery but also eases the search for suitable domain ontologies.
Therefore, the main component of the Annotations Recommender is devoted to classifying

is shown on Figure 6. The workflow
n be found on Figure 7. Its

task is to fetch a web page given its URL, return the content and report encountered fetch
errors. The fetched pages are processed and cached for better performance to avoid

: Service Classifier Component Communication

is fetched and cached, it is sent to the parser

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 18 of 33

and sanitizer component. The sanitizer removes unnecessary elements from the HTML
page, mainly JavaScript elements and flash objects (if any). The parser analyses the
different links of the page and requests related pages from the downloader. Based on
experiments, fetching 5 of the sub-pages linked from the main page increases the accuracy
already by 10%. Therefore, retrieving related pages, in addition to the main service page has
an important effect on the accuracy of the component results.

Once a document and the set of related pages are collected and sanitized, they are given to
the voting processor, which was initially supposed to convert the HTML pages to a weighted
list of phrases and sentences: a sentence inside an <h1> HTML element would be given a
bigger weight than a sentence inside a <p> element. However, this step has been merged
with the next one: the tokenizer directly splits the textual content of the HTML page into a list
of tokens, which are the input data for the classifier.

The classifier component takes the tokenized text and finds the best matching category
based on the data it has been trained with. Once fully trained and setup, the classifier has a
very simple API:

public String classify(URL url);

public String[] classify(URL url, int matches);

The input parameter is the URL of the web page describing a service, and the output is the
best match found by the classifier. Optionally the classifier could return a list of categories
ordered by relevance instead of a single category.

1.3 Customisation Done for This Deliverable
The here described second Provisioning Platform Prototype and its components are directly
contributing to the functionalities of the final version of the Provisioning Platform. The current
state of the implementation reflects almost completely the expected end result and there are
a few improvements, which will be made by the time this deliverable is submitted. There are
no major assumptions or customizations made in this version of the components.

1.4 Roadmap for Future Plans
The Provisioning Platform Prototype documented in this deliverable represents the final
version of the implemented components. Therefore, there is no roadmap for future work. Still,
minor improvements and fixes will be carried out until the end of the project, even though,
there are no more planned deliverables.

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 19 of 33

2. Prototype Documentation
This section of the deliverable provides practical information about using the second
Provisioning Platform prototype. It provides installation and configurations instructions as well
as guidelines about the functionalities of the different elements of the components. The
prototype documentation also includes step-by-step descriptions of how to use the service
browser of iServe, how the invoke the LUF RESTful API and how to perform service
classification. We also describe the changes made to SWEET and SOUR.

2.1 Installation and Configuration
The second Provisioning Platform prototype is following the approach of decoupled
components. Each of the tools is exposed through a Web API or through a URL, where it can
be invoked, and there are no fixed connections or hard-coded links between the
components. As a result, the SOA4All dashboard is realized by combining these detached
components and third-party users can choose to include some of the components as part of
their applications, in a similar way. Therefore, there are no particular installation or
configuration requirements, since the parts of the Provisioning Platform are available as
services.

Currently all components, which are part of the Provisioning Platform, are completely
integrated in the SOA4All dashboard. Therefore, there are no additional installation tasks,
which need to be completed and no dependent software components, which need to be
configured. The installation and configuration guidelines of the SOA4All dashboard are
described in D2.4.4. It is recommended to use the Firefox23 browser, version 3.5 or later, for
viewing GWT UI components, such as SWEET.

2.2 How to use the Prototype
This section describes in detail how each of the prototype components can be used. Each
implementation is described in terms of the functionalities of the GUI and a step-by-step
instruction how to complete some common tasks. This section includes descriptions of the
prototypes of the MicroWSMO Editor, the WSMO-Lite Editor, iServe, the Feedback
Framework and the Annotations Recommender.

2.2.1 Simple SWS Editing Framework

SWEET

The current version of SWEET has the same user interface, as the previous version, since
the main implementation effort was focused on achieving stability and fixing faults of the
previous version. Still, there are two new functionalities that have been implemented. First,
the user is able to add SAWSDL model reference annotation to any service property. This
can be done very easily by right-clicking on a node of the service annotation three in the
Semantic Description panel and inputting the URI for the model reference.

