

Project Number: 215219
Project Acronym: SOA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

D2.2.3 – Service Consumption Platform

Second Prototype
Activity N: Activity 1 - Fundamental & Integration activities

Work Package: WP2 – SOA4All Studio

Due Date: 31/08/2010

Submission Date: 30/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: ISOCO

Revision: 1.0

Author(s): Guillermo Álvaro Rey
Matteo Villa
Freddy Lecue
Irene Celino

ISOCO
TXT
UNIMAN
CEFRIEL

Internal Reviewers: Daniele Dell’Aglio (CEFRIEL), Alistair Duke (BT)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 2 of 32

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 14/07/2010 Document Initialized Guillermo Álvaro Rey

0.2 28/07/2010 First contributions from all partners Freddy Lecue, Matteo Villa,
Irene Celino

0.3 11/08/2010 Stable draft, changed all screenshots in
Section 2

Guillermo Álvaro Rey

0.4 13/08/2010 Complete version with conclusions All

0.5 16/08/2010 Version ready for internal revision Guillermo Álvaro Rey

0.6 25/08/2010 Comments from internal review Daniele Dell’Aglio

0.7 27/08/2010 Comments from internal review Alistair Duke

1.0 30/08/2010 Applied changes. Final Version All

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 3 of 32

Table of Contents

EXECUTIVE SUMMARY __ 6
1. INTRODUCTION __ 7
2. SPICES FUNCTIONAL SPECIFICATION: USING THE SERVICE CONSUMPTION
PLATFORM __ 8

2.1 INTERACTING WITH SPICES: GENERAL OVERVIEW ____________________ 8
2.2 OPENING A SERVICE ___ 10

2.2.1 Using the Search widget __ 10
2.2.2 Browsing categories ___ 11
2.2.3 Selecting a favourite service _____________________________________ 12
2.2.4 Selecting a recommended service ________________________________ 13

2.3 CONSUMING A SERVICE __ 13
2.3.1 Dealing with authentication ______________________________________ 14

2.4 GETTING PERSONALISED RESULTS ________________________________ 15
2.4.1 Example (Pre-Annotation of Service Description using the User Profile based
Ontology): ___ 15
2.4.2 Example (Illustration of a User Profile based Service Personalisation): ____ 16

2.5 INSPECTING MORE DETAILS ABOUT A SERVICE _____________________ 16
2.6 CREATING FEEDBACK AND BOOKMARKING _________________________ 17
2.7 GETTING RECOMMENDATIONS ____________________________________ 18

3. IMPLEMENTATION DETAILS ___ 19
3.1 DEVELOPMENT OF SPICES AS A DECOUPLED MODULE OF THE SOA4ALL
STUDIO ___ 19
3.2 SEMANTIC-BASED SERVICE INVOCATION ___________________________ 19

3.2.1 Example __ 21
3.3 INTEGRATION WITH ISERVE _______________________________________ 22
3.4 INTEGRATION WITH THE STORAGE SERVICES _______________________ 23
3.5 INTEGRATION WITH THE LINKED USER FEEDBACK SERVICE ___________ 23
3.6 INTEGRATION WITH THE AUDITING SERVICE ________________________ 24
3.7 INTEGRATION WITH THE UI WIDGETS ______________________________ 24
3.8 INTEGRATION WITH THE RECOMMENDATION SYSTEM ________________ 25
3.9 KEYWORD-BASED AND CATEGORY-BASED DISCOVERY ______________ 25

3.9.1 Example: Keyword-based SPARQL query __________________________ 26
3.9.2 Example: Category-based SPARQL query __________________________ 26

4. INSTALLATION & USAGE ___ 27
4.1 REQUIREMENTS & PREPARATIONS ________________________________ 27

4.1.1 For End-Users ___ 27
4.1.2 For Administrators __ 27

4.2 INSTALLATION (DEPLOYMENT) ____________________________________ 28
4.3 EXECUTION ___ 28

5. CONCLUSIONS __ 29
6. REFERENCES ___ 30
ANNEX A. RELATED PUBLICATIONS _____________________________________ 31

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 4 of 32

List of Figures
Figure 1: SPICES: Left panel and dashboard area featuring some services and listings 9

Figure 2: Examples of portlet buttons: ... 9

Figure 3: Left-hand panel ...10

Figure 4: Search widget ..10

Figure 5: Search results listing ...11

Figure 6: Categories Tree ...12

Figure 7: Category results listing ..12

Figure 8: “My Actions” panel ...13

Figure 9: Recommendations panel ...13

Figure 10: Service GUI for inputs ...14

Figure 11: Results of a service invocation ..14

Figure 12: Request of API credentials by the platform ..15

Figure 13: Service Personalisation ...16

Figure 14: Service Details tab ...17

Figure 15: Feedback Creation and Bookmarking buttons ...17

Figure 16: Service-based Recommendations ...18

Figure 17: Semantic-based service invocation sequence diagram 20

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 5 of 32

Glossary of Acronyms
Acronym Definition
D Deliverable

EC European Commission

GUI Graphical User Interface

GWT Google Web Toolkit

GXT Ext-GWT

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

NLP Natural Language Processing

QoS Quality of Service

RIA Rich Internet Application

RDF Resource Definition Framework

RDF(S) RDF Schema

REST Representational State Transfer

RS Recommender System

SA-REST Semantic Annotations for RESTful Services

SAWSDL Semantic Annotations for WSDL and XML Schema

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPICES Semantic Platform for the Interaction and Consumption of Enriched Services

SWEET Semantic Web sErvice Editing Tool

SWS Semantic Web Service

T Task

UI User Interface

W3C World Wide Web Consortium

WP Work Package

WS Web Service

WSDL Web Services Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WWW World Wide Web

XML eXtensible Markup Language

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 6 of 32

Executive summary
This deliverable describes the Second Prototype of the Service Consumption Platform, lately
named SPICES (Semantic Platform for the Interaction and Consumption of Enriched
Services), the tool of the SOA4All Studio where end-users are able to interact with services
and consume them in a lightweight manner.

This prototype documentation goes through the main characteristics of the platform and the
functionality it provides to end-users. SPICES is described as a “personalised homepage” for
the consumption of semantically enriched services, where end-users are able to find the
services they are interested in and interact with them in an easy yet personalised manner.
Several examples of use are given so the first part of the document can be seen as a user
guide of the platform.