In order to ease the annotation tasks, we have discovered that sometimes users want to use
their own ontologies to describe the service, instead of relying only on the ones provided by
Watson. Therefore, similarly to SOUR, we now provide a button for loading an ontology,
given its URL. After loading the ontology, the user can directly use it to make annotations.

23 http://www.mozilla-europe.org/en/firefox/

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 20 of 33

Finally, SWEET has been integrated with iServe and now the Save and Export buttons have
an option Save To Service Repository and Export To Service Repository for publishing the
semantic RESTful service descriptions directly to iServe.

SOUR

The current version of the WSMO-Lite Editor contains extended GUI support for data
management of the Storage Services. This includes uploading local file system resources to
the storage space (Figure 8) as well as preview or removal of storage data (Figure 9). As a
result, this functionality turns into a key Storage Services visual front-end not only for the
editor but for all dashboard components as well.

Figure 8: WSMO-Lite Editor – Local Resources Upload

Figure 9: WSMO-Lite Editor – Removal of Resources

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 21 of 33

As part of the resource management functionalities, the editor now offers loading resources
(ontologies and service descriptions) not only from the Storage Services but from any
(publicly) accessible URL.

The service descriptions publishing functionality was achieved by integration with the iServe
system24. Having in advance a valid iServe account, the user can send annotated service
descriptions (SAWSDL) directly from the WSMO-Lite Editor (Figure 10).

Figure 10: WSMO-Lite Editor – iServe Integration

2.2.2 iServe

This section describes the main functionalities offered by the iServe Service Browser, since
this is the only component of iServe that has a user interface. The Service Browser supports
the following tasks:

• Logging in with an existing OpenID account, creation of a user profile and editing of
user profile.

• Browsing services per category, using a predefined or a custom taxonomy.
• Loading a taxonomy.
• Searching for services by keyword.
• Viewing service details.
• Adding a new service.
• Removing a service (available only for the creator of the service).

The following sections describe each of these tasks in more detail.

In order to add and remove services, the user needs to login to iServe with an OpenID
account. Clicking on the login button located in the top right corner of iServe browser, opens
a pop-up dialog box for inputting the user OpenID. For MyOpenID or Yahoo OpenID
(http://openid.yahoo.com), first, choose the provider from the list, and only input the short ID.
The whole URI of your OpenID will be automatically generated and put into the nethermost
text box. For using OpenID gotten from other providers, unfortunately, the complete URI

24 http://iserve.kmi.open.ac.uk

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 22 of 33

needs to be typed in. After inputting the OpenID and clicking on the login button, the Web
browser will possibly be redirected to the corresponding OpenID provider to do the
authentication. Then, iServe will verify the result of authentication sent by the OpenID
provider, and allow the login to iServe. A known limitation is that currently Google OpenID
(http://openid-provider.appspot.com) is not supported. Still, no login is required for only browsing
and viewing the services in the repository.

Figure 11: Modifying User Profile

When a user logs in the first time, he/she is requested to complete the profile, or, at least,
provide a valid FOAF ID. User name and password are used for identification, when
accessing iServe trough the RESTful API. That is, the user name and password must be
sent together with the HTTP request. The initially created user profile can be modified by
clicking on the OpenID used to login, which is displayed in the upper-right corner of the
iServe browser (Figure 11).

One of the main functionalities of iServe is browsing services by category. As shown in
Figure 12, the service categorisation tree is shown on the left hand side of the iServe
browser. By selecting a category, you will get services under the selected category listed on
the right-hand side. In addition, iServe also provides a simple text-based filter, so that when
the user types some text, the categorization tree shows only categories whose name or
parent category name contain the inputted text.

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 23 of 33

Figure 12: Browsing Services by Category

iServe can dynamically load taxonomies to classify services from different perspectives. For
now, a small taxonomy (http://www.service-finder.eu/ontologies/service-categories.rdfs) created by
Service Finder (http://www.service-finder.eu) is used as the default taxonomy. Some other
taxonomies such as eCl@ss (http://www4.wiwiss.fu-berlin.de/bizer/ecommerce/eClass-4.1.rdf),
UNSPSC (http://www.cs.vu.nl/~mcaklein/unspsc/) will be added to iServe soon.

Figure 13: Keyword-based Search

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 24 of 33

iServe also enables the searching of services by keyword (Figure 13). Keyword-based
search for services can be done by name or address of operation, categorization,
input/output parameter and service ID. The results will be shown as a list underneath the
searching toolbar.

After a particular service of interest is found, more details about it will be displayed in the tab
named Info (Figure 14). This information panel includes the properties of the selected service
as well as its operations, such as model references, parameters, addresses, etc. The
document that defines the service will be shown in the Document tab.

Figure 14: Viewing Service Details

iServe also enables the adding and removing of services through the Service Browser user
interface. By switching to the Upload tab, the user can create new services by uploading the
service descriptions, for which there are three different means: giving an accessible URI for
retrieving the description file, directly uploading it, or manually typing the content into the text
box. iServe currently can take as input annotated service descriptions as SAWSDL, WSMO-
Lite annotations, MicroWSMO annotations, and OWL-S.

In order to remove services, the user needs to choose some entries from the service list,
right click on them, and then select the item named Remove service in the pop-up menu.
Please note that only the creator (a.k.a. the owner) of the services has the privilege to
remove them. iServe checks the ownership of the service before the removal of services.

The Service Browser enables viewing service information in HTML as well as in RDF.
Depending on the format that the user prefers to access and browse iServe, the URIs of
services and documents are listed as follows:

• URI of service list: http://iserve-dev.kmi.open.ac.uk:8080/iserve/resource/services
• URI of document list: http://iserve-dev.kmi.open.ac.uk:8080/iserve/resource/documents

Links to services or documents can be respectively found from the two lists. Screenshots of
browsing descriptions of services and content of documents are shown in the figures below
(Figure 15 and Figure 16).

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 25 of 33

Figure 15: Detailed Service Description

Figure 16: Browsing Service Descriptions

2.2.3 Feedback Framework

The online version of the Linked User Feedback service prototype can be accessed through
URLs located at http://soa4all.isoco.net/luf/*. Next, we describe the four main
interactions with the platform, namely i) via the REST interface, ii) as Linked Data, iii) through
the SPARQL endpoint, and iv) via a SPARQL Web interface. It is worth noting that the LUF

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 26 of 33

service is not intended to be accessed directly by end-users, but rather indirectly through the
platforms that interact with the API (currently, the iServe browser and SPICES).

2.2.3.1 LUF in a REST interface

The REST API of LUF permits retrieving information about each of the stored ratings,
comments and taggings through different GET operations. It also permits storing new ratings,
comments and taggings through different POST operations. Additionally, there is a search
operation to retrieve the feedback information on a particular item and/or performed by a
particular user.

Operation 1: Retrieve a rating (method: GET; Requires Auth: False)

URL: http://soa4all.isoco.net/luf/api/ratings/{id}

Parameters:
• {id}: The identifier of the particular rating.

The responses contain the following information:
<response>
 <item>{service uri}</item>
 <rating>{rating number}</rating>s
 <minRating>{min value}</minRating>
 <maxRating>{max value}</maxRating>
 <reviewer>{reviewer}</reviewer>
 <createdOn>{creation date}</createdOn>
</response>

Operation 2: Create a rating (Method: POST; Requires Auth: True, OAuth)

URL: http://soa4all.isoco.net/luf/api/ratings

POST body parameters:
• {itemId}: The URI of the item being rated.
• {userId}: The URI of the reviewer.
• {rating}: A numeric value.
• {min value}: The minimum value in the scale (optional, defaults to 1).
• {max value}: The maximum value in the scale (optional, defaults to 5).

The responses contain the following information:
<response>
 <ratingUri>{rating uri}</ratingUri>
</response>

Operation 3: Retrieve a comment (Method: GET; Requires Auth: False)

URL: http://soa4all.isoco.net/luf/api/comments/{id}

Parameters:
• {id}: The identifier of the particular comment.

The responses contain the following information:
<response>
 <item>{service uri}</item>
 <comment>{comment text}</comment>
 <reviewer>{reviewer}</reviewer>
 <createdOn>{creation date}</createdOn>
</response>

Operation 4: Create a comment (Method: POST; Requires Auth: True, OAuth)

URL: http://soa4all.isoco.net/luf/api/comments

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 27 of 33

POST body parameters:
• {itemId}: The URI of the item being rated.
• {userId}: The URI of the reviewer.
• {comment}: Text.