The deliverable also covers the most relevant implementation details, with a special stress
on the integration with the rest of architectural components of SOA4All, which can be
considered as one of the strongest characteristics of the platform. To list some of the
aforementioned integration details, SPICES makes use of the services retrieved from the
service repository iServe; it interacts with the Linked User Feedback framework for the
ratings, comments and taggings on services; it retrieves recommendations from the
Recommendation System, etc.

Finally, this document gives installation instructions for the platform, which can be deployed
as a standalone Web application.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 7 of 32

1. Introduction
The Service Consumption Platform, renamed both internally within the project and externally
as SPICES (Semantic Platform for the Interaction and Consumption of Enriched Services) to
better suit other tools of the platform such as SWEET and SOUR (provisioning tools
described in D2.1.4 [1]), is a Web-based tool where end-users can interact with services as
consumers, discovering the ones they are most interested in easily.

The Service Consumption Platform was first addressed in its design document D2.2.1 [2],
and the First Prototype was described in D2.2.2 [3]. SPICES is the evolution of that
prototype; the current deliverable describes the characteristics of this Second and final
prototype. Some functionalities have been added to the previous version, and there is a
higher level of integration with respect to the rest of components of the SOA4All architecture.

For instance, the services that are available within this platform come from iServe [4], a
common service repository central to the project also accessed by the provisioning tools
used to semantically annotate services. This way, the lifecycle of services is properly closed
and an increasing number of services are automatically made available to SPICES by
accessing the external repository.

An important change with respect to the previous version of the Consumption Platform is the
decoupled approach of the SOA4All Studio that has implied the deployment of each tool in a
separate basis. Hence, SPICES can be used as part of the SOA4All Studio dashboard1, but
also independently, for it is deployed as a standalone tool at its own location2

The decoupling of the Studio also has implications with respect to the installation of a new
instance of the platform, as well as regarding its source code, which has been opened, as
with the rest of the SOA4All Studio components. This document also addresses these
concerns.

. It is worth
noting that the decoupled version of SPICES is accompanied by a complete description of
the platform at http://soa4all.isoco.net/spices/about.

The rest of the document is organised as follows: Section 2 covers the functional
specification of SPICES including examples of use; Section 3 discusses implementation and
integration details; Section 4 addresses installation instructions; Section 5 summarises the
main conclusions.

An Annex A has been included with publications related to the contents of this deliverable: a
poster about SPICES presented at ESWC 2010 and two papers submitted to ISWC 2010 on
the Web API authentication issue and on the subject of service personalisation.

1 Online version of the SOA4All Studio dashboard: http://coconut.tie.nl:8080/dashboard/
2 Online version of SPICES: http://soa4all.isoco.net/spices

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 8 of 32

2. SPICES Functional Specification: Using the Service
Consumption Platform
This section discusses the functional characteristics of SPICES from an end-user
perspective, and can be considered as a basic user guide. Examples of use are given
throughout the following subsections to better illustrate the way the platform can be used in
order to interact with and consume services. Particularly, each of the following subsections
covers:

• Section 2.1: A general overview on the platform and its main characteristics,

• Section 2.2: The different ways to open a service,

• Section 2.3: How to actually consume a service,

• Section 2.4: How to obtain personalised results,

• Section 2.5: How to get more information about a service,

• Section 2.6: How to provide feedback on a service or bookmark it,

• Section 2.7: How to get recommendations.

2.1 Interacting with SPICES: General overview
As described in the previous prototype documentation [3], the design of the platform now
known as SPICES intends to support the interaction of end-users with many services in
different ways, through a portal-style visualization layout. SPICES aims at being a startpage
for the consumption of semantically enriched services in a similar fashion to well-known Web
2.0 “personalised homepages” such as iGoogle3, NetVibes4 or My Yahoo! 5

The platform contains a left panel that allows users open services in different ways (as we
will see, by searching, browsing through a taxonomy, by opening bookmarked services, and
by obtaining recommendations). These services, and sets of services, can be opened in the
main dashboard view, where several of them can coexist organized in three different
columns, as depicted in

.

Figure 1. The first and more obvious difference with respect to the
first prototype version is the change in the look and feel of the platform, which has been
enabled by the new skin available for the whole SOA4All Studio (D2.4.3, [5]).

3 http://www.google.com/ig
4 http://www.netvibes.com/
5 http://my.yahoo.com/

http://www.google.com/ig�
http://www.netvibes.com/�
http://my.yahoo.com/�

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 9 of 32

Figure 1: SPICES: Left panel and dashboard area featuring some services and listings

Following the portal kind of layout, individual “portlets”6

Figure 2

 can be maximised to occupy the
whole dashboard area (and conversely minimised to their initial size), as well as contracted
to occupy only the header (and conversely expanded to their initial size), and obviously
closed when they are not going to be used anymore. shows some examples of
buttons to perform these actions in the portlets.

Figure 2: Examples of portlet buttons:

Contract, maximise, close; Expand, minimise, close

The left-hand panel, depicted in Figure 3, is the starting point of interaction in the platform
and contains several ways to allow end-users to find the services they need. It is divided into
the following areas:

• Search: A direct way of finding services with a keyword based query.

• My Actions: Services bookmarked by the user are displayed in this section, making
easy and quick to re-open them when required.

• Recommendations: Sets of services are recommended through the
Recommendation System to the users.

• Browse Categories: A hierarchical way of selecting services by navigating through a
taxonomy.

• Wizard: It displays a draggable panel with information about the platform, suggested
examples and a link to the SPICES “about” page7

6 http://en.wikipedia.org/wiki/Portlet

, which has more information.

7 http://soa4all.isoco.net/spices/luf

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 10 of 32

Figure 3: Left-hand panel

Besides the Wizard option, the rest of menus trigger options by which services can be
opened, as we will see in the next subsection.

2.2 Opening a service
The main objective of an end-user within the platform is to open services in order to interact
with them. We list below the different ways through which a service may be opened in the
main dashboard area, namely by i) searching, ii) browsing through categories, iii) selecting a
favourite service, and iv) selecting a recommended service.

2.2.1 Using the Search widget
Users can write text in the search input box, depicted in Figure 4, to find services related to a
particular keyword. Once the “Search” button is selected, a list of services is shown in a new
portlet in the main dashboard area, including more information that can be relevant for the
end-user such as the average rating for each particular service, helping him to decide which
option to choose.

Figure 4: Search widget

For example, if a user wants to interact with a weather service, he might type that particular
word and he’ll be presented with a portlet containing relevant weather services, as illustrated
in Figure 5.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 11 of 32

Figure 5: Search results listing

Amongst the presented services, the end-user is able to select one or more to be opened.
The list of services for the particular search is not immediately closed and can in fact coexist
with other searches made by the user.

It is worth noting that, when possible, the result listing will provide extra information in
addition to simply returning the service URI. For example, the first service annotations in the
example have an associated label “WeatherBug Forecast” which makes it easier for the end
user to recognize the service. (Please note that a given set of annotations do not necessarily
have descriptive labels associated.) Also, it has a relevant and higher rating, and the table
also reflects that. (In Sections 2.5 and 2.6 we will address where these ratings come from.)

2.2.2 Browsing categories
The other option by which an end-user is able to obtain a list of services is by browsing
through a taxonomy of categories and choosing one in particular amongst them. In this case,
the Categories widget depicted in Figure 6 features the Service Finder RDF taxonomy8

8 http://www.service-finder.eu/ontologies/ServiceCategories

, so
users can find services relevant to each of those by browsing through them and selecting the
one they are interested in.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 12 of 32

Figure 6: Categories Tree

For example, a user interested in sending text messages over the phone could navigate
through the categories in order to select Business  Communications  SMS, hence
triggering a list of SMS related services, as shown in Figure 7.

Figure 7: Category results listing

2.2.3 Selecting a favourite service
Besides the previously explained ways of opening a service after obtaining a list of results
through search or categories, a service may be opened directly from the left-hand panel. In
this case, the Favourites widget (“My Actions” panel) depicted in Figure 8 features services
previously bookmarked by the user (see Section 2.6 on how to bookmark a service). The
selection of one of these services opens it in the main dashboard area.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 13 of 32

Figure 8: “My Actions” panel

2.2.4 Selecting a recommended service
Another way of directly opening a service from the left-hand panel is by selecting one of the
recommendations that come from the Recommendation System, as we will see in Section
2.7. An example of this panel featuring three recommendations is depicted in Figure 9. It is
worth noting that the platform is able to provide explanations to the end-user about why each
of the services has been suggested to him, by showing the relation in a “tooltip” when the
mouse is moved over the name of the service.

Figure 9: Recommendations panel

2.3 Consuming a service
Once a service is opened in a new portlet in the main dashboard area, the end-user is
presented with a form containing input boxes that have to be completed in order to specify
the necessary information to invoke the service.

Following the example of a particular weather service, the required input could be the
geographic coordinates of the location from which the forecast is to be retrieved. Figure 10
illustrates the inputs from which the end-user could complete the expected data, in this case
the latitude and longitude information.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 14 of 32

Figure 10: Service GUI for inputs

Each time a user invokes a service, a new “Execution” tab is displayed in the service portlet.
This way, the results of different interactions can be compared, and discarded (by clicking
the ‘x’ handler on the right-hand side of the tab) when desired. The complex process of
transformations and HTTP calls including lowering, invocation, lifting, etc., happens behind
the scenes (as covered in Section 3.2), and the user is presented with the result in an
understandable manner. Figure 11 follows the weather service example with the display of
the execution result (weather forecast information) in a new and separate “Execution” tab.

Figure 11: Results of a service invocation

2.3.1 Dealing with authentication
As discussed in the previous deliverable, one of the main issues with services that require
authentication is that the semantic annotations are not enough to automatically enable their
consumption. SPICES approaches this subject by trying to guide the end-user when possible
in an active manner and handling the credentials in future interactions with the same service
seamlessly. The following Figure 12 illustrates how the platform requests necessary API key
credentials in the first use of a particular service. Once the credentials get stored, this
request is not repeated in the subsequent interactions of any user with the same service, as
the credentials will be already available.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 15 of 32

Figure 12: Request of API credentials by the platform

2.4 Getting personalised results
The personalised consumption of services is facilitated by semantic descriptions of services
(i.e., using WSMO-Lite due to its simple but not simplistic model), the end-user profile and
the context. Therefore, the formal model required to represent the semantics of Web
services, their functional parameters (e.g., inputs and outputs), the user profile and the
context based information is provided by a domain ontology.

According to these descriptions, semantic connections can be established between an input
parameter of a service and a field of a user profile (in the following we focus on user profile
description but the model could be easily extended to context based descriptions without loss
of generalities), using their semantic similarity. The similarities are judged using a
matchmaking function between the two semantic descriptions using the domain ontology.

In case matchmaking function is valid (i.e., subsumption relationships between service and
profile description), the input parameter is automatically assigned with the value referred to in
the user profile, but with a warning flag, informing about the incompleteness (i.e., only
subsumption, no perfect equivalence) of the personalisation. In any case, it is up to the end-
user to validate the personalised parameterisation of services. Finally, in case of
incompatibilities, no personalisation is performed.

Since the semantics on services descriptions and user profiles are rarely described using the
same ontology, the personalisation approach requires a pre-step of semantic annotation of
services by means of the user profile ontologies. Such annotations are performed using the
SWEET tool [6] and are stored as new service descriptions in iServe. Therefore any service
descriptions relevant to the User profile are semantically annotated using the OWL
vocabulary [7] i.e., mainly Concept (rdfs:subClassOf, owl:equivalentClass) and Properties
(rdfs:subPropertyOf, owl:equivalentProperty) modifiers that respectively define concepts
and properties through class and property axioms.

2.4.1 Example (Pre-Annotation of Service Description using the User Profile based
Ontology):

The following RDF snippet simply links two properties of a user profile and a service
description i.e., the property http://profile.soa4all.org#lastName of the user profile is
equivalent to the property http://xmlns.com/foaf/0.1/surname of a service description
available in the database.

<rdf:Description rdf:about="http://profile.soa4all.org#lastName">
 <owl:equivalentProperty rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</rdf:Description>

Given these further semantic annotations a WSML-Lite reasoner has been used to infer the
subsumption relationships between semantic descriptions of services and user profiles.

http://xmlns.com/foaf/0.1/surname�

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 16 of 32

2.4.2 Example (Illustration of a User Profile based Service Personalisation):
Figure 13 depicts a personalisation of a service from Last.fm using a user profile. For
instance, the Person parameter field (left hand side) has been instantiated by “hidayat”
(according to the information stored in the profile: see right-hand side, and the RDF linked
operated on properties). Such a personalization requires the end-user to login first, and then
the system is able to connect the relevant information by means of semantic technologies.