The responses contain the following information:
<response>
 <commentUri>{comment uri}</commentUri>
</response>

Operation 5: Retrieve a tagging (Method: GET; Requires Auth: False)

URL: http://soa4all.isoco.net/luf/api/taggings/{id}

Parameters:
• {id}: The identifier of the particular tagging.

The responses contain the following information:
<response>
 <item>{service uri}</item>
 <comment>{comment text}</comment>
 <reviewer>{reviewer}</reviewer>
 <createdOn>{creation date}</createdOn>
</response>

Operation 6: Create a tagging (Method: POST; Requires Auth: True, OAuth)

URL: http://soa4all.isoco.net/luf/api/taggings

POST body parameters:
• {itemId}: The URI of the item being rated.
• {userId}: The URI of the reviewer.
• {tags}: A set of comma-separated tags.

The responses contain the following information:
<response>
 <taggingUri>{tagging uri}</taggingUri>
</response>

Operation 7: Search (Method: GET; Requires Auth: False)

URL:http://soa4all.isoco.net/luf/api/search?itemId={itemId}&use
rId={userId}

Parameters:
• {itemId}: The URI of a particular item (optional).
• {userId}: The URI of a particular user (optional).

The responses contain the following information:
<response>
 <ratings>
 <ratingUri>{rating id}</ratingUri>
 <ratingUri>{rating id}</ratingUri>
 ...
 <ratingsAverage>{ratings average}</ratingsAverage>
 <ratingsNumber>{number of ratings}</ratingsNumber>
 </ratings>
 <comments>
 <commentUri>{comment id}</commentUri>
 <commentUri>{comment id}</commentUri>
 ...
 <commentsNumber>{number of comments}</commentsNumber>
 </comments>
 <taggings>

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 28 of 33

 <taggingUri>{tagging id}</taggingUri>
 <taggingUri>{tagging id}</taggingUri>
 ...
 <taggingsNumber>{number of taggings}</taggingsNumber>
 <tagAggregate>
 <tag>{tag name}</tag>
 <times>{number of ocurrences}</times>
 </tagAggregate>
 <tagAggregate>
 <tag>{tag name}</tag>
 <times>{number of ocurrences}</times>
 </tagAggregate>
 ...
 </taggings>
</response>

2.2.3.2 LUF as Linked Data

LUF exposes the feedback produced by users (ratings, comments, taggings) as Linked Data
at the following locations:

• http://soa4all.isoco.net/luf/ratings/{id}
• http://soa4all.isoco.net/luf/comments/{id}
• http://soa4all.isoco.net/luf/taggings/{id}

, where {id} is the particular identifier of each piece of feedback information. Content-
negotiation is handled so the information can be rendered as HTML, RDF, etc.

2.2.3.3 LUF through a SPARQL endpoint

Additionally, it is possible to query the RDF repository via its SPARQL endpoint, located at
http://soa4all.isoco.net/luf/sparql.

2.2.3.4 LUF by SNORQL

Finally, a Web interface for performing queries over the repository has been enabled at
http://soa4all.isoco.net/luf/snorql.

2.2.4 Annotations Recommender

The Annotations Recommender does not have its own user interface, but we use the
visualization tool provided by Weka25 in order to show the different steps involved in the
classification process. In this section we explain in detail how service classification is done
and what input information is included.

The service classification task requires some pre-processing work. Currently, all the steps
preceding the actual classification are implemented in a standalone Java package that is
able to crawl the web and output data in a format that can be used by the classifier. The
tokenization is done by Lucene26 and the pages are processed and sanitized using
HtmlCleaner27.

The classifier runs as a Weka experiment: the tokenizer outputs its data in a file that can be
loaded by Weka to train and validate the classifier. The advantage of using Weka is that
different classifiers and different options can be tested and compared before embedding the

25 http://www.cs.waikato.ac.nz/ml/weka/
26 http://lucene.apache.org/java/docs/index.html
27 http://htmlcleaner.sourceforge.net

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 29 of 33

best one in a standalone component. The experiment setup in Figure 17 shows how the
classification is done:

• The data is loaded from the file generated by the tokenizer component. The data
comes from the API directory of ProgrammableWeb.com, where more than 2000
Web APIs are currently referenced.