Figure 13: Service Personalisation

2.5 Inspecting more details about a service
A different tab (labelled “Details”) within a service portlet contains additional information
about the service. It has a pointer to the set of annotations, and also features feedback data
provided by other end-users.

The link to the service annotations directly points to the Linked Data URI of the set of
annotations in iServe. Thus, any user can inspect the details of the annotations by HTML-
browsing inside iServe. Also, more advanced users will be able to get the RDF of the
annotations there.

The feedback information is retrieved from the Linked User Feedback (LUF) service9

[1]
, also

known as the Feedback Management Framework (described in D2.1.4), which is now a
decoupled REST service from which SPICES is able to retrieve user generated feedback
about the services in the form of (i) ratings, (ii) comments and (iii) taggings. (Note that we
use the term “tagging” to define a set of tags created over a resource by a tagger on a given
date, as in the Tag Ontology10

This information is displayed in the “Details” tab through some widgets (a Rating widget with

.)

9 http://soa4all.isoco.net/luf/about
10 “Taggings reify the n-ary relationship between a tagger, a tag, a resource, and a date”,
http://www.holygoat.co.uk/projects/tags/

http://www.holygoat.co.uk/projects/tags/�

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 17 of 32

stars for the average rating, a Tag Cloud widget for the aggregated taggings, and a table with
the previous comments) as shown in Figure 14.

Figure 14: Service Details tab

Interestingly enough, as covered in D2.1.4, the user-generated feedback information that
SPICES retrieves from LUF has not necessarily been produced within this platform, but –
thanks to the decoupled approach followed by the Studio – also from iServe too.

2.6 Creating Feedback and Bookmarking
As explained in the previous subsection, any user interacting with the platform, either if he is
logged in or not, can inspect the additional information about a service, including the
feedback information created by other users. However, in order to produce new ratings,
comments and taggings about a given service, and also for bookmarking them, an end-user
needs to be logged in within the platform.

In order to log in to SPICES, users need to enter the platform through the main SOA4All
Studio installation, logging in with their OpenId as described in D2.4.3 [5]. Once logged in,
users can select the SOA4All Consume option and enter SPICES already logged in.

Figure 15: Feedback Creation and Bookmarking buttons

When a user is logged in into SPICES, he sees in the Details tab the buttons depicted in
Figure 15, and he is able to generate new feedback information about a particular service by
using them:

• A rating can be created by selecting the number of stars (1 to 5) in the rating widget
and pressing the “Rate” button.

• A comment can be inserted by pressing the “Add comment” button and writing the
text in the modal panel that shows up.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 18 of 32

• A tagging (set of tags) can be created by pressing the “New tag” button for each new
tag, and eventually the “Save tags” button.

In addition to creating new feedback about the services, a logged-in user can bookmark the
ones he is interested in by pressing the “Add to favourites” button. This is not only useful for
making these services available in the left-hand panel, as explained in Section 2.2.3, but also
in different SOA4All Studio platforms such as the Process Editor [9] (in this case, so the
bookmarked services can be inserted into a process).

2.7 Getting recommendations
Recommendations in SPICES come in two different flavours from the Recommendation
System. While the deep explanations on how these recommendations are computed is
contained in a separate deliverable (D2.7.2, [8]), we mention here how they take place within
SPICES from the end-user point-of-view:

• For logged-in users, their experience within the platform will result in some generic
recommendations shown in the left-hand panel, as explained in Section 2.2.4. (See
getRecommendationByUser method described in Section 3.8)

• For all users, there are recommendations per-service in the bottom part of the Details
tab. (See Section 3.8: If they are logged in, via the
getRecommendationByUserAndService method; otherwise through the
getRecommendationByService one.) These recommendations include a degree
of confidence (in percentage) on the quality of the suggestion, as depicted in Figure
16.

Figure 16: Service-based Recommendations

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 19 of 32

3. Implementation Details
This section discusses the most relevant implementation details of SPICES, which we have
considered worth explaining in order to further illustrate its characteristics.

First of all, it is important to point out that SPICES, as a component of the SOA4All Studio,
has taken a decoupled approach lately, as addressed in Section 3.1. This decoupled
approach does not prevent the platform from sharing some common functionalities with other
SOA4All modules, such as the semantic invocation facilities that are explained in Section
3.2. Furthermore, with SPICES being a decoupled module but also a part of a bigger picture
(the SOA4All Studio), integration aspects are particularly relevant. The following subsections
cover these integration issues with other important SOA4All components: iServe (Section 0),
the Storage Services (Section 3.4), the Linked User Feedback service (Section 3.5), the
Auditing Service (Section 3.6), the UI Widgets (Section 3.7), and the Recommendation
System (Section 3.8).

3.1 Development of SPICES as a Decoupled Module of the
SOA4All Studio
In the previous version of the SOA4All Studio, every single module, such as the
Consumption Platform, was bundled into a monolithic software application (i.e., the SOA4All
Studio). However, during the last period of the project, this approach was considered
inefficient and thus the whole work package took a decoupled one instead.

This fact implies that the development of SPICES still benefits from the SOA4All Studio
Infrastructure Services and UI Components (covered in D2.4.3 [5]) by importing the relevant
.jar files into the project, while at the same time the deployment of the platform can be
carried out independently and as part of the SOA4All Studio dashboard installation.

For instance, the GXT (Ext-GWT11

2

) development of SPICES has benefited from the new look
and feel applied to the whole Studio, and therefore the new interface of the platform features
the palette with the silver-cherry theme, as showcased in the many screenshots of Section .

From the development point of view, a new consumption project with a client-side module
(with the frontend functionality that is able to create the GUI) and a server-side module (with
the backend functionality) have been enabled. These two modules are bundled together into
a Web application in a .war file.

A continuous build tool takes care of generating the .war file for the platform, which can be
deployed in a Tomcat independently from the rest of the SOA4All Studio, as covered in
Section 4.2.

Importantly enough, even if decoupled from the main installation of the SOA4All Studio, it
can be used in conjunction with it (e.g., for logging-in purposes) and many functionalities are
accessed from other SOA4All architectural components via REST service calls, as we will
see in some of the following subsections.

3.2 Semantic-based Service Invocation
This section explains how SPICES can automatically invoke services based on semantic
descriptions of user input and to provide service responses at semantic level.

The following Figure 17 provides an overview of the whole process:

11 http://www.sencha.com/products/gwt/

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 20 of 32

Grounding Services Service ProviderSPICES (Server-side)

SOAP Envelope (request)

SOAP Envelope (response)

SPICES (GUI)

Get User Input
for Service

(semantic level)

Disply service
output (semantic

level)

User Input (RDF_instances)

LoweringService (user_input_RDF, Lowering_XSLT)

User input (XML_instances)

LiftingService (SOAP_response_XML, Lifting_XSLT)

Service output (RDF_istances)
WSDL / REST

Output
Handler

WSDL / REST
Invoker

Service Output (RDF_instances)

Figure 17: Semantic-based service invocation sequence diagram

Based on a service semantic description (i.e., retrieved from iServe), the SPICES GUI can
collect user input at semantic (RDF) level.

Such input is streamed at server-side, where it is handled by a “WSDL/REST Invoker”
Component: this is the core component for the whole invocation chain.

This component interfaces with the Grounding Services developed into WP3 (D3.4.1, [10]),
which can perform lifting and lowering operations. Necessary information in order to perform
such lifting / lowering operations is the availability of a lifting and a lowering schema: These
schemata can be generated thanks to the Grounding Editor, as explained into D3.4.1 [10].

As an example, we report here the main API to be invoked in the “WSDL/REST Invoker”
component, to invoke a WSDL service:
public String executeWsdlService (String wsdlURL, String serviceName,
String operationName, String lifted_input, String lifting_schema_url,
String lowering_schema_url)

 Input parameters are:

• wsdlURL: The URL of the WSDL file.

• serviceName: The name of the service to be invoked, in the WSDL file.

• operationName: The name of the service operation to be invoked.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 21 of 32

• lifted_input: This is the user input in RDF, as provided at GUI level.

• lifting_schema_url: URL of the lifting schema to be used.

• lowering_schema_url: URL of the lowering schema to be used.

The API returns the service output transformed at RDF level, or an empty string in case of
failure.

After collecting all necessary inputs, the “WSDL/REST Invoker” binds to the required service
and invokes the Lowering Service in order to transform user input provided as RDF instances
into XML instances, which are then encapsulated into the service request (i.e. into the SOAP
message in case of WSDL services).

At this point the service can be directly invoked. The last operation is handled by the
“WSDL/REST Output Handler” component, which transforms the service output from XML to
RDF instances, thanks to the Lifting Service. Such RDF output is finally passed to the GUI to
be displayed to the user.

3.2.1 Example
The following example shows how to use the “executeWsdlService” API.

The service to be used is a very simple one: it takes user input and appends a “hello” string
in front of it:

http://demos.txt.it:8056/getCatalogVersion/VersioningService?WSDL

The service name is “VersioningService” and operation name is “GetVersion”.

A lifting and a lowering schema have been created thanks to the grounding editor, using the
purchase order ontology PO.rdf:

Lifting schema:
1. http://stronghold.ontotext.com:8080/storage/repositories/playground/f

iles/Sample_Matteo_lifting_schema_both.xsl

Lowering schema:
2. http://stronghold.ontotext.com:8080/storage/repositories/playground/f

iles/Sample_Matteo_lowering_schema_both.xsl

These mappings are quite simple: An RDF entity oms:has_productName should be used
as the service input, while the service output should be mapped to the property
oms:has_name of the oms:USAddress entity.

As a sample user-input, we use the following RDF:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:oms="http://anonymous.generated/iOnto#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
 <rdf:Description rdf:about="http://anonymous.generated/iOnto">
 <owl:imports rdf:resource="http://anonymous.generated/iOnto"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://anonymous.generated/iOnto#_omsitemmyVersion">
 <rdf:type rdf:resource="http://anonymous.generated/iOnto#item"/>
 <oms:has_productName
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">myVersion</oms:has_productName>
 </rdf:Description>
</rdf:RDF>

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 22 of 32

Actually, the mapping should take the entity oms:has_productName and map it as an input
for the “VersioningService”. In this example, the user input is “myVersion”.

The WSDL Invoker component transforms this input into XML and generates the following
SOAP request message:
<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<getVersion xmlns="http://test/">

<String xmlns="">myVersion</String>
</getVersion>

</soapenv:Body>
</soapenv:Envelope>

As we can see, the user input “myVersion” has been correctly placed into the operation
“getVersion” as an input parameter.

After invoking the service, we get the following SOAP response:
<?xml version='1.0' encoding='utf-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getVersionResponse xmlns:ns2="http://test/">

<return>hellomyVersion</return>
</ns2:getVersionResponse>

</S:Body>
</S:Envelope>

We notice that service output is “hellomyVersion” (the string “hello” is appended before user
input “myVersion”.

This response is finally transformed back to RDF:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:oms="http://anonymous.generated/iOnto#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
 <owl:Ontology rdf:about="http://anonymous.generated/iOnto">
 <owl:imports rdf:resource="http://anonymous.generated/iOnto"/>
 </owl:Ontology>
 <oms:USAddress rdf:about="http://anonymous.generated/iOnto#_omsUSAddresshellomyVersion">
 <oms:has_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >hellomyVersion</oms:has_name>
 </oms:USAddress>
</rdf:RDF>

We see how in the RDF above there is a resource
oms:_omsUSAddresshellomyVersion, instance of oms:USAddress, that has a property
oms:has_name with value “hellomyVersion”, which means that for the Consumption
Platform end-users, the service invocation ouput will be “hellomyVersion”.

3.3 Integration with iServe
In the previous version of the Consumption Platform, the managed services were retrieved
from the Storage Services in an ad-hoc manner, but there was not a formal repository of
services central to the project. Now, this repository exists as iServe [4], the platform for the
seamless publication and discovery of semantic Web services described in D2.1.4 [1], which
is used by the provisioning platform tools SWEET and SOUR to store annotations on
RESTful and WSDL services, respectively.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 23 of 32

iServe exposes those annotations through an API and as Linked Data, thus enabling a
SPARQL endpoint, which is quite convenient for the purposes of SPICES, as we can retrieve
exactly the information desired about the services (e.g., the operations related to a service,
its inputs and outputs, the concepts related via sawsdl:modelreference, etc.) when
necessary.

The SPARQL endpoint through which SPICES interacts with iServe is located at:
http://iserve.kmi.open.ac.uk/data/execute-query. We also highlight the GUI through
which test queries can be sent: http://iserve.kmi.open.ac.uk/browser.html.

The integration of SPICES with iServe is of great importance, for it implies that any new
service added to the service repository is automatically available within the consumption
platform. Thanks to the SPARQL access to iServe, SPICES will be always up-to-date with
respect to the services that can be opened.