• The input data is pre-processed by Weka: the tokens are transformed to a "word
vector" representation and the category of each Web API is declared to Weka.

• The classifier is setup to do cross-validation of the classifier: the data set is split into
ten folds and each fold is used to validate a classifier trained with the nine other folds.
The advantage of cross-validation is that the risk of overfitting is much lower.

• The training and validation sets are sent to a classifier. Different classifiers can be
swapped and the results of each run are stored.

Figure 17: Classification Workflow

The training is done by collecting already categorized data from the Open Directory Project28
and ProgrammableWeb29. The component is able to collect a list of links from
ProgrammableWeb's API or an Open Directory Project data dump. Once the links are
collected, they are processed by the downloader, sanitizer and parser components and the
resulting text is serialized into an ARFF30 file. The ARFF file is then loaded and processed by
Weka as training data for the classifier.

The advantage of having such a setup is twofold. First, the training of the classifier can be
done offline and independently of the actual annotation process. Second, by using the data
for each run, we can compare the different classifiers and the influence of their parameters,
and choose the best performing one for the end results. The Service Classifier is available
through a simple API, which has the service URL as input and a list of categories as output.

28 http://www.dmoz.org/about.html
29 http://www.programmableweb.com
30 http://weka.wikispaces.com/Creating+an+ARFF+file

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 30 of 33

2.3 Additional Documentation
This deliverable captures the main functionalities of the Provisioning Platform Prototype,
however, there is a plenitude of further documentation for each of the components. We
created a website, which provides additional information on SWEET. It is available at
http://sweet.kmi.open.ac.uk and contains a short introduction, as well as descriptions of the
prototypes and documentation how to use them. SOUR is delivered with a flash demo movie
representing a complete end-to-end scenario, focusing on the different steps of the
annotation process. LUF is documented in its own web page as well
(http://soa4all.isoco.net/luf/about), providing further details about the functionalities and
explaining its usage.

iServe has its own pages too (http://iserve.kmi.open.ac.uk) and a wiki
(http://iserve.kmi.open.ac.uk/wiki/index.php/Home), explaining what the purpose of the tool
is, what are the main functionalities and how it can be used. All of the components are
described in the SOA4All main wiki as well (http://soa4all.sti2.at/index.php/Main_Page). In
addition, since parts of the Provisioning Platform have been used in two hands-on sessions,
there is also a complete use-case scenario available at:
http://iserve.kmi.open.ac.uk/wiki/index.php/Hands-on_Session.

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 31 of 33

3. Conclusions
This deliverable describes the components and the functionalities of the second Provisioning
Platform Prototype. Through the SOA4All Provisioning Platform semantic web service
technologies are more widely adopted, especially by supporting the creation of semantic web
service descriptions by using both direct user input and automated information processing,
based on prior user-provided input. In particular, this is enabled through SWEET and SOUR,
which support users in creating semantic descriptions of RESTful and WSDL-based services.
The annotation process is aided through the Annotations Recommender and the resulting
semantic service descriptions can be directly published to iServe, where they can be
browsed, searched and retrieved. This deliverable also presents the second prototype of the
Feedback Framework, which enables users to rate and recommend services based on their
experience.

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 32 of 33

Annex A.

This annex contains three publications and two submissions describing research done within
the scope of the SOA4All Provisioning Platform:

1. Maleshkova, M., Pedrinaci, C., and Domingue, J. (2010) Semantic Annotation of Web
APIs with SWEET, Workshop: 6th Workshop on Scripting and Development for the
Semantic Web at Extended Semantic Web Conference, Heraklion, Greece

Available at:
http://www.semanticscripting.org/SFSW2010/papers/sfsw2010_submission_3.pdf

Abstract. Recently technology developments in the area of services on the Web are
marked by the proliferation of Web applications and APIs. The development and evolution
of applications based on Web APIs is, however, hampered by the lack of automation that
can be achieved with current technologies. In this paper we present SWEET (Semantic
Web sErvices Editing Tool) lightweight Web application for creating semantic descriptions
of Web APIs. SWEET directly supports the creation of mashups by enabling the semantic
annotation of Web APIs, thus contributing to the automation of the discovery, composition
and invocation service tasks. Furthermore, it enables the development of composite SWS
based applications on top of Linked Data.

2. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.