3.4 Integration with the Storage Services
The Storage Services, part of the SOA4All Studio Infrastructure Services (see D2.4.3, [5]),
are of utmost importance for many components of the Studio, and the Consumption Platform
is not an exception. These services allow us to easily store and retrieve RDF triplets to and
from the Semantic Spaces connected to those services. Anyway, the fact that the Semantic
Spaces are connected is transparent for our platform as a client of those services; SPICES
does not care if the repositories are on one machine or distributed into the Spaces, as the
interaction is done through the same API.

The interaction with the Storage Services happens from the consumption server-side module
via RESTful calls to the available GET method, constructing the desired SPARQL query and
sending it in the header, which returns the desired RDF information, to be parsed
conveniently on reception:

STORAGE_SERVICE_URL/repositories/<repository-id>

The online version of the Storage Services, with which SPICES interacts, is located at the
following location: http://coconut.tie.nl:8080/storage.

Direct interaction with the Storage Services in SPICES happens only in one direction,
retrieving information (for example, for the categories stored in RDF). It is worth noting
though that the platform also inserts information into the Semantic Spaces through the
Storage Services (e.g., feedback information, logs), but in an indirect manner via other
services, as we will see in the following two subsections.

3.5 Integration with the Linked User Feedback service
In the M18 prototype of the Consumption Platform, interaction with the Feedback
Management framework was done by accessing a different server-side module located at the
same installation of the SOA4All Studio. However, in the same spirit of decoupling the
components of the Studio, SPICES now interacts with the so-called Linked User Feedback
service (LUF12

[1]
, the evolution of the Feedback Management framework as a decoupled REST

service, described in D2.1.4) through its REST API.

This way, end-users in SPICES are able to rate, comment and associate tags to services
(see Section 2.6), as well as inspect the previously created user-generated feedback

12 http://soa4all.isoco.net/luf/about

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 24 of 32

(Section 2.5). Interestingly enough, thanks to the LUF service being decoupled from this
particular platform, the ratings, comments and taggings are shared between SPICES and
iServe (i.e., feedback produced within the two platforms are available to both of them).

The calls to the LUF API to produce new ratings, comments and taggings are, respectively,
POST calls to:

• http://soa4all.isoco.net/luf/api/ratings
• http://soa4all.isoco.net/luf/api/comments
• http://soa4all.isoco.net/luf/api/taggings

In addition, information about a particular rating, comment and tagging is retrieved by
SPICES by calling, respectively:

• http://soa4all.isoco.net/luf/api/ratings/{id}
• http://soa4all.isoco.net/luf/api/comments/{id}
• http://soa4all.isoco.net/luf/api/taggings/{id}

Finally, SPICES uses the search method to obtain feedback information associated to a
particular service, also in relation to a particular user (to show a logged-in user his previously
produced feedback information about a service), by calling:

• http://soa4all.isoco.net/luf/api/search?itemId={item}&userId={user}

3.6 Integration with the Auditing Service
The integration of SPICES with the Auditing Service is yet another case where the
integration used to happen between server-side modules within the same installation of the
SOA4All Studio (i.e., inside a deployed .war installation), and now the communication is
done through RESTful calls to the Auditing Service API (i.e., the two components do not
need to be installed in the same location).

The Auditing Service, described in D2.4.3 [5], has the ability of recording the users’
interactions within the platform (e.g., a user opens a service, a user invokes a service, etc.).
The tracking of these actions is necessary for the Recommendation System to perform its
computation, as well as for the Analysis Platform.

SPICES calls a single method of the Auditing Service, POSTing information (the action itself
and additional parameters) into a new action resource:

• http://soa4all.isoco.net/auditing/action

3.7 Integration with the UI Widgets
SPICES exploits some common User Interface items provided by T2.4 (see D2.4.3 [5]), by
importing the relevant .jar files into the project, to perform actions or display information,
keeping a common graphical interface with the whole SOA4All Studio environment. In
particular, three widgets are used:

• The Rating Widget, used in the “Details” tab of a service portlet to display the
average rating for the selected service and also to allow the user to express his
mark for the displayed service (see Figure 14).

• The Tag Cloud Widget, also used within the “Details” tab of a service portlet to
display the tags users have labelled the service with (see Figure 14).

• The Taxonomy Selector Widget, used to create the categories tree so users can
browse through the taxonomy in the left-hand panel (see Figure 6).

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 25 of 32

It is worth noting that the widgets have been adapted to the new skin to fit the new UI of the
Studio modules.

3.8 Integration with the Recommendation System
SPICES is integrated with the Recommendation System (RS); at batch time, this integration
serves to the RS to gather the needed information to compute recommendations, while at
run time, the integration is leveraged to invoke the RS to get recommendations to be
displayed within the platform. The RS employs different algorithms to compute
recommendations: collaborative filtering techniques are used to get recommendation from
the users logs of the Consumption Platform, while various content-based algorithms are used
to compute recommendations on the basis of the semantic descriptions of users and/or
services. Those algorithms are fully described in Chapter 3 of deliverable D2.7.2 [8].

The RS run-time API is briefly described in the following. Further details are given in Chapter
2 of deliverable D2.7.2.

1. getRecommendationByUser(URI user, int num): this method provides suggestions
based only on the description of the current user.

2. getRecommendationByUserAndService(URI user, URI service, int num): this
method provides recommendations based on both the description of the current user
and of the service currently seen by the user.

3. getRecommendationByService (URI service, int num): this method provides
recommendations based only on the description of the current service.

SPICES invokes the RS run-time API based on the following criteria:

• getRecommendationByUser is invoked when a user is logged in but he is not
looking at a specific service.

• getRecommendationByUserAndService is invoked when a user is logged in and
he is analyzing a specific service.

• getRecommendationByService is invoked when a user is not logged in but he is
analyzing a specific service.

3.9 Keyword-based and category-based discovery
SPICES gives end-users the ability to look for services in several ways, as we have covered
throughout the document. In this line, the easiest way for users to discover services will be
by specifying a set of keywords with the objective of retrieving a list of suitable services. Of
course, SPICES is not able to reply to those sets of keywords by itself, but uses the
underlying SOA4All Discovery components, creating a suitable query with the selected
keywords, in order to retrieve the relevant sets of services.

In the previous prototype, the queries were run against the service descriptions contained in
the Storage Services; in the present one, the queries act on the service descriptions
contained in iServe, which makes it possible for SPICES to find the services annotated with
the provisioning tools. Behind the scenes, SPARQL queries are run against the service
descriptions in iServe through the aforementioned endpoint in order to obtain a list of suitable
service identifiers, but the end-user does not need to know about these technical details, for
he is just writing some keywords and not the query himself.

The M18 deliverable described the keyword-based discovery that acts when the Search
Widget is used (example of query given below in Section 3.9.1). Now, in addition to the

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 26 of 32

keyword-based discovery, we also illustrate a query triggered by the selection of a category
in the Taxonomy Selector Widget (in Section 3.9.2).

3.9.1 Example: Keyword-based SPARQL query

A query over the id of the service with the term searchTerm, obtaining a list of services and
their labels, if available:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX msm: <http://cms-wg.sti2.org/ns/minimal-service-model#>
SELECT ?service ?labelSer
WHERE
{

?service rdf:type msm:Service .
FILTER regex(str(?service), "searchTerm", "i") .
OPTIONAL { ?service rdfs:label ?labelSer . }

}

3.9.2 Example: Category-based SPARQL query
A query to retrieve services associated via sawsdl:modelReference to the category
http://www.service-finder.eu/ontologies/ServiceCategories#Category:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
PREFIX msm: <http://cms-wg.sti2.org/ns/minimal-service-model#>
SELECT ?service
WHERE
{
 ?service rdf:type msm:Service .
 ?service sawsdl:modelReference
 <http://www.service-finder.eu/ontologies/ServiceCategories#Category> .
}

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 27 of 32

4. Installation & Usage
In this section, details are given on the requirements to use SPICES, both from an end-user
point-of view, and in the case it is desired to install a new instance of the platform
independently.

4.1 Requirements & Preparations
The requirements implied to use SPICES differ in the case of just using the platform via Web
and in the case of being an administrator willing to install a new instance of the platform.

4.1.1 For End-Users
We address here the normal end-users that simply access and interact with the platform as
explained in Section 2, (those users who are referred to as “the ‘4All’ of SOA4All” in D2.4.3
[5], where similar installation instructions are given for the whole SOA4All Studio dashboard).

These users do not need to install anything to use SPICES. The only thing that they need is
a modern Web browser. The current prototype implementation described in this deliverable
supports the latest stable versions of Firefox (3.5), Chrome (5) and the Internet Explorer (8).
Based on this, they may simply invoke SPICES by calling the relevant Web address. It is not
necessary to install any plugin.

At the present moment, a running version of SPICES for testing purposes can be accessed
by end-users at the following location: http://soa4all.isoco.net/spices.

However, please note that this location might change in the course of the open source
publishing activities of the SOA4All project.

4.1.2 For Administrators
In order to deploy a new instance of SPICES, the usual requirements for the rest of the
SOA4All Studio are valid (i.e., Java and Tomcat), but also an installation of the
Recommendation System is necessary in order to enable recommendations in the new
platform.

4.1.2.1 Java

All SOA4All Studio developments are based on the Java programming language. As such, a
Java Runtime Environment is required. Java can be downloaded for any operating systems
including Windows, Linux and MacOS in their current version.

The current prototype of SPICES requires Java 1.6 or newer. The latest version may be
downloaded at http://java.sun.com.

4.1.2.2 Tomcat

As the SOA4All Studio and its modules are Web-based solutions, the SPICES prototype is
available as a Web application. As such, the Tomcat server (6.0 or newer) installation is
required in order to setup the prototype. Tomcat is available at the following website:
http://tomcat.apache.org.

4.1.2.3 Recommendation System

A new version of SPICES does not necessarily need an installation of the Recommendation
System to work, but of course if it is desired to have recommendations enabled within the

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 28 of 32

platform, it is necessary. The process of installing the Recommendation System is explained
in D2.7.2 [8].

4.2 Installation (Deployment)
An administrator willing to install a new instance of SPICES can retrieve the relevant .war
file and deploy it in a Tomcat installation.

SPICES is using a continuous integration tool also used by other components of the SOA4All
Studio called Hudson, located at http://coconut.tie.nl:8080/hudson. The latest
version of SPICES can be found there by navigating to
ConsumptionPlatformDecoupled-SPICES  lastStableBuild  “SOA4ALL
Dashboard - Consumption platform” in soa4all-consumptionplatform-
webapp-0.0.1-SNAPSHOT.war13

Copying (and renaming, if desired) that .war file into the folder webapps of a Tomcat
installation, and restarting it afterwards will automatically install all the necessary SPICES
files.

.

4.3 Execution
After deploying the SPICES application, it can be accessed by opening a Web browser and
navigating to the following URL: http://localhost:8080/soa4all-
consumptionplatform-webapp-0.0.1-SNAPSHOT (depending on how has it been
renamed). This should display the main dashboard area of SPICES as described in Section
2.1.

For updated information and any further questions, please refer to
http://soa4all.isoco.net/spices/about.

13 Also, the link is: http://coconut.tie.nl:8080/hudson/job/ConsumptionPlatformDecoupled-
SPICES/lastStableBuild/eu.soa4all.studiodecoupled.spices$soa4all-consumptionplatform-
webapp/artifact/eu.soa4all.studiodecoupled.spices/soa4all-consumptionplatform-webapp/0.0.1-
SNAPSHOT/soa4all-consumptionplatform-webapp-0.0.1-SNAPSHOT.war

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 29 of 32

5. Conclusions
This deliverable is the documentation of the second prototype of the SOA4All Studio Service
Consumption Platform, now known as SPICES (Semantic Platform for the Interaction and
Consumption of Enriched Services), the evolution on the previous version described in M18.

SPICES is the tool of the SOA4All Studio where end-users are able to interact with services
and consume them in a lightweight manner. It is intended to be a “personalised homepage”
for the consumption of semantically enriched services, where end-users are able to find the
services they are interested in and interact with them in an easy yet personalised manner.

The second and final prototype addressed by this deliverable has taken the same decoupled
approach as the rest of the SOA4All Studio components, while at the same time new
functionalities have been added, such as a better support for both WSDL and REST
services, dealing with authentication, etc.

Additionally, it is worth noting that the efforts within the platform have been influenced by
external factors such as the increasing importance of the Linked Data paradigm, and thus
SPICES caters for what is now referred as Linked Data Services, as well as interacting with
further external data in that format (e.g., with the Linked User Feedback service).