(2010) iServe: a Linked Services Publishing Platform, Workshop: Ontology
Repositories and Editors for the Semantic Web at 7th Extended Semantic Web
Conference

Available at: http://kmi.open.ac.uk/people/carlos/publications/iserve-ORES2010.pdf

Abstract. Despite the potential of service-orientation and the efforts devoted so far, we
are still to witness a significant uptake of service technologies outside of enterprise
environments. A core reason for this limited uptake is the lack of appropriate publishing
platforms able to deal with the existing heterogeneity in the service technologies
landscape and able to provide expressive yet simple and efficient discovery mechanisms.
In this paper we describe iServe, a novel and open platform for publishing services which
aims to better support their discovery and use. It exposes service descriptions as linked
data expressed in terms of a simple vocabulary for describing services of different kinds
with annotations in diverse formalisms. In addition to describing iServe, this paper also
highlights the set of principles behind iServe, which we believe are essential for other
generic repositories of semantic information notably ontology repositories.

3. Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J., and

Krummenacher, R. (2010) Adaptive Service Binding with Lightweight Semantic Web
Services Adaptive Service Binding with Lightweight Semantic Web Services, in eds.
Schahram Dustdar and Fei Li, Service Engineering: European Research Results,
Springer

Abstract Adaptive service selection, also referred to as late-binding, is acknowledged to
provide a certain number of advantages to optimize the service provisioning process or to
cater for advanced service brokering. SemanticWeb Services, that is services that have
been enriched with semantic annotations is a typical technical approach to providing late-
binding facilities. However, Semantic Web Services approaches such as WSMO and

 SOA4All –FP7 – 215219 – D2.1.4 Service Provisioning Platform Second Prototype

© SOA4All consortium Page 33 of 33

OWL-S have not been popular with service providers. It has been hypothesized that a
major cause of this is the quantity and complexity of logical statements required to
describe a service in such heavyweight frameworks. This fact has indeed affected the
acquisition of semantic annotations for services as well as the potential scalability for
Semantic Web Services infrastructure. In this paper, we show how a lighter weight
approach based on existing Web standards such as RDF and SPARQL can support the
definition of service descriptions, service templates, and enable quite advanced service
matchmaking in a scalable manner.

4. Pedrinaci, C., Liu, D., Kopecky, J., Maleshkova, M., and Domingue, J.: iServe: Using

Lightweight Semantics for Unified Service Publication and Discovery, Submitted to
Semantic Web In Use track of ISWC 2010.

Abstract. Semantic Web Services research has produced several conceptual models for
enriching Web service descriptions and a plethora of discovery algorithms that exploit
these semantic annotations for supporting discovery. Despite the efforts, however, we
are still to witness a significant uptake of Semantic Web Services on the Web due in part
to the complexity of the technologies and a considerable fragmentation between the
conceptual frameworks. In this paper we describe iServe, a public registry that unifies
service publication and discovery on the Web through the use of lightweight semantics.
iServe builds upon lessons learnt from the Semantic Web to provide the first system that
supports the publication and advanced discovery of different kinds of services (including
“RESTful" Web APIs) described using previously incompatible formalisms. The registry
contains all the existing Semantic Web Service test collections and additional annotations
of real services, on which our evaluation illustrates the efficient semantic service
discovery over Web services and Web APIs across different formalisms.

5. Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, I.: Using

Semantics for Automating the Authentication of Web APIs Submitted to main track of
ISWC 2010.

Abstract. Recent technology developments in the area of services on the Web are
marked by the proliferation of Web applications and APIs. The implementation and
evolution of applications based on Web APIs is, however, hampered by the lack of
automation that can be achieved with current technologies. Research on semantic Web
services is therefore trying to adapt the principles and technologies that were devised for
traditional Web services, to deal with this new kind of services. In this paper we show that
currently more than 80\% of the Web APIs require some form of authentication. Therefore
authentication plays a major role for Web API invocation and should not be neglected in
the context of mashups and composite data applications. We present a thorough analysis
carried out over a body of publicly available APIs that determines the most commonly
used authentication approaches. In the light of these results, we propose an ontology for
the semantic annotation of Web API authentication information and demonstrate how it
can be used to create semantic Web API descriptions. We evaluate the applicability of
our approach by providing a prototypical implementation, which uses authentication
annotations as the basis for automated service invocation.