This prototype documentation has discussed its main characteristics from the end-user point
of view, also reflecting the most important implementation issues, with a particular stress on
the integration of the platform with other architectural components of the project, such as the
common service annotations repository iServe. Finally, installation instructions for the
platform have also been given, explaining how it can be deployed independently.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 30 of 32

6. References
[1] M. Maleshkova, G. Álvaro, A. Simov: Service Provisioning Platform Second Prototype,

D2.1.4, EU FP7 SOA4All project, August 2010
[2] G. Álvaro, S. Abels, N. Mehandjiev, F. Lecue, M. Villa: Service Consumption Platform

Design, D2.2.1, EU FP7 SOA4All project, February 2009
[3] G. Álvaro, I. Martínez, M. Villa, G. di Matteo: Service Consumption Platform First

Prototype, D2.2.2, EU FP7 SOA4All project, August 2009
[4] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecký, and J. Domingue. (2010)

iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories and
Editors for the Semantic Web at 7th Extended Semantic Web Conference

[5] S. Abels, J. Vogel, G. Álvaro, I. Martínez, T. Pariente, A. Simov: SOA4All Studio UI and
Infrastructure Services Second Prototype, D2.4.3, EU FP7 SOA4All project, August
2010

[6] M. Maleshkova, J. Kopecký, C. Pedrinaci: Adapting SAWSDL for Semantic Annotations
of RESTful Services. OTM Workshops 2009: 917-926

[7] M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology language guide.
W3C recommendation, W3C, 2004.

[8] I. Celino et al.: Recommendation System Second Prototype, D2.7.2, EU FP7 SOA4All
project, August 2010

[9] J. Vogel et al. SOA4All Process Editor Second Prototype, D2.6.3, EU FP7 SOA4All
project, August 2010

[10] A. Simov. WSMO Data Grounding Component, D3.4.4, EU FP7 SOA4All project,
August 2009

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 31 of 32

Annex A. Related publications
This Annex contains information about a publication and two submissions related to the
contents of this deliverable, describing research done within the Service Consumption
Platform task:

1. A poster presented at ESWC2010, which is available online (both the poster itself14
and its description15

 Álvaro, G., Martínez, I., Gómez, J., Lecue, F., Pedrinaci, C., Villa, M., and di
Matteo, G.: Using SPICES for a Better Service Consumption. Poster at Extended
Semantic Web Conference (ESWC 2010)

).

Abstract. In this poster we present SPICES (Semantic Platform for the Interaction
and Consumption of Enriched Services), a Web-based tool that automates the
process of consuming a Web service by making use of the semantic annotations
that describe them. SPICES supports both traditional WSDL services and
RESTful ones and offers end-users the possibility of interacting with them in an
easy yet personalised manner, without the need of advanced technical skills -
which were traditionally required-, being the complexity that lies underneath
hidden to them. SPICES is being developed within the European project SOA4All.

2. A paper submitted to ISWC2010 on the subject of Web API authentication16

 Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, I.: Using
Semantics for Automating the Authentication of Web APIs. Submitted to main
track of ISWC 2010.

.

Abstract. Recent technology developments in the area of services on the Web
are marked by the proliferation of Web applications and APIs. The implementation
and evolution of applications based on Web APIs is, however, hampered by the
lack of automation that can be achieved with current technologies. Research on
semantic Web services is therefore trying to adapt the principles and technologies
that were devised for traditional Web services, to deal with this new kind of
services. In this paper we show that currently more than 80% of the Web APIs
require some form of authentication. Therefore authentication plays a major role
for Web API invocation and should not be neglected in the context of mashups
and composite data applications. We present a thorough analysis carried out over
a body of publicly available APIs that determines the most commonly used
authentication approaches. In the light of these results, we propose an ontology
for the semantic annotation of Web API authentication information and
demonstrate how it can be used to create semantic Web API descriptions. We
evaluate the applicability of our approach by providing a prototypical
implementation, which uses authentication annotations as the basis for automated
service invocation.

14 http://lab.isoco.net/files/publications/AlvaroEtAlESWC10.png
15 http://lab.isoco.net/files/publications/AlvaroEtAlESWC10.pdf
16 Submission also included in the Annex A of D2.1.4, present here for it features an important section on how
SPICES deals with the Web API authentication issues.

 SOA4All – FP7 – 215219 – D2.2.3 – Service Consumption Platform Second Prototype

© SOA4All consortium Page 32 of 32

3. A paper submitted to ISWC2010 on the subject of service personalisation.

 Lecue, F.: Personalization of Semantic Web Services. Submitted to main track of
ISWC 2010.

Abstract. Nowadays web users have clearly expressed their wishes to receive
and interact with personalized services directly. However, existing approaches
largely syntactic content-based, fail to provide robust, accurate and useful
personalized services to its users. Towards such an issue, the semantic web
provides enabling technologies to annotate and match services’ descriptions with
a user’ features, interests and preferences, thus allowing for more efficient access
to services and then information. The aim of our work, part of service
personalization, is on automated instantiation of services which is crucial for
advanced usability i.e., how to prepare and present services ready to be executed
while limiting useless interactions with users? To this end, we exploit Description
Logics reasoning through semantic matching to i) identify useful parts of a user
profile that satisfy services requirements (i.e., input parameters) and ii) compute
the description required by a service to be executed but not provided by the
profile. Finally, the scalability of our approach has been evaluated through its
integration in the service consumption of the EC-funded project SOA4All.

	Executive summary
	Introduction
	SPICES Functional Specification: Using the Service Consumption Platform
	Interacting with SPICES: General overview
	Opening a service
	Using the Search widget
	Browsing categories
	Selecting a favourite service
	Selecting a recommended service

	Consuming a service
	Dealing with authentication

	Getting personalised results
	Example (Pre-Annotation of Service Description using the User Profile based Ontology):
	Example (Illustration of a User Profile based Service Personalisation):

	Inspecting more details about a service
	Creating Feedback and Bookmarking
	Getting recommendations

	Implementation Details
	Development of SPICES as a Decoupled Module of the SOA4All Studio
	Semantic-based Service Invocation
	Example

	Integration with iServe
	Integration with the Storage Services
	Integration with the Linked User Feedback service
	Integration with the Auditing Service
	Integration with the UI Widgets
	Integration with the Recommendation System
	Keyword-based and category-based discovery
	Example: Keyword-based SPARQL query
	Example: Category-based SPARQL query

	Installation & Usage
	Requirements & Preparations
	For End-Users
	For Administrators
	Java
	Tomcat
	Recommendation System

	Installation (Deployment)
	Execution

	Conclusions
	References
	Related publications

